Long term changes in life history traits and catches of the round sardinella, *Sardinella aurita* (Clupeidae), along the Senegal coast, West Africa

Samba Ousseynou^{1,*}, Diouf Khady¹, Fall Massal², Ndiaye Papa¹, Panfili Jacques³

¹ Laboratoire de Biologie Marine, LABEP-AO, IFAN-Ch. A. Diop, BP, 206, Dakar, Senegal
² Institut Sénégalais de Recherches Agricoles (ISRA)/Centre de Recherche Océanographique de Dakar-Thiaroye (CRODT), Dakar, Senegal
³ IRD, MARBEC, Univ Montpellier-IRD-Ifremer-CNRS, Place E. Bataillon, cc093, 34095 Montpellier, France

* Corresponding author : Ousseynou Samba, email address : <u>ousseynou0303@gmail.com</u>

Abstract :

The main life history traits of the round sardinella, Sardinella aurita Valenciennes 1847 were updated in Senegalese coastal waters, together with an evaluation of the captures over the last 33 years (1981-2013). In the context of global change and an increase in the average sea surface temperature along the Senegalese coast, most of the life history traits of S. aurita, such as condition factor, period of reproduction, egg sizes, relative fecundity and growth did not change significantly over the years. In contrast, the size at first sexual maturity and the absolute fecundity increased significantly, and current catches recorded less large individuals. The growth was rapid and very variable, with a longevity estimated at 6-7 years.

These updated data for life history traits show that the round sardinella was fully exploited in the area, that the fishing effort for this species should be reduced, and that the minimum size (120 mm) authorized by the Senegalese fisheries code should be increased (185-200 mm) to maintain stocks along the Senegal coast.

Highlights

Condition factor of the round sardinella is a very good indicator. ► Reproductive pattern has not changed for more than 40 years ago. ► The reading of the otoliths gave a good estimate of the age and growth. ► Growth was rapid and variable with longevity of 6–7 years. ► Decline in landings could be related to the reduction in the annual number of trips.

Keywords : condition factor, reproductive pattern, age, growth, otolith, Sardinella aurita

10 11 12 13	29	1. Introduction
14 15 16	30	A global increase in fishing pressure on small pelagic fish stocks has been observed
17 18	31	over the past two decades which could have a significant impact of the sustainability of
19 20 21	32	exploitation of these stocks (Naylor et al., 2009; Tacon and Metian, 2009). Among these
22 23	33	small pelagic species, the sardinellas (Clupeidae), Sardinella aurita Valenciennes 1847 and
24 25 26	34	Sardinella maderensis Lowe 1838, play an important ecological role in coastal ecosystems
20 27 28	35	and are strongly targeted by the fisheries in Northwest Africa (NWA), Morocco, Mauritania
29 30	36	and Senegal (Fréon et al., 1978; Braham et al., 2014). The sardinella catches in NWA account
31 32 33	37	for 26% (398,000 tons per year) of the total catch of small pelagic fish, 72% of these are S.
34 35	38	aurita, the round sardinella (FAO, 2017). This species has been intensively exploited for
36 37 38	39	decades, and is crucial to the economies of NWA. Most of the resources based on small
39 40	40	pelagic fish, such as the round sardinella, are today fully exploited or even overexploited
41 42 43	41	because of the strong demand for this low-cost protein source (FAO, 2017).
44 45	42	In Senegal, the life history traits of S. aurita were described for the first time by Blanc
46 47	43	(1950), and then Postel (1955), and some reproductive and growth traits were published in the
48 49 50	44	late 1970s and early 1980s (Boëly et al., 1978; Boëly, 1982; Boëly et al., 1982a; Boëly et al.,
51 52	45	1982b). Empirical analysis of data collected more than 30 years ago have shown that the
53 54 55	46	trophic migrations and the life history traits of the species are influenced by seasonal and
56 57 58 59 60 61 62	47	inter-annual climate variations (Cury and Fontana, 1988; Roy et al., 1989).
63 64		-

65

1	48	It is, therefore, important that we update our knowledge of the main life history traits
1 2 3	49	of the round sardinella to give a better indication of the stocks and improve their management.
4 5	50	Firstly, the present study assessed the current stocks using a comparative analysis of the
6 7 8	51	changes in landings and the fishing effort over a 33-year period in Senegal (1981-2013).
9 10	52	Secondly, a sampling campaign in 2012-2013 updated our knowledge of the main life history
11 12 13	53	traits of the round sardinella along the Senegalese coast. This traits included the condition
14 15	54	factor, the reproduction (time and duration of the spawning season, reproductive cycle,
16 17 18	55	gonado-somatic index, size at first sexual maturity, fecundity, and ovocyte size) and the
19 20	56	growth / age curve (using otolith growth increments). Thirdly, these data were compared with
21 22 22	57	previous data from the same area and other areas to determine possible changes in the traits
23 24 25	58	that may be related to significant biological or environmental pressures. Finally, based on
26 27	59	changes in life history traits and the changes in catches, we drew up recommendations for the
28 29 30	60	future management of the fisheries to ensure the sustainability of the fish stocks.
31 32	61	2. Material and methods
34 35	62	The annual records of round sardinella catches (in tons) and fishing effort (trips by
36 37	63	fishing units) in Senegalese waters between 1981 and 2013, were provided by the
30 39 40	64	Oceanographic Research Center, Dakar-Thiaroye (CRODT). These data were obtained mainly
41 42	65	from landing surveys at Saint Louis, northern Thiès, Cape Verde and southern Thiès, based or
43 44 45	66	catches by local fishermen using canoes (Fig. 1). The fishing areas were located between 13 $^\circ$
46 47	67	30 N and 16 $^{\circ}$ 04 N at varying distances from the shore and in shallow water (between 20 and
48 49 50	68	70 m). The number of trips by fishing units was recorded on a daily basis by CRODT,
51 52	69	whereas landing data were collected randomly on about 5 days per week. After sorting the
53 54 55	70	data by port, gear type and period (fortnightly intervals), total landings per port were
56 57	71	estimated by multiplying the mean number of fish landed for the sampled trips by the total
58 59 60	72	number of fishing trips made and catches were summed by month for each landing port.
61 62		
63 64 65		

-	73	Samples of round sardinella were collected and the sea surface temperature (SST)
1 2 3	74	recorded monthly, from July 2012 to June 2013, at the three main landing locations at Hann
4 5	75	bay (Cape Verde peninsula), Mbour and Joal in Senegal. Samples from the landings, fresh but
6 7 8	76	already dead, were kept on ice during transfer to the laboratory, where fork length (FL in
9 10 11	77	mm), total body weight (W in g) and eviscerated weight (W_e in g) were measured. Sex was
11 12 13	78	determined with a macroscope using Fontana's scale (1969) and gonads were weighed (W_g in
14 15	79	g). The otoliths (sagittae) were extracted, cleaned in water, dried and stored dry in labeled
16 17 18	80	microtubes.
19 20	81	The condition factor (<i>Cf</i>) was calculated for each individual using the formula:
22 23 24	82	$Cf = 10^5 \times W/FL^3 \tag{1}$
25 26 27	83	The non-parametric Mann-Whitney test was used to compare mean Cf between months
28 29	84	because the data were not suitable for parametric tests. The gonado-somatic index (GSI) was
30 31 32	85	calculated for each month to determine the reproductive period, using the formula:
33 34 35 36	86	$GSI = 100 \times W_{\rm g}/W_{\rm e} \tag{2}$
37 38 39	87	The mean GSI was compared between months for a given sex using a non-parametric Mann-
40 41	88	Whitney test. The size at first sexual maturity (FL_{50}), where 50% of individuals of that size
42 43	89	were mature during the reproductive period, was calculated using 50 mm size classes. FL_{50}
44 45 46	90	was estimated using a logistic function
47 48 49	91	
50 51 52	92	$\% M = 100/[1 + exp^{-a(FL - FL_{50})}] $ (3)
54	93	where $\%M$ is the percentage of mature fish in each fork length class <i>EL</i> is the central value of
55	55	where 7000 is the percentage of mature fish in each fork length class, 7 E is the central value of
55 56 57 58 59 60 61 62	94	each fork length class and a and FL_{50} are constants determined by non-linear regression

95 (quasi-Newton method, Statistica ®). The size at first sexual maturity were compared

96 between sampling locations using Student *t* test.

