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Abstract Quantifying variability in the ocean carbon sink remains problematic due to sparse
observations and spatiotemporal variability in surface ocean pCO2. To address this challenge, we have
updated and improved ECCO‐Darwin, a global ocean biogeochemistry model that assimilates both physical
and biogeochemical observations. The model consists of an adjoint‐based ocean circulation estimate from
the Estimating the Circulation and Climate of the Ocean (ECCO) consortium and an ecosystem model
developed by the Massachusetts Institute of Technology Darwin Project. In addition to the data‐constrained
ECCO physics, a Green's function approach is used to optimize the biogeochemistry by adjusting initial
conditions and six biogeochemical parameters. Over seasonal to multidecadal timescales (1995–2017),
ECCO‐Darwin exhibits broad‐scale consistency with observed surface ocean pCO2 and air‐sea CO2 flux
reconstructions in most biomes, particularly in the subtropical and equatorial regions. The largest
differences between CO2 uptake occur in subpolar seasonally stratified biomes, where ECCO‐Darwin results
in stronger winter uptake. Compared to the Global Carbon Project OBMs, ECCO‐Darwin has a
time‐mean global ocean CO2 sink (2.47 ± 0.50 Pg C year−1) and interannual variability that are more
consistent with interpolation‐based products. Compared to interpolation‐based methods, ECCO‐Darwin is
less sensitive to sparse and irregularly sampled observations. Thus, ECCO‐Darwin provides a basis for
identifying and predicting the consequences of natural and anthropogenic perturbations to the ocean carbon
cycle, as well as the climate‐related sensitivity of marine ecosystems. Our study further highlights the
importance of physically consistent, property‐conserving reconstructions, as are provided by ECCO, for
ocean biogeochemistry studies.

Plain Language Summary Data‐driven estimates of how much carbon dioxide the ocean is
absorbing (the so‐called “ocean carbon sink”) have improved substantially in recent years. However,
computational ocean models that include biogeochemistry continue to play a critical role as they allow us to
isolate and understand the individual processes that control ocean carbon sequestration. The ideal
scenario is a combination of the above two methods, where data are ingested and then used to improve a
model's fit to the observed ocean, also known as, data assimilation. While the physical oceanographic
community has made great progress in developing data assimilation systems, for example, the Estimating
the Circulation and Climate of the Ocean (ECCO) consortium, the biogeochemical community has
generally lagged behind. The ECCO‐Darwin model presented in this paper represents an
important technological step forward as it is the first global ocean biogeochemistry model that (1) ingests
both physical and biogeochemical observations into the model in a realistic manner and (2) considers how
the nature of the ocean carbon sink has changed over multiple decades. As the ECCO ocean circulation
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estimates become more accurate and lengthen in time, ECCO‐Darwin will become an ever more accurate
and useful tool for climate‐related ocean carbon cycle and mitigation studies.

1. Introduction

The ocean plays a vital role in regulating the global climate system and mitigating climate change. This has
motivated numerous studies to quantify and monitor trends and patterns in the oceanic sink of atmospheric
carbon dioxide (CO2), which has absorbed roughly 48% of anthropogenic CO2 emissions during 1800–1994
(Sabine et al., 2004). For example, based on a survey of inorganic carbon distribution in the 1990s, the global
oceanic carbon uptake has been estimated at 118 ± 19 Pg C year−1. More recent estimates have been inferred
from model‐based methods, yielding mean uptake rates of 2.3 ± 0.6 Pg C year−1 (Khatiwala et al., 2009) and
2.6 ± 0.3 Pg C year−1 (Gruber et al., 2019). Although results from these studies suggest an increase in oceanic
CO2 uptake over the last several decades (DeVries, 2014; DeVries et al., 2017, 2019; Khatiwala et al., 2013;
Sarmiento & Gruber, 2002), storage rates may depend on complex biologically driven feedbacks (Riebesell
et al., 2007) and show considerable spatial variability (Gruber et al., 2019), rendering the long‐term efficiency
of the ocean CO2 sink uncertain (Landschützer et al., 2015; Le Quéré et al., 2010; Munro et al., 2015).
Quantifying the magnitude and time‐space variability of the oceanic CO2 sink has been recognized as an
important goal in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC,
2013). Addressing this goal will improve predictions of the future climate trajectory, assist in the formulation
of climate‐related policies, and help implement mitigation and adaptation strategies.

As the global carbon budget represents the time‐space integration of small‐scale processes, a mechanistic
understanding of the regional drivers of air‐sea CO2 exchange (Lovenduski et al., 2016) at seasonal to multi-
decadal timescales is required for assessing the response and potential vulnerability of the oceanic CO2 sink
to climate change (Ciais et al., 2013). Although CO2 exchange across the air‐sea interface is difficult to mea-
sure directly, observations of oceanic and atmospheric partial pressure of carbon dioxide (pCO2) have
increased rapidly over the last decade (Bakker et al., 2014; Pfeil et al., 2013; Takahashi et al., 2009).
However, these measurements remain sparse and exhibit weak temporal and spatial coherence, preventing
their use in estimating oceanic CO2 sink variability over the time‐space scales required for detecting anthro-
pogenic trends (McKinley et al., 2016). This is especially problematic given that air‐sea CO2 fluxes also exhi-
bit substantial spatiotemporal variability (Fay & McKinley, 2013; Gray et al., 2018; Gruber et al., 2002;
Lovenduski et al., 2015; Wanninkhof et al., 2013). Furthermore, multidecadal time series of surface ocean
pCO2 only exist at a few locations in the global ocean (e.g., the Tropical Atmosphere Ocean Array, Hawaii
Ocean Time Series, and Bermuda Atlantic Timeseries Study) (Bates et al., 2014; Dore et al., 2009; Feely
et al., 2006).

To address these deficiencies, extensive efforts have beenmade to combine internally consistent databases of
surface ocean pCO2 measurements with gas transfer velocity parameterizations (Wanninkhof, 1992) and
various interpolation methods, resulting in global maps of surface ocean pCO2 and air‐sea CO2 flux
(Landschützer et al., 2014, 2016; Rödenbeck et al., 2013; Takahashi et al., 2002, 2009). However, despite
the broad‐scale consistency between these interpolation‐based products, particularly in the equatorial
Pacific Ocean (Rödenbeck et al., 2015), estimates from these methods suffer from a number of methodolo-
gical uncertainties and uneven observational sampling (Fay et al., 2014), which can lead to diverging results
in data‐sparse regions (e.g., the Arctic and Southern Ocean) (Ritter et al., 2017; Rödenbeck et al., 2015;
Schuster et al., 2013).

In contrast to interpolation‐based methods, ocean biogeochemical models (OBMs) (Aumont et al., 2015;
Galbraith et al., 2010; Stock et al., 2014) have the ability to resolve the spatiotemporal scales necessary for
attributing air‐sea CO2 fluxes to their respective mechanisms (Ito & Follows, 2013; Lauderdale et al., 2016;
Takahashi et al., 2002). Numerous hindcast OBMs, forced with time‐varying atmospheric boundary
conditions, have been previously used to assess oceanic CO2 sink variability (Le Quéré et al., 2003, 2018;
Sarmiento et al., 2010), but these models do not assimilate physical and biogeochemical observations.
Additionally, data‐assimilative OBMs either are limited to regional studies (e.g., the Southern Ocean,
Verdy & Mazloff, 2017) or have global coverage but are integrated over short time periods (e.g., 2009–2011,
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Brix et al., 2015). With the advent of global carbon cycle data assimilation systems, such as the National
Aeronautics and Space Administration Carbon Monitoring System Flux project (Bowman et al., 2017; Liu
et al., 2014, 2017), there is a need for data‐assimilative OBMs that resolve fine‐scale regional patterns of
air‐sea CO2 flux over seasonal to multidecadal timescales.

