Printed Dielectrophoretic Electrode‐Based Continuous Flow Microfluidic Systems for Particles 3D‐Trapping

Type Article
Date 2021-02
Language English
Author(s) Challier LylianORCID1, Lemarchand Justin2, Dreanno CatherineORCID1, Jauzein Cecile3, Mattana Giorgio2, Meriguet Guillaume4, Rotenberg Benjamin4, Noël VincentORCID2
Affiliation(s) 1 : IFREMER Centre de Brest Laboratoire Détection Capteurs & Mesures Plouzane F‐29280,, France
2 : Université de Paris Laboratoire ITODYS CNRS UMR 7086 Paris F‐75013 , France
3 : IFREMER , Centre de Brest Dyneco Pelagos Plouzane F‐29280 , France
4 : Sorbonne Université Physico‐Chimie des Electrolytes et Nanosystèmes Interfaciaux PHENIX CNRS UMR 8234 Paris F‐75005 ,France
Source Particle & Particle Systems Characterization (0934-0866) (Wiley), 2021-02 , Vol. 38 , N. 2 , P. 2000235 (11p.)
DOI 10.1002/ppsc.202000235
WOS© Times Cited 1
Keyword(s) dielectrophoretic transport, finite element modeling, inkjet-printing, microfluidics, plankton sorting

Inkjet‐printing is used to fabricate dielectrophoretic electrodes able to trap polystyrene (PS) microparticles as well as model planktonic cells. The possibility of rapid prototyping offered by inkjet‐printing allows the rational design of microchannels with tailored electric field distributions experienced by the suspended particles, which in turn provides a handle to drive them towards target regions. Specifically, this goal is achieved using two facing substrates constituting the bottom and the top walls of the channel, with a pair of interdigitated electrodes previously patterned by inkjet‐printing on each side. Influence of electrode polarization (magnitude and frequency of the input signal) is investigated both theoretically, by modeling the electric field distribution inside the channel, and experimentally using confocal fluorescence microscopy. The printed device is able to sort circulating PS particles as a function of their size, with diameters ranging from 0.5 to 5 µm, as well as to separate planktonic species according to their composition (Alexandrium minutum versus Prorocentrum micans). This work paves the way for the development of large‐area, microstructured dielectrophoretic electrodes able to separate the constituents of samples at flow rates up to 150 µL mn−1.

Full Text
File Pages Size Access
11 1 MB Access on demand
5 662 KB Access on demand
Author's final draft 38 8 MB Open access
Top of the page

How to cite 

Challier Lylian, Lemarchand Justin, Dreanno Catherine, Jauzein Cecile, Mattana Giorgio, Meriguet Guillaume, Rotenberg Benjamin, Noël Vincent (2021). Printed Dielectrophoretic Electrode‐Based Continuous Flow Microfluidic Systems for Particles 3D‐Trapping. Particle & Particle Systems Characterization, 38(2), 2000235 (11p.). Publisher's official version : , Open Access version :