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Observation-based products

Here, the term “observational-based products” covers a wide range of datasets that use

observations that have been processed in different manners: high-frequency measurements

that have been merged into a regular spatial and temporal grid, localised measurements

have been interpolated using various statistical tools, data derived from satellite measure-

ments or from reanalysis methods. The general information on all observational-based

products used in the study, and the various data-processing steps are described in Table

S1.

CMIP5 model data

Data download: Output from the CMIP5 models’ (Taylor, Stouffer, and Meehl (2012);

Table S2) was obtained from the ESGF online portal (https://esgf-node.llnl.gov/

projects/cmip5/). From the available CMIP5 models (Taylor et al. (2012); Table S2),

the following fields were downloaded for the 1st ensemble member (labelled r1i1p1 on

ESGF) and for the historical experiment prior 2006, and the RCP8.5 scenario (Riahi et

al., 2007) from 2006 (text in brackets indicates the variable name labelled on ESGF):

• daily near-surface specific humidity (huss, in kg.kg−1), near-surface air tempera-

ture (tas, in K), surface longwave (rlds) and shortwave (rsds) downwelling radiations (in

W.m−2), eastward (uas) and northward (vas) near-surface winds (in m.s−1), precipitation

(pr) and snowfall (prsn) fluxes (in kg.m−2.s−1, equivalent to mm.s−1 for a density of 1,000

kg.m−3).
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• monthly sea surface partial pressure (spco2, in Pa), temperature (tos, in K) and

pressure (psl, in Pa), potential temperature (thetao, in K) and salinity (so, in psu)

• yearly dissolved inorganic carbon (DIC; dissic) and total alkalinity (TA; talk).

All variables are surface fields (i.e. 3-dimensional fields, with time×lat×lon), except

for potential temperature, salinity, DIC and TA which are also available at depth (i.e.

4-dimensional fields, with time×depth×lat×lon). Note that the DIC and TA fields were

also available at monthly frequency but surface only, which would have limited study at

depth (Figure S15). Additionally, the 1st ensemble member of the control run (picontrol

on ESGF) for the monthly sea surface spco2 (in Pa) was downloaded for 14 CMIP5 models

(Table S2).

Conversion steps: To provide identical units across the models’ outputs, and similar

units/variables as observational products, and hence facilitate inter-model and model-

observation comparisons, few adjustments were made:

• The IPSL models (i.e. IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR) did not

provide on the ESGF portal the variable spco2 but provided dpco2 in µatm, from which

spco2 can be deduced. To do so, dpco2 was first converted into Pa by multiplying by

0.101325 (i.e. 1 atm = 101325 Pa). The partial pressure of CO2 in the atmosphere (i.e.

pCO2 –atmosphere) was then calculated from the atmospheric xCO2 forcing data (Riahi et

al., 2007) and the respective modelled SST and pressure fields (Taylor et al., 2012; Pierrot

et al., 2009):

pCO2−atmosphere = xCO2−atmosphere × 10−6 × (P − pH2O) (1)

pH2O = 0.981× exp(14.32602− 5306.03/T )× 101325 (2)
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where, P is the sea level pressure (Pa), T the temperature (K), and B and δ are

the temperature dependent coefficients (m3·mol−1) (Weiss, 1974; Kortzinger, 1999),

xCO2 –atmosphere the CO2 mixing ratio and pH2O the partial pressure of saturated wa-

ter vapour (Pa) (Cooper et al., 1998).

Finally, pCO2 –atmosphere was subtracted by dpco2. The deduced spco2 was therefore in Pa,

as the rest of the models.

• To match with the SOCAT observational product, surface spco2 from each model

was converted into fugacity and from Pa to µatm, using the modelled SST and pressure

fields (Equation 3; Weiss (1974)) and by dividing by 0.101325.

fCO2 = pCO2 × exp
(
P
B + 2δ

RT

)
(3)

where R the ideal gas constant (8.314 J·K−1·mol−1).

Note that for simplicity, and due to the different ways results from different experiments

have been used, this conversion was applied to the historical and RCP85 experiments but

not to the picontrol experiment.

• Non-realistic salinity values for the CESM1-BGC model indicated that the units

were in kg/kg, instead of psu (i.e. g/kg). The salinity field for this model was therefore

multiplied by 1,000.

• The land mask for the thetao and so fields in the MRI-ESM1 model was set with

zeros instead of “NaN”. To provide clear land mask and avoid unrealistic MLD values at

those grid points, all zero points were set to “NaN”.

Regridding: The variety of model resolution and vertical/horizontal type of grids lead to

difficulties when comparing models with each-other and/or with observational products
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that are generally based on regular grids. To allow direct comparison of fields, one data

processing step was therefore to regrid all model outputs into a regular grid.

All monthly variables (except thetao and so) were horizontally regridded to a transi-

tional 180×360 grid using the bilinear interpolation within the CDO package (http://

www.mpimet.mpg.de/cdo) and were then adjusted to the SOCATv4 grid (also a 1◦×1◦

grid, but with longitude going from -179.5◦E to 179.5◦E) using the bilinear interpolation

function within the Python Iris package (http://scitools.org.uk/iris/docs/v1.7/

index.html).

