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Abstract. The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and 

performance metrics tool designed to improve comprehensive and routine evaluation of Earth System Models 55 

(ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid 

development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance 

tracking to ensure reproducibility. It consists of an easy-to-install, well documented Python package providing 

the core functionalities (ESMValCore) that performs common pre-processing operations and a diagnostic part 

that includes tailored diagnostics and performance metrics for specific scientific applications. Here we describe 60 

large-scale diagnostics of the second major release of the tool that supports the evaluation of ESMs participating 

in CMIP Phase 6 (CMIP6). ESMValTool v2.0 includes a large collection of diagnostics and performance metrics 

for atmospheric, oceanic, and terrestrial variables for the mean state, trends, and variability. ESMValTool v2.0 

also successfully reproduces figures from the evaluation and projections chapters of the Intergovernmental Panel 

on Climate Change (IPCC) Fifth Assessment Report (AR5) and incorporates updates from targeted analysis 65 

packages, such as the NCAR Climate Variability Diagnostics Package for the evaluation of modes of variability 

the Thermodynamic Diagnostic Tool (TheDiaTo) to evaluate the energetics of the climate system, as well as 

parts of AutoAssess that contains a mix of top-down performance metrics. The tool has been fully integrated into 

the Earth System Grid Federation (ESGF) infrastructure at the Deutsches Klima Rechenzentrum (DKRZ) to 

provide evaluation results from CMIP6 model simulations shortly after the output is published to the CMIP 70 

archive. A result browser has been implemented that enables advanced monitoring of the evaluation results by a 

broad user community at much faster timescales than what was possible in CMIP5. 

1. Introduction 

The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) concluded that the 

warming of the climate system is unequivocal and that the human influence on the climate system is clear (IPCC, 75 

2013). Observed increases of greenhouse gases, warming of the atmosphere and ocean, sea ice decline, and sea 

level rise, in combination with climate model projections of a likely temperature increase between 2.1 and 4.7°C 

for a doubling of atmospheric CO2 concentration, make it an international priority to improve our understanding 

of the climate system and to reduce greenhouse gas emissions. This is reflected for example in the Paris 

Agreement of the United Nations Framework Convention on Climate Change (UNFCCC) 21
st
 session of the 80 

Conference of the Parties (COP21, UNFCCC (2015)). 

Simulations with climate and Earth System Models (ESMs) performed by the major climate modelling centres 

around the world under common protocols are coordinated as part of the World Climate Research Programme 

(WCRP) Coupled Model Intercomparison Project (CMIP) since the early 90s (Eyring et al., 2016a; Meehl et al., 

2000; Meehl et al., 2007; Taylor et al., 2012). CMIP simulations provide a fundamental source for IPCC 85 

Assessment Reports and for improving understanding of past, present and future climate change. Standardization 

of model output in a common format (Juckes et al., 2019) and publication of the CMIP model output on the 

Earth System Grid Federation (ESGF) facilitates multi-model evaluation and analysis (Balaji et al., 2018; Eyring 

et al., 2016b). This effort is additionally supported by observations for Model Intercomparison Project 

(obs4MIPs, Ferraro et al. (2015)) which provides the community with access to CMIP-like datasets (in terms of 90 

variables definitions, temporal and spatial coordinates, time frequencies and coverages) of satellite data. The 
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availability of observations and models in the same format strongly facilitates model evaluation and analysis, but 

the full rewards of the effort devoted to this activity were yet to be realized. 

CMIP is now in its 6th phase (CMIP6, Eyring et al. (2016a)) and is confronted with a number of new challenges. 

More centres are running more versions of more models of increasing complexity. An ongoing demand to 95 

resolve more processes requires increasingly higher model resolutions. Accordingly, the data volume of 2 PB in 

CMIP5 is expected to grow by a factor of 10-20 for CMIP6, resulting in a database of between 20 and 40 PB, 

depending on model resolution and the number of modelling centres ultimately contributing to the project. 

Archiving, documenting, subsetting, supporting, distributing, and analysing the huge CMIP6 output together 

with observations challenges the capacity and creativity of the largest data centres and fastest data networks. In 100 

addition, the growing dependency on CMIP products by a broad research community and by national and 

international climate assessments, as well as the increasing desire for operational analysis in support of 

mitigation and adaptation, means that a system has to be set in place that allows for an efficient and 

comprehensive analysis of the large volume of data from models and observations. 

To achieve this, the Earth System Model Evaluation Tool (ESMValTool) is developed. A first version that was 105 

tested on CMIP5 models was released in 2016 (Eyring et al., 2016c). With the release of ESMValTool version 

2.0 (v2.0), for the first time in CMIP an evaluation tool is now available that provides results from CMIP6 

simulations as soon as the model output is published to the ESGF (https://cmip-esmvaltool.dkrz.de/). This is 

realized through text files that we refer to as recipes, each calling a certain set of diagnostics and performance 

metrics to reproduce analyses that have demonstrated to be of importance in ESM evaluation in previous peer-110 

reviewed papers or assessment reports. The ESMValTool is developed as a community diagnostics and 

performance metrics tool that allows for routine comparison of single or multiple models, either against 

predecessor versions or against observations. It is developed as a community-effort currently involving more 

than 40 institutes with a rapidly growing developer and user community. It allows for full tractability and 

provenance of all figures and outputs produced. 115 

The release of ESMValTool v2.0 is described in four companion papers: Righi et al. (2019) provide the technical 

overview of ESMValTool v2.0 and show a schematic representation of the ESMValCore, a Python package that 

provides the core functionalities, and the Diagnostic Part in their Figure 1. This paper describes recipes of the 