In this paper, we describe our efforts to update and improve ECCO‐Darwin, a global ocean biogeochemistry
model that assimilates both physical and biogeochemical observations. ECCO‐Darwin is based on (1) an
adjoint‐based ocean circulation estimate provided by the Estimating the Circulation and Climate of the
Ocean (ECCO) consortium and (2) a realistic ecosystem model provided by the Massachusetts Institute of
Technology (MIT) Darwin Project. Here we significantly improve ECCO‐Darwin from the pilot study of
Brix et al. (2015) by extending the time coverage to multiple decades (1995–2017) and addressing important
issues such as an arbitrary constraint on the global‐mean carbon uptake and exaggerated seasonal and
synoptic variability in Southern Ocean air‐sea CO2 fluxes. We use a low‐dimensional Green's function
approach to adjust initial conditions and biogeochemical parameters (six). This optimizes the model's fit
to observations in a property‐conserving manner (i.e., without nudging or creating artificial sources/sinks),
resulting in a quantitative description of the time‐varying global ocean biogeochemical state that is ideal for
ocean carbon budget studies. Finally, we use this updated version of ECCO‐Darwin, along with complemen-
tary interpolation‐based products, to provide global and biome‐scale estimates of seasonal to multidecadal
surface ocean pCO2 and air‐sea CO2 flux variability.

2. Methods
2.1. Overview

The ECCO‐Darwin OBM (henceforth referred to as ED) described in this paper is based on a global ocean
and sea ice configuration of the MIT general circulation model (MITgcm) (Marshall et al., 1997) and on
the pilot study described in Brix et al. (2015). The physical ocean circulation is from the ECCO consortium
(Wunsch et al., 2009), which synthesizes the MITgcm with nearly all available ocean observations since the
era of satellite altimetry (~1992), and provides an adjoint‐based reconstruction of the three‐dimensional,
time‐varying global ocean and sea ice state. The ECCO circulation estimates are coupled online with the
MIT Darwin ecosystem model (Dutkiewicz et al., 2009, 2014; Follows et al., 2007; Follows &
Dutkiewicz, 2011), which in turn drives and interacts with marine chemistry variables. Instructions for
building and running ED are given in supporting information Text S1.

2.2. ED Physical Model

For the ED physical fields, we use the ECCO LLC270 global ocean and sea ice data synthesis (Zhang
et al., 2018). ECCO LLC270 is built upon two previous ECCO efforts, ECCO v4 (Forget et al., 2015), and
ECCO2 (Fenty et al., 2017; Menemenlis et al., 2008). Compared to the lower‐resolution ECCO v4 synthesis
(nominal 1° grid spacing), ECCO LLC270 has finer horizontal grid spacing (~1/3° at the equator and ~18 km
at high latitudes). The vertical discretization comprises 50 z levels; model integration spans January 1992 to
December 2017. Terrestrial runoff along coastal boundaries is forced using the monthly climatology of
Fekete et al. (2002). Since horizontal resolution is insufficient to resolve mesoscale eddies, their impact on
the large‐scale ocean circulation is parameterized using the Redi (1982) and Gent and McWilliams (1990)
schemes.

Remotely sensed data constraints include daily along‐track sea level anomalies from satellite altimetry
(Forget & Ponte, 2015) relative to a mean dynamic topography (Andersen et al., 2016), monthly ocean bot-
tom pressure anomalies from the Gravity Recovery and Climate Experiment mission (Watkins et al., 2015),
daily sea surface temperature (SST) (Reynolds et al., 2002), and sea ice concentration fields from passive
microwave radiometry (Meier et al., 2017). The primary in situ data constraints include the global array of
Argo floats (Riser et al., 2016; Roemmich & Gilson, 2009), ship‐based hydrography incorporated as monthly
climatological temperature and salinity profiles from the World Ocean Atlas 2009 (Antonov et al., 2010;
Locarnini et al., 2010), tagged marine mammals (Roquet et al., 2013; Treasure et al., 2017), and
ice‐tethered profilers in the Arctic (Krishfield et al., 2008).

To fit the above observations, the ECCO LLC270 solution minimizes a weighted quadratic sum of model
data differences. This is done using the adjoint method, also known as 4‐D‐Var (see Wunsch &
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Heimbach, 2013; Wunsch et al., 2009). The control variables include initial temperature and salinity fields;
time‐invariant diapycnal, Redi (1982)‐isopycnal, and Gent and McWilliams (1990)‐thickness diffusivities;
and 14‐day adjustments to the 6‐hourly ERA Interim (Dee et al., 2011) estimates of downward shortwave
and longwave radiation, precipitation, 2‐m air temperature and specific humidity, and 10‐m zonal and mer-
idional wind. In this way, ECCO LLC270 provides a physically consistent, property‐conserving reconstruc-
tion of the three‐dimensional, time‐evolving ocean and sea ice state. The specific state estimate used in this
manuscript is not fully optimized: it is the result of 42 forward‐adjoint iterations. Nevertheless, the cost func-
tion has been reduced by 85% relative to the unconstrained (iteration 0) simulation. A detailed evaluation of
the ECCO LLC270 iteration‐42 state estimate, the so‐called “ECCO standard analysis” of Forget et al. (2015),
is made available as Data Set S1 in the supporting information. Because the initial conditions are estimated
as part of the optimization procedure, the ECCO LLC270 state estimate has negligible drift and therefore
does not require spin up.

Although not yet fully optimized, the ECCO LLC270 state estimate has begun to be employed in a small
number of early studies. In particular, it is being used as lateral boundary conditions for several published
(e.g., Khazendar et al., 2019; Nakayama et al., 2017, 2018, 2019; Wood et al., 2018) and underway regional
studies. The present study is the first utilization of ECCO LLC270 in a global context. The importance of a
data‐constrained, property‐conserving ocean state estimate for OBMs cannot be overstated. For example,
Table 1 in Mikaloff Fletcher et al. (2006) shows that even a very early, coarse‐resolution ECCO state estimate
(Stammer et al., 2004) achieved skill comparable to, or greater than, that of more established and specialized
OBMs. The ECCO LLC270 state estimate is substantially improved compared to the state estimate of
Stammer et al. (2004), not only because of increased horizontal/vertical grid resolution and the inclusion
of the Arctic Ocean and sea ice but also because the earlier solution did not include adjustments for model
subgrid‐scale parameterizations. Compared to the state estimate used in Brix et al. (2015), the LLC270 state
estimate does not admit mesoscale eddies; however, it is of substantially longer duration (26 vs. 2 years) and,
again because of subgrid‐scale adjustments, is closer to observations. Additionally, the ECCO project is
actively working on higher‐quality, higher‐resolution ocean state estimates so that the quality and realism
of the ECCO‐Darwin OBM will continue to improve as new physical state estimates become available.

2.3. ED Biogeochemistry Model

To couple the ED physical model with ocean ecology and carbon chemistry, we use the MIT Darwin Project
ecosystem model previously described in Brix et al. (2015). The ED biogeochemistry includes 39 prognostic
variables (supporting information Table S1) that are advected and mixed by the ECCO LL270 physical fields;
currently, there are no feedbacks between biogeochemistry and circulation, such as light absorption and bio-
mixing effects (Kunze, 2019). The coupling between ocean physics and biogeochemistry is done online at
every model time step (1,200 s). The simplified Darwin ecology includes five large‐to‐small phytoplankton
function types (diatoms, other large eukaryotes, Synechococcus, and low‐ and high‐light adapted
Prochlorococcus) and two zooplankton types that graze preferentially on either the large eukaryotes or small
picoplankton. The carbon cycle is explicitly represented, along with nitrogen, phosphorus, iron, silica, oxy-
gen, and alkalinity; carbonate chemistry is based on the efficient solver of Follows et al. (2006). Air‐sea CO2

flux is computed using the parameterization of Wanninkhof (1992) and atmospheric pCO2 from the zonally
averaged monthly National Oceanic and Atmospheric Administration Marine Boundary Layer Reference
product (Andrews et al., 2014). Atmospheric iron dust deposition at the ocean surface is forced using the
monthly climatology of Mahowald et al. (2009). To prevent unrealistic accumulation of particulates in bathy-
metric “wells” (i.e., wet grid cells surrounded horizontally by dry cells) on the model grid, we added a porous
bottom boundary condition (i.e., all particulates are instantly removed once they reach the seafloor). We
stress that all tracers, both physical and biogeochemical, are conserved within model numerical precision
from the initial conditions to the end of the simulation.

2.4. ED Biogeochemical Improvements and Optimization

The biogeochemical observations used to evaluate and adjust ED include (1) surface ocean fugacity ( fCO2)
from the monthly gridded Surface Ocean CO2 Atlas (SOCATv5, Bakker et al., 2016), (2) GLODAPv2
ship‐based profiles of NO3, PO4, SiO2, O2, dissolved inorganic carbon (DIC) derived from pH and alkalinity,
and alkalinity (Olsen et al., 2016), and (3) BGC‐Argo float profiles of NO3 and O2 (Drucker & Riser, 2016;
Riser et al., 2018). Since BGC‐Argo DIC and alkalinity are derived from an empirical relation between pH
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and salinity and therefore have larger uncertainty compared to GLODAPv2 observations, we verified that
inclusion or exclusion of these observations had negligible impact (<1% change to globally integrated air‐
sea CO2 fluxes) before including them as data constraints.