The 4-dimensional dissic and talk fields were also vertically regridded according to

the GLODAPv2 depth levels (Lauvset et al., 2016) using the CDO package (http://

www.mpimet.mpg.de/cdo). However, since the first depth level in GLODAPv2 is 0 m and

in the models is generally shallower (e.g. 5 m), the interpolation could not be computed

between 0 m and the first level in the models (except for the NorESM1-ME model whose

first depth level is 0 m). As such, the regridding provided “NaN” values at the surface

and therefore led surface analyses of DIC and TA to be achieved at 10 m depth.

All daily surface fields, which were used to force an ocean model (c.f. Section 4.3. in

main text), were temporally and spatially adjusted to models’ set-up and grid. First, the

time component of all variables was adapted to a Gregorian calendar. Models that had a

365-day calendar and hence no leap years (GFDL-ESM2M, CanESM2 and IPSL-CM5A-

LR) has the extra day, February the 29th, added on leap years by repeating the fields for

February 28th. The model with a 360-day calendar and hence 12 months of each 30-day

long (HadGEM2-ES) had an extra day at the end of the months of January, July, August,

October and November on non-leap years and also March on leap years, by repeating
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the fields from day 30. Then all fields were spatially regridded to a transitional 180×360

standard-grid using the CDO package (http://www.mpimet.mpg.de/cdo), and then re-

gridded to ORCA-1 (i.e. the grid of NEMO ocean model) using the Surface Interpolation

Environment SOSIE (https://github.com/brodeau/sosie).

Mixed Layer Depth calculations: While the ESGF portal provided the variable mlotst

(ocean mixed layer thickness defined by sigma-t) for some models, it was preferred, for

clarity and uniformity reasons, to calculate the MLD for all models using the same method

as in the observational-based product (Kara et al., 2000). Nevertheless, determining the

MLD at each grid cell, for each month and for each model was a computationally expen-

sive task. As such, calculations were achieved for the available period of MLD data from

the observational-based product (from 1992; Table S1), and using the first 40 depth levels

of each model, if available. Indeed, each model has its specific vertical resolution, going

from 31 to 70 depth levels (Table S3). While the depth level 40 corresponds to relatively

different depths across the models (from 985 m to 5720 m; Table S3), the MLD is ex-

pected to be found somewhere between the surface and depth level 40, as the observed

global MLD mean is 89 ± 268 m (Menemenlis et al., 2008). For each model, the MLD

was determined as follows:

1. To facilitate the calculations steps, the salinity and potential temperature fields were

horizontally regridded into a 1◦×1◦ latitude×longitude grid (not the SOCATv4 grid).

2. Salinity and potential temperature (in that order) were respectively converted into

Absolute Salinity (AS) and Conservative Temperature (CT) using the Gibbs Seawater

Oceanographic Matlab toolbox v3.04 (http://www.TEOS-10.org) (McDougall & Barker,

2011).
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3. Density was calculated from AS and CT, also using the Gibbs Seawater toolbox.

4. MLD was calculated using CT and AS at the reference level (i.e. first depth level),

from which the density criterion corresponding to a temperature change of 0.8◦ was deter-

mined, and also using the density profiles (Kara et al., 2000). The method first determines

the bottom of the uniform layer and then identifies the depth interval which contains the

density criterion (this interval typically corresponds to the zone of transition between the

well-mixed surface and intermediate waters). If this depth interval is found, the MLD lies

within that interval and is determined by linear interpolation (Kara et al., 2000). If the

transitioning layer is not found, the steps are repeated using instead the second depth

level as the reference level (Kara et al., 2000). If still not found, the MLD is set as NaN

for this grid-cell.

5. The 3-dimensional (time×lat×lon) MLD field was regridded to the SOCATv4 grid

using the Python Iris package. The resulting calculations gave overall realistic values

(Table S3).

Atmospheric xCO2: A monthly 3-dimensional grid (time×latitude×longitude) storing an-

nual values of xCO2 was created for the CMIP5-based MLR analyses. For each year, the

same annual xCO2 value was applied to each month, at each 1◦×1◦ grid cell (following

the SOCATv4 grid). Those xCO2 values, obtained from the RCP Database Version 2.0.5

(Riahi et al., 2007), contain historical values up to 2005 and values following the RCP8.5

scenario from 2006.
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Text S2.

When applying the annually-varying uncertainty determined from the CMIP5-based

MLR analyses (results based on the 5◦ method) to the annually-varying fCO2 –ocean de-

duced from the observation-based MLR, one assumes that the two MLR studies react

similarly to their corresponding explanatory variables. For example, the model-mean

fCO2 –residuals time series is statistically not different from zero (Figure 2e), which does not

guarantee that the basin-wide annually-varying fCO2 –residuals from the observation-based

MLR would behave in the same way as this, with a bias-free annually-varying fCO2 –residuals

(which cannot be assessed). To justify the application of the annually-varying uncertainty

obtained from the CMIP5-based MLR to annually-varying results from the observation-

based MLR, a comparative analysis on their corresponding fCO2 –residuals is undertaken.