The fecundity was calculated from female gonads of at least stage V during the spawning period (Fontana, 1969). For each female, both gonads were weighed and a sub-sample was taken from one of the gonads and placed in Gilson's fluid (100 ml ethanol, 9 ml glacial acetic acid, 20 ml of 60% nitric acid, 20 g mercury (II) chloride and 875 ml distilled water). The ovocytes were separated in Gilson's fluid and then counted manually under a binocular microscope. The absolute fecundity (F_A) was calculated as the number of ovocytes to be released at the next spawning and the relative fecundity (F_R) as the ratio of the absolute fecundity to the individual fish weight (Fontana and Pianet, 1973).

$$F_{\rm A} = W_{\rm g} \times N_{\rm ov} / W_{\rm gs} \tag{4}$$

$$F_{\rm R} = F_{\rm A}/W \tag{5}$$

107 where N_{ov} is the number of ovocytes in the subsample, W_g is the total weight of the gonad and 108 Wgs is the weight of the gonad subsample. To measure the ovocytes, five images were taken 109 of each gonad (Leica LAS-EZ software) and the diameter of each ovocyte was measured 110 automatically using the Image J freeware. The means were compared between sampling 111 locations using ANOVA.

F

A standard protocol was used to interpret the growth bands on otoliths. An image of the whole right otolith immersed in 95% ethanol was recorded with a binocular microscope under reflected light against a dark background. Each otolith was interpreted three times, first from the core to the rostrum margin, and then from the core to the posterior margin, and then from the posterior margin to the core. Seasonal translucent bands were identified and counted (Fig. 2). The last translucent band was not counted if it was located on the otolith margin and, therefore, still in formation. If at least two of the three readings (i.e. number of translucent

formula:

agreement between any of the readings, then the otolith was rejected. The consistency of the growth band counts was assessed by calculating the Chang's coefficient of variation (1982),

with a target of less than 5%, based on the recommendation of Campana (2001) and using the

bands) agreed, these readings were used to calculate the age (in months). If there was no

$$CV_{j} = 100 \times \frac{\sqrt{\sum_{i=1}^{R} \frac{(X_{ij} - \bar{X}_{j})^{2}}{R-1}}}{\bar{X}_{j}}$$
 (6)

where CV_j is the coefficient of variation of the age estimated for the jth fish; X_{ij} is the ith age estimation of the jth fish, $\overline{X_j}$ is the mean age of the jth fish, and R is the number of times the age was estimated. To determine when the translucent bands were deposited and validate the age estimates, the percentage of translucent otolith margins was calculated for each month over a year. The growth curve was represented by the Von Bertalanffy (1938) growth function (VBGF) fitted using non-linear regression to minimize the residual sum of squares (Statistica®):

$$FL = FL_{\infty} \left(1 - \exp^{-K(t-t_0)} \right) \tag{7}$$

where *FL* is the fork length at time *t*, *FL*_{∞} is the asymptotic fork length, *K* is the growth coefficient and t_0 is the theoretical time at which the length would be zero. These growth parameters were compared between locations using a weighted least-squares likelihood ratio test (Kimura, 1980). For *k* populations, the likelihood ratio test (*S*_{LR}) was used with 3 degrees of freedom (3 parameters):

seines and other types of fishing gear were rarely used for catching round sardinella (9% of the total number of trips).

3.2. Condition factor

At Hann, the highest mean values of condition index (Cf) were during the cold season (February to May), with a peak in April, and a progressive decrease was observed from July to September, with the lowest Cf in August (Fig. 4a). The mean values of Cf in February, March and May were statistically identical (Mann-Whitney, p > 0.05), and were significantly higher than all other months except April (Mann-Whitney, p < 0.05). At the southern sites (Mbour and Joal), the period with higher condition factors was longer than at Hann (Fig. 4), lasting for six months (January to July). The mean values of Cf were also significantly lower from August to December, with the lowest values in August at Joal and in October at Mbour (Figs. 4b, c; Mann-Whitney, *p* <0.05).

3.3. Reproduction

At Hann, the female and male GSIs showed that there were two reproductive periods with different amplitudes each year: the first was from February to March, and the second was from October to November (Fig. 5a). Comparing the female GSIs between months showed that the GSI in October was significantly different to all other months, except November (Mann-Whitney, p = 0.83). For males, the GSI in October was statistically identical only to September, November and December (Mann-Whitney, p > 0.05). At Mbour, the female GSIs were highest between January and April, with a peak in February, then decreasing to the lowest value in June (Fig. 5b). From July to December, the GSIs were relatively low. The female GSIs in February were statistically identical to those in January, March, April and November (Mann-Whitney, p > 0.05). The male GSIs were similar to those of the females, with a highest value in March (Fig. 5b). The GSI in March was statistically identical only to

187 November (Mann-Whitney, p > 0.05). At Joal, the female *GSI*s were comparable to that of 188 Mbour during the cold season, then increased and reached higher values from August to 189 November (Fig. 5c). The female *GSI*s in February was statistically identical to those of 190 January, March, August, September, October and November (Mann-Whitney, p > 0.05). The 191 male *GSI*s showed three significant peaks in January, March and November (Fig. 5c). The 192 pattern of male *GSI*s was similar to that of the female *GSI*s, with March being different from 193 all other months (Mann-Whitney, p < 0.05).

The *GSI*s showed that, at Hann, *S. aurita* had a single main reproductive period which lasted from October to November. This might be followed by a lesser secondary reproductive period from February to March. At Mbour and Joal, there were two reproductive periods, the first from January to March-April and the second in November at Mbour and from August to November at Joal.

At Hann, the FL of mature individuals ranged from 97 mm to 307 mm for females and from 117 mm to 292 mm for males. The size at first sexual maturity (FL₅₀) was 225 mm for females and 181 mm for males (Figs 6a, b). At Mbour, the smallest mature female was 149 mm and the smallest male was 146 mm, while the largest mature females and males were 300 mm. The FL₅₀ was 218 mm for females, and 200 mm for males (Figs 6c, d). At Joal, the FLs of the smallest mature fish were close to those at Mbour: 143 mm for a female and 152 mm for a male. The largest fish were 296 mm and 291 mm and FL₅₀ was 219 mm for females and 206 mm for males (Figs. 6e, 6f). For all sites together, FL₅₀ was larger for females than for males (Student t = 3.19; df = 4; p = 0.03).

The mean absolute and relative fecundities of *S. aurita* were very high with a high variability between individuals (Table 1). The fecundities seemed to decrease from Hann to Joal, but were still high and the eggs released were small. There were no statistical differences

in fecundities and egg size between Mbour and Joal (p>0.05; Table 1). Absolute and relative fecundities at Hann were significantly higher than at Mbour and Joal (p < 0.05; Table 1).

