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Abstract.

In this study, we present the first combined open and coastal ocean pCO2 mapped monthly climatology (Landschützer et al.

(2020), doi: 10.25921/qb25-f418, https://www.nodc.noaa.gov/ocads/oceans/MPI-ULB-SOM_FFN_clim.html) constructed from

observations collected between 1998 and 2015 extracted from the Surface Ocean CO2 Atlas (SOCAT) database. We combine

two neural network-based pCO2 products, one from the open ocean and the other from the coastal ocean, and investigate their5

consistency along their common overlap areas. While the difference between open and coastal ocean estimates along the over-

lap area increases with latitude, it remains close to 0 µatm globally. Stronger discrepancies, however, exist on the regional level

resulting in differences that exceed 10% of the climatological mean pCO2, or an order of magnitude larger than the uncertainty

from state of the art measurements. This also illustrates the potential of such analysis to inform the measurement community

about the locations where additional measurements are essential to better represent the aquatic continuum and improve our10

understanding of the carbon exchange at the air water interface. A regional analysis further shows that the seasonal carbon

dynamics at the coast-open interface are well represented in our climatology. While our combined product is only a first step

towards a true representation of both the open ocean and the coastal ocean air-sea CO2 flux in marine carbon budgets, we show

it is a feasible task and the present data product already constitutes a valuable tool to investigate and quantify the dynamics of

the air-sea CO2 exchange consistently for oceanic regions regardless of its distance to the coast.15

1 Introduction

Since the beginning of the industrial revolution, human activities such as fossils fuel energy combustion, cement production and

land used change have emitted a large quantity of carbon dioxide (CO2) in the atmosphere disturbing the global carbon cycle

and inducing global climate change (Friedlingstein et al., 2019). The ocean plays a fundamental role in understanding the fate20

of anthropogenic carbon dioxide since it acts as a CO2 sink and removes roughly 25 % of the anthropogenic CO2 emitted into

the atmosphere every year (Friedlingstein et al., 2019). However, uncertainties are still associated to this estimate, especially

in highly heterogeneous and/or poorly monitored regions such as the Arctic Ocean, the southeast Pacific and the coastal ocean

(Regnier et al., 2013; Laruelle et al., 2014). Reducing the uncertainty of current marine CO2 sink estimates is however essential
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to improve our understanding of the underlying processes controlling the contemporary and future distribution of anthropogenic

CO2 between atmosphere, land and ocean.

While current oceanic CO2 sink estimates largely rely on the output from hindcast simulations of global biogeochemistry

models (Sarmiento et al., 2010; Le Quéré et al., 2018) and atmospheric as well as oceanic inverse models (Mikaloff Fletcher

et al., 2006; Gruber et al., 2009; Wanninkhof et al., 2013), several observation-based estimates built on surface ocean CO25

measurements emerged in the past years (Landschützer et al., 2014; Rödenbeck et al., 2015; Zscheischler et al., 2017; Laruelle

et al., 2017). These estimates are, in part, the result of the community effort that led to the establishment of two large and still

growing collections of surface ocean CO2 measurements, namely the LDEO database (Takahashi et al., 2018) and the Surface

Ocean CO2 Atlas (SOCAT) database (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014, 2016).

The oceanic uptake of CO2 is directly proportional to the partial pressure difference of CO2 (∆pCO2) between the oceanic10

surface water and the atmosphere. Therefore, the increase in available observations from roughly 6 million in the first release of

the SOCAT database (SOCATv1.5) in 2011 (Pfeil et al., 2013) to a total of more than 23 million observations gathered in version

6 (SOCATv6) (Bakker et al., 2016), resulted in increasingly detailed and accurate observational-based studies investigating the

ocean carbon sink (Rödenbeck et al., 2015). While earlier work such as Takahashi et al. (2009) focused on the long term mean

CO2 uptake and its spatial and seasonal variations, the sustained increase in data density now allows investigating temporal15

variations on longer time scales (Rödenbeck et al., 2014; Majkut et al., 2014; Landschützer et al., 2014; Rödenbeck et al.,

2015; Jones et al., 2015; Landschützer et al., 2016), suggesting a variable ocean CO2 sink on interannual to decadal timescales

(Rödenbeck et al., 2015; Landschützer et al., 2015). These estimates, however, suffer from two main sources of uncertainty.

The first related to the kinematic transfer of CO2 across the air-sea interface (Wanninkhof and Trinanes, 2017; Roobaert et al.,

2018) and a second, less well quantified, source related to the interpolation of sparse surface ocean partial pressure of CO2 data20

(e.g. Rödenbeck et al., 2015; Landschützer et al., 2014).