Since the observation-based fCO2 –residuals are only defined at places where observations

were made, such comparison can only be achieved after subsampling the CMIP5-based

fCO2 –residuals at the locations, months and years of the observations. The observation-

based fCO2 –residuals were compared to the subsampled CMIP5-based fCO2 –residuals as an-

nually averaged area-weighted means, and more specifically to the model-mean and spread

(Equations 3 and 4 in main text; corresponding respectively to the black line and grey

shadings on Figure S2).

Overall, the patterns in the annual subsampled fCO2 –residuals averages, from both the

CMIP5-based and the observation-based MLR analyses, are impacted by the number of

data points available for the different years (Figure S2), particularly in 2000 which the

year with the lowest number of fCO2 –ocean values in the North Atlantic during 1992-2014

(Figure 1). With only 80 grid cells with a fCO2 –ocean value available in 2000 in the North

July 6, 2019, 1:24am



: X - 9

Atlantic, the residual mean is very likely to be impacted by potential grid cells where

the MLR failed at capturing the model-true value (e.g. in the Canary upwelling system;

Figure S1). During the 1992-2014 period, about 70% of the observation-based annual

fCO2 –residuals (i.e. 16 years out of 23) are within 2σ uncertainty range from the CMIP5-

based MLR (i.e. 70% of the blue crosses are in the dark and medium grey shadings on

Figure S2). Over 1992-2014, there are no significant trends in the annual fCO2 –residuals

calculated from the observation-based MLR, and from each of the subsampled CMIP5-

based MLR residuals, at the 5% significance level. These results show that, over the

period 1992-2014, the time-varying uncertainty calculated from the CMIP5-based MLR

analysis (Figure 2e) is a robust estimate of the interpolation technique associated with

the time-varying observation-based fCO2 –ocean.

Text S3.

This section provides additional evidence to addresses the question: Is the ensemble of

19 CMIP5 models large enough to capture the models’ internal variability and therefore

provide a model evaluation that reflect the overall forced signal rather than the unforced

signal? For instance, if the model ensemble evaluation was based on the model-mean and

standard deviation calculated from only 3 CMIP5 models instead of 19, the results might

substantially vary depending on which CMIP5 models were selected. For clarity purposes,

the standard deviation across the fCO2 –ocean trends calculated from the forced model sim-

ulations over the period 1992-2014 (i.e. Table 1) is hereinafter referred as σforced, and the

standard deviations across the pCO2 –ocean trends calculated from the control runs over

the possible 23-year intervals are hereinafter referred as σunforced.
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If the standard deviation σforced across an ensemble of forced fCO2 –ocean modelled trends

is larger than the 2σunforced of internal variability’s range (i.e. 2×0.036 = 0.07 µatm·yr−1),

it suggests that the ensemble is wide enough to captures 95% of internal variability’s range

(for normally distributed data) and that the evaluation of the CMIP5 models constitut-

ing that ensemble most likely describe a mean state that is outside internal variability.

With the amplitude of internal variability in trends over 23-year long intervals quanti-

fied (Figure 6), the minimum number of models that are required to create an ensemble

that captures 95% of modelled internal variability (i.e. 2σunforced = 0.07 µatm·yr−1 for

normally distributed data) can be determined. For each possible ensemble, whose size

varies from 2 to 18 CMIP5 models (19 being the ensemble used in Figure 5b) considering

all possible model combinations (Equation 9 in main text), the new standard deviation

σforced is calculated following:

σforced =

√√√√√ k∑
m=1

(
Γm − 1

k

∑k
m=1 Γm

)2

k − 1
(4)

where Γm corresponds to the fCO2 –ocean trends calculated over the period 1992-2014 for the

CMIP5 model m selected within the combination of models forming the new ensemble of

size k, following Equation 9 in main text. For example, for an ensemble of three CMIP5

models (i.e. k=3), there are 969 possible combinations of 3 models among 19 models

(Equation 9 in main text), leading to 969 values of σforced (reported as a box plot on

Figure S10).

When the ensemble contains less than 17 CMIP5 models, the amplitude of σforced (i.e.

y-axis in Figure S10) can be of a same amplitude as 2σunforced, depending on the model

configurations. For example, for an ensemble size of 16 CMIP5 models, few outlier σforced
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values (represented by the grey dots in Figure S10) are within the 2σforced shading. As

such, the evaluation of an ensemble of less than 17 CMIP5 models might, depending on the

selected model combination, not adequately capture interval variability (e.g. McKinley

et al. (2016)). The smaller the ensemble size, the more likely it can under-sample the

unforced variability. When the ensemble contains all the available CMIP5 models (i.e.

k=19), the amplitude of σforced, which equals 0.09 µatm·yr−1, is larger than 2σunforced

(i.e. 0.07 µatm·yr−1), which suggests that the ensemble of 19 forced model runs (as used

in this study) is large enough to sample the models’ unforced variability captured within

an interval of 23 years.

Text S4.

To identify whether the fCO2 –ocean trends simulated by the ocean-only model are a

result of potential model drift and thus to provide a meaningful comparison between the

simulated, the observation-based and the CMIP5 models fCO2 –ocean trends, additional

simulations for which the atmospheric CO2 concentration was held constant were run.