Diagnostic Part for the evaluation of large-scale diagnostics. Recipes for extreme events and in support of 

regional model evaluation are described by Weigel et al. (2019) and recipes for emergent constraints and model 120 

weighting by Lauer et al. (2019). The use of the tool is demonstrated by showing example figures for each recipe 

for either all or a subset of CMIP5 models. Section 2 describes the type of modelling and observational data 

currently supported by ESMValTool v2.0. In Section 3 an overview of the recipes for large-scale diagnostics 

provided with the ESMValTool v2.0 release is given along with their diagnostics and performance metrics and 

the variables and observations used. Section 4 describes the workflow of routine analysis of CMIP model output 125 

alongside the ESGF and the ESMValTool result browser. Section 5 closes with a summary and an outlook. 

2. Models and observations 

The open-source release of ESMValTool v2.0 that accompanies this paper is intended to work with CMIP5 and 

CMIP6 model output (and partly also with CMIP3), but the tool is compatible with any arbitrary model output, 

provided that it is in CF-compliant netCDF format and that the variables and metadata are following the CMOR 130 
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tables and definitions. As in ESMValTool v1.0, for the evaluation of the models with observations, we make use 

of the large observational effort to deliver long-term, high quality observations from international efforts such as 

observation for Model Intercomparison Project (obs4MIPs, Ferraro et al. (2015)) or observations from the ESA 

Climate Change Initiative (CCI), Lauer et al. (2017)). In addition, observations from other sources and 

reanalyses data are used in several diagnostics. The technical treatment of observations in ESMValTool v2.0 is 135 

described in Righi et al. (2019). The observations used by individual recipes and diagnostics are described in 

Section 3. 

3. Overview of recipes included in ESMValTool v2.0 

In this section, all recipes for large-scale diagnostics that have been newly added in v2.0 since the first release of 

the ESMValTool in 2016 (see Table 1 in Eyring et al. (2016c) for an overview of namelists (now called recipes) 140 

included in v1.0) are described. In each subsection, we first scientifically motivate the inclusion of the recipe by 

reviewing the main systematic biases in current ESMs and their importance and implications. We then give an 

overview of the recipes that can be used to evaluate such biases along with the diagnostics and performance 

metrics included, and the required variables and corresponding observations that are used in ESMValTool v2.0. 

For each recipe we provide 1-2 example figures that are applied to either all or a subset of the CMIP5 models. 145 

An assessment of CMIP5 or CMIP6 models is however not the focus of this paper. Rather, we attempt to 

illustrate how the recipes contained within ESMValTool v2.0 can facilitate the development and evaluation of 

climate models in the targeted areas. Therefore, the results of each figure are only briefly described in each 

figure caption. Table 1 provides a summary of all recipes included in ESMValTool v2.0 along with a short 

description, information on the quantities and ESMValTool variable names for which the recipe is tested and the 150 

corresponding diagnostic scripts.  

We describe recipes separately for integrative measures of model performance (Section 3.1) and for the 

evaluation of processes in the atmosphere (Section 3.2), ocean and cryosphere (Section 3.3), land (Section 3.4), 

and biogeochemistry (Section 3.5). Recipes that reproduce chapters from the evaluation chapter of the IPCC 

Fifth Assessment Report (Flato et al., 2013) are described within these sections. 155 

3.1 Integrative Measures of Model Performance 

3.1.1 Performance metrics for essential climate variables for the atmosphere, ocean, sea ice and land 

Performance metrics are quantitative measures of agreement between a simulated and observed quantity. 

Various statistical measures can be used to quantify differences between individual models or generations of 

models and observations. Atmospheric performance metrics were already included in 160 

namelist_perfmetrics_CMIP5.nml of ESMValTool v1.0. This recipe has now been extended to include 

additional atmospheric variables as well as new variables from the ocean, sea-ice and land. Similar to Figure 9.7 

of Flato et al. (2013), Figure 1 shows the relative space-time root mean square error (RMSE) for the CMIP5 

historical simulations (1980-2005) against a reference observation and, where available, an alternative 

observational data set [recipe_perfmetrics_CMIP5.yml]. Additional variables can be easily added if observations 165 

are available, see further details in Section 4.1.1 of Eyring et al. (2016c). In addition to the performance metrics 

displayed in Figure 1, several other quantitative measures of model performance are included in some of the 

recipes and are described throughout the respective sections of this paper. 

https://doi.org/10.5194/gmd-2019-291
Preprint. Discussion started: 26 November 2019
c© Author(s) 2019. CC BY 4.0 License.



5 

 

3.1.2. Centered pattern correlations for different CMIP ensembles 

Another example of a performance metric is the pattern correlation between the observed and simulated 170 

climatological annual mean spatial patterns. Following Figure 9.6 of the IPCC AR5 (Chapter 9, Flato et al. 

