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Supporting Information Text13

SI Methods. This Appendix provides additional information on the models and methods used in this study.14

pCO2-based flux mapping products. We used a subset of the SOCOM models that capture climate-driven variability in the ocean15

CO2 sink over at least two decades (1, 2): UEA-SI (3), Jena-MLS (4), CU-SCSE (2), AOML-EMP (5), JMA-MLR (6),16

ETH-SOMFFN (7), CARBONES-NN (2), NIES-NN (8), and PU-MCMC (9). The reader is referred to ref. (2) for further17

details on the methods used by each of these models.18

Inverse models (OCIM). The two different OCIM versions capture the effects of different processes on ocean CO2 uptake. The19

OCIM with steady circulation (OCIM-steady) (10) does not capture variability in circulation, biology, or solubility, and does20

not simulate the cycling of "natural" (pre-anthropogenic) CO2 in the ocean. Error estimates are derived from the 10 different21

versions of the model that vary in terms of their sub-gridscale diffusivities and incorporation of observational errors as described22

in ref. (10). The OCIM with decadal variations in ocean circulation (OCIM-variable) (11) captures variability in the natural23

and anthropogenic CO2 fluxes due to ocean circulation variability, but does not resolve variability due to solubility or biology.24

The influence of solubility changes is small on decadal timescales as demonstrated by ref. (11), but the effect of changes in25

biologically-driven CO2 uptake is unknown. Error estimates are derived from 160 different versions of the model that vary in26

terms of their physical and biogeochemical parameters as described in ref. (11).27

Global ocean biogeochemistry models (GOBMs). As mentioned in the Materials and Methods, each modeling group performed three28

simulations for this study. The first is the Global Carbon Budget 2017 (GCB17) simulation (12), which uses reanalysis climate29

forcing and observed atmospheric CO2 concentrations (simulation A: “CO2+climate”) from 1959-2017. “Climate forcing” in30

this case refers to wind stress and surface heat and freshwater fluxes diagnosed from re-analysis products (see Table S1). The31

second simulation uses constant climate forcing and atmospheric CO2 (simulation B: “constant climate and CO2”). The third32

simulation uses constant climate forcing and observed atmospheric CO2 concentrations 1959-2017 (simulation C: “constant33

climate and increasing CO2”). Using these runs we defined the oceanic CO2 uptake due to both climate and CO2 variability34

(simulation A:“CO2+climate”), the CO2 uptake due to atmospheric CO2 variability alone (simulation C − simulation B: “CO235

only”), and the CO2 uptake due to climate variability alone (simulation A − simulation C: “climate only”). We did not correct36

for model drift, but we did verify that the model drift (from run B) has a negligible influence on the decadal trends reported37

here.38

The simulations run by each group differed slightly in terms of their model spin-up procedure, their choice of climatological39

forcing for the “constant climate” run, and their choice of historical climate forcing for the variable-climate runs. These40

differences are summarized in Table S1. All groups used the observed atmospheric CO2 concentrations from the GCB17 (12)41

for simulations A and C, and a constant atmospheric pCO2 from 1959 for simulation B.42

Dynamic global vegetation models (DGVMs). The DGVMs used here are the same as those appearing in the 2017 Global Carbon43

Budget: CABLE (13). CLASS-CTEM (14), CLM4.5 (15), DLEM (16), ISAM (17), JSBACH (18), JULES (19), LPJ-GUESS44

(20), LPJ (21), LPX-Bern (22), OCN (23), ORCHIDEE (24), ORCHIDEE-MICT (25), SDGVM (26), and VISIT (27).45

Definitions of ocean regions. For Figures 3, 4, S2, and S3 we calculated regional decadal trends by integrating fluxes over46

distinct oceanographic regions. These regions are based on time-mean open-ocean biomes defined by sea-surface temperature,47

chlorophyll concentrations, ice fraction, and mixed layer depth (28). The regions used here correspond to the biomes define48

by ref. (28) as follows: “Southern Ocean” is the union of the Southern Ocean sub-tropical seasonally stratified biome, the49

Southern Ocean sub-polar seasonally-stratified biome, and the Southern Ocean ice biome. “North Atlantic” is the union50

of the North Atlantic sub-polar seasonally-stratified biome and the North Atlantic sub-tropical seasonally-stratified biome.51

“North Pacific” is the union of the North Pacific sub-polar seasonally-stratified biome and the North Pacific sub-tropical52

seasonally-stratified biome. “Low-latitude Atlantic” is the union of the North Atlantic sub-tropical permanently stratified53

biome, the Atlantic equatorial biome and the South Atlantic sub-tropical permanently stratified biome. “Low-latitude Pacific54