In addition to a better fit to the above observations, we sought to fix three serious biogeochemical issues with
the pilot study of Brix et al. (2015):

(I1) Southern Ocean air‐sea CO2 flux synoptic variability that was strongly exaggerated compared to flask
observations (see bottom panels of Figure 5 in Ott et al., 2015).

(I2) Southern Ocean air‐sea CO2 flux seasonal cycle that wasmuch larger (Figure 1(a), cyan thin line) than
the monthly climatology of Takahashi et al. (2009) (Figure 1a, black thick line).

(I3) The global‐mean air‐sea CO2 flux was arbitrarily constrained to be approximately 2.4 Pg C year−1 dur-
ing the Green's function optimization (Figure 1b, cyan thin line).

To fix issues I1–I3 and improve the model's fit to the global biogeochemical observations, we used a Green's
function approach to adjust biogeochemical initial conditions and six model parameters. Green's functions
consist of forward model sensitivity experiments that express the linearized response of a forward model
integration to perturbations of initial/boundary conditions and model parameters. We note that the
Green's function approach (used to adjust the biogeochemistry) and the adjoint method (used to adjust
the ocean physics) are both linearized least squares minimization approaches. The main difference is that
Green's function approach can, in practice, only be applied to a small number of control variables
(Menemenlis et al., 2005). Given the computational cost of each model sensitivity experiment, we are not
able to conduct an exhaustive exploration of model parameter space. Instead, we selected a small number
of sensitivity experiments that, in the authors' collective expertise, seemed the most likely to reduce
model‐data differences.

The first guess unadjusted experiment (Table 1, Experiment #1) used the optimized biogeochemical initial
conditions and model parameters of Brix et al. (2015) but applied to the ECCO LLC270 ocean circulation
estimate. To reduce the large initial drift in the model's biogeochemistry, Experiment #2 repeated the
1992–2017 model integration but starting from the 1996 biogeochemical conditions of Experiment #1.
Because the Brix et al. (2015) DIC and alkalinity initial conditions were biased low compared to
GLODAPv2 observations (Olsen et al., 2016), Experiments #3–5 attempted various combinations of initial
conditions with increased DIC and alkalinity and GLODAPv2 climatological initial conditions.
Experiment #6 is an interim optimization (supporting information Table S1). Experiments #7–11 are addi-
tional initial condition sensitivity experiments whose primary objective was to further reduce model drift in
the equatorial Pacific.

Figure 1. Comparison of daily (a) Southern Ocean and (b) global ocean integrated air‐sea CO2 flux during 2009–2011
from the monthly climatology of Takahashi et al. (2009) (black thick line), Brix et al. (2015) optimized simulation
(thin cyan line), and the ED simulation presented in this paper (magenta thin line). The Southern Ocean is defined as all
wet grid cells south of 45°S.
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Since iron is an important limiting micronutrient in several key areas of the ocean (Martin &
Fitzwater, 1988), Experiments #12–13 perturbed iron dust solubility, which is poorly known, and iron
scavenging rate, which can vary by orders of magnitude (e.g., Parekh et al., 2005). We also perturbed phyto-
plankton growth rates parameters (Experiments #14–15), which are critical for the amount of carbon taken
up by these organisms. Since diatoms are one of the key components of the Southern Ocean marine food
web, Experiment #16 altered their palatability to grazers in order to explore how some top‐down control
on the system impacts air‐sea CO2 fluxes. Finally, we also altered the amount of particulate inorganic carbon
produced per particulate organic carbon (Experiment #17); this value likely varies significantly over the glo-
bal ocean (Sarmiento et al., 2002). Because particulate inorganic carbon production and dissolution have a
large impact on alkalinity, which strongly influences pCO2 concentrations, this parameter is a good candi-
date for optimization.

Using the above sensitivity experiments and the Green's function approach described in Menemenlis
et al. (2005), we minimized a quadratic “cost” function of weighted model‐data differences to obtain opti-
mized biogeochemical initial conditions and model parameters. Table 1 summarizes some results from this
optimization. Experiments #2–11 pertain to initial condition sensitivity experiments, while Experiments
#12–17 pertain to biogeochemical model parameters. The optimized biogeochemical initial conditions are
constructed as a linear combination of Experiments #2–11, according to the coefficients listed under column
D (which sum to one). For Experiments #12–17, columns C–D show initial and optimized values for each
adjusted parameter. The ED simulation described in this paper (Experiment #18 in Table 1) uses the opti-
mized biogeochemical initial conditions and the optimized biogeochemical parameters of Table 1.
Therefore, ED represents a well‐tuned biogeochemical model simulation driven by adjoint method‐
constrained ocean physics provided by the ECCO project.

Figure 2 shows a scatterplot of observations versus simulations before and after the biogeochemical adjust-
ments. The cost function reduction of ED (Experiment #18) relative to the first guess simulation based on

Table 1
Summary of the Biogeochemical Green's Functions Optimization

A B C D E F

# Initial condition experiments

Optimized
linear

combination

Cost relative to Brix et al. (%)

All observations Surface ocean pCO2

1 Initial conditions from Brix et al. (2015) 100 100
2 Initial conditions from a 4‐year spin up of #1 0.0032 100.42 97.27
3 Initial conditions from #2 with DIC/alkalinity + 150 mmol m−3 0.0012 68.98 103.16
4 Initial conditions from #2 with GLODAPv2 DIC/alkalinity −0.1278 37.64 100.27
5 Initial conditions from #2 with GLODAPv2 0.1233 33.08 95.39
6 Interim optimization −0.6314 32.03 95.48
7 Initial conditions from a 4‐year spin up of #6 0.24415 33.29 92.84
8 Initial conditions from a 6‐year spin up of #6 −0.0218 34.10 94.26
9 Initial DIC/alkalinity conditions from (#7 + #8) /2 0.5702 31.99 95.18
10 Initial DIC/alkalinity conditions from #8 −0.6618 32.55 95.13
11 Initial DIC in equatorial Pacific from #8 1.5008 31.84 94.42

# Parameter sensitivity experiments Brix et al. value Optimized value All observations Surface pCO2

12 Iron dust solubility − 20% 1 0.9283 102.09 100.71
13 Iron scavenging rate × 5 3 10.411 98.77 95.26
14 Small phytoplankton growth rate + 10% 0.7 0.6609 99.70 98.69
15 Large phytoplankton growth rate + 10% 0.4 0.4314 99.70 99.37
16 Diatom palatability + 0.1 0.85 0.8300 99.54 97.31
17 PIC/POC ratio + 20% 0.04 0.04245 99.69 97.47
18 Optimized simulation 31.90 94.00

Note. The Brix et al. (2015) “first guess” simulation that we started with is listed as Experiment #1. The optimized ED simulation (Experiment #18) uses (1) bio-
geochemical initial conditions that are a linear combination of Experiments #2–11 according to the coefficients listed in columnD and (2) optimizedmodel para-
meters listed in rows #12–17 of column D. The cost relative to the Brix et al. simulation is reported in columns E (for all observations) and F (for surface ocean
pCO2 observations). PIC = particulate inorganic carbon; POC = particulate organic carbon.
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Brix et al. (2015) (Experiment #1) is 6%, 36%, 32%, 26%, 19%, 95%, and 96%, respectively, for surface ocean
fCO2, NO3, PO4, SiO2, O2, DIC, and alkalinity. Being at the surface, fCO2 has elevated synoptic variability,
and therefore, the cost function reduction is smaller than the other full‐depth variables; the largest cost
function decrease is for DIC and alkalinity. The overall biogeochemical cost function reduction of ED
(Experiment #18) relative to the first guess simulation based on Brix et al. (2015) (Experiment #1) is ~68%
(Column F in Table 1).