(2013)), a diagnostic for computing and plotting centered pattern correlations for different models and CMIP 

ensembles has been implemented (Figure 2) and added to recipe_flato13ipcc.yml. The variables are first 

regridded to a 4°x5° longitude by latitude grid to not favour specific model resolutions. The centered pattern 

correlations, which measure the similarity of two patterns after removing the global mean, are computed against 175 

a reference observation. Should the input models be from different CMIP ensembles, they are grouped by 

ensemble and each ensemble is plotted side by side per variable with a different colour. If an alternate model is 

given, it is shown as a solid green circle. The axis ratio of the plot reacts dynamically to the number of variables 

(n_var) and ensembles (n_ensemble) after it surpasses a combined number of n_var*n_ensemble = 16, and the y-

axis range is calculated to encompass all values. The centered pattern correlation is good to see both the spread 180 

in models within a single variable, as well as a quick overview of how well other variables and aspects of the 

climate on a large scale are reproduced with respect to observations. Furthermore when using several ensembles, 

the progress made by each ensemble on a variable basis can be seen at a quick glance. 

3.1.3 Single model performance index 

Most model performance metrics only display the skill for a specific model and a specific variable at a time, not 185 

making an overall index for a model. This works well when only a few variables or models are considered, but 

can result in an overload of information for a multitude of variables and models. Following Reichler and Kim 

(2008), a Single Model Performance Index (SMPI) has been implemented in recipe_smpi.yml. The SMPI (called 

"I2") is based on the comparison of several different climate variables (atmospheric, surface and oceanic) 

between climate model simulations and observations or reanalyses, and evaluates the time-mean state of climate. 190 

For I2 to be determined, the differences between the climatological mean of each model variable and 

observations at each of the available data grid points are calculated, and scaled to the interannual variance from 

the validating observations. This interannual variability is determined by performing a bootstrapping method 

(random selection with replacement) for the creation of a large synthetic ensemble of observational 

climatologies. The results are then scaled to the average error from a reference ensemble of models, and in a 195 

final step the mean over all climate variables and one model is calculated. The plot shows the I2 values for each 

model (orange circles) and the multi-model mean (black circle), with the diameter of each circle representing the 

range of I2 values encompassed by the 5th and 95th percentiles of the bootstrap ensemble (Figure 3). The I2 

values vary around one, with values greater than one for underperforming models, and values less than one for 

more accurate models. This diagnostic requires that all models have input for all of the variables considered, as 200 

this is the basis to have a comparable I2. 

3.1.4 Auto-Assess 

While highly condensed metrics are useful for comparing a large number of models, for the purpose of model 

development it is important to retain granularity on which aspects of model performance have changed, and why. 

For this reason, many modelling centres have their own suite of metrics which they use to compare candidate 205 

model versions against a predecessor. AutoAssess is such a system, developed by the UK Met Office and used in 

the development of HadGEM3 and UKESM1. The output of AutoAssess contains a mix of top-down metrics 
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evaluating key model output variables (e.g. temperature and precipitation) and bottom-up metrics which assess 

the realism of model processes and emergent behaviour such as cloud variability and El Niño–Southern 

Oscillation (ENSO). The output of AutoAssess includes around 300 individual metrics. To facilitate 210 

interpretation of the results they are grouped into 11 thematic areas, ranging from the broad-scale such as global 

tropic circulation and stratospheric mean state and variability, to the region- and process-specific, such as 

monsoon regions and the hydrological cycle.  

It is planned that all the metrics currently in AutoAssess will be implemented in ESMValTool. At this time, a 

single assessment area (group of metrics) has been included as a technical demonstration: that for the 215 

stratosphere. These metrics have been implemented in a set of recipes named recipe_autoassess_*.yml. They 

include metrics of the Quasi-Biennial Oscillation (QBO) as a measure of tropical variability in the stratosphere. 

Zonal mean zonal wind at 30hPa is used to define metrics for the period and amplitude of the QBO. Figure 4 

shows the downward propagation of the QBO for a single model using zonal mean zonal wind averaged between 

5S and 5N. Metrics are also defined for the tropical tropopause cold point (100hPa, 10S-10N) temperature, and 220 

stratospheric water vapour concentrations at entry point (70hPa, 10S-10N). The cold point temperature is an 

important factor determining the entry point humidity, which in turn is important for the accurate simulation of 

stratospheric chemistry and radiative balance (Hardiman et al., 2015). Other metrics characterise the realism of 

the stratospheric easterly jet and polar night jet. 

3.2 Diagnostics for the evaluation of processes in the atmosphere 225 

3.2.1 Multi-model mean bias for temperature and precipitation 

Near-surface air temperature (tas) and precipitation (pr) are the two variables most commonly requested by users 

of ESM simulations. Often, diagnostics for tas and pr are shown for the multi-model mean of an ensemble. Both 

of these variables are the end result of  numerous interacting  processes in the models, making it challenging to 

understand and improve biases in these quantities. For example, near surface air temperature biases depend on 230 

the models’ representation of radiation, convection, clouds, land characteristics, surface fluxes, as well as 

atmospheric circulation and turbulent transport (Flato et al., 2013), each with their own potential biases that may 

either augment or oppose one another. 

