FN Archimer Export Format PT J TI Decadal trends in the ocean carbon sink BT AF DEVRIES, Tim LE QUERE, Corinne ANDREWS, Oliver BERTHET, Sarah HAUCK, Judith ILYINA, Tatiana LANDSCHUETZER, Peter LENTON, Andrew LIMA, Ivan D. NOWICKI, Michael SCHWINGER, Jorg SEFERIAN, Roland AS 1:1,2;2:3;3:3,4;4:5;5:6;6:7;7:7;8:8,9,10;9:11;10:1,2;11:12;12:5; FF 1:;2:;3:;4:;5:;6:;7:;8:;9:;10:;11:;12:; C1 Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106, USA. Univ Calif Santa Barbara, Earth Res Inst, Santa Barbara, CA 93106 ,USA. Univ East Anglia, Sch Environm Sci, Tyndall Ctr Climate Change Res, Norwich NR4 7TJ, Norfolk, England. Univ Bristol, Sch Geog Sci, Bristol BS8 1TH, Avon, England. Ctr Natl Rech Meteorol, Unite Mixte Rech, F-31100 Toulouse, France. Alfred Wegener Inst, Helmholtz Zentrum Polar & Meeresforsch, D-27570 Bremerhaven, Germany. Max Planck Inst Meteorol, D-20146 Hamburg, Germany. CSIRO, Oceans & Atmosphere, Battery Point, Tas 7004, Australia. CSIRO Marine Labs, Ctr Southern Hemisphere Oceans Res, Hobart, Tas 7000, Australia. Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas 7001, Australia. Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 ,USA. NORCE Norwegian Res Ctr, Bjerknes Ctr Climate Res, NO-5007 Bergen, Norway. C2 UNIV CALIF SANTA BARBARA, USA UNIV CALIF SANTA BARBARA, USA UNIV EAST ANGLIA, UK UNIV BRISTOL, UK CNRM (METEO FRANCE), FRANCE INST A WEGENER, GERMANY MAX PLANCK INST METEOROL, GERMANY CSIRO, AUSTRALIA CSIRO MARINE LABS, AUSTRALIA ACE CRC, AUSTRALIA WHOI, USA NORCE NORWEGIAN RES CTR, NORWAY IF 9.412 TC 81 UR https://archimer.ifremer.fr/doc/00675/78728/80983.pdf https://archimer.ifremer.fr/doc/00675/78728/80984.pdf LA English DT Article CR OISO - OCÉAN INDIEN SERVICE D'OBSERVATION DE ;carbon dioxide;ocean carbon sink;terrestrial carbon sink;climate variability;carbon budget AB Measurements show large decadal variability in the rate of CO2 accumulation in the atmosphere that is not driven by CO2 emissions. The decade of the 1990s experienced enhanced carbon accumulation in the atmosphere relative to emissions, while in the 2000s, the atmospheric growth rate slowed, even though emissions grew rapidly. These variations are driven by natural sources and sinks of CO2 due to the ocean and the terrestrial biosphere. In this study, we compare three independent methods for estimating oceanic CO2 uptake and find that the ocean carbon sink could be responsible for up to 40% of the observed decadal variability in atmospheric CO2 accumulation. Data-based estimates of the ocean carbon sink from pCO(2) mapping methods and decadal ocean inverse models generally agree on the magnitude and sign of decadal variability in the ocean CO2 sink at both global and regional scales. Simulations with ocean biogeochemical models confirm that climate variability drove the observed decadal trends in ocean CO2 uptake, but also demonstrate that the sensitivity of ocean CO2 uptake to climate variability may be too weak in models. Furthermore, all estimates point toward coherent decadal variability in the oceanic and terrestrial CO2 sinks, and this variability is not well-matched by current global vegetation models. Reconciling these differences will help to constrain the sensitivity of oceanic and terrestrial CO2 uptake to climate variability and lead to improved climate projections and decadal climate predictions. PY 2019 PD JUL SO Proceedings Of The National Academy Of Sciences Of The United States Of America SN 0027-8424 PU Natl Acad Sciences VL 116 IS 24 UT 000471039700019 BP 11646 EP 11651 DI 10.1073/pnas.1900371116 ID 78728 ER EF