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Abstract :   
 
Photosynthetic microorganisms are known to adjust their photosynthetic capacity according to light 
intensity. This so-called photoacclimation process is thought to maximize growth at equilibrium, but its 
dynamics under varying conditions remains less understood. To tackle this problem, microalgae growth 
and photoacclimation are represented by a (coarse-grained) resource allocation model. Using optimal 
control theory (the Pontryagin maximum principle) and numerical simulations, we determine the optimal 
strategy of resource allocation to maximize microalgal growth rate over a time horizon. We show that, 
after a transient, the optimal trajectory approaches the optimal steady state, a behavior known as the 
turnpike property. Then, a bi-level optimization problem is solved numerically to estimate model 
parameters from experimental data. The fitted trajectory represents well a Dunaliella tertiolecta culture 
facing a light down-shift. Finally, we study photoacclimation dynamics under day/night cycle. In the optimal 
trajectory, the synthesis of the photosynthetic apparatus surprisingly starts a few hours before dawn. This 
anticipatory behavior has actually been observed both in the laboratory and in the field. This shows the 
algal predictive capacity and the interest of our method which predicts this phenomenon. 
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Highlights 

► Facing a light shift, the optimal strategy of photoacclimation is a turnpike. ► A bi-level optimization 
problem is solved to estimate model parameters. ► Under day/night cycle, the model predicts that 
microalgae anticipates the dawn. ► The algal anticipatory strategy is in line with laboratory and field 
observations. 
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1. Introduction

Microalgae are key players in the ocean (Falkowski and Raven, 2007), and
they also represent a promising resource for various markets (feed, health,
etc) (Spolaore et al., 2006). These microorganisms adjust their photosyn-
thetic apparatus according to the light they received: e.g., if light is in excess,
the photosynthetic apparatus will decrease (MacIntyre et al., 2002). This
so-called photoacclimation process is an important factor to consider when
estimating net primary production in the ocean from satellite chlorophyll
measurements (Graff et al., 2016), or when optimizing microalgal production
given the interplay between self-shading and light limitation (Bernard et al.,
2015; De Mooij et al., 2017).

Mathematical models have been proposed to understand and predict mi-
croalgal photoacclimation. They can be divided into two types: empirical
models, mainly based on experimental observations (e.g., Geider et al. (1998);
Garćıa-Camacho et al. (2012); Bernard et al. (2015); Nikolaou et al. (2016);
Straka and Rittmann (2018)), and optimality-based models. The latter type
relies on the hypothesis, widespread for predictive models in biology, that evo-
lution has resulted in organisms having optimal performances (Sutherland,
2005). Microbial growth can thus be formalized as an optimization problem,
where resources should be allocated between different sectors in order to
maximize the growth rate for exemple. In this framework, photoacclimation
models based on static optimization have been proposed by Shuter (1979);
Armstrong (2006); Geider et al. (2009); Jahn et al. (2018); Faizi and Steuer
(2019); Zavřel et al. (2019). These models correctly represent photoacclima-
tion in a constant environment. Nonetheless, light supply is always changing,
because of the sunpath, the presence of clouds, the position of the cell in the
water column, etc. In this context, Talmy et al. (2013) have determined a
fixed resource allocation which maximizes the growth over a time window
under light fluctuations. However, this study still neglects photoacclimation
dynamics. Instantaneous optimization has been proposed to represent pho-
toacclimation under variable conditions (Wirtz and Pahlow, 2010). That is,
at each instant, the chlorophyll content is adjusted so as to maximize instan-
taneous growth. It appears that such a strategy is not necessarily optimal
over the long term. Generally, one can determine a strategy to maximize
growth over a time window. This can be formalized as an optimal control
problem, as proposed for example to represent bacterial growth (Pavlov and
Ehrenberg, 2013; Waldherr et al., 2015; Giordano et al., 2016). Concerning
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photosynthetic microorganisms, to the best of our knowledge, resource allo-
cation optimization over a time window has been tackled only by Cohen and
Parnas (1976) and Reimers et al. (2017), focusing on carbon storage over a
day-night cycle (and not photoacclimation).

Here a coarse-grained model is proposed to represent microalgae growth
and photoacclimation as a resource allocation problem. We first determine
the optimal allocation strategy in static conditions, resulting in the classic
photoacclimation relationship: the more the light increases, the more the
photosynthetic apparatus decreases. Then, we determine the optimal alloca-
tion strategy under dynamic conditions, when microalgae face a light shift.
Using optimal control theory (Pontryagin’ Principle) and numerical simula-
tions (direct methods), we show that the optimal trajectory corresponds to
a turnpike, i.e., to quickly adjust the allocation close to the optimal steady
state. Then, following our preliminary work (Mairet and Bayen, 2020), a
parameter estimation approach - leading to a bi-level optimization problem
- is proposed and carried out. This method results in a first proof of con-
cept of how to calibrate dynamic resource allocation model. Finally, optimal
allocation strategy under day/night cycles is determined numerically. The
simulations reveal that the synthesis of the photosynthetic apparatus begins
a few hours before dawn. This behavior is actually observed in several labora-
tory and field studies (Zinser et al., 2009; John et al., 2012; Hernández Limón
et al., 2020), revealing the algal anticipation capacity.

2. Model development

A coarse-grained model of microalgae growth and photoacclimation is
proposed, inspired by the works of Shuter (1979) and Giordano et al. (2016).

2.1. Biochemical reactions

The model is based on two macro-reactions, represented in Figure 1.
First, CO2 is fixed to produce small carbon precursors C (in g):

CO2
vP−→ C,

where vP corresponds to the photosynthetic rate (in g/(g biomass·d)).
The second reaction corresponds to the synthesis of macromolecules, di-

vided into two sectors: the photosynthetic apparatus, including the photosys-
tems and Calvin cycle enzymes P (in g) and the gene expression machinery
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(mainly the ribosomes) R (in g):

C
vR−→ uP + (1− u)R,

where vR (in g/(g biomass·d)) corresponds to the rates of macromolecule
synthesis, and u ∈ [0, 1] is the allocation variable representing the part of
the flux going to the synthesis of the photosynthetic apparatus. Considering
biomass B = C + P +R, a mass balance gives the following dynamics:

∣

∣

∣

∣

∣

∣

∣

∣

∣

dC
dt

= vPB − vRB,
dP
dt

= uvRB,
dR
dt

= (1− u)vRB,
dB
dt

= vPB.

Now denoting in lowercase the mass fractions (in g/g biomass), i.e., c = C/B,
p = P/B, and r = R/B, we finally get

∣

∣

∣

∣

∣

∣

∣

dc
dt

= 1
B

dC
dt

− C
B2

dB
dt

= vP (1− c)− vR,
dp

dt
= 1

B
dP
dt

− P
B2

dB
dt

= uvR − pvP ,
dr
dt

= 1
B

dR
dt

− R
B2

dB
dt

= (1− u)vR − rvP .