As is discussed in Menemenlis et al. (2005), the Green's function approach permits offline parameter sensi-
tivity exploration as well as the exploration of different cost functions. For example, columns E and F of
Table 1 indicate the importance of each sensitivity experiment in fitting the biogeochemical observations.
Specifically, each row of columns F and G display the cost of the various sensitivity experiments relative
to the Brix et al. (2015) initial conditions and parameter values (Experiment #1). For the initial condition
experiments and optimized simulation (#2–11 and #18), we directly report the relative cost of each indivi-
dual simulation. For the parameter sensitivity experiments (#12–17), we report the expected cost of a simu-
lation that would start with the Brix et al. (2015) initial conditions but use the optimized value of each
parameter, one at a time, while the remaining parameters retain the Brix et al. (2015) values. The expected
cost for the optimized parameters is estimated based on themodel sensitivity experiments under the assump-
tion that the model response to parameter perturbations is linear. We have verified that the assumption of a
linear response is approximately satisfied by comparing the expected cost of the optimized linear combina-
tion, 30.85% of Experiment #1 cost, to the actual relative cost of the optimized simulation, 31.90% of
Experiment #1 (Column E, Experiment #18 in Table 1).

For the full‐depth set of observations (column E), most of the cost function reduction comes from the
GLODAPv2 initial conditions (Experiment #5). This is because over the 26‐year integration period, there
is little change to biogeochemical properties in the deep ocean. If we focus on upper ocean observations
only, for example, if we only include surface ocean pCO2 observations in the cost function (column G),
the most significant cost reduction results from sensitivity experiments that reduce solution drift
(Experiments #7–11) and from the adjustment of iron scavenging rate (Experiment #13). A different
method to establish the contribution of each parameter to the optimized solution is to remove each para-
meter from the optimization, one at a time, as is done in Table 3 of Menemenlis et al. (2005). Using this
method, the most important parameter for improving surface ocean pCO2 relative to Brix et al. (2015) is
the large phytoplankton growth rate, which contributes 39% cost reduction, followed by iron scavenging
rate, iron dust solubility, and small phytoplankton growth rate, which contribute, respectively, 22%, 15%,
and 11% cost reduction.

Figure 2. Comparison of observed and modeled surface ocean fugacity (fCO2) and biogeochemical profiles for the (a) Brix et al. (2015) first guess simulation
(Experiment #1, table 1) and (b) ED optimized simulation. The x axis shows observations and y axis shows the corresponding model value at the same
space‐time location. Colors represent the density of observation‐model pairs in log scale; the total number of observations is shown above each panel.
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Note that contrary to Brix et al. (2015), the present ED solution uses pure observations as constraints and
does not rely on an additional arbitrary constraint for the global ocean CO2 sink. The initial condition biases
in DIC and alkalinity turned out to be the major causes for all three (I1–I3) issues in the older ED simulation.
As shown in Brix et al. (2015), the Green's function approach reduces both bias and drift for biogeochemis-
try, similar to the adjoint‐based method for the physics. We further remove any residual “large” drift by dis-
carding the first 2 years (1992–1994) of the ED simulation in our analysis, where large is defined relative to
the interpolation‐based estimates of the global ocean CO2 sink. This residual model drift occurs primarily in
the Southern Ocean.

2.5. Comparison With Interpolation‐Based Products

To illustrate the performance of ED and its ability to reproduce air‐sea CO2 flux spatiotemporal variability,
we compared model output with three interpolation‐based surface ocean pCO2 and air‐sea CO2 flux
products:

1. The 4° × 5° monthly gridded climatological product of Takahashi et al. (2009), which uses statistical
interpolation combined with an advection‐diffusion equation and is referenced to the year 2000.

2. The 4° × 5° daily gridded product of Rödenbeck et al. (2013), which spatiotemporally interpolates surface
ocean pCO2 observations while remaining compatible with mixed‐layer DIC dynamics. Surface ocean
pCO2 and air‐sea CO2 fluxes are first linked to each other, and to the spatiotemporal field of internal
ocean carbon sources/sinks, through parameterizations of air‐sea gas exchange, solubility, and carbonate
chemistry, as well as a budget equation for the mixed layer DIC content. The internal ocean carbon
sources/sinks are then adjusted to optimally fit the surface ocean pCO2 field to the observations.
Spatiotemporal interpolation is achieved by enforcing source/sink adjustments to be smooth; temporal
interpolation is overlaid by the inherent relaxation timescales of the mixed layer DIC budget. Process
parameterizations are driven by SST, wind speed, mixed layer depth climatology, alkalinity climatology,
and some auxiliary variables. However, this external variability only determines features not constrained
by surface ocean pCO2 observations (e.g., day‐to‐day variations or variability in data‐sparse regions/time
periods), while the estimated surface ocean pCO2 field in well‐constrained regions/time periods is deter-
mined by the observed signal (i.e., there is no regression against environmental drivers). We use version
oc_v1.6 of this product, extended in time to December 2017 based on SOCATv6 (Bakker et al., 2016).

3. The 1° × 1° monthly gridded, smoothed product of Landschützer et al. (2013), which uses an observation‐
based, self‐organizing map feed forward neural network (SOM‐FFN). For the purpose of this work, we
extend this product in time to December 2017 and adjusted the Arctic Ocean mask to be more consistent
with the products of Takahashi et al. (2009) and Rödenbeck et al. (2013). The two‐step SOM‐FFNmethod
first clusters the ocean into biogeochemical regions and then establishes relationships between SOCATv6
surface ocean pCO2 observations and environmental drivers (i.e., SST and salinity, mixed layer depth,
satellite‐based chlorophyll a, and atmospheric pCO2). More details regarding the SOM‐FFN method
and its evaluation can be found in Landschützer et al. (2014, 2016, 2018).

These interpolation‐based products, hereby referred to in this paper as Tak09, Röd13, and Land13, respec-
tively, are interpolated and land masked onto the ED model grid using nearest‐neighbor interpolation;
air‐sea CO2 fluxes are conserved during the interpolation.

Additionally, we account for the land‐ocean river runoff loop of CO2 in the interpolation‐based products by
subtracting an area‐weighted runoff contribution from air‐sea CO2 flux in each wet grid cell, as done in Le
Quéré et al. (2018) and Friedlingstein et al. (2019). Globally integrated, the runoff contribution to the global
ocean CO2 sink is 0.78 Pg C year−1 (Resplandy et al., 2018).

Statistically based interpolation methods, such as Tak09 and Röd13, are typically dominated by surface
ocean pCO2 observations and remain fairly independent of environmental driver data sets (e.g., SST, mixed
layer depth, and chlorophyll a) and choice of process parameterizations. However, time‐space sampling
biases, particularly in data‐sparse regions, can lead to the seasonal exclusion of air‐sea CO2 flux features
and the creation of spurious artifacts. Regression‐based interpolation methods such as Land13 allow for
more complete space‐time coverage by constructing nonlinear models between surface ocean pCO2 and a
suite of environmental drivers observed with more complete coverage. However, this approach can only
reproduce modes of variability that are contained in the chosen environmental drivers. By comparison,
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ED represents dynamical interpolation, where the ocean physics and many of the biogeochemical processes
that drive variability in surface ocean pCO2 are explicitly resolved. While ED contains inherent model errors,
our solution is constrained by both the observed ocean circulation (adjoint‐based ECCO LLC270) and bio-
geochemistry (low‐dimensional Green's function optimization).

2.6. Biomes

We compute area‐weightedmean surface ocean pCO2 and spatially integrated air‐sea CO2 flux in the context
of the time‐independent 1° × 1° open‐ocean biomes described in Fay and McKinley (2014) (Figure A1 in
Appendix A). The 17 biomes are determined from coherence between SST, spring and summer chlorophyll
a, sea ice fraction, and maximummixed layer depth and therefore provide a more robust estimate of biogeo-
chemical ocean regions compared to rectangular boundaries (Fay & McKinley, 2014). All biomes are inter-
polated onto the ED model grid using nearest‐neighbor interpolation.

2.7. Trend Analysis

In order to identify statistically significant trends in global ocean and biome‐scale air‐sea CO2 flux, we per-
form a two‐tailed Mann‐Kendall test (Kendall, 1975; Mann, 1945), which is commonly used to detect mono-
tonic trends in environmental data (Yue et al., 2002). Additionally, we modify this method to account for
autocorrelation in the time series (Hamed & Rao, 1998). Trends are computed using a Theil‐Sen linear
regression (Gilbert, 1987) on annual mean air‐sea CO2 fluxes from 1995 to 2017; trend significance is eval-
uated at the 95% confidence level.