3.4. Age and growth

We were able to read the translucent growth bands from the core to the edge of the otolith posterior face. 13.7% of the otoliths were difficult to interpret, mainly because they were very opaque, making it impossible to estimate their age. It was sometimes difficult to determine whether the edge of an otolith was translucent or opaque because of the light reflection at the edge, and these otoliths were excluded from the analysis. The age estimates had a coefficient of variation of 2.41%. The monthly variation in the fraction of otoliths with translucent edges showed that the bands were formed annually (Fig.7). This fraction reached a minimum in December and peaked in June when the translucent band was deposited. The age in months was then calculated taking into account the average birth date obtained from the GSI (October for Hann, February for Mbour and Joal), the month when the translucent band was deposited (June), the date of capture, and the number of translucent bands in the otolith. The growth curves using the age estimates from the otoliths were highly variabile (Fig. 8). The coefficients of determination (R^2) of the VBGF models were 0.70 for Hann and Mbour, and 0.64 for Joal. The growth was rapid for this species, especially at the beginning of life, individuals reaching 100 mm in only few months, with a short life (6-7 years). The estimated asymptotic fork lengths were 304 mm at Hann, 316 mm at Mbour and 340 mm at Joal (Table 2). The growth models were not significantly different between locations ($S_{LR} < \chi^2 = 7.82$ for 3df, $\alpha = 0.05$). The growth performance index (Φ) was higher at Hann, showing that growth was faster in this area, but older fish were found in southern Senegal (Table 2).

1	234	4. Discussion
2 3 4 5	235	4.1. Round sardinella catches and fishing effort
6 7	236	The decline in landings of the round sardinella could be in part related to the
8 9 10	237	noticeable reduction in the annual number of fishing trips (Fig. 3). The main causes could be
11 12	238	socio-economic constraints after two major events. The first was the devaluation of the local
13 14 15	239	currency (FCFA) in January 1994. As a result of the widespread inflation at the beginning of
16 17	240	the 90s, prices for fishing gear and products surged (Creevey et al., 1995). To maximize the
18 19	241	return on their fishing effort, many pelagic fishing units (particularly purse seines and
20 21 22	242	encircling gillnets) converted to demersal fishing (Déme and Kebe, 2000). The second event,
23 24	243	in 2008, was the result of sharp fluctuations in oil prices and exchange rates (Aloui et al.,
25 26 27	244	2012). This oil shock, coupled with the remoteness of the fishing zones, seriously affected the
28 29	245	Senegalese artisanal fishing sector, and particularly those using purse seine nets, which are the
30 31 32	246	preferred gear for catching gregarious species. During this period, Senegalese canoes were
33 34	247	used for organized illegal emigration and the departure of young fishermen had increased the
35 36	248	shortage of fish in the markets and the artisanal fishing ports (Ba and Ndiaye, 2008).
38 39	249	The fluctuations in sardinella catches could also be caused by environmental changes
40 41	250	and constraints arising from these changes. The abundance of small pelagic fishes in most
42 43 44	251	parts of the world is controlled by hydrographic parameters and changes in the global or
45 46	252	regional climate are likely to affect pelagic fish stocks and their fisheries (Kellogg and Gift,
47 48 49	253	1983; Ramos et al., 1996; Ware and Thomson, 2005; Zeeberg et al., 2008; Braham et al.,
50 51	254	2014; Thiaw et al., 2017). New studies carried out in the same area have shown the existence
52 53	255	of distinct ranges of sea surface temperature, upwelling intensity, wind-induced turbulence,
55 56	256	concentration of chlorophyll-a and north Atlantic oscillation index that are associated with the
57 58	257	successful recruitment and abundance of S. aurita in Senegalese waters and Mauritanian
59 60 61	258	waters (Zeeberg et al., 2008; Diankha et al., 2018). A depletion of phytoplankton biomass is
62 63		11
64 65		

usually associated with ocean warming (Richardson and Schoeman, 2004), even if this is moderate and spatially restricted to Mauritania and Senegal from 1998 to 2014 (Demarcq and Benazzouz, 2015). Therefore, such changes might influence the recruitment success and abundance of small pelagic fish populations such as S. aurita.

Round sardinella catches fluctuated strongly over the 33-year period. Various hypotheses could explain these fluctuations, but a single hypothesis cannot explain all of them. Socio-economic, environmental and ecological pressures could all explain the fluctuations and decline in catches. The fishing effort has reached a very high level and the population of this species is may be not able to support such a high fishing pressure, given the climate changes that have affected this area for decades.

4.2. Condition factor

The condition factor of the round sardinella along the Senegalese coats showed an 31 271 annual cycle which is related to the seasons in this area. The life cycle of sardinellas is directly influenced by environmental conditions, the metabolic activity being higher in the cold season, and was directly reflected in the condition factor in the present study. The cold season corresponds to the presence of nutrient rich waters and higher plankton abundance, associated with the upwelling in Senegalese coastal waters (Nieland, 1982; Baldé et al., 2019). The abundance of food during the cold season directly influences the weight gain of the pelagic fish. The periods of higher Cf for S. aurita were generally longer in the south (6 months) than in the Cape Verde peninsula (about three months). This difference between central and southern Senegal could be due to the quantity and/or quality of food available in the different environments (Diouf, 1991). Off the Cape Verde peninsula, the upwelling is much less stable and disappears earlier than in the other areas (mid-April instead of mid-May), as soon as the winds begin to turn northwestwards (Teisson, 1983). The southern region is a feeding ground which has stronger upwelling in the cold season, making it more

favorable sardinella growth (Boëly et al., 1982a). Sardinellas remain concentrated in the convergence zone, which shifts further south with stronger upwelling (Teisson, 1982; Binet, 1988). The condition factor of the round sardinella is, therefore, a very good indicator of the seasonality in the area.

4.3. Reproduction

At Hann, the main reproductive period was in the transition from warm to cold seasons (October-November), just before the upwelling period. At Joal and Mbour, the second reproductive period (November) was at the beginning of the upwelling period (Wooster et al., 1976; Samb and Mendy, 2004). In the Mediterranean sea, spawning has been reported as starting when there is an increase in the sea surface temperature (SST) to 22 °C or 25 °C (Palomera and Sabatés, 1990; Mustać and Sinovčić, 2012) or, in Northwest Africa, with a reduction below 25 °C (F. Conand, 1977; Longhurst and Pauly, 1987) and Ghana (Quaatey and Maravelias, 1999). These differences were probably related to a preferred temperature range for spawning and may be the explanation for the migration pattern of S. aurita along the West African coast (Boëly et al., 1982a; Garcia, 1982). On the other hand, Bakun (1996) used a comparative approach to define the three requirements ("triad") that were necessary for a habitat to be suitable for the reproduction of pelagic fish: enrichment (upwelling, mixing, etc.), concentration and retention of fry in a suitable habitat. It seems that the southern Senegalese coast meets ecological requirements for S. aurita more closely and the results for Joal show the whole reproduction cycle in Senegal. S. aurita, like most other Clupeids that are highly vulnerable to changes in environmental conditions, is an opportunistic species that reacts and adapts to the influences imposed by its environment (Lowe-Mc Connell, 1987; Wootton, 1990). Over the years it has been able to maintain the same breeding cycle and this study confirms the previous results obtained in the same area (Table 3). The difference observed for the duration of spawning is probably the result of an interannual variability in the