2.2. Reaction rates

For the kinetics, we consider that the photosynthetic rate is a function of
the photosynthetic apparatus mass fraction and of the light intensity I, i.e.,
vP (p, I), with the following assumption

Hypothesis 1. The function vP : [0, 1] × R+ → R+ is of class C2 and
satisfies

• For every p ∈ [0, 1], vP (p, 0) = 0 ;

• For every I > 0, vP (0, I) = 0 ;

• For every I > 0, the mapping vP (·, I) is strictly concave increasing over
the interval [0, 1].

Typically, Michaelis-Menten’s function

vP (p, I) = kP
pI

K + pI
, (1)
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Figure 1: Scheme of the coarse-grained model to represent photoacclimation in microalgae.
We assume that microalgae maximize their growth rate by adjusting the resources allocated
to the photosynthetic apparatus (through the allocation variable u ∈ [0, 1]).

satisfies Hypothesis 1. In this expression, the photosynthetic rate is a func-
tion of the product pI, which corresponds to the energy absorbed by the cells.
This is in line with mechanistic models of photoacclimation, where the rate
depends on the product of the chlorophyll content times the light intensity
(see e.g., Geider et al. (1998)).

The rate of macromolecule synthesis depends on the mass fractions of
carbon precursors and the gene expression machinery. For sake of simplicity,
a mass action kinetics is considered:

vR(c, r) = kRcr.

Note that some numerical simulations with other expressions for both kinetic
rates are presented in Appendix A to extend the results presented in the
main article.

2.3. Problem statement

Given that c+ p+ r = 1, one variable can be removed and we finally get:
∣

∣

∣

∣

∣

dc
dt

= vP (p, I)(1− c)− kRc(1− c− p),
dp

dt
= ukRc(1− c− p)− pvP (p, I).

(2)

5



Before formalizing the resource allocation problem, we show that the system
(2) satisfies the following invariance property. Let us then introduce the set

Ω := {(c, p) ∈ (0, 1)× (0, 1) ; c+ p ≤ 1}.

Lemma 1. The set Ω is invariant by (2).

Proof. Whenever c = 0 (resp. p = 0), it is easily seen that ċ = vP (p, I) > 0
(resp. ṗ = u(t)kRc(1 − c) > 0), so the positive orthant is invariant. In
addition, one has ċ + ṗ = 0 along c + p = 1 so that the line segment L :=
{(c, 1− c) ; c ∈ [0, 1]} is also invariant. This ends the proof.

Since trajectories of (2) starting in L remain in L, we suppose next that
initial conditions belong to the (open) invariant domain:

D := {(c, p) ∈ (0, 1)× (0, 1) ; c+ p < 1}.

We assume that microalgae have acquired through evolution optimal strategy,
i.e., they regulate their allocation of resources in order to maximize their
growth. To represent this behavior, we are interested in maximizing the
photosynthetic rate vP w.r.t. the allocation of macromolecules synthesis u
(corresponding to our control) over a given time period. Thus, we consider
the admissible control set defined as:

U = {u : [0, T ] → [0, 1] ; u meas1.},

in which T > 0 is our given time period. The optimization problem under
consideration can be then gathered into:

max
u(·)∈U

J(u) :=

∫ T

0

vP (p(t), I) dt, (P)

where (c(·), p(·)) is the unique solution of (2) starting at a given point
(c0, p0) ∈ D for a given control u ∈ U .

1The abreviation “meas.” means measurable in the Lebesgue sense (see Rudin (1987)).
Such a class of control functions is very natural in optimal control theory because it allows
discontinuous entries which can be optimal in various situations (e.g., bang-bang controls
with a finite or an infinite number of discontinuities such as Fuller’s phenomenon, see
Zelikin and Borisov (1994))
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3. Optimal allocation at equilibrium

Our first objective is to determine the optimal allocation at equilibrium,
for a constant light intensity I > 0. This corresponds to the static optimiza-
tion problem:

max
u∈[0,1]

J̄(u) := vP (pu, I), (3)

where (cu, pu) is a steady state of (2) associated with the constant control u
and a constant light I, i.e.,

0 = vP (pu, I)(1− cu)− kRcu(1− cu − pu),

0 = ukRcu(1− cu − pu)− vP (pu, I)pu.
(4)

Lemma 2. There is a unique solution u∗ ∈ [0, 1] to (3)-(4) satisfying

vP ((u
∗)2, I) = kR(1− u∗)2.

In addition, the corresponding steady-state (c∗, p∗) of (2) is given by

c∗ = 1− u∗,
p∗ = (u∗)2.

(5)

Proof. Let us first show that u = 0 and u = 1 are not optimal solutions
of (3)-(4). If u = 0, then either vP (pu, I) = 0 or pu = 0 implying in both
cases that the objective function J̄(u) is zero. If now u = 1, we obtain
vP (pu, I)(1− cu−pu) = 0 and either pu = 0 or 1− cu−pu = 0. As previously,
we can exclude the case pu = 0. But, if now 1 − cu − pu = 0 (with pu 6= 0),
we obtain vP (pu, I)(1− cu) = 0, thus 1− cu = 0 and from (4), we get pu = 0
which is not possible. Hence, u = 1 is also not optimal.

Let us go back to Problem (3)-(4). From (4), we obtain that any admis-
sible solution of (4) satisfies pu = u(1 − cu). Replacing cu by its value into
the first equation then gives

g(p, u) := vP (p, I)− kR

(

1−
p

u

)

(1− u) = 0.

Problem (3)-(4) then amounts to maximize u 7→ J̄(u) over [0, 1]. Doing
so, we apply the classical Karush-Kuhn-Tucker conditions (KKT). Because
u = 0 and u = 1 are not optimal, we can remove the nonbinding constraint
u ∈ [0, 1] and take into account one equality constraint g(p, u) = 0. Let then
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L := J̄ +λg the Lagrangian associated with (3)-(4). Let u be a maximum of
(3)-(4). Then, the stationarity condition

∂L

∂u
= 0,

gives p = u2, and from the equality constraint g(p, u) = 0, we obtain

vP (u
2, I) = kR(1− u)2.

Since vP is increasing with vP (0, I) = 0, this equation has a unique solution
in (0, 1). The value of (c∗, p∗) follows.

Using for vP the Michaelis-Menten function given in (1), u∗ is the unique
solution in [0, 1] of a polynomial equation of degree four:

−IkRu
4 + 2IkRu

3 + (IkP − kRK − IkR − kRK)u2 + 2kRKu− kRK = 0.

We can compute this solution as a function of the light intensity. We ob-
tain that the optimal photosynthetic machinery sector at equilibrium p∗ is
a decreasing function of light intensity I, in line with experimental data of
steady-state photoacclimation (MacIntyre et al., 2002), see Fig. 2. Actually,
this pattern has already been predicted by steady-state optimization with
similar models (e.g., in Armstrong (2006)).