Similar to the open ocean, coastal regions - defined here following the broad SOCAT boundary definition of 400km distance

from shore used in Laruelle et al. (2017) - are also recognized as a CO2 sink for the atmosphere (e.g. Laruelle et al., 2014)

but have long been constrained using scarce data of uneven spatial and temporal distribution (Thomas et al., 2004; Borges

et al., 2005; Cai et al., 2006; Chen and Borges, 2009; Laruelle et al., 2010; Cai, 2011; Chen et al., 2013; Dai et al., 2013).25

Therefore, because of the strong physical and biogeochemical heterogeneity of the coastal ocean, a proper representation of

the spatio-temporal patterns in CO2 fluxes could only be achieved in the best-monitored regions of the world (Laruelle et al.,

2014). More recently, the application of neuronal network-based interpolation methods similar to those applied for the open

ocean resulted in the first continuous global pCO2 climatology for the coastal ocean, which improved the estimation of coastal

carbon sink and its spatial variability (Laruelle et al., 2017; Roobaert et al., 2019). It is also only very recently that studies have30

performed a global-scale analysis of the seasonal variability of the air-water CO2 exchange (Roobaert et al., 2019).

As an additional challenge, many different boundaries have been used to delineate the frontier between coastal and open

ocean waters in the past (Walsh, 1988; Borges et al., 2005; Liu et al., 2010; Laruelle et al., 2010, 2013). The choice of

a specific delineation has nevertheless important implications for the quantification of the coastal CO2 sink as well as the

adjacent open ocean sink and their temporal trends (Laruelle et al., 2014, 2018). Including the contribution of the coastal ocean35
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in observation-based air-sea CO2 exchange estimates, i.e. the aim of this study, is not only important in order to improve the

quantification of the present-day global ocean sink which has so far been based on open ocean data only, but also to properly

analyse the trends and spatio-temporal variabilities of all ocean waters in a consistent manner. Several recent studies have

indeed suggested that, as a whole, the intensity of the CO2 sink per unit area could be stronger in coastal regions than in the

open ocean (Borges et al., 2005; Cai, 2011; Laruelle et al., 2010, 2014), whereas Roobaert et al. (2019) suggests that this5

difference stems from the uneven latitudinal distribution of surface areas between coastal and open ocean but that adjacent

open and coastal regions behave similarly.

This distinct behavior of the coastal ocean, with possibly a stronger present-day uptake and a fast-increasing air-sea pCO2

gradient on decadal timescales is not only relevant for today’s quantification of the ocean sink, but also for constraining the

anthropogenic perturbation of the marine CO2 sink. So far, the latter has only been estimated by assuming similar changes10

in open ocean and coastal seas CO2 flux densities since pre-industrial times (Wanninkhof et al., 2013; Regnier et al., 2013)

while other studies have proposed larger anthropogenic perturbations for the shallow parts of the ocean by mostly relying on

conceptual modeling approaches (e.g. Bauer et al., 2013). The need for a unified coastal-open ocean pCO2 climatology is

further reinforced by the recent upward revision of the pre-industrial global ocean CO2 outgassing fuelled by the river carbon

loop (Kwon et al., 2014; Resplandy et al., 2018). As a significant fraction of this CO2 outgassing derived from terrestrial carbon15

inputs likely takes place near the coast or across the coastal-open ocean transition, it is important to establish a global ocean

pCO2 climatology that can be used as benchmark for increasingly refined models reconstructing the historical evolution of the

marine carbon sink.

As a first step towards this goal, we combine two state-of-the-art sea surface observational pCO2 products for the open

ocean and the coastal regions to create a common global pCO2 climatology that covers the entirety of the global ocean to better20

represent the spatio-temporal patterns in the overall marine carbon sink. The combined data product is the first continuous

coastal-open ocean pCO2 climatology constructed with a near-uniformly treated dataset. It also includes the Arctic Ocean,

which was not considered in previous open ocean global analyses (Landschützer et al., 2014; Landschützer et al., 2016) and

was only partly included in the coastal pCO2 climatology of Laruelle et al. (2017). In spite of its relatively limited surface area

and a significant proportion of seasonal sea ice coverage which prevents most of the gas exchange (Lovely et al., 2015), the25

Arctic Ocean and its extensive continental shelves is a major contributor of the global coastal CO2 sink (Yasunaka et al., 2016),

displaying some of the most intense air-water CO2 exchange rate per unit area (Roobaert et al., 2019). The incorporation of

these high-latitude regions is thus essential to avoid a bias when analyzing the role of the coastal zone on the global ocean CO2

sink.

Here, using the new global ocean pCO2 climatology as well as the individual coastal and open ocean data products, we30

investigate how well the coastal-open ocean continuum is reconstructed through statistical error analysis. In particular, our

goal is to address the following research questions: 1) to what extent reconstructed pCO2 estimates from both products agree

with one another in regions where they overlap; 2) to what extent eventual mismatches are related to data sparsity, both for the

temporal pCO2 mean and the seasonal climatology.
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2 Methods

2.1 Open ocean and coastal datasets

Our analysis is based on two recently published sea surface pCO2 data products. The first one, updated from Landschützer

et al. (2016), covering broadly the open ocean at a distance of 1◦ off the coast and, the second dataset, by Laruelle et al. (2017),

covering the coastal domain plus the adjacent open ocean up until 400km away from the shoreline for a total surface area of5

70x106 km2. Both datasets are based on the same neural network interpolation method, i.e. the SOM-FFN (Self Organizing

Map - Feed Forward Neural Network) method (Landschützer et al., 2013). While the individual datasets (from here onward