3. Results
3.1. Climatological Evaluation (1995–2017)

ED (which refers to the optimized simulation for the remainder of the paper) generally reproduces the time‐
mean large‐scale spatial patterns of elevated surface ocean pCO2 and outgassing in the equatorial regions
and high‐latitude uptake shown in all interpolation‐based products (Figures 3 and 4). Additionally, the
ED solution covers the complete Arctic domain and includes coastal regions (Figures 3a and 4a). On the
regional scale, the higher‐resolution ED solution exhibits more complex spatial patterns of outgassing in
the Subtropical Pacific and Atlantic Oceans (Figure 4a) compared to the interpolation‐based products
(Figures 4b–4d). Here ED produces outgassing patches that extend 100 s of km offshore of coastal upwelling
zones (e.g., Western North America, Central and South America, and northwest Africa), with reduced out-
gassing further offshore and near‐equilibrium conditions in the convergence zones of the subtropical gyres.
These outgassing features are weak or absent in the interpolation‐based products, particularly in the South
Pacific Ocean where surface ocean pCO2 measurements are limited. We also note that ED and Land13 par-
tially resolve the fine‐scale coastal outgassing features located offshore of western Central America
(Figures 4a and 4d). In the tropical Indian Ocean, particularly along the Arabian and Somalian coasts, ED
exhibits weaker outgassing (maximum of ~1.7 mol C m−2 year−1) compared to the interpolation‐based pro-
ducts (Land13 maximum of ~3.3 mol C m−2 year−1).

ED does not produce the strong outgassing patch southeast of the Bering Sea that is shown in the
interpolation‐based products (Figure 4), despite this region being data rich for surface ocean pCO2 and
biogeochemical profiles. Here ED results in a smaller patch of increased surface ocean pCO2 (maximum
of ~384 μatm) that is shifted westward (Figure 3a), with air‐sea CO2 fluxes characterized by weak uptake
or near‐equilibrium conditions (Figure 4a). Additionally, Southern Ocean outgassing in ED is shifted to
higher latitudes (primarily south of 60°S) compared to interpolation‐based products and is generally con-
strained along the periphery of Antarctica, where elevated surface ocean pCO2 is present (Figure 3a). This
is primarily due to the suppression of air‐sea gas exchange by winter sea ice cover, followed by outgassing
during periods of sea ice melt and open water. In the Arctic Ocean, ED has the highest surface ocean
pCO2 concentrations in the Canadian Basin (Figure 3a), with weak outgassing throughout the region
(Figure 4a).

Time‐mean uptake is generally stronger in ED compared to the interpolation‐based products, particularly in
the Southern Ocean and high‐latitude Pacific and Atlantic Oceans (Figure 4). Additionally, ED produces
stronger uptake along many of the western boundary currents and their respective extensions (e.g., the
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Gulf Stream, Kuroshio, and East/West Greenland Currents). Zonally averaged air‐sea CO2 fluxes highlight
the pole‐to‐pole patterns of ocean outgassing and uptake (Figure 5). Compared to the interpolation‐based
products, ED air‐sea CO2 fluxes show enhanced zonal variability (Figure 5, blue line in top panel),
particularly between 15–45°S and 30–45°N. Additionally, ED results in stronger uptake between 60–45°S
and 35–65°N (Figure 5, bottom panel). Near the equator (7.5°S–7.5°N), the zonally averaged ED air‐sea

Figure 3. Long‐term mean surface ocean pCO2 for (a) ED, (b) Tak09, (c) Röd13, and (d) Land13. Tak09 is referenced to the year 2000; ED, Röd13, and Land13 are
time averaged from January 1995 to December 2017. Regions north of 80°N in Tak09, Röd13, and Land13 are excluded due to data sparsity.

10.1029/2019MS001888Journal of Advances in Modeling Earth Systems

CARROLL ET AL. 10 of 28



CO2 flux magnitude and variability agrees well with the interpolation‐based products (Figure 5); here ED
and all interpolation‐based products show peak outgassing at ~4°S.

3.2. Biome‐Scale Seasonality

We now zoom into the biome scale and examine the seasonal cycle of air‐sea CO2 flux (Figure 6) and surface
ocean pCO2 (Figure A2). For a map of the biomes used in this section see Figure A1. Additionally, monthly

Figure 4. Long‐term mean global air‐sea CO2 fluxes for (a) ED, (b) Tak09, (c) Röd13, and (d) Land13. Positive values represent outgassing (red); negative
values are uptake (blue). Tak09 is referenced to the year 2000; ED, Röd13, and Land13 are time averaged from January 1995 to December 2017. Regions north
of 80°N in Tak09, Röd13, and Land13 are excluded due to data sparsity.
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climatological fields of surface ocean pCO2 and air‐sea CO2 flux for ED and the interpolation‐based products
are shown in supporting information Figures S6 and S7, respectively.

In terms of the amplitude and phase of the seasonal cycle, we find the closest agreement between ED and the
interpolation‐based products in the Pacific, Atlantic, and Indian subtropical permanently stratified biomes
(STPS, biomes 4, 7, 11, 13, and 14) and seasonally stratified biomes (STSS, biomes 3 and 10). For all
Pacific and Atlantic STPS and STSS biomes, ED produces air‐sea CO2 flux and surface ocean pCO2 seasonal
amplitudes that are larger than the interpolation‐based products (Figure A2), while Röd13 has the strongest
seasonality of all interpolation‐based products. In the equatorial biomes (EQU, biomes 5, 6, and 12), which
are strongly influenced by interannual variability driven by El Niño–Southern Oscillation (ENSO) events,
we find limited seasonality and poor matchup between the individual interpolation‐based products and
ED. In particular, ED shows a strong decrease in AEQU (biome 12) CO2 outgassing during spring‐summer,
with a transition to uptake during August; this feature is coincident with increased phytoplankton blooms
offshore of West Africa (not shown).

At higher latitudes in the Pacific and Atlantic subpolar seasonally stratified biomes (SPSS, biomes 2 and 9),
ED produces weak outgassing and near‐equilibrium conditions in, respectively, the NP SPSS and NA SPSS
biomes during summer. The NA SPSS summer decrease in uptake (Figure 6, biome 2) is primarily driven by
strong outgassing on the Scotian Shelf, which is less pronounced in the interpolation‐based products
(supporting information Figure S2). During fall‐winter, ED results in stronger uptake compared to the
interpolation‐based products. For these biomes, ED surface ocean pCO2 is generally out of phase with the
interpolation‐based products (Figure A2, biomes 2 and 9). In the Southern Ocean, ED results in a larger
air‐sea CO2 flux seasonal amplitude of 1.25 Pg C year−1 in SO STSS (biome 15), compared to 0.19, 0.13,
and 0.15 Pg C year−1 in Tak09, Röd13, and Land13, respectively. This difference is highlighted by the surface
ocean pCO2 seasonal amplitude; here the ED amplitude (~40 μatm) is a factor of ~3 larger than Tak09 and
Land13 and a factor ~8 larger than Röd13 (Figure A2, biome 15). Further south in the Southern Ocean SPSS
biome (biome 16), the ED seasonal amplitude is in closer agreement with the interpolation‐based products;

Figure 5. Long‐term mean air‐sea CO2 flux for ED (black), Tak09 (orange), Röd13 (cyan), and Land13 (magenta) as a
function of latitude. Air‐sea CO2 fluxes are zonally averaged in 1° bins. Positive values represent outgassing, and
negative values are uptake; black horizontal dashed line shows zero flux. Top panel and shaded error bars in bottom
panel show zonal variability (one standard deviation). Tak09 is referenced to the year 2000; ED, Röd13, and Land13 are
time‐averaged from January 1995 to December 2017. Regions north of 80°N in Tak09, Röd13, and Land13 are excluded
due to data sparsity.
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however, ED results in stronger uptake during February–September. For biomes that are influenced by sea
ice cover year‐round (ICE biomes 1, 8, and 17), ED and the interpolation‐based products diverge in both
amplitude and phase.