The optimal steady-state enjoys the following stability property (of inter-
est whenever perturbations affect the system).

Proposition 1. The steady-state (c∗, p∗) of (2) associated with the (con-
stant) control u = u∗ is locally stable with two negative eigenvalues.

Proof. At a steady-state (c, p) of (2) associated with a constant control u,
the Jacobian matrix is

[

−vP (p, I)− kR(1− 2c− p) ∂vP
∂p

(p, I)(1− c) + kRc

kRu(1− 2c− p) −kRuc−
∂vP
∂p

(p, I)p− vP (p, I)

]

,

and, replacing (c, p, u) by the optimal triplet (c∗, p∗, u∗), it becomes
[

0 ∂vP
∂p

(p∗, I)u∗ + kR(1− u∗)

−kRu
∗(u∗ − 1)2 −kR(1− u∗)− (u∗)2 ∂vP

∂p
(p∗, I)

]

.

Since u∗ ∈ (0, 1) and ∂vP
∂p

> 0, the trace and determinant of this matrix
are respectively negative and positive which shows that it has exactly two
negative eigenvalues. This ends the proof.
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Figure 2: Optimal steady-state allocation for the photosynthetic sector p⋆ as a function
of light intensity (top), see Lemma 2. This pattern corresponds to the photoacclimation
phenomena (MacIntyre et al., 2002), as shown for example by the chlorophyll content mea-
sured experimentally for Dunaliella tertiolecta (Havelková-Doušová et al., 2004) (bottom).

4. Optimal allocation during a light shift

Our coarse-grained model is now used to study the dynamics of photoac-
climation. As a case study, we consider that light intensity is shifted at t = 0,
and then it remains constant. Our objective is to determine how microalgae
can adjust their allocation in order to maximize their growth during the light
shift transient. Formally, we thus consider the optimal control problem (P).
In the following, vP (p, I) will be denoted as vP (p) for sake of simplicity, and
v′P corresponds to its derivative with respect to p.

4.1. Application of the Pontryagin Maximum Principle

Optimal controls are derived using the Pontryagin Maximum Principle
(see Pontryagin et al. (1964)). Note that the existence of an optimal control
is straightforward (due to the linearity of (2) w.r.t. the control), this follows
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from Fillipov’s Theorem (Cesari, 1983). Let us now apply Pontryagin’s Prin-
ciple. Doing so, let H = H(c, p, λc, λp, λ

0, u) be the Hamiltonian associated
with (P) (written as a minimum):

H := kRc(1− c− p) [uλp − λc] + vP (p)
[

λc(1− c)− λpp− λ0
]

.

If u is an optimal control and x(·) = (c(·), p(·)) the associated trajectory,
there exists λ0 ≤ 0 and an absolutely continuous map λ = (λc, λp) : [0, T ] →
R

2 such that (λ, λ0) 6= 0 and satisfying the adjoint equation λ̇ = −∂H
∂x

, that
is:

∣

∣

∣

∣

∣

λ̇c = −kR(1− 2c− p)(uλp − λc) + vP (p)λc,

λ̇p = kRc(uλp − λc) + λpvP (p)− v′P (p) [λc(1− c)− λpp− λ0] .
(6)

In addition, since the state is free at the terminal time, transversality condi-
tions imply

λc(T ) = λp(T ) = 0. (7)

It follows that λ0 < 0. Indeed, if λ0 = 0, the solution of (6) satisfying the
transversality condition would satisfy λc ≡ 0 and λp ≡ 0. This gives us a
contradiction because the pair (λ, λ0) must be non-zero. By homogeneity
of the Hamiltonian, we may then assume that λ0 = −1. The Hamiltonian
condition in Pontryagin’s Principle then gives

u(t) ∈ argmaxv∈[0,1]H(x(t), λ(t),−1, v) a.e. t ∈ [0, T ]. (8)

An extremal is a triplet (x(·), λ(·), u(·)) satisfying (2)-(6)-(8) (since λ0 6=
0, we thus only consider normal extremals in the sequel). From (8), the
control law is given by the sign of the switching function

φ := λpkRc(1− c− p),

which gives
{

φ(t) > 0 ⇒ u(t) = 1,

φ(t) < 0 ⇒ u(t) = 0.
(9)

A Bang+ arc (resp. Bang−) is a portion of trajectory defined over some
time interval [t1, t2] such that u = +1 (resp. u = 0) over [t1, t2]. The next
property shows that any optimal control is necessarily of type Bang+ in some
neighborhood of t = T .
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Proposition 2. If u is an optimal control of (P), there exists τ ∈ [0, T )
such that one has u(t) = +1 for every t ∈ [τ, T ].

Proof. At time t = T , one has φ(T ) = 0. In addition, by differentiating φ
w.r.t. t we find

φ̇(T ) = −kRc(T )(1− c(T )− p(T ))v′P (p(T )) < 0

using λc(T ) = λp(T ) = 0. By continuity, there exists τ ∈ [0, T ) such that
one has φ > 0 over [τ, T ) implying the desired property.

The switching function φ may also vanish over a sub-interval [t1, t2] ⊂
[0, T ]. If this happens, we say that the extremal is singular over [t1, t2] and
that a singular arc occurs. The singular arc is the portion of the correspond-
ing trajectory over [t1, t2]. As we shall next see, such arcs have a significant
impact on the optimal synthesis, that is why, we now study more into details
their properties.

4.2. Study of singular arcs

In this section, we provide properties of singular arcs such as Legendre-
Clebsch’s condition that will allow us to have an insight into optimal paths.
Recall that, given an optimal trajectory (c(·), p(·)) associated with a control
u(·), along any singular arc defined over a time interval [t1, t2], the inequality

∂

∂u

d2Hu

dt2
≥ 0 (10)

should be fulfilled over [t1, t2]. Inequality (10) expresses the second order
necessary optimality condition (Legendre-Clebsch’s condition). In particular,
if (10) fails to hold, no singular arc occurs. In order to check if (10) is fulfilled,
note that ∂

∂u
d2Hu

dt2
coincides with φ̈|u := ∂

∂u
φ̈.

Lemma 3. Along any singular arc defined over a time interval [t1, t2], one
has:

λc =
−v′P (p)

kRc+ v′P (p)(1− c)
and λ̇c =

−v′P (p)(vP (p) + kR(1− 2c− p))

kRc+ v′P (p)(1− c)
. (11)

Proof. Along a singular arc defined over a time interval [t1, t2], one has φ ≡ 0
over [t1, t2], thus λp ≡ 0 as well as λ̇p ≡ 0. By differentiating λp and using
(6), we find the desired expressions of λc as well as λ̇c along [t1, t2].
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Proposition 3. Along any singular arc defined over a time interval [t1, t2],
the Legendre-Clebsch condition (10) is fulfilled with a strict inequality.