"NNopen" for the open ocean dataset and "NNcoast" for the coastal ocean dataset) have been extensively described and validated

in their individual publications Landschützer et al. (2014); Landschützer et al. (2016); Laruelle et al. (2017), we present here a

short summary of each product including their most recent updates and the procedure used to merge both datasets.10

The SOM-FFN method consists of a 2-steps interpolation approach. First, a marine region (i.e. either open ocean or coastal

ocean) is divided into biogeochemical provinces based on similarities within selected environmental CO2 driver data. Secondly,

the non-linear relationship between a second set of driver data and available sea surface pCO2 data from the SOCAT database

is established and can then be used to fill gaps where no observations exist (see Landschützer et al., 2013). Both open and

coastal ocean applications rely on satellite and reanalysis data, but different sets of environmental driver variables are used. For15

the open ocean analysis, sea surface temperature, salinity, mixed layer depth, chlorophyll-a and atmospheric CO2 are used as

proxy variables.

While leaving NNcoast unchanged to its original publication (Laruelle et al., 2017), we here provide two updates to NNopen

compared to its previous publications (see Landschützer et al., 2013, 2014). Firstly, we replaced the mixed layer depth proxy

of the NNopen from de Boyer Montegut et al. (2004) to the Argo based MIMOC product (Schmidtko et al., 2013) as it allows20

us to expand our analysis region, creating a maximum overlap area between NNopen with NNcoast, while the error statistics of

the method remain nearly unchanged. Secondly, for completeness, we also include the Arctic Ocean in NNopen, allowing the

comparison between products to be extended to the high latitudes. In order to achieve this, the Arctic Ocean was assigned its

own stand-alone oceanic biome in the SOM procedure (see Landschützer et al., 2013). Previous global-scale studies avoided

the Arctic Ocean (Takahashi et al., 2009; Landschützer et al., 2014), however more recent studies by Yasunaka et al. (2016)25

illustrate that the increase in measurements makes a reconstruction feasible. Due to its uniqueness in its seawater properties,

we find that assigning the Arctic Ocean a stand-alone biome, which is not varying in time, provides the best reconstruction.

This way, the Arctic pCO2 is only determined by Arctic Ocean measurements (starting at 79N in the Atlantic Ocean) while

Arctic Ocean measurements are not influencing other biomes. Hence, the remainder of the global ocean remains unchanged by

this addition and the pCO2 product is thus considered the same as the one presented in (Landschützer et al., 2016).30

The NNopen and NNcoast are all available at the same monthly temporal resolution but are applied at different spatial

resolutions. While NNopen uses a 1◦x1◦ resolution, the coastal pCO2 data product is constructed at a higher 0.25◦x0.25◦

resolution to better capture the spatial heterogeneity of the coastal zone. Thus, in order to combine and compare the products

at the same spatial resolution, we divided each 1◦x1◦ grid cell of the open ocean into 16 equal 0.25◦x0.25◦ bins . NNcoast
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Figure 1. Gridded (a) 1◦ x1◦ open ocean and (b) 0.25◦ x0.25◦ coastal ocean pCO2 data values extracted from the SOCATv5 database from

1998 through 2015. Each value on the maps represents the mean of all values available within each grid cell for the period considered.

combines observations from 1998 through 2015 using SOCATv4, whereas NNopen uses SOCATv5 data from 1982 through

2016. In this study, we constructed a climatological mean for the common period covered by both products (1998-2015).

Despite the use of different versions of the SOCAT database used to generate the two pCO2 products (SOCATv4 vs SOCATv5)

we expect little influence on our results, since most of the new data introduced into SOCATv5 compared to SOCATv4 were

added in the later years and, in particular, 2016 which is excluded from our analysis. Figure 1 illustrates the temporal mean of5

all available pCO2 observations extracted from the SOCATv5 dataset for the 1998-2015 period.

Figure 2 shows the climatological mean pCO2 for both NNopen (Landschützer et al., 2016) and NNcoast (Laruelle et al.,

2017). The data products rely on sea masks that lead to a common overlap area at the coastal-open ocean transition of roughly

5
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Figure 2. climatological mean of the (a) 1◦ x1◦ open ocean pCO2 product by Landschützer et al. (2016) and (b) 0.25◦ x 0.25◦ the coastal

ocean pCO2 product by Laruelle et al. (2017) for the 1998-2015 period

42x106 km2, reflecting the lack of a commonly recognized definition of the boundary between both environments. While the

landward limit of the NNopen is located on average at around 1◦ (or roughly 100km) off shore, NNcoast extends from the

coastline to either 400km offshore or the 1000 m isobath, whichever is encountered first. The bathymetry used follows the

SOCAT coastal definition (Pfeil et al., 2013) and excludes estuaries and inner water bodies (Laruelle et al., 2013, 2017). This

overlap area is the subject of our error analysis described below.5

6
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Figure 3. Schematic illustration of the merging steps. Step 1 shows an illustrative example of one 30◦x30◦ box that includes both coastal

and open ocean SOCAT observations. in Step 2 empty grid cells within the 30◦x30◦ box are filled with coastal ocean as well as open ocean

datapoints and in Step 3 open ocean and coastal ocean datapoints are combined where both exist.