Under constant atmospheric CO2 concentration conditions, if the surface fCO2 –ocean re-

mains approximately constant, the model is considered as non-drifting. Here, the method

(1) quantifies the model-drift in each of the five simulations, and (2) accordingly removes

the model drift from the simulated fCO2 –ocean trends.

To quantify the model drift in each of the five ocean-only simulations, fifteen additional

simulations with prescribed constant atmospheric CO2 mixing ratio, were run; hereinafter

referred as the “model-drift simulations”. The model-drift simulations all experienced the

same constant atmospheric CO2 mixing ratio of 336.85 ppm, which is the mixing ratio
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value for the year 1979 (i.e. the starting year of the changing CO2 runs) (Dlugokencky

& Tans, 2016). The fifteen model-drift simulations were divided into five groups, each

of them was respectively forced with the daily surface atmosphere conditions from ERA-

Interim, GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and CanESM2. Each group is

therefore made of three model-drift simulations (constituting three ensemble members),

each of which were initialised at three different dates and hence run over three different

periods of 36 years: from February 1979 to January 2015, from January 1984 to January

2020, and from January 1988 to January 2024. By shifting the atmospheric forcing years

(i.e. from 1979 to 1984 and from 1979 to 1988), the set of model-drift simulations per

set of surface forcings allows us to separate the model drift that is purely due to the

model adjusting to the initial conditions from the trend that results from the year to year

variability in the atmospheric forcing conditions. Since the ERA-Interim reanalysis was

available until 2015, and since two ERA-Interim-forced model-drift simulations required

data until 2020 and 2024, the ERA-Interim surface conditions from the period January

1983 to January 1988 were used to cover the period from January 2015 to January 2020,

and the data from the period January 1983 to January 1992 were used to cover the period

from January 2015 to January 2020. Since the CMIP5 models’ surface conditions are

known in the future, the daily models’ surface conditions from the scenario RCP8.5 were

used up to 2024 for the CMIP5-forced model drift simulations.

For each of the fifteen model-drift simulations, the fCO2 –ocean outputs followed the same

data processing steps as for the five changing atmospheric CO2 runs. From the fifteen an-

nual time series of the North Atlantic area-weighted monthly means of surface fCO2 –ocean

(Figure S13), the linear trends were calculated from the year 14 (i.e. the end of the spinup
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phase) to the year 36 (i.e the end of the simulation), corresponding to the periods 1992-

2014, 1997-2019 and 2001-2023 and for the simulations started in 1979, 1984 and 1988,

respectively (Table S4). The amplitude of the model drift in the surface fCO2 –ocean varies

across the differently forced and initiated simulations, suggesting that the different mixing

and solubility have an impact of the resulting fCO2 –ocean (Table S4). Overall, the ocean-

only model simulations experience significant negative surface fCO2 –ocean trends, except

when forced with the HadGEM2-ES surface forced conditions starting in 1984 and 1988,

at the 5% significant level (Table S4). As such, in the case where the surface fCO2 –ocean

is increasing over the period 1992-2014 in the changing atmospheric CO2 runs, the identi-

fied model-drift would actually mean that the surface fCO2 –ocean is actually experiencing

a stronger rate of increase compare to the non-corrected model-drift results.

To correct the model drift in each of the five North Atlantic fCO2 –ocean trends simulated

by the atmospheric varying xCO2 runs, a series of three main steps were carried out. Here

is an example for the ERA-Interim forced simulations (Figure S12):

1. For the model-drift simulation started in 1979, a linear regression was fitted between

the years 14 and 36 of the simulation (thick blue line in Figure S14a). The linear trend

and standard error σ values returned by the linear fit (-0.29 ± 0.06 µatm·yr−1; Table S4)

were used to construct six additional linear time series (dashed blue lines in Figure S14a).

The first time series was constructed so that it had a trend equalling the +1 σ limit from

the main fit: -0.29 + 0.06 µatm·yr−1 = -0.23 µatm·yr−1. The second time series was

similarly constructed but from the -1 σ limit from the main fit, which therefore had a

trend of -0.35 µatm·yr−1. The third to the sixth time series were finally constructed from

the ± 2, 3 σ limits from the main fit, leading to four time series with the trends of -0.47,
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-0.41, -0.17 and -0.11 µatm·yr−1. As such, there are a total of seven fitted time series for

the model-drift simulation starting in 1979. These steps were repeated for the model-drift

simulation starting in 1984 and in 1988 (Figure S14b-c, respectively), leading to a total

of 21 model drift estimates for the ERA-Interim forced model drift simulations (all the

lines in Figure S14a-c)

2. The 21 model drift estimates were subtracted one at a time from the fCO2 –ocean

time series over the period 1992-2014 for the changing atmospheric CO2 run (i.e. dashed

line in Figure S14d, whose linear trend is 1.29 ± 0.06 µatm·yr−1, where 0.06 µatm·yr−1

corresponds to the linear fit’s standard error), leading to 21 possible corrected fCO2 –ocean

time series (i.e. coloured lines in Figure S14d). Each time series is presented as an anomaly

plot relative to its corresponding fCO2 –ocean value in 1991.