Proof. Recall that along a singular arc λp ≡ 0. By differentiating φ w.r.t. t
over [t1, t2], we thus get

φ̇ = −kRc(1− c− p)(kRcλc + v′P (p)(1− c)λc + v′P (p)).

Now, when differentiating φ̇ w.r.t. t, the terms involving explicitly the control
u come from the derivate of the function t 7→ v′P (p(t)) w.r.t. t. Hence, along
a singular arc, we find that

φ̈|u = −kRc(1− c− p)v′′P (p)((1− c)λc + 1)ṗ|u

= −
k2Rc

2(1− c− p)v′′P (p)

kRc+ v′P (p)(1− c)
ṗ|u

= −
k3Rc

3(1− c− p)2v′′P (p)

kRc+ v′P (p)(1− c)
,

where the second equality follows from (11). Observe that the quantity kRc+
v′P (p)(1− c) is positive. Since vP is strictly concave, v′′P < 0, and we deduce
that φ̈|u > 0. The result follows.

Remark 1. (i) The fact that Legendre-Clebsch’s condition is fulfilled in-
dicates that the optimal synthesis may exhibit a singular arc (although the
occurrence of such an arc also depends on the initial condition). If a singu-
lar arc occurs, such an arc is usually called a turnpike (see, e.g., Boscain and
Piccoli (2004) or Bayen et al. (2018)) meaning that during a certain time
interval, the optimal control must take intermediate values between 0 and 1
(see Proposition 4). According to turnpike properties (see Trélat and Zuazua
(2015) and references herein), the corresponding portion of trajectory should
then remain close to an optimal steady state point as computed in Section 3.

Remark 2. The strict concavity of vP is fundamental to ensure Legendre-
Clebsch’s condition.
(i) If a linear expression is used (v′′P = 0), then φ̇|u would be zero implying
the possible occurrence of a singular arc of second order (see Mairet and
Bayen (2020)), i.e., the singular control cannot be computed from φ̈ (as in
Proposition 4), but from

....
φ .

(ii) If a Hill-type expression is used (see, e.g., Moser (1958)) and if the
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optimal steady-state is such that p∗ lies in the convex part of the curve vP (·),
Legendre-Clebsch’s condition is not satisfied in a neighborhood of p∗. Thus, it
can be expected that no singular arc occurs in that case. This issue is further
investigated in Appendix A.

We now provide the expression of the singular control as a feedback of
the state.

Proposition 4. Along a singular arc defined over a time interval [t1, t2], the
singular control t 7→ us(t) is given by us(t) := ψ(c(t), p(t)), t ∈ [t1, t2] where
ψ : Ω → R is defined as

ψ(c, p) := −
a(c, p)

b(c, p)
,

with

a(c, p) := −kR
(

cpvP (p)v
′′
P (p) + v′P (p)[v

′
P (p)((1− c)2 − p) + vP (p)− kRc

2]
)

,

b(c, p) := k2Rc
2(1− c− p)v′′P (p).

(12)

Proof. Since λp = λ̇p = 0 over [t1, t2], we find that

φ̈ = kRc(1− c− p)λ̈p

= −kRc(1− c− p)

[

λ̇c[v
′
P (p)(1− c) + kRc] + λc

d

dt
[v′P (p)(1− c) + kRc] + v′′P (p)ṗ

]

(13)

Now, putting (11) into the previous expression and collecting the terms with
u (coming from ṗ) and the ones without u allows to write (13) as

φ̈ = −
kRc(1− c− p)

kRc+ v′P (p)(1− c)
(a(c, p) + b(c, p)u),

where a, b are given by (12). Using that φ̈ = 0 over [t1, t2], the result follows.

Remark 3. To complete the sign condition (9) coming from the Hamiltonian
condition (8), the previous proposition implies that if φ ≡ 0 over some time
interval [t1, t2], then the corresponding singular path necessarily coincides
with a portion of orbit of

∣

∣

∣

∣

∣

ċ = vP (p)(1− c)− kRc(1− c− p),

ṗ = −a(c,p)
b(c,p)

kRc(1− c− p)− pvP (p),
(14)

that is, system (2) in which the input u is the feedback control u = ψ(c, p).
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We now analyze the asymptotic behavior of the dynamical system (14)
near (c∗, p∗).

Proposition 5. The optimal steady-state point (c∗, p∗) is a saddle point of
(14).

Proof. First, note that system (14) can be equivalently rewritten

∣

∣

∣

∣

∣

ċ = vP (p)(1− c)− kRc(1− c− p),

ṗ =
v′
P
(p)

cv′′
P
(p)

(v′P (p)[(1− c)2 − p] + vP (p)− kRc
2)

(15)

Recall that the optimal steady-state point satisfies p∗ = (u∗)2 = (1−c∗)2, c∗ =
1−u∗ where u∗ is the unique solution of the equation vP (u

2) = kR(1−u)
2 over

[0, 1]. Thanks to these relations, we can verify that (c∗, p∗) is an equilibrium
of (15). In addition, the Jacobian matrix of (15) at this point writes

A :=

[

α β
γ δ

]

,

with
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α = −vP (p
∗)− kR(1− 2c∗ − p∗),

β = v′P (p
∗)(1− c∗) + kRc

∗,

γ = −
2v′

P
(p∗)

c∗v′′
P
(p∗)

(v′P (p
∗)(1− c∗) + kRc

∗),

δ = −
v′
P
(p∗)

c∗
((1− c∗)2 − p∗).

We see that β > 0 and that γ > 0, and thanks to the definition of (c∗, p∗), we
verify that α = δ = 0. It follows that the matrix A has exactly two non-zero
eigenvalues of opposite sign which ends the proof.

At this step, we have seen that an optimal control satisfies almost ev-
erywhere over [0, T ]: either u ∈ {0, 1} (depending on the sign of φ), or u
is singular and its expression us is provided by Proposition 4. Observe that
there is no guarantee that along a singular arc, the singular arc is admissible,
i.e.,

|us| ≤ 1. (16)

Indeed, the value of the singular control us = ψ(c, p) provided by the Pon-
tryagin Maximum Principle may exceed the bounds on the control u. Never-
theless, when the singular arc is close to the optimal steady-state point, then
inequality (16) is fulfilled as we shall next see.
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Property 1. There exists a neighborhood V ⊂ Ω of (c∗, p∗) such that one
has |ψ(c, p)| ≤ 1 for every (c, p) ∈ V.