2.2 Merging algorithm

The combination of the two data products takes place in three steps which are illustrated in Figure 3. In a first step, we divide

the globe into a raster of coarse 30◦x30◦ boxes starting at 90◦N and 180◦W. The large box size ensures that, even in remote

regions, observations from both open ocean and coastal ocean are represented in the overlap area. We then investigate the

overlap area for each raster box individually. In a second step, within each 30◦x30◦ box, the pixels that are only covered by5

either NNopen or NNcoast are assigned their respective pCO2 value. In a third step, all pixels where open ocean and coastal

ocean pCO2 products overlap, that is, all 0.25◦x0.25◦ pixels with co-located pCO2 values in the open ocean and coastal ocean

datasets, are identified. To assign a pCO2 value in this overlap area, we weight the open and coastal pCO2 estimates by their

standard error relative to the SOCATv5 open and SOCATv5 coastal ocean datasets, respectively. We calculate the standard

error at the scale of each 30◦x30◦ raster, as at this larger scale regions enough observations are available to provide an error10

statistic. To implement this scheme, we first calculate the standard error on each 30◦x30◦ box as:

σi =
RMSEi√

Ni

(1)

where RMSE is the root mean square error of the open and coastal datasets with respect to the SOCATv5 gridded observa-

tions, N is the number of available gridded data from SOCATv5 available in a given 30◦x30◦ raster box and the subscript i

refers to either NNopen or NNcoast, respectively. Since we have simply divided the open ocean from a 1◦x1◦ grid into 16 equal15

0.25◦x0.25◦ bins, we use an effective number of Neff =N/16 for the open ocean. We do not account for autocorrelation in our

calculations since we are only interested in the difference between the standard errors and assume autocorrelation lengths of

similar magnitude between the SOCATv5 gridded datasets located in the coastal and open ocean domains, respectively. Next

we calculate the total error for each 30◦x30◦ degree raster region r as:

7
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σr = σr,o +σr,c (2)

and scale, for each grid-cell in the overlap area, the weight given to the open ocean and coastal ocean local pCO2 value by

the standard error of each raster region:

pCO2,overlap = (1− σr,o

σr
) · pCO2,o + (1− σr,c

σr
) · pCO2,c (3)

To generate the final merged product we perform an additional smoothing using a 8x8 grid point running mean filter (roughly5

200km by 200km at the equator).

3 Results and discussion

3.1 Large scale pCO2 patterns along the coastal-open ocean continuum

The long term mean pCO2 field at 0.25◦ resolution for NNopen and NNcoast is shown in Figure 4. In most oceanic regions,

the transition from open to coastal ocean occurs without steep gradients, particularly in the subtropics (∼ 20◦N-50◦N) of10

the northern hemisphere. However, exceptions exist in the tropics like the Peruvian upwelling system, the Namibian/Angolan

coast in the South Atlantic and off Somalia and the Arabian Peninsula. Moreover, abrupt spatial gradients in pCO2 have been

observed in large river plumes such as that of the Amazon (Ibanhez et al., 2015) or on continental shelves influenced by large

rivers. The identification of such gradients, however, results only from a first order visual inspection between the two products.

In what follows, we perform a quantitative analysis of the merging procedure and of the resulting pCO2 fields in the overlap15

area.

Figure 5 reports the absolute pCO2 difference in % between NNcoast and NNopen along the common overlap area relative to

the mean partial pressure of the merged climatology. Figure 5 shows a clear latitudinal pattern with the lowest difference in the

low and subtropical latitudes and the largest differences in the high latitudes, especially in the northern hemisphere. We find

in particular, that discrepancies are large in the newly added Arctic Ocean, but also in other seasonally ice-covered areas that20

have been previously described in NNopen and NNcoast publications (e.g. the Labrador Sea). One significant contributer to this

difference might be that NNcoast uses information about seaice in reconstructing the surface ocean pCO2. Acknowledging this

discrepancy in seasonally ice-covered regions, we further focus our error analysis and products comparison on ice-free areas,

based on the sea-ice product of Rayner et al. (2003). There are some exceptions to this general latitudinal trend consistent with

our first qualitative inspection, such as along the Pacific coastline of South America, the African coast in the South Atlantic25

and the Arabian Sea, i.e. the regions with steep gradients already identified above. Furthermore, a gradient of decreasing pCO2

from the coast to the open ocean has been reported over the continental shelves of the Eastern US and Brazil (Laruelle et al.,

2015; Arruda et al., 2015) and may exist in other regions as a consequence of the influence of rivers oversaturated in CO2

8

https://doi.org/10.5194/essd-2020-90

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 6 May 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 4. (a) climatological mean pCO2 of the merged product presented in this study. Panels (b) and (c) highlight the polar regions. Black

Boxes in (a) illustrate regions that are further investigated in the regional analysis. Shaded areas in (b) and (c) delineate the maximum sea ice

extend.
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Figure 5. pCO2 mismatch between NNcoast and NNopen in the overlap area relative to the mean CO2 partial pressure of the merged product.

