FN Archimer Export Format PT J TI Printed Dielectrophoretic Electrode‐Based Continuous Flow Microfluidic Systems for Particles 3D‐Trapping BT AF Challier, Lylian Lemarchand, Justin DREANNO, Catherine Jauzein, Cecile Mattana, Giorgio Meriguet, Guillaume Rotenberg, Benjamin Noël, Vincent AS 1:1;2:2;3:1;4:3;5:2;6:4;7:4;8:2; FF 1:PDG-REM-RDT-LDCM;2:;3:PDG-REM-RDT-LDCM;4:PDG-ODE-DYNECO-PELAGOS;5:;6:;7:;8:; C1 IFREMER Centre de Brest Laboratoire Détection Capteurs & Mesures Plouzane F‐29280,, France Université de Paris Laboratoire ITODYS CNRS UMR 7086 Paris F‐75013 , France IFREMER , Centre de Brest Dyneco Pelagos Plouzane F‐29280 , France Sorbonne Université Physico‐Chimie des Electrolytes et Nanosystèmes Interfaciaux PHENIX CNRS UMR 8234 Paris F‐75005 ,France C2 IFREMER, FRANCE UNIV PARIS 07, FRANCE IFREMER, FRANCE UNIV SORBONNE, FRANCE SI BREST SE PDG-REM-RDT-LDCM PDG-ODE-DYNECO-PELAGOS IN WOS Ifremer UPR copubli-france copubli-univ-france IF 3.467 TC 5 UR https://archimer.ifremer.fr/doc/00676/78780/89495.pdf LA English DT Article DE ;dielectrophoretic transport;finite element modeling;inkjet-printing;microfluidics;plankton sorting AB Inkjet‐printing is used to fabricate dielectrophoretic electrodes able to trap polystyrene (PS) microparticles as well as model planktonic cells. The possibility of rapid prototyping offered by inkjet‐printing allows the rational design of microchannels with tailored electric field distributions experienced by the suspended particles, which in turn provides a handle to drive them towards target regions. Specifically, this goal is achieved using two facing substrates constituting the bottom and the top walls of the channel, with a pair of interdigitated electrodes previously patterned by inkjet‐printing on each side. Influence of electrode polarization (magnitude and frequency of the input signal) is investigated both theoretically, by modeling the electric field distribution inside the channel, and experimentally using confocal fluorescence microscopy. The printed device is able to sort circulating PS particles as a function of their size, with diameters ranging from 0.5 to 5 µm, as well as to separate planktonic species according to their composition (Alexandrium minutum versus Prorocentrum micans). This work paves the way for the development of large‐area, microstructured dielectrophoretic electrodes able to separate the constituents of samples at flow rates up to 150 µL mn−1. PY 2021 PD FEB SO Particle & Particle Systems Characterization SN 0934-0866 PU Wiley VL 38 IS 2 UT 000607596300001 DI 10.1002/ppsc.202000235 ID 78780 ER EF