Proof. When (c, p) → (c∗, p∗), one has

ψ(c, p) ∼ −
kRc

∗p∗vP (p
∗)v′′P (p

∗)

k2R(c
∗)2(1− c∗ − p∗)v′′P (p

∗)
= −

p∗kR(c
∗)2

kRc∗(1− c∗ − p∗)

using that vP (p
∗) = kR(c

∗)2 in the above equality. This gives

|ψ(c, p)| ∼
c∗p∗

1− c∗ − p∗
= 1− c∗,

using p∗ = (1− c∗)2 and the result follows since c∗ ∈ (0, 1).

So, we can conclude about the admissibility of a singular arc when the
corresponding trajectory is sufficiently close to the saddle point (c∗, p∗).

4.3. Discussion about optimal trajectories

The saddle point property of (c∗, p∗) along the singular arcs is crucial
in order to understand the behavior of optimal paths and it is in line with
properties of turnpikes as in Trélat and Zuazua (2015). The optimal point
(c∗, p∗) possesses a stable and unstable one-dimensional manifold. Hence, an
optimal trajectory can take advantage of the stable manifold to approach
(c∗, p∗) which by definition is the point for which production is optimal at
steady-state. Because of the transversality conditions (recall that on optimal
path contains a Bang + arc over some time interval [T − ε, T ]), an opti-
mal trajectory will leave a neighborhood of (c∗, p∗) taking advantage of the
unstable manifold before switching to u = +1 until the terminal time.

Thanks to these qualitative properties, we can expect an optimal path to
be of the following type:

γ1 − γs − γ2, (17)

where γs is a singular arc, and γi, i = 1, 2 is the union of (possibly a few)
Bang arcs.

• The first part γ1 allows an optimal path to approach V before switching
to a singular arc.

• Along the singular arc γs, the trajectory stays close to the optimal
steady-state.
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• In the third part γ2, the trajectory moves away from the optimal steady-
state point. For our biological problem, this last transient corresponds
to an artifact due to a fixed final time (recall (7)), and only the transi-
tion from the initial condition to the optimal steady-state is relevant.

4.4. Numerical optimal solutions

In this section, we solve numerically the optimal control problem (P) by
a direct method using the software bocop v.2.1.0 (Team Commands, Inria
Saclay, 2017; Bonnans et al., 2017). This will corroborate the structure of
an optimal control given by (17). A time discretization allows to transform
the optimal control problem into a nonlinear optimization problem, solved
here by interior point techniques. A discretization by a Lobatto IIIC formula
(6th order) was used with 400 time steps, and the relative tolerance for NLP
solver was set at 10−10. We consider a Michaelis-Menten function (1) for the
photosynthetic rate, a light intensity I =100 µmol.m−2.s−1, and the following
parameter values: kP =1.6 d−1, kR =2.1 d−1, and K =140 µmol.m−2.s−1.

The optimal trajectories obtained numerically are composed of two bang
arcs followed by a singular arc (which approaches the optimal steady state),
see Fig. 3. These numerical results tend to confirm our conjecture about
the structure of an optimal solution given by (17) : the optimal strategy
corresponds to a turnpike behavior. Additionally, these results show the
reliability of the numerical method. Trajectories are actually computed by
the direct method, without any knowledge of the theoretical solution, and the
numerical solutions present several characteristics demonstrated previously,
such as the singular arc approaching to the optimal steady state (see Fig. 4).

5. Model fitting: a bi-level optimization problem

Several microbial models with dynamic resource allocation have been pro-
posed recently, but comparison with experimental data is rarely carried out.
In this context, we propose a numerical method to estimate model param-
eters from experimental data and finally evaluate if our framework allows
to represent quantitatively microalgal photoacclimation dynamics. A light
down-shift is used as a case study. After a long acclimation to a light intensity
I−, microalgae are shifted at t = 0 to a different intensity I.
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Figure 3: Optimal trajectory (solution of (P)), obtained numerically by the direct method
using the bocop solver (Team Commands, Inria Saclay, 2017). The black dashed lines
correspond to the optimal steady-state.

5.1. Problem formulation

The model outputs y is a function g of the states x = (c, p) and also
possibly of the parameters θ, i.e.

y(t) = g(x(t), θ),

We consider a set of measurements ȳk ∈ R
m, corresponding to time in-

stants t1, . . . , tnk
, k ≥ 1. Our objective is to find the set of parameters

θ = (kP , kR, K)T ∈ (0,+∞)3 such that the optimal solution x(·) of (P) fits
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Figure 4: Plot of an optimal path (blue line) in the plane (c, p) by the direct method : in
the first phase, the trajectory approaches (c∗, p∗) (red dot) ; in the second one, it remains
close to it along a singular arc (red dashed lines) ; to satisfy transversality conditions it
finishes with a single Bang+ arc.

the experimental data. This leads to a so-called bi-level optimization problem:

minθ∈C

∑

k

(g(x⋆(tk), θ)− ȳk)
T Q (g(x⋆(tk), θ)− ȳk)

s.t.

∣

∣

∣

∣

∣

∣

∣

u⋆ ∈ argmaxu∈U
∫ T

0
vP (p(t)) dt,

ẋ(t) = f(x(t), u(t), θ) a.e. t ∈ [0, T ],
x(0) = x∗(I−, θ),

(18)

where Q ∈ Mnk
(R) is a square weighting matrix, C is a non-empty compact

subset of (0,+∞)3, f(·, ·, ·) is the dynamics given by System (2) (in which we
incorporate the dependency w.r.t. the parameters), x⋆ is the solution to this
system associated with u⋆ ∈ U . In addition, the initial condition is x∗(I−, θ)
which is the optimal steady-state point as computed in Lemma 2, and which
depends on the light intensity and parameters. Problem (P) plays the role
of lower level program whereas the optimization w.r.t. θ in (18) is the upper
level program. Problem (18) is unusual because it couples an optimal control
problem to a non-linear program.

Experimental data with the microalga Dunaliella tertiolecta (Sukenik
et al., 1990) have been considered. After several days of acclimation at 700
µmol.m−2.s−1, light intensity has been shifted down to 70 µmol.m−2.s−1 at
t = 0. The following measurements have been used for parameter estimation:
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• The relative content of LHCII, determined fromWestern blots. We con-
sider that the photosynthetic sector p follows the same relative dynam-
ics as this protein, so we compare these measurements with p(t)/p(0).

• The photosynthetic rate (vP ), given in mole C.cell−1.s−1 and converted
in d−1 assuming a carbon content of 3.5 pmole C.cell−1 (determined by
equilibrium values at low light). It actually corresponds to a carbon
specific growth rate.

• The specific growth rate, which was calculated from cell measurements.
We assume that the cellular dynamics is driven by the macromolecule
content, and so the cellular growth rate corresponds in our model to the
macromolecule synthesis rate per unit of macromolecule vR/(p+r). To
avoid confusion with the photosynthetic rate, we call it macromolecule
growth rate.