Blue colors indicate a mismatch below 5%, whereas red colors indicate a mismatch of more than 5%.

combined with a limited estuarine filter (Laruelle et al., 2015). It is thus possible that the pCO2 predicted by the coastal SOM-

FFN are slightly skewed towards higher values in some regions because of presence of overall higher pCO2 observations in the

calibration data pool. While there is no clear basin-wide bias structure, systematic differences can be found regionally such as

in the southeast Pacific Ocean and the Southern Ocean (south of 35◦S). Overall, the largest relative differences are located in

the overlap areas of the Arctic Ocean.5

In spite of clear regional discrepancies, the mean difference, that is to say the bias, between the two estimates in the overlap

area remains close to 0 µatm when integrated globally (table 1), whether or not the comparison is limited to the locations

where observations exist (table 1 columns 1-3). Furthermore, the mismatch between the two products is in the range of the

mismatch between the individual products and the available observations in SOCATv5. This result is a consequence of the

neural network-based interpolation applied here at the global scale. In particular, the SOM-FFN is designed to minimize the10

mean squared error between available observations and the network output over the entire domain of application.

The global RMSE between NNopen and NNcoast as well as the SOCAT observations within the overlap area is in the range

of previously reported global values by Landschützer et al. (2016) and Laruelle et al. (2017). In general, the spread between

open ocean and continental coastal pCO2 varies more than the spread between coastal estimates and SOCAT or between

open estimates and SOCAT, possibly indicating that the SOM-FFN method is having difficulties generalizing the pCO2 in the15

coastal-open ocean continuum.

10
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Table 1. Mean error analysis (bias and RMSE) within the overlap area between NNcoast and NNopen and the observations from the SOCATv5

dataset . The comparison is performed for the total overlap area, the area fraction where no observations exist and the area covered by

observations. The bias and RMSE between the pCO2 map products and the SOCATv5 open and coastal datasets are also reported.

Coastal-open Coastal-open Coastal-open Open-SOCAT Coastal-SOCAT

total no obs. colocated to obs.

Bias [µatm] 0.6 0.6 0.6 0.7 1.5

RMSE [µatm] 36.4 36.9 20.0 18.3 26.8

3.2 Regional analyses of pCO2 field

A more detailed analysis is performed in the overlap of several regions selected to encompass a wide variety of conditions.

These regions, indicated in Figure 4, include three areas characterized by strong upwelling and offshore transport (Peruvian

upwelling system, Canary upwelling system, US west coast) but contrasted data coverage, two data rich regions (Sea of Japan,

US east coast), one region where seasonal data are scarce (West Coast of Australia), and a region characterized by strong river5

outflow (Amazon river plume).

In order to further investigate the role of existing observations in upwelling regions we first focus on the Canary upwelling

system and the Peruvian upwelling system. These two regions are part of the Eastern Boundary Upwelling Systems and subject

to many ecosystem stressors, such as ocean acidification or deoxygenation (Gruber, 2011). Therefore, monitoring the full

aquatic continuum is essential in these regions. Both are characterized by strong upwelling and significant offshore transport of10

carbon rich water from depth (see e.g. Lovecchio et al., 2018; Franco et al., 2018) resulting in elevated pCO2 levels exceeding

atmospheric levels at the sea surface. Such values are consistent with observations in the Canary upwelling system (Figure 6)

extracted from either the open ocean SOCAT dataset (Bakker et al. (2016), Figure 6b) or the coastal SOCAT dataset (Bakker

et al. (2016)Figure 6c) and, consequently, the merged pCO2 product (Figure 6a). Furthermore, the Canary upwelling system is

well covered by both open ocean and coastal ocean observations. As a consequence - despite a few areas with larger differences15

- the overall mismatch between the coastal ocean and NNopen (figure 6d) is in the range of their relative mismatch towards the

observations (see figure 6e-f) and generally within 10µatm.

In contrast to the Canary upwelling system, the Peruvian upwelling system shows a steep pCO2 gradient between the off-

shore and near shore regions (Figure 7a), particularly just south of the equator. A closer inspection of the available observations

(Figure 7b and c) reveals that, particularly in the near-shore domain at the equator, several of the few available observations20

of the sea surface pCO2 indicate low partial pressures resulting in a low reconstructed coastal pCO2, as already identified by

Laruelle et al. (2017). The mismatch that results from the upscaling of the low pCO2 data in the coastal domain is further

reflected in the difference between the coastal and open ocean pCO2 fields in the overlap area (figure 7 d). The mismatch

between the open ocean and NNcoast exceeds 30µatm and is larger than the difference between the individual products and the

observations (figures 7 e-f), suggesting that the disagreement between the open ocean and NNcoast in the overlap area stems25

from their data treatment. The fewer existing coastal observations of low pCO2 are extrapolated in space, spreading a potential
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Figure 6. Mismatch analysis along the Canary upwelling region from 1998 through 2015 period. The climatological mean pCO2 is reported

for (a) the merged product, (b) all available SOCATv5 data for the open ocean, and (c) all coastal SOCATv5 data (as illustrated in Figure 1

for the global ocean). The pCO2 mismatch is illustrated in (d) as the difference between NNcoast and NNopen. Panel (e) reports the mismatch

between the NNopen and the SOCATv5 open ocean dataset along the overlap area while panel (f) reports the mismatch between the coastal

product and the SOCATv5 coastal dataset along the overlap area.
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Figure 7. Like Figure 6 but for the Peruvian upwelling system

mismatch over a larger area. Likewise, the near-shore domain in the NNopen is influenced by the high CO2 partial pressures

off-shore. This data sparsity and spatial heterogeneity is a further challenge for model evaluation Franco et al. (2018).