	309	environment that has a real impact on its reproductive cycle (Boëly, 1982; Ettahiri et al.,
1 2	210	2003) Differences in the temporal location of reproductive periods between Seneral and
3	510	2003). Differences in the temporal location of reproductive periods between senegal and
4 5 6	311	other countries would be caused by different climatic conditions (Cury and Fontana, 1988).
7 8	312	The reproductive pattern of S. aurita as described in Senegal has, therefore, not changed for
9 10	313	more than 40 years ago and has followed the changes in its habitat in West Africa.
11 12 13	314	The sizes at first sexual maturity in this study were larger than those previously
14 15	315	measured in Senegal almost 40 years ago (Table 4). This difference in the same area could be
16 17 18	316	explained by a strategy of modifying the reproduction traits over the years. On the other hand,
19 20	317	smaller mature sizes in the Mediterranean (Gaamour et al., 2001; Tsikliras and Antonopoulou,
21 22 22	318	2006; Mustać and Sinovčić, 2012), in the southern Atlantic (Fontana and Pianet, 1973; Ghéno
24 24 25	319	and Fontana, 1981) and in the western Atlantic (Fréon et al., 1997) were related to
26 27	320	environments poorer in nutritional elements and climatic conditions that were different from
28 29 30	321	those in Senegal (Nieland, 1982; Lomiri et al., 2008). The minimum legal size (120 mm)
31 32	322	authorized by the Senegalese fisheries code (CRODT, 2004) is much less than the size at first
33 34 35	323	sexual maturity found by most studies (185-200 mm), including the present study (200-225
36 37	324	mm). As a precautionary measure, this minimum legal size should be increased, based on the
38 39 40	325	updated sizes at first maturity found in this study.
41 42	326	The absolute fecundity estimated in our study was significantly higher at Hann than at
43 44	327	Mbour and Joal- A higher condition factor would enable efficient transfer of energy to gonad
45 46 47	328	development and a high GSI should result in more eggs being produced by females (Trippel,
48 49	329	1998). This was the case in our study where the average female GSI in October for Hann (6%)
50 51 52	330	was higher than the average female GSIs in February for Mbour (4.5%) and Joal (4%). The
53 54	331	fecundity of S. aurita was estimated by several authors for various areas where the species is
55 56 57	332	abundant. The results obtained in the present study were higher to those reported for the same
58 59 60	333	area (Pham-Thuoc and Szypula, 1973), for the northeastern and in the eastern Mediterranean
61 62 63		14

(Tsikliras and Antonopoulou, 2006; Mustać and Sinovčić, 2012), for the Venezuelan coast (Fréon and Mendoza, 2003), and for the Congolese coast (Fontana and Pianet, 1973). The relative fecundity observed in the present study (Hann: 654 ± 111 g⁻¹ eggs, Mbour: 301 ± 98 g^{-1} eggs, Joal: 293 ± 109 g^{-1} eggs) brackets that reported by Conand (1977) for Senegal (400 eggs g⁻¹), that reported by Fréon and Mendoza (2003) for Venezuela (295 to 665 with an average of 400 eggs g⁻¹) and that reported by Tsikliras and Antonopoulou (2006) for the 15 northeastern Mediterranean (242 to 681 g⁻¹ eggs with an average of 445 \pm 98 eggs g⁻¹ for sizes 17 between 164 and 228 mm). These different fecundity values indicated that the fertility of S. 20 21 22 aurita has a high fertility but with year to year variations in the same area, depending on the weight and size of the mature females (Fontana and Pianet, 1973; C. Conand, 1977). An increase in size at first sexual maturity therefore allows S. aurita to maintain the same relative 26 27 fecundity while spawning many more eggs in Senegal. This suggests that the fecundity traits 29 of S. aurita have changed over the past few decades.

347

4.4. Age and growth

There are very few studies focusing on estimating the age of fish using calcified parts 39 40 41 42 43 44 45 46 47 48 in West Africa, and almost none on sardinellas. The analysis of size structures (Petersen method) is more often used for growth estimation, but results are subject to considerable bias, mainly depending on the sampling strategy which is affected by the selectivity of the fishing gear. The high variability in individual growth and a long reproductive period can lead to overlap between cohorts and make it difficult to divide the fish into age classes (Pham-Thuoc 50 51 52 53 54 55 and Szypula, 1973; Boëly et al., 1978; Baldé et al., 2019). Our results showed that otoliths can be used for accurate age estimation of round sardinella along the Senegalese coasts. The rapid early growth observed has also been previously reported for round sardinella in NWA (Boëly et al., 1982b), and also for a congeneric species, the oil sardine S. longiceps, on the southeast coast of India (Longhurst and Wooster, 1990), in northern Aegean (Tsikliras et al., 2005) and

	359	in Congo (Ghéno and Fontana, 1981). The differences between the methodologies used to
1 2 3	360	estimate the age may also explain some of the discrepancies in the mean growth rate.
4 5 6	361	Nevertheless, the asymptotic sizes were consistent with other results in the area (Table 4). It is
7 8	362	true that the Senegalese waters seem very favorable for the growth of the species but the
9 10 11	363	biggest fish are found in Mauritanian (350 mm), even though the performance index was
12 13	364	higher in Senegal (Boëly et al., 1982b). Variation in environmental conditions, such as
14 15 16	365	temperature and food availability, between different areas, may affect the growth of S. aurita
17 18	366	(Bacha et al., 2016). It appears that the growth observed at Hann, Mbour and Joal was
19 20 21	367	representative of <i>S aurita</i> growth in Senegalese coastal waters. There were, however, no very
21 22 23	368	large fish in the samples that we took. This could suggest a fully exploited stock or
24 25	369	environmental pressures, although this has not yet been confirmed.
26 27 28		
29 30	370	5. Conclusion
31 32 33	371	The conservation and management of aquatic resources along the Senegalese coast
34 35	372	requires a sound knowledge of the resources and up-to-date data on life history traits. The
36 37 38	373	management of the sardinella fisheries in Senegal often relies more on unverified hypotheses
39 40	374	than on data collected in the field. The present results highlight the need for better
41 42 43	375	management of these fisheries. Management measures should take into account the size at
44 45	376	first maturity to determine the fishing gear selectivity (suitable mesh size) as well as taking
46 47 48	377	account of the reproductive season. The current legal minimum legal size of the round
49 50	378	sardinella in Senegal and in the area should be increased from 120 to at least 200 mm, the
51 52 53	379	approximate size at first maturity being estimated at more than 200 mm. This would increase
54 55	380	the reproductive success. Life history traits such as the reproductive period and the growth
56 57	381	curves have remained stable, but variable, over several decades. The present study shows that
58 59 60	382	only real indication of the effects of exploitation is the small number of large size individuals
61 62		16
63 64		
65		

1	383	in the samples that we took. There is a general belief that this stock is currently overexploited
1 2 3	384	in Senegalese waters (Sow et al., 2010; FAO, 2017), and this study confirms that the stock of
4 5	385	round sardinella (S. aurita) is fully exploited in Senegal and management measures should
6 7 8	386	still be taken (larger mesh sizes).
9 10	387	
12	388	Acknowledgements
14 15	389	The authors would like to thank USAID/COMFISH in Dakar, C. Mathew, K.S. Diouf and V.
16 17 18	390	Ndiaye for their support. We are grateful to the fishermen of Mbour and Joal, the
19 20	391	Oceanographic Research Center, Dakar-Thiaroye (CRODT), the laboratory technician (M.
21 22 23	392	Mbèngue) and the IRD driver (M.A. Diallo) for their help and collaboration. All procedures
24 25	393	performed in studies involving human participants were in accordance with the ethical
26 27	394	standards of the institutional and/or national research committee and with the 1964 Helsinki
28 29 30	395	declaration and its later amendments or comparable ethical standards.
31 32	396	Funding
34 35	397	This work was supported by the United States Agency for International Development /
36 37	398	Collaborative Management for a Sustainable Fisheries Future in Senegal [grant numbers
38 39 40	399	4598A1-1R238-ECAT]
41 42	400	
43 44		
45	401	Author contributions
48	402	Conceptualization: OS JP KD PN.; Data curation: OS MF.; Data analysis: OS JP.;
49 50 51	403	Methodology: OS.; Project administration: KD JP.; Resources: OS MF.; Software: OS JP.;
52 53	404	Validation: JP, MF.; Supervision: JP PN MF.; Writing original draft: OS.; reviewing: JP KD.;
54 55 56	405	All authors contributed critically to the drafts and gave final approval for publication.
57 58	406	
59 50		
51 52		17
53		17
54 55		