The diagnostic that calculates the multi model mean bias compared to a reference data set is part of the 

recipe_flato13ipcc.yml and reproduces Figures 9.2 and 9.4 of Flato et al. (2013). We extended the 235 

namelist_flato13ipcc.xml of ESMValTool v1.0 by adding the mean root mean square error of the seasonal cycle 

with respect to the reference dataset. Figures 5 and 6 show the CMIP5 multi-model average as absolute values 

and as biases for the annual mean surface air temperature relative to ERA-Interim and precipitation relative to 

the Global Precipitation Climatology Project (GPCP, Adler et al. (2003)) data, respectively. Figure 7 shows 

observed and simulated time series of the anomalies in annual and global mean surface temperature. The model 240 

datasets are subsampled by the HadCRUT4 observational data mask (Morice et al., 2012) and pre-processed as 

described by Jones et al. (2013). The figure reproduces Figure 9.8 of Flato et al. (2013) and is part of 

recipe_flato13ipcc.yml. 

3.2.2 Precipitation quantile bias 

Precipitation is a dominant component of the hydrological cycle, and as such a main driver of the climate system 245 

and human development. The reliability of climate projections and water resources strategies therefore depends 
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on how well precipitation can be reproduced by the models used for simulations. While CMIP5 models can 

reproduce the main patterns of mean precipitation (e.g., compared to observational data from GPCP (Adler et al., 

2003)), they often show shortages and biases under particular conditions. Comparison of precipitation from 

CMIP5 models and observations shows a general good agreement for mean values at large scale (Kumar et al., 250 

2013; Liu et al., 2012). Models carry a poor representation of frontal, convective, and mesoscale processes, 

resulting in substantial biases (Mehran et al., 2014) at regional scale: models tend to overestimate precipitation 

over complex topography and underestimate it especially over arid or peculiar subcontinental regions as for 

example northern Eurasia, eastern Russia, and central Australia. Biases are typically stronger at high quantiles of 

precipitation, making the study of precipitation quantile biases an effective diagnostic for addressing the quality 255 

of simulated precipitation. The recipe_quantilebias.yml implements calculation of the quantile bias to allow 

evaluation of the precipitation bias based on a user defined quantile in models as compared to a reference dataset 

following Mehran et al. (2014). The quantile bias (QB) is defined as the ratio of monthly precipitation amounts 

in each simulation to that of the reference dataset above a specified threshold t (e.g., the 75th percentile of all the 

local monthly values). An example is reported in Figure 8, where gridded observational data from the GPCP 260 

project were adopted. A quantile bias equal to 1 indicates no bias in the simulations, whereas a value above 

(below) 1 corresponds to a climate model's overestimation (underestimation) of the precipitation amount above 

the specified threshold t, with respect to that of the reference dataset. The recipe allows evaluation of the 

precipitation bias based on a user defined quantile in models as compared to the reference dataset. 

3.2.3 Atmospheric dynamics 265 

3.2.3.1 Stratosphere-troposphere coupling 

The current generation of climate models include the representation of stratospheric processes, as the vertical 

coupling with the troposphere is important for the weather and climate at the surface (Baldwin and Dunkerton, 

2001). Stratosphere-resolving models are able to internally generate realistic annular modes of variability in the 

extratropical atmosphere (Charlton‐Perez et al., 2013) which are however too persistent in the troposphere and 270 

delayed in the stratosphere compared to reanalysis (Gerber et al., 2010), leading to biases in the simulated 

impacts on surface conditions. 

The recipe recipe_zmnam.yml can be used to evaluate the representation of the Northern Annular Mode (NAM, 

(Wallace, 2000)) in climate simulations, using reanalysis datasets as reference. The calculation is based on the 

“zonal mean algorithm” of Baldwin and Thompson (2009), and is an alternative to pressure based or height-275 

dependent methods. This approach provides a robust description of the stratosphere-troposphere coupling on 

daily timescales, requiring less subjective choices and a reduced amount of input data. Starting from daily mean 

geopotential height on pressure levels, the leading empirical orthogonal function/principal component are 

computed from zonal mean daily anomalies, with the principal component representing the zonal mean NAM 

index. The regression of the monthly mean geopotential height onto this monthly averaged index represents the 280 

NAM pattern for each selected pressure level. The outputs of the procedure are the time series (Figure 9, left) 

and the histogram (not shown) of the zonal-mean NAM index, and the regression maps for selected pressure 

levels (Figure 9, right). The users can select the specific datasets (climate model simulation and/or reanalysis) to 

be evaluated, and a subset of pressure levels of interest. 
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3.2.3.2 Atmospheric blocking indices 285 

Atmospheric blocking is a recurrent mid-latitude weather pattern identified by a large-amplitude, quasi-

stationary, long-lasting, high-pressure anomaly that ‘‘blocks’’ the westerly flow forcing the jet stream to split or 

meander (Rex, 1950). It is typically initiated by the breaking of a Rossby wave in a region at the exit of the 

storm track, where it amplifies the underlying stationary ridge (Tibaldi and Molteni, 1990). Blocking occurs 

more frequently in the Northern Hemisphere cold season, with larger frequencies observed over the Euro-290 

Atlantic and North Pacific sectors. Its lifetime oscillates from a few days up to several weeks (Davini et al., 

2012). To this day atmospheric blocking still represents an open issue for the climate modelling community 

since state-of-the-art weather and climate models show limited skill in reproducing it (Davini and D’Andrea, 

2016; Masato et al., 2013). Models are indeed characterized by large negative bias over the Euro-Atlantic sector, 

a region where blocking is often at the origin of extreme events, leading to cold spells in winter and heat waves 295 

in summer (Coumou and Rahmstorf, 2012; Sillmann et al., 2011). 