No steep pCO2 gradient can be identified along the west coast of Australia in the merged product (Figure 8). The highest

CO2 partial pressures are found near shore along the Leeuwin current (Smith et al., 1991) and the lowest observed pCO2 can be

found along the West Australian current. The area is spatially well covered both in the open and coastal ocean SOCAT datasets5

(Figure 8 b and c) and therefore the overall difference towards observed values remains among the smallest of all investigated

regions. This is remarkable given the lack of seasonal observations, which will be discussed in the subsequent section. NNopen

and NNcoast agree with each other spatially within 15 µatm (figure 8d), which is in the range of the mismatch between the

individual products and the respective SOCAT observations (figures 8 e-f). Both products tend to overestimate the low pCO2

towards the South of the domain. This is reflected in the positive mismatch towards the SOCAT observations (Figure 8 e and10
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Figure 8. Like Figure 6 but for the Australian west coast

f) in the common overlap area where, the difference between the neural network estimates and the raw data exceeds 15 µatm

for both products.

Observations in the Sea of Japan and adjacent Pacific Ocean suggest large variability in the pCO2 with the lowest observed

values just north of the Korean peninsula and the highest observed pCO2 in the Yellow Sea (figures 9 b-c). Furthermore,

low pCO2 is also observed south of the island of Hokkaido. These large spatial variations in the pCO2 are also visible in5

the merged pCO2 product (figure 9a). A notable exception is the Korean Straight, where observations suggest a lower pCO2

than reconstructed. The strong variability in the observed pCO2 reflects the complex carbon dynamics in the Sea of Japan
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(Chen et al., 1995; Park et al., 2006), which is also reflected in the larger mismatch between products and towards the SOCAT

observations (figures 9 d-f). A better agreement between the neural network reconstructions and observations is found in the

Pacific Ocean east of the Japanese islands, where the merged estimate also reveal a better agreement between NNopen and

NNcoast (Figure 9 d) and low biases in the range of 5 µatm towards SOCAT observations (Figure 9 e and f).

Some of the best monitored regions spanning both coastal and near-shore open ocean can be found along the US coast5

(Fennel et al., 2008; Laruelle et al., 2015; Fennel et al., 2019). Indeed all 1x1◦ open ocean and almost all 0.25◦x0.25◦ coastal

pixels are filled with raw observations off the eastern US coastline. While the mean of all observed pCO2 values from SOCAT

(Figure 10b and c) suggests substantial regional variability, the merged estimate (Figure 10a) is, as a result of the neural

network interpolation algorithm, substantially smoother. In particular, the lower latitudes (25-35◦N, Figure 10e and f) are

well reconstructed by the neural network algorithms in both open and coastal ocean domains. Larger discrepancies however10

exist in the higher latitudes (35-45◦N, Figure 10e and f). Landschützer et al. (2014) attributed this mismatch to the complex

biogeochemical dynamics of the Gulf Stream region, where the pCO2 is overestimated by both the open and coastal estimates.

The smooth transition between coastal and open ocean in Figure 10a indeed suggests that the intensively surveyed US east

coast aquatic continuum can be well reconstructed by combining the open ocean and coastal ocean pCO2 datasets.

Similarly well monitored to the US east coast is the US west coast upwelling system, not the least because its variability is15

tightly linked to El Nino Southern Oscillation (see e.g. Lynn and Bograd, 2002; Frischknecht et al., 2015). Here, we find an

overall good agreement between NNcoast and NNopen. The agreement in the overlap area of the merged product (Figures 11d)

is among the best reported globally. Interestingly, near shore, the merged estimate (Figure 11a) reveals a lower mean pCO2

than suggested from both the open ocean and coastal ocean SOCAT datasets (figure 11 b and c). The small error compared

to the SOCAT observations suggests that this is not the result of the 2 products being in disagreement but might relate to the20

climatological nature of the merged product, which does not reflect the variable upwelling as a result of interannual variability

linked to ENSO events.

Finally, we investigate the spatial structure of the reconstructed pCO2 from a region typically dominated by the freshwater

outflow of a large river mouth, i.e. the Amazon outflow in the tropical Atlantic Ocean (Figure 12). Studies linking circulation

with the local CO2 dynamics are sparse (Ibanhez et al., 2015; Lefevre et al., 2013). Very few observations exist, particularly25

in the near-shore region (Figure 12b-c). Nevertheless, studies suggest that the Amazon river outflow becomes a significant

CO2 sink when it mixes with ocean waters (Lefevre et al., 2010). The strong variance in observed pCO2 (Bakker et al., 2016)

provides a challenge for any algorithm to reconstruct the full pCO2 field in such region. Nevertheless, both coastal and oceanic

data products are in good agreement (Figure 12d) with the exception of the area under direct influence of Amazon River

outflow. This difference potentially stems from the NNopen being unable to associate the pCO2 variability observed in this area30

to the strong salinity gradients, which is better represented in the coastal ocean pCO2 product. Both products show differences

of similar magnitude when compared to the SOCAT observations (Figure 12e-f) and similar error structures as both products

overestimate the pCO2 in the northern and underestimate the pCO2 in the southern sections of the overlap area.