3. A linear fit was applied to each of the 21 corrected fCO2 –ocean time series (i.e.

coloured lines in Figure S14e), whose mean and standard deviation define to the model-

drift corrected final North Atlantic fCO2 –ocean trend value simulated by the ERA-Interim

forced simulation (i.e. solid black line and error bars Figure S14e): 1.61 ± 0.13 µatm·yr−1

(Table S5).

The above steps were repeated across each of the CMIP5-forced simulations and their

North Atlantic surface fCO2 –ocean trends prior and after the model drift correction are

provided in Table S5.
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Figure S1. Spatial description of the SOCAT v4 monthly gridded product (Bakker et al., 2016)

in the open-waters of the North Atlantic (i.e. waters shallower than 1,000 m depth have been

removed using the ETOPO1 bedrock product, (Amante & Eakins, 2015)) per year for the period

1992-2014. The term “fCO2 –ocean values” refers to the monthly gridded values in SOCATv4,

calculated from the fCO2 –ocean observations that were submitted to the SOCAT database.
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Figure S2. Comparison of the residuals between the CMIP5-based and observation-based

MLRs. Model-mean of the annually-averaged subsampled fCO2 –residuals (black line; Equation 3

in main text), with associated 1, 2 and 3 σ across the models (dark, medium and light grey,

respectively; Equation 4 in main text). The term “subsampled” refers to the extraction of model

data (here the fCO2 –residuals) at position and time where observations are available, based on

SOCATv4. The blue crosses are the annual averages of the fCO2 –residuals from the observation-

based MLR analysis. Results correspond to the MLR generated over 5◦ latitude band width over

the North Atlantic.

July 6, 2019, 1:24am



: X - 25

Figure S3. Seasonally-varying uncertainty from the CMIP5-based MLR analyses, based on

the 5◦ spatially-dividing method and calculated using the monthly fCO2 –residuals over 1992-2014.

The black line corresponds to the multi-model mean of monthly average fCO2 –residuals. The dark,

medium and light grey shadings correspond, respectively, to the 1, 2 and 3σ of the residuals

across the 19 monthly averages of fCO2 –residuals. The dashed red line indicates the zero level.

The MLR adds a significant negative bias in the mean seasonal signal of August, suggesting that

the MLR method developed here is not suitable to provide robust monthly uncertainties.
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Figure S4. Spatial investigation of the annually-varying uncertainty from the CMIP5-based

MLR analyses, from the 5◦ latitudinally-dividing method. Each panel corresponds to the results

for each sub-region of the North Atlantic, which is indicated by the red lines on the corresponding

map. The black line is the multi-model mean of annual average fCO2 –residuals (Equation 3 in the

main text). The dark, medium and light grey shadings correspond, respectively, to the 1, 2 and

3σ across the 19 annual averages of fCO2 –residuals (Equation 4 in the main text). The dashed red

line indicates the zero level. Note that the last panel (l. from 65◦N to 70◦N) displays a y-axis

range that does not follow the range of other panels.
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Figure S5. Spatial investigation of the trend uncertainty from the CMIP5-based MLR analyses,

from the 5◦ latitudinally-dividing method. Each panel corresponds to the results for each sub-

region of the North Atlantic, which is indicated by the red lines on the corresponding map.

North Atlantic fCO2 –ocean linear trends calculated from annual means over the period 1992-

2014 from the CMIP5-based MLR product (ΓMLR–predicted) versus the CMIP5 model-truth value

(Γmodel–true) (circles). The corresponding standard error of each linear trend (returned by the

linear fit applied to the annual means for the sub-region of study) is indicated by the vertical

and horizontal lines. Each panel includes the R2 value and the RMSE between ΓMLR–predicted and

Γmodel–true. The dashed line indicates the 1-to-1 line. Points above the 1-to-1 line indicate that,

for the corresponding CMIP5 models, the MLR overestimates the model-truth fCO2 –ocean trend

in the subregion of study.
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Figure S6. Annually-varying ∆fCO2 in the North Atlantic over 1992-2014, calculated from

difference between the annually-varying fCO2 –atmopshere and the annually-varying fCO2 –ocean pre-

dicted by the 5◦ spatially-dividing observation-based MLR method (all annual averages are de-

duced from monthly area-weighted means for the basin-wide North Atlantic).
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Table S1. Description and processing steps of observational-based products. The term

“surface fluxes” corresponds to: temperature at 2 m, specific humidity at 2 m, surface shortwave

and longwave radiation downwards, total precipitation, snowfall, x-direction and y-direction

wind components at 10 m.