5.2. Numerical method

The solution of the bi-level optimization problem (18) is determined using
a classical direct search routine (by the Levenberg-Marquardt method with
the lmfit package in Python (Newville et al., 2014)). At each iteration,
the bocop solver is called to solve the lower level problem for a given θ,
using as initial condition the optimal steady-state (which depends on θ) for
the light intensity of pre-acclimation. We take 100 time steps, with a time
horizon large enough such that the trajectory moves away from the optimal
equilibrium after the last measurement (this final dynamics is not relevant
in our biological problem). For each variable, the square errors between the
measurements and the optimal trajectory are weighted by the inverse of the
square of the measurement mean. The computation time to solve the bi-level
optimization problem on a classical laptop was approximatively one minute.
Finally, we use in a second step a Markov Chain Monte Carlo (MCMC)
method to better assess parameter uncertainty, see Appendix B.

5.3. Fitting results

The estimated parameters with their confidence interval are given in Table
1. The optimal trajectory is shown with the experimental data in Fig. 5. The
fitted optimal trajectory represents well the dynamics of photoacclimation.
The photosynthetic rate falls sharply at t = 0 with the light down-shift, and
then slowly increases with the reallocation of resources to the photosynthetic
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sector. On the other hand, the macromolecule growth rate slowly decreases
after the light shift, until reaching the new steady-state. The good model
fit is the first hint that our approach is effective, and it should now be val-
idated with other experiments. The parameter confidence regions shown in
Appendix B indicate that kp and K - the two parameters defining the pho-
tosynthetic rate - are correlated. More experimental data would be necessary
to better estimate these parameters.
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Figure 5: Trajectory corresponding to the solution of the bi-level optimization problem
(18). The model (blue lines) fits the experimental data (red crosses) of the microalga
Dunaliella tertiolecta facing a light intensity down-shift from 700 µmol.m−2.s−1 to 70
µmol.m−2.s−1 at t = 0 (Sukenik et al., 1990).
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Table 1: Parameters (with their confidence intervals) estimated as the solution of the
bi-level optimization problem (18)

Parameter Definition Value Unit
kP Maximum photosynthetic rate 1.81 ± 0.34 d−1

kR Macromolecule synthesis rate constant 1.52 ± 0.14 d−1

K Half saturation constant for photosynthesis 62.1 ± 25.0 µmol.m−2.s−1

6. Optimal allocation under day/night cycles

6.1. Problem formulation

Given that microalgae have evolved under day-night cycles, one may as-
sume that they have an optimal allocation strategy to deal with these condi-
tions. In this context, we wish to determine with our coarse-grained model
the optimal trajectory under such a day/night cycle, by imposing that the
initial condition is equal to the final condition (the cycle can thus be repeated
day after day). This gives the following optimal periodic control problem:

max
u(·)∈U

J(u) :=

∫ T

0

vP (p(t), I(t)) dt, s.t. (c(0), p(0)) = (c(T ), p(T )), (19)

where (c(·), p(·)) is the unique solution of (2) for a given control u ∈ U ,
and T = 1 d. For the light pattern, we use a night period τ followed by a
sinusoidal signal:

I(t) :=

∣

∣

∣

∣

0 for 0 ≤ t ≤ τ,
Imax sin

2
(

t−τ
T−τ

π
)

for τ < t ≤ T.

Note that in Problem (19), the initial condition is unknown since a periodic
constraint on the state has been added. In line with Hernández Limón et al.
(2020), we use Imax = 1000 µmol.m−2.s−1 and τ = 0.46 d.

6.2. Numerical simulations reveal an anticipatory behavior

Using our fitted model, optimal allocation strategy under day/night cy-
cles is determined numerically using the direct method with bocop (as done
previously in Section 4). Results are presented in Fig. 6. The optimal tra-
jectory consists in three Bang arcs and the corresponding control u equals to
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0-1-0. Note that several simulations with different parameter values and light
signals (changing the maximum light intensity and the day length) have been
carried out, and the structure of the optimal trajectory remains the same.
Interestingly, the synthesis of the photosynthetic apparatus always begins a
few hours before dawn in our predictions. This behavior is actually observed
in several laboratory and field studies, see e.g., Zinser et al. (2009); John
et al. (2012); Hernández Limón et al. (2020). The gene expression pattern of
the photosynthetic sector measured in the latter study has been plotted in
Fig. 6 to show the consistency with our predictions. Microalgae show thus an
anticipation capacity - based a priori on their circadian clock (Mittag, 2001;
Suzuki and Johnson, 2001) - which allows them to deal with the day/night
cycle optimally according to our assumptions.

6.3. Mathematical insights on the day/night problem

Some explanation of the optimal trajectory structure (i.e., bang arcs
0-1-0) can be obtained using the Pontryagin Maximum Principle (PMP).
First, even though (2) is non-autonomous (because vP explicitly depend on
time), the Hamiltonian system (2)-(6) remains unchanged. Because of the
periodicity condition on the state, it is now supplemented with the periodic
condition λ(0) = λ(T ) on the adjoint state. It follows that the switching
function φ whose sign gives the value of an optimal control (excepting along
singular arcs) satisfies

φ(0) = φ(T ).

Hence, whenever φ(0) 6= 0, there is ε > 0 such that u ≡ 1 or u ≡ 0 over
t ∈ [0, ε] ∪ [T − ε, T ]. So, the PMP shows that an optimal control takes the
same value near t = 0 and t = T unless φ(0) 6= 0. We also infer that no
singular arc occurs over a time interval [τ−η, τ+η] because of the asymmetry
of light intensity I(·) defining vP . The fact that an optimal periodic control
has a “low” number of switching times is in line with some recent papers
about periodic optimal control problems such as Bayen et al. (2020) in which
the structure 0-1-0 is proved to be optimal.

A complete study of qualitative properties of (19) via the PMP should
deserve future work: in particular, the questions of existence and attractivity
of periodic solutions to (2) or the exclusion of singular arcs in the periodic
setting as in Bayen et al. (2020).
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Figure 6: Optimal trajectory obtained numerically by the direct method using the bocop
solver under day-night cycle. The control u (bottom figure, blue line, left axis), corre-
sponding to the allocation of macromolecule synthesis to the photosynthetic apparatus,
is switched on a few hours before dawn. This anticipatory behavior is in line with the
averaged normalized expression of genes involved in photosynthesis in Emiliania huxleyi
in the North Pacific Subtropical Gyre (Hernández Limón et al., 2020) (bottom figure, red
marks, right axis).

7. Discussion

7.1. From mathematical analysis to biological insights

A coarse-grained model was proposed to predict microalgae growth and
photoacclimation dynamics. Based on evolutionary principle, growth can be
represented by an optimization problem: intracellular resources should be
allocated in order to maximize microalgae growth over a time period. The
optimal control problem was first studied with the Pontryagin Maximum
Principle. Facing a light shift, we have shown that the optimal strategy of
photoacclimation is a turnpike: after a transient, the trajectory remains close
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to the optimal steady state. Numerical results were in line with our analysis,
confirming our development and the reliability of the numerical method.
Model parameters were then estimated by solving a bi-level optimization
problem. Finally, we have studied the problem of photoacclimation under
day-night cycles, mainly through numerical simulations.