Several objective blocking indices have been developed aimed at identifying different aspects of the 

phenomenon (see Barriopedro et al. (2010) for details). The recipe recipe_miles_block.yml integrates diagnostics 

from the Mid-Latitude Evaluation System – MiLES v0.51 (Davini, 2018) tool in order to calculate two different 

blocking indices based on the reversal of the meridional gradient of daily 500 hPa geopotential height. The first 300 

one is a 1-d index, namely the Tibaldi and Molteni (1990) blocking index, here adapted to work with 2.5x.2.5 

grids. Blocking is defined when the reversal of the meridional gradient at geopotential height at 60°N is detected, 

i.e. when easterly winds are found in the mid-latitudes. The second one is the atmospheric blocking index 

following Davini et al. (2012). It is a 2-d extension of Tibaldi and Molteni (1990) covering latitudes from 30°N 

up to 75°N. The recipe computes both the Instantaneous Blocking frequencies and the Blocking Events 305 

frequency (which includes both spatial and 5-day-minimum temporal constraints). It reports also two intensity 

indices, i.e. the Meridional Gradient Index and the Blocking Intensity index, and it evaluates the wave breaking 

characteristic associated with blocking (i.e. cyclonic or anticyclonic) through the Rossby wave orientation index. 

A supplementary Instantaneous Blocking index (named “ExtraBlock”) including an extra condition to filter out 

low-latitude blocking events is also provided. The recipe compares multiples datasets against a reference one 310 

(default is ERA-Interim) and provides output (in NetCDF4 Zip format) as well as figures for the climatology of 

each diagnostic. An example output is shown in Figure 10. 

3.2.4 Thermodynamics of the climate system 

The climate system can be seen as a forced and dissipative non-equilibrium thermodynamic system (Lucarini et 

al., 2014), converting potential into mechanical energy, and generating entropy via a variety of irreversible 315 

processes The atmospheric and oceanic circulation are caused by the inhomogeneous absorption of solar 

radiation, and, all in all, they act in such a way to reduce the temperature gradients across the climate system. 

When assessing model performances, this allows developing a comprehensive set of interrelated metrics, 

explaining climate variability over a large variety of scales and linking it to the first principles of physics. One of 

these metrics is the Top-of-Atmosphere (TOA) energy budget. At steady-state, assuming stationarity, the long 320 

term energy input and output should balance. Previous studies have shown that this is essentially not the case, 

and most of the models are affected by non-negligible energy drift (Lucarini et al., 2011; Mauritsen et al., 

2012)). This severely impacts the prediction capability of state-of-the-art models, given that most of the energy 

imbalance is known to be taken up by oceans (Exarchou et al., 2015). This is why increasing attention is being 
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devoted to the retrieval of a consistent dataset of observational-based ocean heat uptake measurements (Von 325 

Schuckmann et al., 2016). Nonetheless, global energy biases are also associated to inconsistent thermodynamic 

treatment of processes taking place in the atmosphere, as the dissipation of kinetic energy (Lucarini et al., 2011) 

and of the water mass balance inside the hydrological cycle (Liepert and Previdi, 2012; Wild and Liepert, 2010). 

Climate models feature substantial disagreements in the peak intensity of the meridional heat transport, both in 

the ocean and in the atmospheric parts, whereas the position of the peaks of the (atmospheric) transport blocking 330 

are consistently captured (Lucarini and Pascale, 2014). In the atmosphere, these issues are related to 

inconsistencies in the models’ ability to reproduce the mid-latitude atmospheric variability (Di Biagio et al., 

2014; Lucarini et al., 2007) and intensity of the Lorenz Energy Cycle (Marques et al., 2011). Energy and water 

mass budgets, as well as the treatment of the hydrological cycle and atmospheric dynamics, all affect the 

material entropy production in the climate system, i.e. the entropy production related to irreversible processes in 335 

the system. Various methods have been proposed to account for that (Ambaum, 2010; Fraedrich et al., 2008; 

Lucarini and Ragone, 2011; Romps, 2008). It is possible to estimate the entropy production either via an indirect 

method, based on the radiative heat convergence in the atmosphere (the ocean accounts only for a minimal part 

of the entropy production), or via a direct method, based on the explicit computation of entropy production due 

to all irreversible processes (Goody, 2000). Ideally, the two methods are known to be equivalent, but differences 340 

emerge when considering coarse-grained data in space and/or in time (Lucarini and Pascale, 2014). Resolving 

subgrid-scale processes has long been known to be a critical issue, when attempting to provide an accurate 

climate entropy budget (Gassmann and Herzog, 2015; Kleidon and Lorenz, 2004; Kunz et al., 2008). While 

some systematic estimates of entropy production by climate models have been produced with the indirect 

method (Lucarini and Pascale, 2014), an extensive comparison with the estimates resulting from the direct 345 

method is to our best knowledge still lacking, due to the limited availability of climate model outputs with the 

necessary temporal and spatial resolution.  