Variable Product Description Processing Reference

f CO2−ocean SOCATv4 1◦×1◦ Waters < 1,000 m depth removed (Bakker et al., 2016)

Monthly (Sabine et al., 2013)

1970-2015

Statistical gap-filling 1◦×1◦ Waters < 1,000 m depth removed (Jones et al., 2019)

Monthly

1985-2017

pCO2−ocean Neural-Network 1◦×1◦ Waters < 1,000 m depth removed (Landschützer et al., 2016, 2017)

Monthly

1982-2015

A MLR method 1◦×1◦ Waters < 1,000 m depth removed (Iida et al., 2015)

Monthly

1990-2015

SST OISST v2 1◦x1◦ (Reynolds et al., 2007)

Monthly

1981-present

MLD ECCO2 0.25◦×0.25◦ Monthly averaged (Menemenlis et al., 2008)

Daily Interpolated into SOCATv4 grid

1992-present

xCO2 GLOBALVIEW-CO2 Function of latitude Interpolated into daily (GLOBALVIEW-CO2, 2013)

8-day frequency Averaged into monthly

1979-2014 Gridded to SOCATv4 grid

SLP NCEP/NCAR Reanalysis 1 2.5◦×2.5◦ Interpolated to SOCATv4 grid (Kalnay et al., 1996)

Monthly Averaged into monthly

1948-present Adjusted to SOCATv4 grid

Wind Speed W NCEP/NCAR Reanalysis 1 0.25◦×0.25◦ Calculated W2 (Kalnay et al., 1996)

6-hourly W2 monthly average

1948-present Adjusted to SOCATv4 grid

0.995σ level

Bathymetry ETOPO1 1’ arc resolution Adjusted to SOCATv4 grid (Amante & Eakins, 2015)

Adjusted to the “gap-filling” grid

DIC, TA Climatologies GLODAPv2 1◦x1◦ Adjusted to SOCATv4 grid (Lauvset et al., 2016)

33 depth levels

Surface fluxes ERA-Interim 0.75◦×0.75◦ Adjusted to ORCA1 grid (Dee et al., 2011)

Daily

1979-2015
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a

b

Figure S7. North Atlantic annually-varying atmospheric (a) xCO2 and (b) f CO2 from

GLOBALVIEW-CO2 (GLOBALVIEW-CO2, 2013) and the “historical + RCP8.5” (Riahi et al.,

2007; Taylor et al., 2012). Trends indicated in the plots are calculated over the period 1992-2014,

and where the uncertainty corresponds to the standard error returned by the linear fit (except

for the CMIP5 models on panel (b) where the uncertainty corresponds to the standard deviation

across the models’ trends). Note that for the period 1992-2005 the trend in atmospheric xCO2

is 1.83 ± 0.04 ppm.yr−1 and 1.80 ± 0.03 ppm.yr−1 for GLOBALVIEW-CO2 and the CMIP5

historical datasets, respectively (where the uncertainty also corresponds to the standard error

returned by the linear fit). July 6, 2019, 1:24am
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Figure S8. Monthly surface fCO2 –ocean at the BATS station from the observations (red)

(Bates et al., 2014) and produced by the 5◦ spatially-dividing observation-based MLR method

(this study; blue). Specifically, the observed fCO2 –ocean was generated using the CO2SYS Matlab

toolbox (Lewis & Wallace, 1998) and the MLR-predicted values were taken for four grid cells

neighbouring the BATS stations (box delimited by 31.5◦N and 32.5◦N and -64.5◦W and -63.5◦W).
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Figure S9. Spatial investigation of the contributors (atmospheric xCO2, MLD, SST) of the

observation-based surface fCO2 –ocean regional trend, from the 5◦ latitudinally-dividing method.

Each panel corresponds to the results for each sub-region of the North Atlantic, which is indicated

by the red lines on the corresponding map. Note that panels (j) and (k) have different y-axis

limits. See Section 3.2 for details on determining the drivers of the trend.
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Figure S10. A sensitivity analysis on the f CO2 trend uncertainty. fCO2 –ocean trends for

the 19 CMIP5 models (orange) and from the observation-based MLR results (blue). Each box

plot contains the ± (1, 2, 3) σCM
k

trend uncertainties (Equation 9 in main text), relative to the

observation-based trend, using all the possible combination of results from the CMIP5-based

MLR analysis. The y-axis indicates the total number of models that were included in the trend

uncertainty analysis. Trends are calculated for the North Atlantic and for the period 1992-2014.
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Figure S11. North Atlantic fCO2 –ocean trends in the CMIP5 models over the period 1992-2014

(dashed lines), with model-mean (thick orange) and inter-model 1, 2 and 3 standard deviation

(error bars). Trends calculated over 22 and 21 year-long intervals (1992-2013, 1993-2014, 1994-

2014, 1992-2012) across the 19 CMIP5 models are displayed by the grey histogram.
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Figure S12. Box plot of the standard deviations σforced across the fCO2 –ocean linear trends

calculated in 1992-2014 (using the historical and RCP8.5 experiments) when considering different

ensemble sizes (i.e. the total number of models included in the standard deviation calculations)

and all the possible combinations of models given an ensemble size. The dark to light green

bands correspond to 1, 2 and 3σunforced of those pCO2 –ocean trends, respectively from Figure 6.

See Text S4 for further discussion.
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Figure S13. Quantification of the model-drift in the North Atlantic surface f CO2−ocean.