+ Indian” is the union of the North Pacific sub-tropical permanently stratified biome, the Pacific equatorial western biome,55

the Pacific equatorial eastern biome, the South Pacific sub-tropical permanently stratified biome, and the Indian sub-tropical56

permanently stratified biome. We used the SOCOM air-sea CO2 fluxes that are available pre-computed on these regions from57

http://www.bgc-jena.mpg.de/SOCOM/.58

Structural uncertainties of the ocean CO2 sink estimates. All of the methods for estimating the oceanic CO2 sink have structural59

errors that affect their results. The primary sources of structural uncertainty in the SOCOM products are the choice of mapping60

methodology, as well as a lack of data from winter seasons in the high latitudes with which to constrain the air-sea fluxes in61

those regions. The main source of structural error in the OCIM is unresolved sub-decadal variability, which combined with the62

sparse hydrographic data used to constrain the model could lead to substantial aliasing effects, with potentially large impacts63

on the magnitude of decadal variability in ocean CO2 uptake. The OCIM also neglects changes in biologically-driven CO264

uptake, which could counteract the circulation-forced CO2 variability. Structural sources of error associated with the GOBMs65

include parameterizations of unresolved model physics such as subgridscale ocean eddies, parameterizations of carbon cycling66

in marine ecosystems and biogeochemistry (which vary widely across different models (29)), and uncertainties in the climate67

forcing datasets used as boundary conditions for the models.68
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Future work should focus on alleviating these structural uncertainties in the various methods. We suggest that for the69

SOCOM pCO2-based flux mapping products, the incorporation of data from ocean biogeochemical floats that can sample70

year-round, along with improved statistical methods for correcting for the aliasing effects resulting from seasonally-biased71

observations, could significantly improve their fidelity. For the OCIM method, there is a critical need to resolve sub-decadal72

(i.e. seasonal to interannual) variability in ocean circulation in order to avoid aliasing effects introduced during the assimilation,73

and to avoid unrealistic discontinuities in air-sea CO2 fluxes introduced by the abrupt circulations changes at the decadal74

transitions. For the GOBMs, work should focus on identifying the most accurate historical climate forcing data, quantifying the75

physical and biological contributions to climate-driven changes in ocean CO2 uptake, establishing the proper spin-up procedure76

for model simulations, and quantifying the sensitivity of the modeled ocean CO2 sink to climate drivers such as wind stress and77

buoyancy fluxes. This work should help to identify the factors contributing to the muted variability of the GOBMs compared78

to the observations.79

Evaluation of global ocean biogeochemistry models. Although a thorough evaluation of the GOBMs used here is beyond the scope80

of the present study, we provide some additional analysis of the GOBM results in order to demonstrate the differences among81

the various models, and to provide a comparison to high-fidelity pCO2-based reconstructions. Fig. S1 compares the global82

and regional interannual variability of the GOBMs to results from two of the SOCOM pCO2-based flux mapping products:83

the Jena-MLS (4) and the ETH-SOMFFN (7). These products were identified by the SOCOM analysis as the ones that best84

match the interannual variability of the pCO2 observations (2). At a global scale, we see that the models CSIRO, NorESM,85

MITgcm-REcoM-JRA, and NEMO-PlankTOM5 have the best agreement (r>0.6) with the interannual variability in air-sea86

CO2 fluxes diagnosed by the ETH-SOMFFN product. The three regions with the greatest decadal variability in the ocean CO287

sink are the Southern Ocean, North Pacific, and low-latitude Pacific+Indian, and so model performance is most critical in88

these regions. In the Southern Ocean, the NEMO-PISCES (CNRM) model performs best (r = 0.56), and also demonstrates89

the largest decadal variability of any of the GOBMs (see Fig. 3b). In the North Pacific, the NorESM model performs the best90

(r = 0.62) and also has the largest decadal variability of any of the GOBMs (see Fig. 3d). In the low-latitude Indian+Pacific91

ocean, the MITgcm-REcoM-JRA and CSIRO models perform noticeably better than the other models, and also display the92

largest decadal variability of the GOBMs (see Fig. 3f). Clearly, the models at capturing the regional interannual variability93

best also demonstrate the largest regional decadal variability.94

We also examined Hovmöller diagrams for the zonally-integrated CO2 fluxes anomalies due to climate variability in each of95

the GOBMs (Fig. S1). These were calculated by first isolating the CO2 fluxes due to climate variability by subtracting the96

air-sea CO2 fluxes of run C (“constant climate and increasing CO2”) from the air-sea CO2 fluxes of run A (“CO2+climate”).97