1	407	References
1 2 3	408	Aloui, C., Nguyen, D.K., Njeh, H., 2012. Assessing the impacts of oil price fluctuations on
4 5 6	409	stock returns in emerging markets. Econ. Model. 29, 2686-2695.
7 8	410	Bacha, M., Jeyid, A.M., Jaafour, S., Yahyaoui, A., Diop, M., 2016. Insights on stock structure
9 10 11	411	of round sardinella Sardinella aurita off north-west Africa based on otolith shape
11 12 13	412	analysis. J. Fish Biol. 89, 2153-2166.
14 15	413	Bakun, A., 1996. Patterns in the ocean: ocean processes and marine population dynamics.
16 17 18	414	California Sea Grant College System, National Oceanic and Atmospheric
19 20	415	Adminstration in cooperation with Centro de Investigaciones Biologicas del Noroeste,
21 22 22	416	University of California Sea Grant, San Diego, California, USA, in cooperation with
24 24 25	417	Centro de Investigaciones Biologicas de Noroeste, La Paz, Baja California Sur,
26 27	418	Mexico.
28 29 30	419	Baldé, B.S., Sow, F.N., Ba, K., Ekau, W., Brehmer, P., Kantoussan, J., Fall, M., Diouf, M.,
31 32	420	2019. Variability of key biological parameters of round sardinella Sardinella aurita and
33 34 35	421	the effects of environmental changes. J. Fish Biol. 94, 391-401.
36 37	422	Belouahem, S., 2010. Estimation de la Biomasse Exploitable de la Sardinelle (Sardinella
38 39 40	423	aurita Valenciennes, 1847) du golfe d'Annaba. Mémoire de magistère. Université
41 42	424	Badji Mokhtar, Annaba.
43 44	425	Binet, D., 1988. Rôle possible d'une intensification des alizés sur le changement de la
45 46 47	426	répartition des sardines et sardinelles le long de la côte ouest-africaine. Aquat. Living.
48 49	427	Resour. 1, 115-132.
50 51 52	428	Blanc, A., 1950. Les clupéidés de la petite côte. Bull. Serv. Elev. Ind. Anim. AOF. 6, 7-13.
53 54	429	Boëly, T., 1982. Etude du cycle sexuel de la sardinelle ronde (Sardinella aurita Val. 1847) au
55 56 57	430	Sénégal. Océanogr. Trop. 17, 3-13.
58 59		
60 61		
₀∠ 63 64		18
65		

1	431	Boëly, T., Chabane, J., Fréon, P., Stéquert, B., 1978. Cycle sexuel et migrations de Sardinella
⊥ 2 3	432	aurita sur le plateau ouest-africain des iles Bissagos à la Mauritanie. Symposium
4 5	433	CINECA sur le courant des Canaries: Upwelling et ressources vivantes. CIEM. COI.
6 7 8	434	FAO, Las Palmas, Espagne.
9 10	435	Boëly, T., Chabane, J., Fréon, P., Stéquert, B., 1982a. Cycle sexuel et migration de Sardinella
11 12 13	436	aurita sur le plateau continental ouest-africain, des iles Bissagos à la Mauritanie.
14 15	437	Rapp. p-v. Reuni. Cons. Int. Explor. Mer. 180, 350-355.
16 17	438	Boëly, T., Fréon, F., 1979. Les ressources pélagiques côtières, in: Troadec, J.P., Garcia, S.
18 19 20	439	(Eds), Les ressources halieutiques de l'Atlantique centre-ouest. 1ere partie: Les
21 22	440	ressources du golfe de Guinée, de l'Angola à la Mauritanie. FAO Document
23 24 25	441	Technique sur les Pêches, Rome, pp. 13-78.
26 27	442	Boëly, T., Fréon, P., Stéquert, B., 1982b. La croissance de Sardinella aurita au Sénégal.
28 29 30	443	Océanogr. Trop. 17, 103-119.
31 32	444	Braham, C.B., Fréon, P., Laurec, A., Demarcq, H., Bez, B., 2014. New insights in the spatial
33 34 25	445	dynamics of sardinella stocks off Mauritania (North-West Africa) based on logbook
36 37	446	data analysis. Fish. Res. 154, 195-204.
38 39	447	Campana, S.E., 2001. Accuracy, precision and quality control in age determination, including
40 41 42	448	a review of the use and abuse of age validation methods. J. Fish Biol. 59, 197-242.
43 44	449	Cergole, M.C., Saccardo, S.A., Rossi-Wongtschowski, C.L.D.B., 2002. Fluctuations in the
45 46 47	450	spawning stock biomass and recruitment of the brazilian sardine (Sardinella
48 49	451	brasiliensis) 1977-1997. Rev. Bra. Oceanogr. 50, 13-26.
50 51 52	452	Chang, N.Y.B., 1982. A statistical method for evaluating the reproducibility of age
53 54	453	determination. Can. J. Fish. Aquat. Sci. 39, 1208-1210.
55 56 57	454	Chavance, P., Ba, I., Krivospichenko, S., 1991. Les ressources pélagiques de la ZEE
57 58 59	455	mauritanienne. Bull. Centr. Nat. Rech. Océanogr. et Pêches, Nouadhibou. 23, 28-72.
60 61		
62 63 64		19
65		

_	456	Conand, C., 1977. Contribution à l'étude du cycle sexuel et de la fécondité de la sardinelle	
1 2 3	457	ronde, Sardinella aurita: pêche sardinière dakaroise en 1975 et premier semestre 1976	5.
4 5	458	Cah. ORSTOM. Ser. Océanogr. 15, 301-312.	
6 7 0	459	Conand, F., 1977. Œufs et larves de la sardinelle ronde (Sardinella aurita) au Sénégal:	
9 10	460	distribution, croissance, mortalité, variation d'abondance de 1971 à 1976. Cah.	
11 12	461	ORSTOM. Ser. Océanogr. 15, 201-214.	
13 14 15	462	Creevey, L., Vengroff, R., Gaye, I., 1995. Devaluation of the CFA franc in Senegal: the	
16 17	463	reaction of small businesses. J. Mod. Afr. Stud. 33, 669-683.	
18 19 20	464	CRODT, 2004. Mise en œuvre de mesures de conservation et gestion durables des ressources	3
21 22	465	halieutiques: le cas du Sénégal. Doc. Sci. Centr. Rech. Océanogr. Dakar-Thiaroye,	
23 24 25	466	DSP. 13, 1-101.	
26 27	467	Cury, P., Fontana, A., 1988. Compétition et stratégies démographiques comparées de deux	
28 29 30 31 32	468	espèces de sardinelles (Sardinella aurita et Sardinella maderensis) des côtes ouest	
	469	africaines. Aquat. Living. Resour. 1, 165-180.	
33 34	470	Demarcq, H., Benazzouz, A., 2015. Trends in phytoplankton and primary productivity off	
35 36 37	471	Northwest Africa, in: Valdés, L., Déniz-Gonzàlez, I. (Eds), Oceanographic and	
38 39	472	biological features in the Canary Current Large Marine Ecosystem. IOC-UNESCO.	
40 41 42	473	IOC Technical Series, Paris, France, pp. 331-341.	
43 44	474	Déme, M., Kebe, M., 2000. Revue sectorielle de la pêche au Sénégal: aspects socio-	
45 46	475	économiques. Centre de Recherche Océanographique de Dakar-Thiaroye, Sénégal.	
48 49	476	Diankha, O., Ba, A., Brehmer, P., Brochier, T., Sow, B.A., Thiaw, M., Gaye, A.T., Ngom, F.	,
50 51 52	477	Demarcq, H., 2018. Contrasted optimal environmental windows for both sardinella	
53 54	478	species in Senegalese waters. Fish. Oceanogr. 27, 351-365.	
55 56	479	Diouf, P.S., 1991. Le zooplancton au Sénégal, in: Cury, P., Roy, C. (Eds), Pêcheries ouest-	
57 58 59	480	africaines. ORSTOM Editions, Paris, pp. 103-116.	
60 61 62 63 64 65		2	20