While global errors between the data products and observations remain low (see table 1), figures 6-12 show that, at the re-

gional scale, larger differences emerge. We therefore expend our standard error statistics as presented in table 2 for the selected35
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Figure 9. Like Figure 6 but for the Sea of Japan
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Figure 10. Like Figure 6 but for the US east coast
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Figure 11. Like Figure 6 but for the US west coast
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Figure 12. Like Figure 6 but for the Amazon outflow region in the tropical Atlantic Ocean
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Table 2. Mean error analysis (bias and RMSE) within the overlap area between NNopen and NNcoast and the observations from the SOCATv5

dataset (Bakker et al., 2016) for 7 oceanic regions. The comparison is performed for the total overlap area, the area fraction where no

observations exist and the area covered by observations. The biases and RMSE between pCO2 products and SOCATv5 datasets are also

reported for the open ocean and coastal ocean.

Region Coastal-open Coastal-open Coastal-open Open-SOCAT Coastal-SOCAT

total no obs. colocated to obs.

bias (RMSE) [µatm] bias (RMSE) [µatm] bias (RMSE) [µatm] bias (RMSE) [µatm] bias (RMSE) [µatm]

Canary upwelling 3.6 (20.3) 3.8 (20.5) -1.0 (16.3) -0.6 (16.3) -1.3 (24.6)

system (5-35◦N)

Peru upwelling -34.3 (80.6) -34.3 (80.7) -14.8 (42.0) 2.2 (23.0) -12.9 (49.0)

system (0-30◦S)

Australia west -3.4 (25.2) -3.4 (25.3) -7.6 (16.8) 8.5 (17.4) 4.1 (16.5)

coast (20-35◦S)

Sea of Japan -3.5 (34.5 ) -4.2 (35.8) 2.4 (18.6) 2.0 ( 16.5) 4.5 ( 25.3)

(30-50◦N)

US east 1.7 (26.0) 2.4 (26.6) -3.8 (21.1) -0.1 (17.4) -3.5 (27.9)

coast (25-45◦N)

US west -7.5 (20.6) -7.6 (20.7 -6.5 (19.6) 0.1 (13.7) -7.0 (27.5)

coast (25-45◦N)

Amazon outflow -5.5 (29.0) -5.5 (29.0) -0.5 (22.3) 11.2 (37.9) 14.8 (59.0)

(5◦S-15◦N)

regions. Overall, we find at the regional level that the inter-product mismatch, represented by the bias, is substantially larger

than in the global analysis but does not exceed ∼8µatm with one prominent exception: the Peruvian upwelling system where

the mismatch reaches 14.8 µatm. Here, the substantial disagreement between the two products results from the underestimation

of the coastal observations in the overlap domain by the coastal ocean pCO2 product already shown by Laruelle et al. (2017).

We find that the bias between NNopen and NNcoast in the overlap area are larger where they are not co-located to observations5

(Table 2). The error spread between NNopen and NNcoast, represented by the RMSE, is likewise larger in areas where fewer

observations exist (contrast column 1 and 2 in Table 2). Exceptions include the US east Coast and the West coast of Australia

possibly linked to the larger mismatch of the individual products towards the respective SOCAT observations at these locations.

Results from both products in the Amazon outflow region, in the US east coast for NNcoast and in the west coast of Australia for

NNopen show a larger bias towards the SOCAT observations than the respective inter-model bias, illustrating that both methods10

generalize well. This further suggests that the estimates are locally constrained by information outside the investigated domain,

which is possible considering the spatial distributions of the biogeochemical provinces generated by the SOM.
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3.3 Seasonality

A further analysis in the selected regions aims to investigate the seasonal differences in pCO2 between the original data

products, the merged product, and observations (Figure 13). In particular, we investigate the extent to which the mean biases

reported above can be explained by seasonal differences in pCO2 among the different products. To this end, we average all

months from 1998 through 2015 to create a seasonal climatology from our pCO2 products, without correction to a nominal5

reference year. We repeat this procedure for the SOCAT datasets, likewise without any corrections but being aware that this

could lead to a sampling bias in the observed climatology. This approach is justified because we lack knowledge about the short-

term variability in the observed carbon cycle and it is thus unclear on how such a correction would improve the representation

of the observed pCO2 field.

In spite of the lack of seasonal sampling bias corrections, our analysis displays, for most regions, a close correspondence10

within a few µatm between open ocean and coastal ocean pCO2 data from SOCAT within the overlap area (blues and yellow

bars in Figure 13) with deviations mostly arising in the Peruvian upwelling system and the Amazon outflow regions where

monthly differences can exceed 10 µatm. The good correspondence is expected to some degree because both datasets share a

large fraction of the data. The analysis shows that the seasonality of the neural network-based on NNopen and NNcoast satis-

factorily reproduce the seasonal fluctuations obtained directly from the raw data, highlighting that the reconstructed seasonal15

cycle is well constrained by the existing observations. Monthly deviations between the products largely stay within 10 µatm.