The resulting air-sea fluxes at each model grid point were corrected by subtracting the 30-year mean air-sea CO2 flux over98

the period 1985-2015, like in ref. (30). Here we focus on the Pacific Ocean and Southern Ocean regions as these are the99

most important for decadal variability. These results can be compared to similar diagrams that demonstrated large decadal100

variations in air-sea CO2 fluxes in the ETH-SOMFFN pCO2-based flux mapping product (30), although we should also note101

that the ETH-SOMFFN results include the influence of atmospheric pCO2 variability, whereas here we have just focussed on102

the climate-driven variability. The first thing to note is that none of the models show the same degree of decadal variability as103

that demonstrated by the ETH-SOMFFN product (30). However, in the Southern Ocean the NEMO-PISCES (CNRM) model104

is the one that best captures the decadal variability demonstrated by the ETH-SOMFFN. In the Equatorial Pacific, the CSIRO105

and CCSM-BEC models best capture the patterns of interannual variability demonstrated by the ETH-SOMFFN. Differences106

between the climate forcing products also become clear in the equatorial Pacific, where the MITgcm-REcoM with JRA forcing107

captures the interannual variability in air-sea CO2 fluxes much better than the MITgcm-REcoM with NCEP forcing. In the108

North Pacific the NorESM comes closest to matching the patterns of decadal variability demonstrated by the ETH-SOMFFN.109

Further analysis is needed to explain the driving forces behind these patterns and the reasons for the muted variability in the110

models compared to the observation-based flux products.111
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Fig. S1. (Left column) Interannual variability of the regionally-integrated air-sea CO2 fluxes from the GOBMs used here, and two of the pCO2-based flux products (ETH-SOMFFN
(7) and Jena-MLS (4)) that best match the interannual variability of the pCO2 observations (2). (Right column) Correlation of the regionally-integrated annual air-sea CO2
fluxes predicted by the GOBMs used here, with the annual air-sea fluxes predicted by the ETH-SOMFFN (7) for the ocean regions used in Figures 3 and 4. Also shown is the
correlation of the Jena-MLS air-sea CO2 fluxes with the ETH-SOMFFN air-sea CO2 fluxes for the same regions. The y-axis value for these plots is the mean air-sea CO2 flux
for each model for the period 1985-2015. Some models have negative correlation coefficients in some regions and are not shown here.
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Fig. S2. Hovmöller diagrams of climate-forced variability in air-sea CO2 fluxes for the nine GOBMs used here. The results for north of 40◦S are for the Pacific Ocean, while the
results south of 40◦S are for the Southern Ocean (all basins). These can be compared to results for the ETH-SOMFFN discussed in ref (30) (their Figure 3).
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Table S1. Spin-up procedure and climate forcing for global ocean biogeochemical models. Refer to Table A2 in the 2017 Global Carbon Budget (12)
for additional model details.

Model Spin-up procedure Constant climate forcing Variable climate forcing

CCSM-BEC (31) Pre-spin-up of 740 years with CORE (32) normal-year forcing NCEP (33) forcing for year 1958 NCEP forcing 1958-2017
Additional spin-up using NCEP forcing 1958-2017

NorESM (34) CORE normal year forcing for 1000 years CORE normal year forcing NCEP re-analysis with CORE-II
corrections 1948-2016

NEMO-PlankTOM5 (35) Initialization from GLODAP (36) plus 30-year spin-up NCEP forcing 1980 repeated NCEP forcing 1958-2017
under NCEP forcing from 1980

CSIRO (37) 600-year spin-up using JRA-55 (38) pre-industrial forcing JRA-55 forcing 1959 repeated JRA forcing 1958-2016
plus 2 cycles of JRA-55 from pre-industrial to 1957

MITgcm-REcoM-JRA (39) 2 cycles of JRA forcing (1958-2015) JRA climatology (1958-2015) JRA forcing 1958-2016
MITgcm-REcoM-NCEP (39) 48 years with CORE climatology CORE climatology NCEP forcing 1948-2016
NEMO-PISCES (CNRM) (40) 3000 years offline + 300 years online NCEP forcing 1980 repeated NCEP forcing 1948-2016

under NCEP forcing
MPIOM-HAMOCC-GR15 (41) 1 Pre spin-up of > 1000 years ERA-20C forcing 1959 repeated ERA-20C forcing 1930-2017

+ additional spin-up with ERA-20C (42) forcing 1905-1930
MPIOM-HAMOCC-TP04 (41) 2 Pre spin-up of > 1000 years ERA-20C forcing 1959 repeated ERA-20C forcing 1930-2017

+ additional spin-up with ERA-20C (42) forcing 1905-1930

1 Coarse-resolution version of the model, used in the 2017 Global Carbon Budget
2 Finer-resolution eddy-permitting tripolar grid version of the model (41)
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