1	481	Ettahiri, O., Berraho, A., Vidy, G., Ramdani, M., Doc, T., 2003. Observation on the spawning
1 2 3	482	of Sardina and Sardinella off the south Moroccan Atlantic coast (21–26°N). Fish. Res.
4 5	483	60, 207-222.
6 7 8	484	FAO, 2017. Report of the FAO working group on the assessment of small pelagic fish off
9 10	485	Northwest Africa. FAO Fisheries and Aquaculture Report N°1247, Banjul, the
11 12 13	486	Gambia.
14 15	487	Fontana, A., 1969. Etude de la maturité sexuelle des sardinelles Sardinella eba (Val) et
16 17	488	Sardinella aurita C. et V. de la région de Pointe Noire. Cah. ORSTOM. Ser.
19 20	489	Océanogr. 7, 101-114.
21 22	490	Fontana, A., Pianet, R., 1973. Biologie des Sardinelles, Sardinella eba (Val.) et Sardinella
23 24 25	491	aurita (Val.) des côtes du Congo et du Gabon. Doc. Sci. Cent. Rech. Océanogr.
26 27	492	Abidjan. 31, 1-40.
28 29 30	493	Fréon, P., El Khattabi, M., Mendoza, J., Guzmàn, R., 1997. Unexpected reproductive strategy
31 32	494	of Sardinella aurita off the coast of Venezuela. Mar. Biol. 128, 363-372.
33 34 35	495	Fréon, P., Mendoza, J., 2003. La sardina (Sardinella aurita) su medio ambiente y explotacion
36 37	496	en el oriente de Venezuela / The sardine (Sardinella aurita) its environment and
38 39 40	497	exploitation in Eastern Venezuela. IRD Editions, Paris.
40 41 42	498	Fréon, P., Stéquert, B., Boëly, T., 1978. La pêche des poissons pélagiques côtiers en Afrique
43 44	499	de l'ouest des iles bissagos au nord de la Mauritanie: description des types
45 46 47	500	d'exploitation. Cah. ORSTOM. Ser. Océanogr. 16, 209-228.
48 49	501	Gaamour, A., Missaoui, H., Ben Abdallah, L., Ahmed, E., 2001. Paramètres biologiques de la
50 51 52	502	sardinelle ronde (Sardinella aurita Valenciennes, 1847) dans la région du Cap Bon
53 54	503	(canal siculo-tunisien). GFCM, 26-30 March 2001, Kavala, Greece.
55 56 57	504	Garcia, S., 1982. Distribution, migration and spawning of the main fish resources in the
58 59	505	northern CECAF area. CECAF/ECAF Series 82/25. FAO, Rome.
60 61		
₀∠ 63 64		21
65		

	506	Ghéno, Y., Fontana, A., 1981. Les stocks de petits pélagiques côtiers les sardinelles, in:
1 2 3	507	Fontana, A. (Ed), Milieu marin et ressources halieutiques de la république de la
4 5	508	république populaire du Congo. ORSTOM, Paris, pp. 213-257.
6 7	509	Grall, C., 1984. A study of the biology of the Spanish sardine, Sardinella aurita in Florida
9 10	510	waters. M.S. Thesis. University of Miami, Miami.
11 12	511	Kellogg, R.L., Gift, J.J., 1983. Relationship between optimum temperature for growth and
14 15	512	preferred temperatures for the young of four fish species. Trans. Am. Fish. Soc. 112,
16 17	513	424-430.
18 19 20	514	Kimura, D.K., 1980. Likelihood methods for the Von Bertalanffy growth curve. Fish. Bull.
21 22	515	77, 765-776.
23 24 25	516	Krzeptowski, M., 1981. Growth characteristics of gilt sardine (Sardinella aurita Val., 1847)
26 27	517	from Senegal. Acta Ichthyol. Piscatoria. 11, 27-38.
28 29 30	518	Lomiri, S., Scacco, U., Mostarda, E., Andaloro, F., 2008. Size-related and temporal variation
31 32	519	in the diet of the round sardinella, Sardinella aurita (Valenciennes, 1847), in the
33 34 35	520	central Mediterranean Sea. J. Appl. Ichthyol. 24, 539-545.
36 37	521	Longhurst, A.R., Pauly, D., 1987. Ecology of Tropical Oceans. Academic Press Inc, San
38 39 40	522	Diego, California.
41 42	523	Longhurst, A.R., Wooster, W.S., 1990. Abundance of oil sardine and upwelling on the
43 44	524	southwest coast of India. Can. J. Fish. Aquat. Sci. 47, 2407-2419.
45 46 47	525	Lowe-Mc Connell, R.H., 1987. Ecological studies in tropical fish communities. Cambridge
48 49	526	University Press, Cambridge.
50 51 52	527	Matsuura, Y., 1996. A probable cause of recruitment failure of the Brazilian sardine,
53 54	528	Sardinella aurita, population during the 1974-75 spawning season. S. Afr. J. Mar. Sci.
55 56 57	529	17, 29-35.
58 59		
60 61		
0⊿ 63 64		22
65		

1	530	Mendoza, J.J., Fréon, P., Guzmán, R., 1994. VPA estimates of fishing mortality and exploited									
1 2 3	531	biomass from Sardinella aurita catch-at-length data in eastern Venezuela. Naga.									
4 5	532	ICLARM Quart. 17, 32-36.									
6 7 8	533	Mustać, B., Sinovčić, G., 2012. Reproductive cycle of gilt sardine, Sardinella aurita,									
9 10	534	Valenciennes 1847, in the eastern middle Adriatic Sea. J. Appl. Ichthyol. 28, 46-50.									
11 12 13	535	Naylor, R.L., Hardy, R.W., Bureau, D.P., Chiu, A., Elliott, M., Farrell, A.P., Forster, I.,									
14 15	536	Gatlin, D.M., Goldburg, R.J., Hua, K., Nichols, P.D., 2009. Feeding aquaculture in an									
16 17	537	era of finite resources. Proc. Natl. Acad. Sci. U.S.A. 106, 15103-15110.									
19 20	538	Nieland, H., 1982. The food of Sardinella aurita (Val.) and Sardinella eba (Val.) off the coast									
21 22	539	of Senegal. Rapp. p-v. Reuni. Cons. Int. Explor. Mer. 180, 369-373.									
23 24 25	540	Palomera, I., Sabatés, A., 1990. Co-occurrence of Engraulis encrasicolus and Sardinella									
26 27	541	aurita eggs and larvae in the northwestern Mediterranean. Sci. Mar. 54, 61-67.									
28 29 30	542	Pauly, D., Munro, J.L., 1984. Once more on the comparison of growth in fish and									
31 32	543	invertebrates. Fishbyte. 2, 1-21.									
33 34 35	544	Pham-Thuoc, P., Szypula, J., 1973. Biological characteristics of Gilt sardine Sardinella aurita									
36 37	545	Cuv et Val. 1847, from northwest african coast. Acta. Ichthyol. Piscat. 3, 19-37.									
38 39	546	Postel, E., 1955. Résumé des connaissances acquises sur les clupéidés de l'Ouest-africain.									
40 41 42	547	Rapp. p-v. Reuni. Cons. Int. Explor. Mer. 137, 14-16.									
43 44	548	Quaatey, S.N.K., Maravelias, C.D., 1999. Maturity and spawning pattern of Sardinella aurita									
45 46 47	549	in relation to water temperature and zooplankton abundance off Ghana, West Africa. J.									
48 49	550	Appl. Ichthyol. 15, 63-69.									
50 51 52	551	Ramos, A.G., J., S., Sangra, P., Canton, P., 1996. An application of satellite-derived sea									
53 54	552	surface temperature data to the skipjack and albacore tuna fisheries in the north-east									
55 56	553	Atlantic. Int. J Remote. Sens. 17, 749-759.									
57 58 59											
60 61											
62 63 64		23									
65											