In the current release the diagnostic tool for thermodynamics of the climate system contains a number of 

independent modules for: (a) energy budgets and meridional heat transports, (b) water mass and latent energy 

budget, (c) Lorenz Energy Cycle, (d) material entropy production with either the indirect/direct method or both. 350 

The code is set to ingest monthly mean gridded datasets for the modules (a), (b), and (d). Daily mean data are 

required for the computation of the Lorenz Energy Cycle (c). The intensity of the Lorenz Energy Cycle is used 

for computation of the material entropy production with the direct method. If (c) is not performed, a reference 

value for material entropy production due to kinetic energy dissipation is provided. Input variables are monthly 

mean radiative fluxes at TOA and at the surface, surface turbulent latent and sensible heat fluxes, surface 355 

temperature, near-surface specific humidity, snowfall and total precipitation, surface pressure. The daily mean 3-

dimensional fields of velocity, temperature, the two components of the near-surface horizontal velocity and near-

surface temperature are required for the computation of the Lorenz Energy Cycle. If a land-sea mask is provided, 

energy and water mass budgets are also separately computed over oceans and continents. The outputs of the 

diagnostic modules are provided as annual mean quantities in NetCDF format. When possible (energy budgets, 360 

water mass and latent energy budgets, components of the material entropy production with the indirect method) 

horizontal maps for the average of annual means are provided. For the meridional heat transports, annual mean 

meridional sections are shown (Figure 11) (Lembo et al., 2017; Lucarini and Pascale, 2014; Trenberth et al., 

2001). For the Lorenz Energy Cycle, a flux diagram (Ulbrich et al., 1991), showing all the storage, conversion, 

source and sink terms for every year, is provided (Figure 12). When a multi-model ensemble is provided, global 365 
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metrics are related in scatter plots, where each dot is a member of the ensemble, and the multi-model mean, 

together with uncertainty range, is displayed. An output log file contains all the information about the time-

averaged global mean values, including all components of the material entropy production budget. The 

diagnostic tool is run through the recipe recipe_thermodyn_diagtool.yml, where the user can also specify the 

options on which modules have to be run. An extensive explanation of the methods used and a discussion of 370 

results with a subset of CMIP5 datasets can be found in Lembo et al. (2019) who describe the Thermodynamic 

Diagnostic Tool (TheDiaTo) v1.0. 

3.2.5 Natural modes of climate variability and weather regimes 

3.2.5.1. NCAR Climate Variability Diagnostic Package 

Natural modes of climate variability co-exist with externally-forced climate change, and have large impacts on 375 

climate, especially at regional and decadal scales. These modes of variability are due to processes intrinsic to the 

coupled climate system, and exhibit limited predictability. As such, they complicate model evaluation and model 

inter-comparison, and confound assessments of anthropogenic influences on climate (Bengtsson and Hodges, 

2019; Deser et al., 2012; Deser et al., 2014; Deser et al., 2017; Kay et al., 2015; Suárez‐Gutiérrez et al., 2017). 

Despite their importance, systematic evaluation of these modes in Earth system models remains a challenge du to 380 

the wide range of phenomena to consider, the length of record needed to adequately characterize them, and 

uncertainties in the short observational data sets (Deser et al., 2010; Frankignoul et al., 2017; Simpson et al., 

2018). While the temporal sequences of internal variability in models need not match those in the single 

realization of nature, their statistical properties (e.g., time scale, autocorrelation, spectral characteristics, and 

spatial patterns) need to be realistically simulated for credible climate projections. 385 

In order to assess natural modes of climate variability in models, the NCAR Climate Variability Diagnostics 

Package (CVDP, Phillips et al. (2014)) has been implemented into the ESMValTool. The CVDP has been 

developed as a standalone tool. To allow for easy updating of the CVDP once a new version is released, the 

structure of the CVDP is kept in its original form and a single recipe recipe_CVDP.yml has been written to 

enable the CVDP to be run directly within ESMValTool. The CVDP facilitates evaluation of the major modes of 390 

climate variability, including ENSO (Deser et al., 2010), the Pacific Decadal Oscillation (PDO, (Deser et al., 

2010; Mantua et al., 1997)), the Atlantic Multi-decadal Oscillation (AMO, Trenberth and Shea (2006)), the 

Atlantic Meridional Overturning Circulation (AMOC, Danabasoglu et al. (2012)), and atmospheric 

teleconnection patterns such as the Northern and Southern Annular Modes (NAM and SAM; (Hurrell and Deser, 

2009; Thompson and Wallace, 2000)), North Atlantic Oscillation (NAO, Hurrell and Deser (2009)), and Pacific 395 

North and South American (PNA and PSA, Thompson and Wallace (2000)), patterns. For details on the actual 

calculation of these modes in CVDP we refer to the original CVDP package and explanations available at 

http://www.cesm.ucar.edu/working_groups/CVC/cvdp/. 