An exception is the Sea of Japan in boreal winter, where NNopen overestimates the surface ocean pCO2 values recorded in the

SOCAT data. All but three of the selected regions have full seasonal data coverage. The three regions without full coverage

are the West coast of Australia, the Amazon outflow region and the Peruvian upwelling system. Despite the lack of seasonal

observations along the West coast of Australia, both products agree well with regards to the seasonal cycle and differences stay20

within of 8-10µatm between the different products. Likewise, the otherwise good agreement between coastal ocean and open

ocean estimate breaks down in the boreal summer in the Amazon outflow region, despite the lack of strong seasonality in the

tropical latitudes.

The largest mismatch between data products and observations exist along the Peruvian upwelling system, where monthly

differences between open ocean and coastal ocean estimates exceed 40µatm. Both estimates however show similar seasonal25

variability. The seasonal analysis further reveals that from all investigated regions, the Peruvian upwelling system shows the

largest monthly differences between open ocean and coastal ocean SOCAT observations, with e.g. mean differences in March

exceeding 30µatm between the open ocean and coastal ocean SOCAT datasets (Bakker et al., 2016). Furthermore, the largest

observed partial pressures in NNopen appear in August where no data are available in the coastal ocean SOCAT dataset,

highlighting that NNopen draws information from observations further away from shore during this month.30

4 Data availability

The merged climatology (Landschützer et al. (2020), doi: 10.25921/qb25-f418) is available from NCEI OCADS and can be ac-

cesed via: https://www.nodc.noaa.gov/ocads/oceans/MPI-ULB-SOM_FFN_clim.html. NNopen is available vie NCEI OCADS
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and is accessible online https://www.nodc.noaa.gov/ocads/oceans/SPCO2_1982_present_ETH_SOM_FFN.html. NNcoast de-

scription and dataset can be downloaded from the following url: https://www.biogeosciences.net/14/4545/2017/

5 Conclusions

In this analysis, we combined two recently published sea surface pCO2 products, covering the open ocean and the coastal

domain. While the spatial coverage of NNopen includes all surface waters located further than 1◦ off the coast, the spatial5

coverage of the NNcoast includes surface waters until 400km off the coast, leading to a roughly 300km wide overlap domain

around the land surface. The common overlap area was used to compare both reconstructed pCO2 estimates at regional to

global scale and whether the observed agreement/disagreement is linked to data availability.

Our results show that, for most of the global ocean and particularly the subtropical latitudes in the northern hemisphere,

NNopen and NNcoast agree well within the overlap domain. However, stronger differences exist in other parts of the world,10

particularly in the Peruvian upwelling system, the Arctic and Antarctic, the African coastline in the South Atlantic and the

Arabian Sea, where fewer observations exist. In other regions without complete seasonal data coverage such as the west coast

of Australia, however, both products compare well. We therefore conclude that the lack of data coverage in combination

with biogeochemical complexity triggered by upwelling, river influx or seasonal ice coverage contribute both to the mismatch.

Closer inspection reveals that for most of the overlap regions, the difference between the open ocean and coastal ocean estimates15

falls within the range of the difference between NNopen and NNcoast and the respective SOCAT dataset from which they were

created. Therefore, the combined pCO2 climatology is not only a step forward in including the full oceanic domain with all

its complexity into carbon budget analyses, but also help identify areas where additional continuous observations are critically

needed to close current knowledge gaps.

Another way forward to further reduce the bias between the coastal and open ocean estimates would be to reconsider the20

cut-off definition between the two domains. Data sparse and often strongly variable regions such as the Peruvian upwelling

system are very sensitive to the data selected to generate the pCO2 fields. The proposed overlap analysis here and particularly

the RMSE analysis, further serves as a benchmark on how well we understand the coastal-to-open ocean continuum and its

spatial variability and where we still lack essential measurements to close the gap between existing estimates. A next step

should include the reduction of the mismatch between coastal and open ocean estimates in order to combine the two. This is25

an essential step towards an observation-driven global carbon budget. Closing such gap requires however close collaborations

between open ocean and coastal ocean carbon cycle scientists in the future and be considered of high importance.

Finally, we introduced a new concept where we can locally evaluate the upscaling of existing measurements based on a

common overlap region. In this study, we focused on mean differences and seasonal climatologies at regional and global

scales. We find an encouraging agreement between seasonal cycles which gives us confidence that the existing products might30

be suitable to be applied to study lower frequency signals such as trends and interannual variability. Understanding of how

differences in trends and inter-annual variabilities between the coastal and open oceans emerge and how they are linked to data

availability should be a next step. Such analysis is essential to gain confidence in observational constraints and to find ways to
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further improve them in order to close the global carbon budget based on observations and provide data products form model

benchmarking. Our approach can also be used to compare other overlapping datasets at a time when advanced interpolation

techniques are yielding more and more oceanic data products with different spatial extensions and boundaries. Our study is

therefore an important step towards a truly representative global ocean observation-based CO2 product that includes all ocean

domains.5
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