North Atlantic (area-weighted) fCO2 –ocean annual time series calculated from the simulations

for which the atmospheric CO2 mixing ratio was held to 336.85 ppm and were forced with (a),

ERA-Interim, (b), GFDL-ESM2M, (c), HadGEM2-ES, (d), IPSL-CM5A-LR and (e), CanESM2

surface conditions. For each of the five experiments, three simulations (ensemble members) were

made with three different starting and therefore initialisation date: January 1979 (blue), January

1984 (red) and January 1988 (pink). The first 13 years (left to the dashed line) correspond to the

spinup phase, which are excluded from the model-drift assessment. The model-drift is quantified

using the data on the right of the dashed line. For each simulation, the corresponding model-drift

(i.e. linear trend and corresponding standard error) is indicated in Table S4.
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a b c

d e

Figure S14. Example of the model drift correction steps for the ERA-Interim forced simulation.

The figure description is detailed in Text S4. The coloured lines in (d) and (e) refer to the different

starting year of the model drift simulations, as indicated in (a), (b) and (c). All annual values

were computed for the area-weighted North Atlantic, without shelf waters.
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CESM1-ESM CanESM2 GFDL-ESM2G GFDL-ESM2M HadGEM2-CC

HadGEM2-ES IPSL-CM5A-LR IPSL-CM5A-MR IPSL-CM5B-LR MIROC-ESM-CHEM
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Figure S15. Figure S13: Difference between each CMIP5 model and GLODAPv2 DIC clima-

tologies (Lauvset et al., 2016) at 10 m depth in the North Atlantic. The GLODAPv2 climatology

for surface DIC used available DIC measurements collected over 1972-2013 for mapping and was

then normalised to 2002 (Lauvset et al., 2016). The interval 1996-2008 was chosen to calculate

the DIC climatology in the CMIP5 models (Table S2), as it is centred in 2002 and is a 13-year

long interval, which is a similar length as the other climatologies calculated within GLODAPv2

for the variables that are potentially being affected by the anthropogenic change.
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Figure S16. Difference between each CMIP5 model and GLODAPv2 TA climatologies

(Lauvset et al., 2016) at 10 m depth in the North Atlantic. The GLODAPv2 climatology for

surface TA used available TA measurements collected over 1972-2013 for mapping (Lauvset et

al., 2016). The interval 1972-2013 was chosen to calculate the TA climatology in the CMIP5

models.
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Figure S17. (a), DIC and (b), TA area-weighted mean profile in the North Atlantic from the

CMIP5 models, and from GLODAPv2 (thick black) (Lauvset et al., 2016). Note that the area-

weighted mean interpolation error is displayed around the observation-based climatology profiles

but is indiscernible from the mean profile. From the 15 CMIP5 models that provided yearly (4D)

DIC and TA fields in the online portal, 14 are displayed here. Indeed, the MRI-ESM1 presented

unrealistic profiles, which were linked to issues with the regridding step, particularly because the

model used a land mask that was filled with zeros instead of a common “not-a-number” mask

(impacting the coastal DIC and TA values, and hence the basin-wide mean profile).
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a b c

Figure S18. (a), Revelle factor based on the GLODAPv2 DIC and TA climatological binned

values (Lauvset et al., 2016), (b), Mean difference between the 15 CMIP5 models and the

observation-based Revelle factor (Table S2), with the inter-model difference variability shown

in (c). The Revelle factor was calculated using the Sarmiento and Gruber (2006) definition.

July 6, 2019, 1:24am



X - 42 :

Table S2. List of the CMIP5 models used in this study. Details about the data processing of

CMIP5 models’ outputs (e.g. download, conversions, regridding) are provided in Text S1, under

“CMIP5 model data”.

Model Name Biogeochemical Model Available variables Reference

pCO2−ocean picontrol / DIC-TA

CESM1-BGC BEC X/ X (Gent et al., 2011)

National Center for Atmospheric Research (Long et al., 2011)

CanESM2 CMOC X/ X (Zahariev et al., 2008)

Canadian Centre for Climate Modelling and Analysis (Chylek et al., 2011)

GFDL-ESM2G TOPAZ2 - / X (Dunne et al., 2012)

Geophysical Fluid Dynamics Laboratory (Dunne et al., 2013)

GFDL-ESM2M TOPAZ2 X/ X (Dunne et al., 2012)

Geophysical Fluid Dynamics Laboratory (Dunne et al., 2013)

GISS-E2-H-CC NOBM X/ - (Sun & Bleck, 2006)

NASA Goddard Institute for Space Studies (Schmidt et al., 2014)

(Romanou et al., 2014)

GISS-E2-R-CC NOBM X/ - (Hansen et al., 2007)

NASA Goddard Institute for Space Studies (Schmidt et al., 2014)

(Romanou et al., 2014)

HadGEM2-CC diat-HadOCC X/ X (Palmer & Totterdell, 2001)

Met Office Hadley Centre (Collins et al., 2011)

HadGEM2-ES diat-HadOCC X/ X (Palmer & Totterdell, 2001)

Met Office Hadley Centre (Collins et al., 2011)

IPSL-CM5A-LR PISCES - / X (Aumont & Bopp, 2006)

Institut Pierre-Simon Laplace (Dufresne et al., 2013)

IPSL-CM5A-MR PISCES - / X (Aumont & Bopp, 2006)

Institut Pierre-Simon Laplace (Dufresne et al., 2013)

IPSL-CM5B-LR PISCES - / X (Aumont & Bopp, 2006)