Depending on the climate mode analysed, the CVDP package uses the following variables: precipitation (pr), sea 

level pressure (psl), near-surface air temperature (tas), skin temperature (ts), snow depth (snd), sea ice 400 

concentration (siconc), and basin-average ocean meridional overturning mass stream function (msftmz). The 

models are evaluated against a wide range of observations and reanalysis data, for example Berkeley Earth 

System Temperature (BEST) for near-surface air temperature, Extended Reconstructed Sea Surface Temperature 

v5 (ERSSTv5) for skin temperature, and ERA-20C extended with ERA-Interim for sea level pressure. 

Additional observations or reanalysis can be added by the user for these variables. The ESMValTool v2.0 recipe 405 
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runs on all CMIP5 models. As examples, Figure 13 shows the representation of ENSO teleconnections during 

the peak phase (December-February) and Figure 14 the representation of the AMO as simulated by 41 CMIP5 

models and observations during the historical period.  

3.2.5.2 Weather regimes 

Weather Regimes (WRs) refer to recurrent large-scale atmospheric circulation structures that allow the 410 

characterization of complex atmospheric dynamics in a particular region (Michelangeli et al., 1995; Vautard, 

1990). The identification of WRs reduces the continuum of atmospheric circulation to a few recurrent and quasi-

stationary (persistent) patterns. WRs have been extensively used to investigate atmospheric variability at the 

mid-latitudes, as they are associated with extreme weather events such as heat waves or droughts (Yiou et al., 

2008). For example, there is a growing recognition of their significance especially over the Euro-Atlantic sector 415 

during the winter season, where four robust weather regimes have been identified - namely the NAO+, NAO-, 

Atlantic Ridge and Scandinavian Blocking (Cassou et al., 2005). These WRs can also be used as a diagnostic 

tool to investigate the performance of state-of-the-art climate forecast systems: difficulties in reproducing the 

Atlantic Ridge and the Scandinavian blocking have been often observed  (Dawson et al., 2012; Ferranti et al., 

2015). Forecast systems which are not able to reproduce the observed spatial patterns and frequency of 420 

occurrence of WRs may be unsuitable for simulating climate variability and its long-term changes (Hannachi et 

al., 2017). Hence, the assessment of WRs can help improve our understanding of predictability on intra-seasonal 

to inter-annual time scales. In addition, the use of WRs to evaluate the impact of the atmospheric circulation on 

essential climate variables and sectoral climatic indices is of great interest to the climate services communities 

(Grams et al., 2017). 425 

The recipe recipe_modes_of_variability.yml takes daily or monthly data from a particular region, season (or 

month) and period as input, and then applies k-mean clustering or hierarchical clustering either directly to the 

spatial data or after computing the EOFs. This recipe can be run for both a reference/observational dataset and 

climate projections simultaneously, and the root-mean-square error is then calculated between the mean 

anomalies obtained for the clusters from the reference and projection data sets. The user can specify the number 430 

of clusters to be computed. The recipe output consist of netCDF files of the time series of the cluster 

occurrences, the mean anomaly corresponding to each cluster at each location and the corresponding p-value, for 

both the observed and projected WR and the RMSE between them. The recipe also creates three plots: the 

observed/reference modes of variability (Figure 15), the reassigned modes of variability for the future projection 

(Figure 16) and a table displaying the RMSE values between reference and projected modes of variability 435 

(Figure 17). The recipe recipe_miles_regimes.yml integrates the diagnostics from the Mid-Latitude Evaluation 

System – MiLES v0.51 tool (Davini, 2018) in order to calculate the four relevant North Atlantic weather 

regimes. This is done by analysing the 500hPa geopotential height over the North Atlantic (80W-40E 30N-

87.5N). Once a 5-day smoothed daily seasonal cycle is removed, the Empirical Orthogonal Functions which 

explain at least the 80% of the variance are extracted in order to reduce the phase-space dimensions. A k-means 440 

clustering using Hartigan-Wong algorithm with k=4 is then applied providing the final weather regimes 

identification. The recipe compares multiples datasets against a reference one (default is ERA-Interim) 

producing multiple figures which show the pattern of each regime and its difference against the reference 

dataset. Weather regimes patterns and timeseries are provided in NetCDF4 Zip format. Considering the limited 

physical significance of Euro-Atlantic weather regimes in other seasons, only winter is currently supported. An 445 

example output is shown in Figure 18. 
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3.2.5.3 Empirical Orthogonal Functions 

Empirical Orthogonal Function (EOF) analysis is a powerful method to decompose spatiotemporal data using an 

orthogonal basis of spatial patterns. In weather sciences, EOFs have been extensively used to identify the most 

important modes of climate variability and their associated teleconnection patterns: for instance, the North 450 

Atlantic Oscillation (NAO, (Ambaum, 2010; Wallace and Gutzler, 1981)) and the Arctic Oscillation (AO, 

Thompson and Wallace (2000)) are usually defined with EOFs. Biases in the representation of the NAO or the 

AO have been found to be typical in many CMIP5 models (Davini et al., 2012). 