3.3. Biome‐Scale Interannual to Multidecadal Variability (1995–2017)

Next, we evaluate time series of air‐sea CO2 flux and surface ocean pCO2 for ED, Röd13, and Land13 in each
biome (Figures 7 and A3). Additionally, time series of surface ocean fCO2 for ED and SOCATv5 and the

Figure 6. Seasonal cycle of air‐sea CO2 flux for ED (black), Tak09 (orange), Röd13 (cyan), and Land13 (magenta) in each biome. Air‐sea CO2 fluxes are
time‐averaged for each month (January 1995 to December 2017) and spatially integrated across each biome. Similar y axis scales are used for each individual
ocean basin; horizontal black dashed lines show zero flux.
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corresponding number of observed fCO2 points per month are shown in, respectively, Figures A4 and A5.
Integrated across all biomes, ED results in a time‐mean uptake of −2.42 Pg C year−1, which lies within
the Röd13 and Land13 time‐mean estimates of −2.63 and −2.32 Pg C year−1, respectively (Figure 7,
biomes 1–17). Here ED and Röd13 show increased interannual variability in air‐sea CO2 fluxes compared
to the spatially less heterogeneous Land13 product. We find that ED generally has higher mean surface

Figure 7. Air‐sea CO2 flux time series for ED (black), Röd13 (cyan), and Land13 (magenta) in each biome. Air‐sea CO2 fluxes are spatially integrated across their
respective biomes. Positive values represent outgassing; negative values are uptake. Thin lines show monthly values, and thick lines show interannual variability
(12‐month running mean). Similar y axis scales are used for each individual ocean basin.
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ocean pCO2 and a stronger seasonal cycle compared to Röd13 and Land13 (Figure A3, biomes 1–17). For all
biomes, ED, Röd13, and Land13 all exhibit statistically significant air‐sea CO2 flux trends over the period
examined (supporting information Table S2).

Similar to the seasonal results, we find good agreement in interannual air‐sea CO2 flux and surface ocean
pCO2 magnitude and trend between ED and the interpolation‐based products in the Pacific, Atlantic, and
Indian STSS and STPS biomes (Figures 7 and A3, biomes 3, 4, 7, 10, 11, 13, and 14). For these biomes, the
largest differences between ED and the interpolation‐based products occur in NA STSS (biome 11), where
the larger ED surface ocean pCO2 seasonal amplitude biases air‐sea CO2 fluxes toward CO2 outgassing.
ED and Land13 show statistically significant trends in air‐sea CO2 fluxes for all Pacific, Atlantic, and
Indian STSS and STPS biomes, with Röd13 only exhibiting a statistically significant trend in NP STSS
(biome 3).

Equatorial biomes have the largest interannual variability in air‐sea CO2 flux and surface ocean pCO2

(biomes 5, 6, and 12), with temporal variability in the equatorial Pacific biomes (PEQU) strongly modulated
by ENSO events (biomes 5 and 6). ED shows considerable skill in reproducing the interannual variability
shown in Röd13 and Land13, particularly in PEQU‐E (biome 6). Additionally, we find that ED produces
a stronger reduction in PEQU outgassing compared to the interpolation‐based products during the
2015–2016 ENSO, which may be due to lower surface ocean pCO2 during this time period (Figure A3).
Interestingly, only ED has statistically significant air‐sea CO2 flux trends in PEQU‐W and PEQU‐E, while
both ED and Land13 obtain statistical significance in AEQU (biome 12).

For NP and NA SPSS (biomes 2 and 9), ED results in stronger uptake (factor of ~3 and ~1.3 larger in NP SPSS
andNA SPSS, respectively) compared to Röd13 and Land13. In the Southern Ocean STSS (biome 15), ED and
Röd13 have comparable statistically significant trends (−0.0091 and−0.0088 PgC year−2, respectively), while
Land13 has a larger significant trend (−0.0128 Pg C year−2) (supporting information Table S2). We note that
Land13 shows decreasing CO2 uptake in SO STSS during 1996–2002, followed by an increase until 2011; this
weakening and reinvigoration event is not captured by ED and Röd13 in this biome. ED interannual varia-
bility in SO SPSS (biome 16) is more muted, with Röd13 having variable but increasing uptake during
2002–2014 and Land13 showing a similar temporal response to SO STSS. All air‐sea CO2 flux trends in SO
STSS fail to reach statistical significance, with Röd13 having the smallest p value (supporting information
Table S2). Similar to the seasonal results, there is limited temporal coherence between ED and the
interpolation‐based products in NP, NA, and SO ICE (biomes 1, 8, and 17).

4. Discussion

While data‐based reconstructions of the global ocean carbon sink have made major advances in recent
years, OMBs continue to play an important role, especially since they allow for a process‐based under-
standing of the ocean carbon sink. The ideal scenario, however, is a combination of these two methods
through some form of data assimilation. While the physical oceanographic community has made great
strides in the development of data assimilation systems (e.g., ECCO), the biogeochemical community
has generally lagged behind. Therefore, the work presented in this paper represents an important tech-
nological step forward in ocean biogeochemical data assimilation since ED is the first global OBM
model that (1) assimilates both physical and biogeochemical observations in a property‐conserving man-
ner (i.e., by adjusting model parameters and initial conditions, as opposed to nonconserving optimal
interpolation and Kalman filter approaches) and (2) considers the time‐varying nature of the ocean car-
bon sink over multidecadal timescales.

Using only a small number of model adjustments (biogeochemical initial conditions and six model para-
meters), ED produces air‐sea CO2 flux estimates that show broad‐scale consistency with Tak09, Röd13,
and Land13, particularly in the subtropical and equatorial biomes. The low dimensionality of this biogeo-
chemical adjustment highlights the strength of the adjoint‐based ECCO LLC270 ocean physics in reprodu-
cing observed trends in the ocean carbon sink (DeVries et al., 2017, 2019; McKinley et al., 2017). Compared
to interpolation‐based products, the higher‐resolution ED simulation also allows for a better representation
of fine‐scale ocean features (e.g., boundary currents, fronts, and coastal regions), along with covering the
complete Arctic Ocean.
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One problematic aspect of model‐based biogeochemical estimates is bias and drift. It is possible to reduce
drift at the expense of bias by spinning up a model toward equilibrium. Alternatively, it is possible to reduce
bias at the expense of drift by forcing the model solution to be very close to the observations. Various ad hoc
corrections have been devised to minimize the impact of bias and drift on model solutions (e.g., Sausen
et al., 1988). The Global Carbon Project (GCP) corrects for model bias and drift by subtracting a
time‐dependent model bias calculated as a linear fit to the annual CO2 flux from a control simulation carried
out with constant, preindustrial atmospheric CO2 concentration (Friedlingstein et al., 2019). Instead of ad
hoc corrections, bias and drift reduction can be addressed as an optimization problem whereby model para-
meters and initial conditions are adjusted to simultaneously reduce model bias and drift relative to observa-
tions (e.g., Tziperman & Thacker, 1989).

As demonstrated in Brix et al. (2015), a Green's function optimization can be used to reduce bias and drift in
a global ocean biogeochemistry model. Unlike the proof‐of‐concept EDmodel described in Brix et al. (2015),
however, the simulation presented in this paper does not require an arbitrary constraint on global mean
air‐sea CO2 flux in the optimization process. Supporting information Figure S8 compares air‐sea CO2 flux
time series in the Fay andMcKinley (2014) biomes, similar to Figure 7, except that we include the first 2 years
(1992–1994) of the simulations during which there is larger drifts, as well as showing time series for the
simulation based on the Brix et al. (2015) initial biogeochemical conditions and parameters (Experiment
#1 in Table 1) and the interim optimization (Experiment #6). Relative to Experiments #1 and #6, the opti-
mized Experiment #18 removes most of the initialization transients in the equatorial Pacific (Biomes 5
and 6), reduces the unreasonably large seasonal cycle in the SO SPSS (Biome 16), but does not remove the
Southern Ocean initialization transients (Biomes 15–17).

For the 1995–2017 period, the ED time‐mean global ocean CO2 sink is −2.47 ± 0.50 Pg C year−1, which
lies within the uncertainty of the GCP estimate of −2.24 ± 0.76 Pg C year−1 over the same time period
(Friedlingstein et al., 2019) (Table 2). Additionally, we find reasonable agreement with the ocean interior
carbon inversion estimate of −1.7 ± 0.4 Pg C year−1 (nominal 1995) from Gruber et al. (2009); for year
1995, the ED estimate is −1.6 Pg C year−1. ED, Röd13, and Land13 all demonstrate statistically
significant trends in the global ocean CO2 sink for 1995–2017, with trends of −0.065, −0.045, and
−0.058 Pg C year−2, respectively (supporting information Table S2). On the biome scale, Land13 has
the largest number of biomes with statistically significant trends in air‐sea CO2 flux (14 out of 17 biomes),
followed by ED (11 out of 17 biomes). Long‐term air‐sea CO2 flux trends in Röd13 are less frequent (4 out
of 17 biomes), likely due to the direct interpolation scheme of the mixed‐layer method, which tends to
extrapolate high‐frequency noise in data‐sparse regions and can result in larger interannual variability
(Landschützer et al., 2015).