From a biological point of view, the proposed model captures the trend
of steady-state photoacclimation, i.e., the photosynthetic apparatus content
decreases with light intensity. Additionally, the model fits well photoacclima-
tion dynamics when microalgae face a light down-shift. More surprising, the
model also represents - at least qualitatively - the anticipation behavior of mi-
croalgae under day-night cycle: the synthesis of the photosynthetic apparatus
starts a few hours before dawn, as observed experimentally in laboratory and
field studies (Zinser et al., 2009; John et al., 2012; Hernández Limón et al.,
2020).

7.2. Predicting anticipatory behavior

Several photoacclimation models have been proposed, where the alloca-
tion to the photosynthetic apparatus is either empiric (i.e., defined as a func-
tion of environmental conditions) (Geider et al., 1998; Garćıa-Camacho et al.,
2012; Bernard et al., 2015; Nikolaou et al., 2016; Straka and Rittmann, 2018)
or based on optimization principle (Shuter, 1979; Armstrong, 2006; Geider
et al., 2009; Jahn et al., 2018; Faizi and Steuer, 2019; Zavřel et al., 2019).
But, to our knowledge, only our approach allows to represent the anticipatory
behavior of algae.

More generally, the anticipation capacity of microorganisms have been
observed, e.g. in the bacteria Escherichia coli and the yeast Saccharomyces
cerevisiae (Mitchell et al., 2009). To represent anticipatory behavior with
optimization-based models, optimization over a time window is necessary
given that the biological response starts before the environmental signal. A
notable example of cellular anticipation was proposed by Waldherr et al.
(2015) who predicted a change of gene expression before the complete deple-
tion of a nutrient. On the other hand, anticipation is possible only in some
conditions, e.g., under periodic regime or if a signal announces a change of
environmental conditions, and only if the species have evolved in these con-
ditions. In consequence, optimization over a time period could not be used
in any cases.
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7.3. Fitting resource allocation models

On a methodological aspect, the originality of this work is to propose a
fitting procedure for dynamic resource allocation models, leading to a bi-level
optimization problem in which the lower level is an optimal control problem
and the upper one is a standard non-linear program.

A few studies have deal with this kind of problem, in particular to esti-
mate the objective function that a biological system optimizes (the so-called
inverse optimal control problem). This objective function is generally written
as a weighted sum of known functions, and one aims at estimating the weights
(leading to a parameter estimation problem). Such a problematic has been
encountered in the context of motion planning. For instance, Mombaur et al.
(2010) have identified the underlying optimality criteria of human locomo-
tion. The solution was obtained with two optimization algorithms, where the
upper level calls at each iteration the lower level. In Albrecht et al. (2012), a
bilevel problem was also formulated to tackle arm movement. It was solved
numerically by a discretization method and the use of optimality conditions
in non-linear programming.

Closer to our study, Tsiantis et al. (2018) have proposed a computational
approach to solve inverse optimal control problem in systems biology. As
a first step, the inputs and parameters (corresponding respectively to u(t)
and θ with our notation) are estimated by minimizing the error between
measurements and model outputs. The resulting parameters are then used
to compute the Pareto set of optimal control. Finally, the objective function
is estimated such that the optimal trajectory corresponds to the observed
dynamics. The major advantage of this approach is that there is no longer
a bi-level optimization problem, but identifiability issues are nevertheless to
be feared when estimating the input.

The numerical methods proposed here and in the aforementioned studies
work on relatively small models (with a limited number of variables), but new
developments will be required for bigger models (i.e., for metabolic models at
genome scale). Finding issues in a general setting to this kind of optimization
problems could also be investigated in future works.

Code availability

Codes for simulation with bocop (v.2.1.0) under constant light and day-
night cycle are available at https://github.com/fmairet/photoacclimation.
Code for parameter estimation will be made available upon request.
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Appendix A. Simulations with other kinetics rates

In this appendix, we investigate if our results are still valid with other
expressions for the kinetics rates. In particular, we have computed optimal
trajectories with bocop, as done in Section 4.4, with two modifications of the
model.

Appendix A.1. Hill’s function for the photosynthetic rate

In the main article, we considered an increasing concave function for the
photosynthetic rate. This encompasses the majority of models found in the
literature, but Hill’s expressions are sometimes used (e.g., in Grima et al.
(1994)). The photosynthetic rate becomes:

vP (p, I) = kP
(pI)n

Kn + (pI)n
.

In this case, our convexity hypothesis - used to check the optimality of the
singular arc (Legendre-Clebsch’s condition, see Section 4.2) - is not satisfied.
If light intensity is high enough, the optimal steady-state is such that p∗ is
in the concave part of the curve, so the turnpike strategy is optimal. On
the other hand, if light intensity is low, the optimal steady-state is such that
p∗ lies in the convex part of the curve. In consequence, Legendre-Clebsch’s
condition is not satisfied and the optimal trajectory is a concatenation of bang
arcs (no singular arc occurs). Numerical simulations with bocop show that
in this case, the optimal trajectory oscillates around the optimal steady-state
(see Fig. A.7 for a simulation with I =160 µmol.m−2.s−1, and the following
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parameter values: kP =1.6 d−1, kR =2.1 d−1, K =140 µmol.m−2.s−1, and
n =5). We thus obtain a different behavior, even if the oscillations remain
rather weak. It would therefore be interesting first of all to look more into
details at the relevance of using this kind of kinetic rate for photosynthesis,
and then possibly to deepen the question.
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Figure A.7: Optimal trajectory (solution of (P)) when considering a Hill function for the
photosynthetic rate. The black dashed lines correspond to the optimal steady-state.

Appendix A.2. Michaelis-Menten function for the macromolecule synthesis
rate

As a second variation of the model, we use Michaelis-Menten function for
both the photosynthetic rate and the macromolecule synthesis rate:

vP (p, I) = kP
pI

K + pI
, and vR(c, r) = kR

c

KR + c
r.

We have performed numerical simulations with various parameter sets. In
that case, the optimal strategy remains the same as in Section 4.4, i.e., the
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turnpike strategy. See Fig. A.8 for an example with I =60 µmol.m−2.s−1,
and the following parameter values: kP =1.6 d−1, kR =2.1 d−1, K =80
µmol.m−2.s−1, and KR =0.1. Thus, it seems that our results still hold for
more general expressions for the macromolecule synthesis rate.
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Figure A.8: Optimal trajectory (solution of (P)) when considering a Michaelis-Menten
function for the macromolecule synthesis rate. The black dashed lines correspond to the
optimal steady-state.