Institut Pierre-Simon Laplace (Dufresne et al., 2013)

MIROC-ESM-CHEM NPZD X/ X (Kawamiya et al., 2000)

Japan Agency for Marine-Earth Science and Technology (Sudo et al., 2002)

(Watanabe et al., 2011)

MIROC-ESM NPZD X/ X (Kawamiya et al., 2000)

Japan Agency for Marine-Earth Science and Technology (Watanabe et al., 2011)

MPI-ESM-LR HAMOCC5.2 X/ X (Giorgetta et al., 2013)

Max Planck Institute for Meteorology (Ilyina et al., 2013)

(Jungclaus et al., 2013)

MPI-ESM-MR HAMOCC5.2 X/ X (Giorgetta et al., 2013)

Max Planck Institute for Meteorology (Ilyina et al., 2013)

(Jungclaus et al., 2013)

MRI-ESM1 NPDZ - / X (Yukimoto et al., 2011)

Meteorological Research Institute (Adachi et al., 2013)

NorESM-ME HAMOCC5.1 X/ X (Bentsen et al., 2013)

Norwegian Climate Centre (Tjiputra et al., 2013)

bcc-csm1-1-m MOM4 FMS X/ - (Wu et al., 2008)

Beijing Climate Centre (Wu et al., 2013)

bcc-csm1-1 MOM4 FMS X/ - (Wu et al., 2008)

Beijing Climate Centre (Wu et al., 2013)
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Table S3. Mixed Layer Depth processing. (2nd column), Total number of depth levels within

each model. (3rd column), Approximated depth value at level 40 or at the last (deepest) available

level. (4th column), area-weighted mean of the global MLD from 1992-2014 (same period as the

used observational-based product), with standard deviation from the area-weighted mean.

Model Vertical resolution Depth at level 40 Mean MLD (m)

or last available (m)

CESM1-BGC 60 985 78 ± 67

CanESM2 40 5233 83 ± 93

GFDL-ESM2G 50 2049 80 ± 111

GFDL-ESM2M 50 2049 84 ± 119

GISS-E2-H-CC 33 5500 78 ± 121

GISS-E2-R-CC 32 4887 92 ± 170

HadGEM2-CC 40 5328 78 ± 73

HadGEM2-ES 40 5328 78 ± 71

IPSL-CM5A-LR 31 5250 77 ± 102

IPSL-CM5A-MR 31 5250 78 ± 102

IPSL-CM5B-LR 31 5250 76 ± 91

MIROC-ESM-CHEM 44 4525 90 ± 99

MIROC-ESM 44 4525 91 ± 97

MPI-ESM-LR 40 5720 84 ± 111

MPI-ESM-MR 40 5720 81 ± 108

MRI-ESM1 51 2500 66 ± 94

NorESM1-ME 70 1150 125 ± 112

bcc-csm1-1-m 40 5334 99 ± 178

bcc-csm1-1 40 5334 90 ± 126
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Table S4. Linear trends (µatm·yr−1) of the model drift in the North Atlantic fCO2 –ocean

calculated from year number 14 to 36 (Figure S11) for the fifteen model drift simulations, a

period that corresponds to a 23-year period long similar to the interval of study 1992-2014 (for

the changing atmospheric CO2 runs; i.e. the 1st ensemble member). Columns refer to the surface

forcing field experiments and lines to the starting year of the simulation (Figure S11). The un-

certainties correspond to the standard error returned by each linear fit. Significant trends are in

bold, at the 5% significance level (a trend is significant when its p-value < 0.05, from F-statistics).

ERA-Interim GFDL-ESM2M HadGEM2-ES IPSL-CM5A-LR CanESM2

1979 -0.29 ± 0.06 -0.11 ± 0.04 -0.15 ± 0.03 -0.14 ± 0.04 -0.29 ± 0.04

1984 -0.37 ± 0.06 -0.18 ± 0.04 -0.08 ± 0.05 -0.24 ± 0.03 -0.42 ± 0.03

1988 -0.29 ± 0.07 -0.19 ± 0.04 -0.10 ± 0.05 -0.15 ± 0.04 -0.44 ± 0.04
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Table S5. Simulated trends in the North Atlantic surface f CO2−ocean. For the ERA-Interim

forced and the CMIP5-forced experiments, fCO2 –ocean trends calculated over the period 1992-

2014 prior and after model drift corrections. For the non drift-corrected trends, the uncertainty

corresponds to the standard error returned by the linear fit, while for the drifted-corrected

trends, the uncertainty corresponds to the standard deviation across the 21 trends identified

from the model-drift analysis (c.f. Text S4 for details on the model-drift correction steps).

Forcing field Non drift corrected trends Drift-corrected trends

(µatm·yr−1) (µatm·yr−1)

ERA-Interim 1.29 ± 0.06 1.61 ± 0.13

GFDL-ESM2M 1.36 ± 0.05 1.52 ± 0.09

HadGEM2-ES 1.43 ± 0.04 1.54 ± 0.09

IPSL-CM5A-LR 1.25 ± 0.05 1.43 ± 0.04

CanESM2 1.29 ± 0.05 1.68 ± 0.11
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