-	554	Richardson, A.J., Schoeman, D.S., 2004. Climate change impact on plankton ecosystems in
1 2 3	555	the Northeast Atlantic. Science. 305, 1609-1612.
4 5	556	Roy, C., Cury, P., Fontana, A., Belvèze, H., 1989. Stratégies spatio-temporelles de la
6 7 8	557	reproduction des clupéidés des zones d'upwelling d'Afrique de l'Ouest. Aquat. Living.
9 10	558	Resour. 2, 21-29.
11 12 13	559	Salem, M., El Aiatt, A.A., Ameran, M., 2010. Age, Growth, Mortality and Exploitation Rates
14 15	560	of Round Sardinella, Sardinella aurita from the East Mediterranean Sea (North Sinai
16 17	561	Coast). Res. J. Fish. Hydrobiol. 5, 32-38.
19 20	562	Samb, B., Mendy, A.N., 2004. Dynamique du réseau trophique de l'écosystème sénégambien
21 22	563	en 1990, in: Palomares, M.L.D., Pauly, D. (Eds), West African marine ecosystems:
23 24 25	564	models and fisheries impacts. Fisheries Centre Research Report, University of British
26 27	565	Columbia, Canada, pp. 57-70.
28 29 30	566	Sow, F.N., Samb, B., Heqin, C., 2010. Diagnoses of the state of exploitation of small pelagic
31 32	567	stocks in Senegal by the use of size frequencies: Case of Sardinella. Resour. Sci. 32,
33 34 35	568	620-626.
36 37	569	Tacon, A.G., Metian, M., 2009. Fishing for feed or fishing for food: increasing global
38 39 40	570	competition for small pelagic forage fish. Ambio. 38, 294-302.
40 41 42	571	Teisson, C., 1982. Application de la théorie d'Ekman à l'étude des courants et des remontées
43 44	572	d'eaux profondes le long des côtes sénégalaises. Doc. Sci. Centr. Rech. Océanogr.
45 46 47	573	Dakar-Thiaroye, DSP. 106, 1-80.
48 49	574	Teisson, C., 1983. Le phénomène d'upwelling le long des côtes du Sénégal: caractéristiques
50 51 52	575	physiques et modélisation. Cent. Rech. Océanogr. Dakar-Thiaroye. 123, 1-74.
53 54	576	Ter Hofstede, R., Dickey-Collas, M., 2006. An investigation of seasonal and annual catches
55 56	577	and discards of the Dutch pelagic freezer-trawlers in Mauritania, Northwest Africa.
57 58 59	578	Fish. Res. 77, 184-191.
60 61		
62 63 64		24
65		

	579	Ter hofstede, R., Dickey-Collas, M., Mantingh, I.T., Wagué, A., 2007. The link between	
1 2 3	580	migration, the reproductive cycle and condition of Sardinella aurita off Mauritania,	,
4 5	581	north-west Africa. J. Fish Biol. 71, 1293-1302.	
6 7 8	582	Thiaw, M., Auger, P.A., Ngom, F., Brochier, T., Faye, S., Diankha, O., Brehmer, P., 2017.	
9 10	583	Effect of environmental conditions on the seasonal and interannual variability of sm	all
11 12 13	584	pelagic fish abundance off North-West Africa: The case of both Senegalese sardinel	la.
14 15	585	Fish. Oceanogr. 26, 583-601.	
16 17 19	586	Trippel, E.A., 1998. Egg size and viability and seasonal offspring production of young	
19 20	587	Atlantic cod. Trans. Am. Fish. Soc. 127, 339-359.	
21 22	588	Tsikliras, A.C., Antonopoulou, E., 2006. Reproductive biology of round Sardinella	
23 24 25	589	(Sardinella aurita) in the northeastern mediterranean. Sci. Mar. 70, 281-290.	
26 27	590	Tsikliras, A.C., Koutrakis, E.T., Stergiou, K.I., 2005. Age and growth of Sardinella	
28 29 30	591	(Sardinella aurita) in the northeastern mediterranean. Sci. Mar. 69, 231-240.	
31 32	592	Von Bertalanffy, L., 1938. A qualitative theory of organic growth (Inquiries on growth laws	s
33 34 25	593	II). Hum. Biol. 10, 181-213.	
36 37	594	Wagué, A., Mbodj, O.B., 2002. Etude de quelques aspects de la reproduction chez la	
38 39	595	sardinelle ronde Sardinella aurita (Valencienne, 1847) péchée le long des côtes	
40 41 42	596	mauritaniennes. Bull. Centr. Nat. Rech. Océanogr. et Pêches, Nouadhibou. 29, 13-18	8.
43 44	597	Ware, D.M., Thomson, R.E., 2005. Bottom-up ecosystem trophic dynamics determine fish	
45 46 47	598	production in the northeast Pacific. Science. 308, 1280-1284.	
48 49	599	Wooster, W.S., Bakun, A., McLain, D.R., 1976. The seasonal upwelling cycle along the	
50 51	600	Eastern boundary of the North Atlantic. J. Mar. Res. 34, 131-141.	
52 53 54	601	Wootton, R.J., 1990. Ecology of teleost fishes. Chapman and Hall, London.	
55 56	602	Zeeberg, J., Corten, A., Tjoe-Awie, P., Coca, J., Hamady, B., 2008. Climate modulates the	
57 58 59	603	effects of Sardinella aurita fisheries off Northwest Africa. Fish. Res. 89, 65-75.	
60 61			
62 63			25
ь4 65			

1	604	Web references
1 2 3	605	Ba, C.O., Ndiaye, A.I., 2008. L'émigration clandestine sénégalaise. Available at:
3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3	606	
63 64 65		

Fig. 1. Sampling locations of *Sardinella aurita* in Senegal: Hann, Mbour and Joal for life history traits and Saint Louis, northern Thiès, *Cape* Verde and southern Thiès for fish landings.

Figure 2

Click here to access/download;Figure;Figure 2.docx 🛓

Fig. 2. *Sardinella aurita* otolith viewed with a binocular microscope after immersion in 95% ethanol under reflected light against a dark background. The distal otolith face is shown. Two translucent marks (stars) are visible from the core, both along the rostrum and towards the posterior margin. Scale bar = 1.5 mm. P = posterior; V = ventral; A = anterior; D = dorsal; co =core; an = antirostrum; ro =

rostrum.

Figure 3

Fig. 3. Annual catches (a) and fishing effort (b) for *Sardinella aurita* in Senegalese coastal waters between 1981 and 2013. Tot. catch = total catch; Set. gill = set gillnets; Purs. Sein = purse seines; Oth. fish. gear = other types of fishing gear; Encir. gill = encircling gillnets; Bea. sein = beach seines.

Figure 4

Click here to access/download;Figure;Figure 4.doc 🛓

Fig. 4. Monthly sea surface temperature $[(\dots)$ mean SST± SD] and condition factor of *Sardinella aurita* $[(\dots)$ mean $Cf \pm$ SD] for Hann, Mbour and Joal locations. Same letters above means indicate that Cf values were statistically identical (Mann-Whitney test).

Figure 5

Click here to access/download;Figure;Figure 5.doc 🛓

Fig. 5. Monthly gonado-somatic index of Sardinella aurita (mean GSI ± SD) for Hann,

Mbour and Joal locations.

Figure 6

Fig. 6. Logistic functions for estimating the fork length at the first sexual maturity (FL_{50}) of *Sardinella aurita* for Hann, Mbour and Joal locations.

Figure 7

Click here to access/download;Figure;Figure 7.doc 🛓

Fig. 7. Monthly percentages of otolith translucent edges for *Sardinella aurita* (in dark grey). The opaque edge percentage is in white and the undefined edge percentage is in grey.

Figure 8

Click here to access/download;Figure;Figure 8.doc 🛓

Fig. 8. Von Bertalanffy growth functions of *Sardinella aurita* for Hann, Mbour and Joal locations. n = number of otoliths read for both sexes combined.