Appendix B. Evaluation of parameter uncertainty

We explore the parameter space around the optimal solution to get a bet-
ter insight on parameter uncertainty. To do so, we use the affine-invariant
ensemble sampler for MCMC emcee (Foreman-Mackey et al., 2013), imple-
mented in the lmfit package (Newville et al., 2014). Figure B.9 shows the
two dimensional projections of the posterior probability distributions of the
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parameters. It appears that the two parameters kp and K (which define the
photosynthetic rate) are correlated. Finally, we also randomly took 50 sam-
ples from the chain to illustrate the effect of parameter uncertainty on model
predictions. All the associated trajectories follow the trends of the data
(see Figure B.10). Note however that the model slightly underestimates the
photosynthetic apparatus sector just after the light down-shift.

Figure B.9: Pairwise posterior distribution of model parameters, obtained with a MCMC
algorithm.
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manifolds. volume 43 of Mathématiques & Applications (Berlin) [Mathe-
matics & Applications]. Springer-Verlag, Berlin.

Cesari, L., 1983. Optimization - Theory and Applications. Problems with
Ordinary Differential Equations. Springer-Verlag, Applications of Mathe-
matics, 17.

Cohen, D., Parnas, H., 1976. An optimal policy for the metabolism of storage
materials in unicellular algae. Journal of theoretical biology 56, 1–18.

De Mooij, T., Nejad, Z.R., van Buren, L., Wijffels, R.H., Janssen, M., 2017.
Effect of photoacclimation on microalgae mass culture productivity. Algal
research 22, 56–67.

Faizi, M., Steuer, R., 2019. Optimal proteome allocation strategies for pho-
totrophic growth in a light-limited chemostat. Microbial cell factories 18,
165.

Falkowski, P.G., Raven, J.A., 2007. Aquatic Photosynthesis. Princeton Uni-
versity Press, Princeton.

Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman, J., 2013. emcee: the
mcmc hammer. Publ. Astron. Soc. Pac. 125, 306.
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Havelková-Doušová, H., Prášil, O., Behrenfeld, M., 2004. Photoacclima-
tion of Dunaliella tertiolecta (chlorophyceae) under fluctuating irradiance.
Photosynthetica 42, 273–281.

Hernández Limón, M.D., Hennon, G.M., Harke, M.J., Frischkorn, K.R., Ha-
ley, S.T., Dyhrman, S.T., 2020. Transcriptional patterns of emiliania hux-
leyi in the north pacific subtropical gyre reveal the daily rhythms of its
metabolic potential. Environmental Microbiology 22, 381–396.

Jahn, M., Vialas, V., Karlsen, J., Maddalo, G., Edfors, F., Forsström, B.,
Uhlén, M., Käll, L., Hudson, E.P., 2018. Growth of cyanobacteria is con-
strained by the abundance of light and carbon assimilation proteins. Cell
reports 25, 478–486.

John, D.E., Lopez-Diaz, J.M., Cabrera, A., Santiago, N.A., Corredor, J.E.,
Bronk, D.A., Paul, J.H., 2012. A day in the life in the dynamic marine
environment: how nutrients shape diel patterns of phytoplankton photo-
synthesis and carbon fixation gene expression in the mississippi and orinoco
river plumes. Hydrobiologia 679, 155–173.

32



MacIntyre, H., Kana, T., Anning, T., Geider, R., 2002. Photoacclimation of
photosynthesis irradiance response curves and photosynthetic pigments in
microalgae and cyanobacteria. J.Phycol. 38, 17–38.

Mairet, F., Bayen, T., 2020. Parameter estimation for dynamic resource
allocation in microorganisms: A bi-level optimization problem, in: Pro-
ceedings of the 21st IFAC World Congress.

Mitchell, A., Romano, G.H., Groisman, B., Yona, A., Dekel, E., Kupiec, M.,
Dahan, O., Pilpel, Y., 2009. Adaptive prediction of environmental changes
by microorganisms. Nature 460, 220–224.

Mittag, M., 2001. Circadian rhythms in microalgae, in: International review
of cytology. Elsevier. volume 206, pp. 213–247.

Mombaur, K., Truong, A., Laumond, J.P., 2010. From human to humanoid
locomotionan inverse optimal control approach. Autonomous robots 28,
369–383.

Moser, H., 1958. The dynamics of bacterial populations maintained in the
chemostat. Carnegie Institution of Washington Publication .

Newville, M., Stensitzki, T., Allen, D.B., Ingargiola, A., 2014. LMFIT: Non-
Linear Least-Square Minimization and Curve-Fitting for Python. URL:
https://doi.org/10.5281/zenodo.11813, doi:10.5281/zenodo.11813.

Nikolaou, A., Hartmann, P., Sciandra, A., Chachuat, B., Bernard, O., 2016.
Dynamic coupling of photoacclimation and photoinhibition in a model of
microalgae growth. Journal of theoretical biology 390, 61–72.

Pavlov, M.Y., Ehrenberg, M., 2013. Optimal control of gene expression for
fast proteome adaptation to environmental change. Proceedings of the
National Academy of Sciences 110, 20527–20532.

Pontryagin, L., Boltyanskiy, V., Gamkrelidze, R., Mishchenko, E., 1964.
Mathematical theory of optimal processes. New York.

Reimers, A.M., Knoop, H., Bockmayr, A., Steuer, R., 2017. Cellular trade-
offs and optimal resource allocation during cyanobacterial diurnal growth.
PNAS 114, E6457–E6465.

33



Rudin, W., 1987. Real and complex analysis. Third ed., McGraw-Hill Book
Co., New York.

Shuter, B., 1979. A model of physiological adaptation in unicellular algae.
Journal of theoretical biology 78, 519–552.

Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A., 2006. Commercial
applications of microalgae. Journal of bioscience and bioengineering 101,
87–96.

Straka, L., Rittmann, B.E., 2018. Light-dependent kinetic model for mi-
croalgae experiencing photoacclimation, photodamage, and photodamage
repair. Algal research 31, 232–238.

Sukenik, A., Bennett, J., Mortain-Bertrand, A., Falkowski, P.G., 1990. Adap-
tation of the photosynthetic apparatus to irradiance in Dunaliella terti-
olecta: a kinetic study. Plant physiology 92, 891–898.

Sutherland, W.J., 2005. The best solution. Nature 435, 569–569.

Suzuki, L., Johnson, C.H., 2001. Algae know the time of day: circadian and
photoperiodic programs. Journal of Phycology 37, 933–942.

Talmy, D., Blackford, J., Hardman-Mountford, N.J., Dumbrell, A.J., Geider,
R.J., 2013. An optimality model of photoadaptation in contrasting aquatic
light regimes. Limnology and oceanography 58, 1802–1818.

Team Commands, Inria Saclay, 2017. Bocop: an open source toolbox for
optimal control. http://bocop.org.
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