We find that the ED global ocean CO2 sink (Figure 8, black line) generally lies within the envelope of the
Röd13 and Land13 estimates (Figure 8, cyan and magenta lines; Table 2). Additionally, compared to
many of the OBMs used to estimate the GCP ocean sink (Figure 8, orange thin lines), ED exhibits
enhanced interannual and decadal‐scale variability that is comparable to the interpolation‐based pro-
ducts; these features are not typically captured in other OBM studies (Lovenduski et al., 2008;
Sarmiento et al., 2010). These results suggest that ED, combined with the estimates from Röd13 and
Land13, which have been previously shown to have the best fit to observations in their representation
of global and tropical variability (Rödenbeck et al., 2015), could be used to form an improved uncertainty
band for ocean carbon sink studies.

Table 2
Time‐Averaged Global Ocean Air‐Sea CO2 Flux for ED, GCP 2019, Röd13, and Land13

Global ocean Jan 1995–Dec 2000 Jan 2000–Dec 2005 Jan 2005–Dec 2010 Jan 2010–Dec 2015 Jan 2015–Dec 2017 Jan 1995–Dec 2017

ED −1.89 ± 0.22 −2.26 ± 0.34 −2.43 ± 0.08 −2.79 ± 0.31 −3.29 ± 0.20 −2.47 ± 0.50
GCP 2019 −1.96 ± 0.59 −2.05 ± 0.68 −2.29 ± 0.55 −2.46 ± 0.60 −2.62 ± 0.57 −2.24 ± 0.76
Röd13 −2.39 ± 0.23 −2.43 ± 0.49 −2.52 ± 0.17 −3.05 ± 0.18 −3.09 ± 0.30 −2.66 ± 0.41
Land13 −1.84 ± 0.18 −1.84 ± 0.27 −2.45 ± 0.16 −2.68 ± 0.07 −2.85 ± 0.07 −2.29 ± 0.45
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Note. All values represent uptake; units are in petagram of carbon per year. Values represent temporal
mean ± one standard deviation due to interannual variability. Error estimates for the GCP ocean sink
include additional uncertainty (0.5 Pg C year−1) from an ensemble of OBMs.

We observe the closest agreement between ED and the interpolation‐based products in subtropical biomes
(Figures 6 and 7, biomes 3, 4, 7, 10, 11, 13, and 14), albeit with ED often having a larger seasonal amplitude.
This consistency between the model, complementary interpolation‐based methods, and surface ocean fCO2

observations (Figure A4) lends support to the estimates described here. Because subtropical surface ocean
pCO2 is strongly controlled by ocean temperature (Takahashi et al., 2002), we attribute this agreement to
the ECCO LLC270 physics, which yield very realistic SST. In the equatorial Pacific Ocean, ED and the
interpolation‐based products show similar interannual variability, with a significant reduction in outgas-
sing and surface ocean pCO2 during ENSO events (Figure 7 and A2, biomes 5 and 6). These results suggest
that ED is well suited for quantifying the drivers of air‐sea CO2 flux in the equatorial Pacific Ocean (Gierach
et al., 2012, 2013), along with characterizing ENSO diversity (Capotondi et al., 2015). When integrated
across the PEQU‐W biome, ED outgassing is substantially reduced (e.g., 2010–2011) and/or completely
arrested (e.g., 2015–2016) during onset/mature El Niño conditions (Figure 7, biome 5). In the PEQU‐E
biome, outgassing is prevalent during the entire period examined; here ED produces a weaker response
to the 1997–1998 El Niño compared to Röd13 and Land13, along with showing a stronger decrease in out-
gassing for 2012–2017. While we find general agreement in equatorial Pacific Ocean air‐sea CO2 flux trends
over interannual and longer timescales, there is substantial model‐product mismatch in the seasonal cycle
(Figures 6 and A2, biomes 5 and 6). We attribute this discrepancy to spatial gradients in ED surface ocean
pCO2 and air‐sea CO2 flux in these biomes (supporting information Figures S1 and S2), which are driven by
model high‐frequency ocean dynamics (i.e., tropical instability waves) and phytoplankton blooms that pro-
pagate westward from the Equatorial Islands (e.g., the Galapagos) (Gierach et al., 2013; Gove et al., 2016)
and the coastal periphery of Central/South America.

The largest differences in long‐term air‐sea CO2 fluxes between ED and the interpolation‐based products
occur in the Southern Ocean and North Pacific/Atlantic Oceans (Figures 2 and 7).

Figure 8. Globally integrated air‐sea CO2 flux time series for ED (black thick line), GCP 2019 ocean sink (orange thick
line with uncertainty shown as shaded region), Röd13 (cyan thick line), and Land13 (magenta thick line). Air‐sea CO2
fluxes are annual means; all values represent uptake. Orange thin lines show the individual OBMs used to compute
the GCP 2019 ocean sink.
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In the SO SPSS, the time‐mean ED ocean CO2 sink is a factor of ~2 and ~3 larger than Röd13 and Land13,
respectively (Figure 7, biome 16). This results from strong winter uptake during March–August (Figure 6,
biome 16), which biases the long‐term CO2 sink magnitude. In contrast, recent float‐based observations
from Gray et al. (2018) suggest significant winter outgassing between the polar front and marginal ice zone,
which they attribute to the upwelling of nutrient‐ and carbon‐rich waters. Our model results do not support
this hypothesis, as Southern Ocean winter outgassing in ED is generally weak (supporting information
Figure S7) and dominated by uptake when spatially integrated (Figures 6 and 7, biomes 15 and 16). We
acknowledge that air‐sea CO2 fluxes in ED and the interpolation‐based products are based on a simple para-
meterization of ocean‐atmosphere exchange through leads; air‐sea CO2 flux is scaled by the open‐water frac-
tion of the ice cover. This parameterization may lead to the misrepresentation of biological productivity and
air‐sea gas exchange in regions affected by sea ice cover (e.g., Semiletov et al., 2004). Additionally, errors in
the ECCO LLC270 representation of winter mixed layer dynamics in the Southern Ocean (see supporting
information Figures S1–S5) could also be responsible for this mismatch.

While ED has a substantial air‐sea CO2 flux trend in SO STSS (~0.009 Pg C year−1; supporting informa-
tion Table S2), the simulation shows muted decadal‐scale variability further south in SO SPSS (Figure 7,
biome 16), similar to other OBM results (Lenton et al., 2013). In particular, ED does not show a weaken-
ing and subsequent reinvigoration of SO SPSS uptake for 2002–2011 (Gruber et al., 2019; Landschützer
et al., 2015; Ritter et al., 2017); these trends are most pronounced in Land13 (Figure 7, biomes 16 and
17). We stress that while interpolation‐based products suggest substantial decadal‐scale variability in
the Southern Ocean CO2 sink, these estimates are accompanied by large uncertainties and time‐space
sampling biases. Further model development and evaluation, along with sustained year‐round observa-
tions from Argo‐BGC floats (Riser et al., 2018), are needed to further assess the fidelity of OBMs in the
Southern Ocean.

In the NP SPSS biome, ED exhibits a smaller winter outgassing patch that lags the interpolation‐based pro-
ducts by several months (supporting information Figures S1 and S2). The weaker outgassing patch, along
with strong winter uptake (Figure 6, biome 2), biases ED toward larger long‐term uptake compared to
Röd13 and Land13 (Figure 7, biome 2). While the North Pacific Ocean is typically data rich for surface ocean
pCO2 (Bakker et al., 2016), substantial data gaps do occur in the observational record (Figures A4 and A5,
biome 2), which could alias the surface ocean pCO2 seasonal cycle and thus lead to weaker uptake in the
interpolation‐based products. Additionally, interactions between the Western Subarctic Gyre, Oyashio
Current, and Bering and Okhotsk Sea outflows are typically not well resolved by OBMs (McKinley
et al., 2006), which could also explain model‐product differences in this region. We also observe similar pat-
terns of mismatch between ED and the interpolation‐based products in the North Atlantic Ocean, with ED
having stronger winter ocean uptake in the NA SPSS (Figures 6 and 7, biome 9). The systematic bias of ED
toward stronger winter uptake in subpolar seasonally stratified biomes, which results primarily from the
competing influence of surface cooling and divergence in mixed layer DIC (Lauderdale et al., 2016), may
result from the model's physical misrepresentation of seasonal mixed layer dynamics. We compared ED
mixed layer depth with the observation‐based product of Hosoda et al. (2010). For the 2004–2017 period,
the simulated mixed layer at high latitudes is generally deeper during winter and shallower during summer
than the Hosoda et al. (2010) product (supporting information Figures S1–S5). Future efforts focusing on
understanding the underlying causes of model‐product mismatch in these regions are critical for improving
estimates of the global ocean CO2 sink.