Click here to access/download;Table;Table 1.docx 🛓

Table 1. Fecundity parameters of Sardinella aurita for Hann, Mbour and Joal (A) and pairwise comparison of those parameters between the three sampling locations using

parametric Student's t test (B). Min-Max = fecundity parameters range; SD = standard deviation; FA. = absolute fecundity; FR = relative fecundity; Dov = ovocyte diameter.

Significant differences between two locations are shown in bold with a significance level of 5% (P <0.05); t = Student t test; p = the probability of the test

(A)		n			М	bour	Joal			
Fecundity parameters	Min-Max	Mean (SD)		Mi	n-Max	Mean (SD)	Min-Max	Mean (SD)		
FA (nb eggs)	111,390-253,340		176,315 (45,949)		50,118	8-212,544	101,036 (45,804)	37,758-143,307	80,784 (31,555)	
FR. (egg g-1)	503-815		654 (111)		11	8-512	301 (98)	175-532	293 (109)	
Dov (mm)	0.62-0.70		0.66 (0.03)		0.5	9-0.68	0.63 (0.03)	0.54-0.70	0.63 (0.04)	
(B) Fecundity parameters	Hann vs Mbour		Hann vs Joal		Mbour vs Joal					
$F_{\rm A}$ (nb eggs)	3.67	ہ 0.00	5.42	р 0.00	1.15	р 0.26				
$F_{\rm R}$ (egg g-1)	7.55	7.55 0.00 7.31 0.00		0.00	-0.16 0.87					
D (mm)	2.04	0.04	2.10	0.05	0.46	0.65				

Table 2

Click here to access/download;Table;Table 2.docx 🛓

						F	Range
Locations	n	LF_{∞}	K	t_0	Φ '	LF (mm)	Age (months)
Hann	336	304	0.04	2.02	3.53	77-307	11-80
Mbour	391	316	0.02	-11.44	3.32	110-300	5-86
loal	288	340	0.02	-19.8	3.29	110-296	5-88

Table 2. Growth parameters and performance index of Sardinella aurita for Hann, Mbour and Joal. LF~ =

Click here to access/download;Table;Table 3.docx ±

Table 3	3
17	
18 -	т.

Area Eastern Atlantic Hann (Senegal) Mbour (Senegal) Joal (Senegal) Senegal Senegal	Jan	ı Feb	Mar	Apr	May	Jun	Jul	Δυσ	e		N		D. (
Area Eastern Atlantic Hann (Senegal) Mbour (Senegal) Joal (Senegal) Senegal Senegal Senegal	Jan	ı Feb	Mar	Apr	May	Jun	Jul	Διισ	C	0.1	NT.	D	D.C.
Eastern Atlantic Hann (Senegal) Mbour (Senegal) Joal (Senegal) Senegal Senegal Senegal	•							nug	Sep	Oct	Nov	Dec	References
Hann (Senegal) Mbour (Senegal) Joal (Senegal) Senegal Senegal Senegal	•												
Mbour (Senegal) Joal (Senegal) Senegal Senegal Senegal	•									•	•		Present study
Joal (Senegal) Senegal Senegal Senegal	-	•	•	•							•		Present study
Senegal Senegal Senegal	•	•	•					•	•	•	•		Present study
Senegal Senegal		•	•	•	•	•				•	•		(Cury and Fontana, 1988)
Senegal		•	•	•	•					•			(Boëly, 1982)
					•	•				•	•		(F. Conand, 1977)
Senegal		•	•	•	•	•				•	•		(Boëly et al., 1978)
Ghana offshore							•	•	•	•			(Quaatey and Maravelias, 1999)
Gambia-Cap Blanc						•	•	•	•				(Boëly et al., 1978)
Congo					•		•	•	•				(Fontana and Pianet, 1973)
Sahara - Cape Verde peninsula					•	•	•	•		•	•		(Boëly and Fréon, 1979)
Sahara - Cape Verde peninsula					•	•		•	•	•	•		(Pham-Thuoc and Szypula, 1973)
Mauritania	•						•	•				•	(Chavance et al., 1991)
Mauritania						•		•	•				(Wagué and Mbodj, 2002)
Mauritania						•	•	•	•				(Ter hofstede et al., 2007)
Western Atlantic													
Venezuela	•	•	•				4				•	•	(Fréon et al., 1997)
Brazil	•											•	(Matsuura, 1996)
Mediterranean													
Northeast Mediterranean						•	•						(Tsikliras and Antonopoulou, 2006)
East Mediterranean						•	•	•					(Mustać and Sinovčić, 2012)
Middle Mediterranean							•	•	•				(Gaamour et al., 2001)
West Mediterranean							•	•	•				(Palomera and Sabatés, 1990)
	4												

Click here to access/download;Table;Table 4.docx 🛓

24 25	Area	Mathada	LF_{∞}	Max. LF	Max. age	<u>م</u> '	<i>LF</i> ₅₀ (m	im)	Pafarancas	
26	Alea	Methods	(mm)	(mm)	(months)	Ψ	female	male	Keterences	
27 28	E i da a									
29	Eastern Attantic Hann (Senegal)	otolith	304	307	80	3 53	225	181	Present study	
30	Mhour (Senegal)	otolith	316	300	86	3 32	218	200	Present study	
31	Ioal (Senegal)	otolith	340	296	88	3 29	219	206	Present study	
32 33	Senegal	leng freg scale	306.3	321	72	3.98	200	200 N/A	(Boëly, 1982; Boëly et al. 1982b)	
34	Senegal	scale	331.5	320	96	3.41	185	N/A	(E Conand 1977: Krzentowski 1981)	
35	Schegar	scale	551.5	520	50	5.41	105	N/A	(Pham-Thuoc and Szypula, 1973; Ter Hofstede and Dickey-Collas.	
36	Mauritania	scale	343	350	84	3.51	219	226	2006)	
37	Ghana	N/A	N/A	N/A	N/A	N/A	171	167	(Quaatey and Maravelias, 1999)	
39	Congo	leng. freq, scale	260	280	90	3.83	160	N/A	(Ghéno and Fontana, 1981)	
40										
41	Western Atlantic									
42	Florida	otolith	220.1	190.5	48	3.28	N/A	N/A	(Grall, 1984) (Mandana et al. 1994: Enfan et al. 1997)	
43 44	Venezuela	leng. freq	235			3.76	170		(Mendoza et al., 1994; Freon et al., 1997)	
45	Brazil	otolith	243	220	48	3.43	N/A	N/A	(Cergole et al., 2002)	
46										
47	Mediterranean									
48	NE Mediterranean	leng. freq, scale	220	219	60	3.31	146	135	(Tsikliras et al., 2005; Tsikliras and Antonopoulou, 2006)	
49 50	Algeria	leng. freq	243	238	54	3.30	N/A	N/A	(Belouahem, 2010)	
51	Tunisia	otolith	277	242	84	3.19	135	125	(Gaamour et al., 2001)	
52	Egypt	leng. freq, scale	229	200	48	3.12	N/A	N/A	(Salem et al., 2010)	
53	Adriatic sea	N/A	N/A	N/A	N/A	N/A	145	137	(Mustać and Sinovčić, 2012)	
54										
56										
57										
58										
59										
61										
62										
63										
64										
65										

Highlights

- Condition factor of the round sardinella is a very good indicator
- Reproductive pattern has not changed for more than 40 years ago
- The reading of the otoliths gave a good estimate of the age and growth
- Growth was rapid and variable with longevity of 6-7 years
- Decline in landings could be related to the reduction in the annual number of trips

Conflict of Interest

This manuscript has not been published or simultaneously submitted for publication elsewhere. We have no conflicts of interest to disclose. This proposal of publication has been approved by all authors and tacitly by the responsible authorities where the work was carried out. All authors agree to the submission of this research and take full responsibility for its content.