5. Summary and Concluding Remarks
We have developed ECCO‐Darwin, a data‐assimilative global ocean biogeochemistry model that allows for a
quantitative multidecadal (1995–2017) description of the ocean's physical, chemical, and ecological state.
Model physics are provided by the adjoint‐based ECCO LLC270 circulation estimate, which assimilates
nearly all available ocean observations since the era of satellite altimetry and has ~1/3° nominal horizontal
grid spacing (~18 km at high latitudes). A low‐dimensional Green's functions approach (adjusting biogeo-
chemical initial conditions and six model parameters) is used to improve model fit to global biogeochemical
observations in a property‐conserving manner (i.e., without nudging or generating spurious sources/sinks).
We then use ECCO‐Darwin, along with a suite of interpolation‐based products, to estimate seasonal to mul-
tidecadal surface ocean pCO2 and air‐sea CO2 fluxes across the global ocean and in 17 open‐ocean biomes.
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Modeled air‐sea CO2 fluxes show broad‐scale consistency with surface ocean pCO2 observations and
interpolation‐based products in many biomes. The closest agreement occurs in the subtropical and equator-
ial regions. The largest disagreement occurs in subpolar regions that are characterized by large seasonal var-
iations in mixed layer depth and where ECCO‐Darwin has, in general, stronger winter uptake than the
interpolation‐based products. Compared to other ocean biogeochemical models, ECCO‐Darwin has a global
ocean CO2 sink that agrees well with interpolation‐based products in terms of bothmagnitude (timemean of
−2.47 ± 0.50 Pg C year−1) and temporal variability.

While ED already provides a promising model‐based framework for investigating air‐sea CO2 fluxes and
ocean carbon cycling, there are several areas where model and data assimilation can be substantially
improved. (1) Land‐ocean aquatic continuum: Terrestrial runoff for rivers, ice sheets, and groundwater
are coarsely represented in ED, do not contain nutrients and organic carbon, and do not interact with
coastal ecosystems. Ongoing EDmodel development aims to add time‐varying global biogeochemical runoff
and to better parameterize coastal ecosystems in order to improve the representation of coastal (Chen
et al., 2013; Cotrim da Cunha et al., 2007) and ice sheet processes (Hopwood et al., 2018). (2) Dissolution rate
and bottom sediments: Our treatment of calcium carbonate does not currently include nonlinear dissolution
rate laws (Naviaux et al., 2019; Subhas et al., 2015) or account for sediment burial (Dunne et al., 2012).
Improved parameterizations for these processes are required in order to better represent ocean acidification.
(3) Mesoscale and submesoscale processes: The current nominal 1/3° horizontal grid spacing of ED does not
permit explicit representation of mesoscale eddies, let alone submesoscale ocean processes. As it becomes
computationally practical, we expect that increased ED model resolution will permit an increasingly more
realistic representation of mesoscale and submesoscale physical‐biogeochemical interactions. (4) Satellite
and airborne observations of ocean color: Although we have not yet included ocean color data constraints
in ED, the Darwin ocean ecology package already includes a radiative transfer module (Dutkiewicz
et al., 2015), which will permit the direct utilization of satellite and airborne ocean color observations for
evaluation and adjustment of ED. Future data assimilation development will include these important data
constraints, with potential to improve phytoplankton phenology and thus improve the timing and magni-
tude of blooms. (5) Adjoint method optimization: In this study, we rely on a low‐dimensional Green's func-
tions approach to minimize biogeochemical model‐data misfit; the incorporation of an adjoint‐based
optimization method, as is done by Verdy and Mazloff (2017) for the Southern Ocean, would allow for a lar-
ger number of control variables and for joint physical‐biogeochemical optimization. Adjoint‐method optimi-
zation will permit a much larger number of control variables than is possible with the Green's functions
approach and hence a closer fit of ED to biogeochemical observations. Furthermore, adjoint‐method optimi-
zation of the coupled physical‐biogeochemical model will allow the use of biogeochemical observations for
adjusting ocean physics. (6) Formal uncertainty estimates: In this manuscript we have presented a preliminary
comparison with observations and observation‐based products. These results suggest that ECCO‐Darwin,
combined with complementary interpolation‐based products, can be used to form improved uncertainty
estimates for ocean carbon sink studies. In particular, synthetic observations, formed by sampling ECCO‐
Darwin at the locations and times of available observations and adding geophysical noise, can be used to
evaluate sampling biases in the interpolation‐based approaches. We acknowledge that the ED simulation pre-
sented in this paper is at best eddy permitting, so this evaluation may overestimate the representation of obser-
vations required. Conversely, the interpolation‐based approacheswill allowus to identify and reduce EDmodel
deficiencies.

Despite the above limitations, many of which are already being actively addressed, our modeling efforts pro-
vide a significant step forward in the development of a global ocean physical and biogeochemical estimation
framework. The solution presented herein has beenmade available on a data server and is already beginning
to be used for science and practical applications, for example, by the CarbonMonitoring System Flux project.
Of equally high significance is that the model and analysis software have also been carefully documented
and made available in public code repositories and therefore can be used or further developed by other
researchers. As the ECCO ocean state estimates, the Darwin Project ocean ecology and biogeochemistry,
and interactions between these two projects and other climate components continue to evolve, we expect
ECCO‐Darwin to become an ever more accurate and useful tool in support of ocean carbon, marine ecosys-
tem, and climate‐related studies.
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Appendix A: Model‐Data Comparisons in Open Ocean Biomes
Figure A1 illustrates the geographical extent of the 17 open‐ocean biomes used in this study. Figures A2–A5
provide some additional model‐data comparisons in these 17 biomes.

Figure A1. Fay and McKinley (2014) open‐ocean biomes used to compute area‐weighted mean surface ocean pCO2 and
spatially integrated air‐sea CO2 fluxes; biomes are interpolated to the ED model grid. Acronyms refer to polar regions
(ICE), sub‐polar seasonally stratified (SPSS), sub‐tropical seasonally stratified (STSS), and sub‐tropical permanently
stratified (STPS) biomes in the North Pacific (NP), South Pacific (SP), North Atlantic (NA), South Atlantic (SA), Indian
Ocean (IND), Southern Ocean (SO), as well as the Atlantic equatorial (AEQU) and the West and East Pacific equatorial
(PEQU‐W and PEQU‐E, respectively) biomes.
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Figure A2. Seasonal cycle of surface ocean pCO2 for each biome. Surface ocean pCO2 is time averaged for each month (for January 1995 to December 2017)
and represents the area‐weighted mean for each biome. Anomalies with respect to the long‐term mean are shown. Similar y axis scales are used for each
individual ocean basin.
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Figure A3. Monthly surface ocean pCO2 time series for ED (black), Röd13 (cyan), and Land13 (magenta). Surface ocean pCO2 represents the area‐weighted mean
for each biome. Thin lines show monthly values and thick lines show interannual variability (12‐month running mean). Similar y axis scales are used for each
individual ocean basin.
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Figure A4. Monthly time series of surface ocean fCO2 for SOCATv5 (black) and corresponding ED values (magenta) taken at the same time‐space locations over
the optimization period. Median monthly values for each biome are shown. Adjacent monthly values without data gaps are connected with solid lines.
ED‐SOCATv5 correlation coefficients (for all prewhitened monthly values) over the entire time period are shown above each panel.
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Data Availability Statement

ECCO‐Darwin model fields are available at the website (https://data.nas.nasa.gov/ecco).
Platform‐independent instructions for running ECCO‐Darwin simulations are available at the website
(https://zenodo.org/badge/doi/10.5281/zenodo.3829965.svg). Copyright 2020 California Institute of
Technology. U.S. Government sponsorship acknowledged. All rights reserved.
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