The recipe recipe_miles_eof.yml integrates diagnostics from the Mid-Latitude Evaluation System – MiLES 

v0.51 (Davini, 2018) tool in order to extract the first EOFs over a user-defined domain. Three default patterns 455 

are supported, namely the “NAO” (North Atlantic Oscillation, over the 90W-40E 20N-85N box), the “PNA” 

(Pacific North America pattern, over the 140W-80E, 20N-85N box) and the “AO” (Arctic Oscillation, over the 

20N-85N box). The computation is based on Singular-Value Decomposition (SVD) applied to the anomalies of 

the monthly 500 hPa geopotential height. The recipe compares multiples datasets against a reference one (default 

is ERA-Interim) producing multiple figures which show the linear regressions of the Principal Component (PC) 460 

of each EOF on the monthly 500hPa geopotential and its differences against the reference dataset. PCs, EOF 

patterns, and percentage of variance explained are provided in NetCDF4 Zip format. By default the first four 

EOFs are stored and plotted. An example output is shown in Figure 19. 

3.2.5.4 Indices from differences between area averages 

In addition to indices and modes of variability obtained from EOF and clustering analyses, users may wish to 465 

compute their own indices based on area-weighted averages or difference in area-weighted averages. For 

example, the Niño 3.4 index is defined as the sea surface temperature (SST) anomalies averaged over [170–

120°W, 5°N–5°S]. Similarly, the NAO index can be defined as the standardized difference between the weighted 

area-average mean sea level pressure of the domain bounded by [0–80° W, 30–50° N] and [0–80° W 60–80°N. 

The functions for computing indices based on area averages in recipe_combined_indices.yml have been adapted 470 

to allow users to compute indices for the Niño 3, Niño 3.4, Niño 4, NAO and Southern Oscillation Index 

(SOI) defined region(s), with the option of selecting different variables (e.g. temperature of the ocean surface 

(tos, commonly named sea surface temperature) or pressure at sea level (psl, commonly named sea level 

pressure)) with the option to compute standardized variables, applying running means and select different 

seasons by selecting the initial and final months (e.g.: defining parameter ‘moninf’ as 6 (12) and ‘monsup’ as 8 475 

(2), for the boreal summer (winter) June-July-August (December-January-February)). The output of this recipe is 

a netCDF file containing a time series of the computed indices and a time series of the evolution of the index for 

individual models and the multi model mean (see Figure 20). 

3.3 Diagnostics for the evaluation of processes in the ocean and cryosphere 

3.3.1 Physical ocean  480 

The global ocean is a core component of the Earth system. A significant bias in the physical ocean can impact 

the performance of the entire model. 

Several diagnostics exist in ESMValTool v2 to evaluate the broad behaviour of models of the global ocean. 

Figures 21 to 26 show several diagnostics of the ability of the CMIP5 models to simulate the global ocean. In 

these figures, model datasets are selected from the historical simulations (here, ensemble member r1i1p1). All 485 
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available CF-compliant CMIP5 models are compared, however each figure shown in this section may include a 

different set of models, as not all CMIP5 models produced all the required datasets in a CF-compliant format. To 

minimise noise, these figures are shown with a 6 year moving window average.  

The volume weighted global average temperature anomaly of the ocean is shown in Figure 21 and displays the 

change in the mean temperature of the ocean relative to the start of the historical simulation The temperature 490 

anomaly is calculated against the years 1850-1900. This figure was produced using the recipe 

recipe_ocean_scalar_fields.yml. The AMOC is an indication of the strength of the Northbound current in the 

Atlantic Ocean and is shown in Figure 22. It transfers heat from tropical waters to the Northern Atlantic ocean. 

The AMOC has an observed strength of 17.2 Sv (McCarthy et al., 2015). Previous modelling studies (Cheng et 

al., 2013; Gregory et al., 2005) have predicted a decline in the strength of the AMOC over the 20th century. The 495 

Drake Passage current is a measure of the strength of the Antarctic Circumpolar Current (ACC). This is the 

strongest current in the global ocean and runs clockwise around Antarctica. The ACC was recently measured 

through the Drake Passage at 173.3±10.7 Sv (Donohue et al., 2016). A comparison to CMIP5 models is shown in 

Figure 23. Figures 22 and 23 were produced using the recipe recipe_ocean_amocs.yml. The global total flux of 

CO2 from the atmosphere into the ocean for several CMIP5 models is shown in Figure 24. This figure shows the 500 

absorption of atmospheric carbon by the ocean. At the start of the historic period, most of the models shown here 

have been spun up, meaning that the air to sea flux of CO2 should be close to zero. As the CO2 concentration in 

the atmosphere increases over the course of the historical simulation, the flux of carbon from the air into the sea 

also increases. The global total integrated primary production from phytoplankton is shown in Figure 25. Marine 

phytoplankton is responsible for 56±7 Pg of primary production per year (Buitenhuis et al., 2013), which is of 505 

similar magnitude to that of land plants (Field et al., 1998). In all cases, we do not expect to observe a significant 

change in primary production over the course of the historical period. However, the differences in the magnitude 

of the total integrated primary production inform us about the level of activity of the marine ecosystem. Figure 

24 and 25 were both produced with the recipe recipe_ocean_scalar_fields.yml. The combination of these five 

key time series figures allows a coarse scale evaluation of the ocean circulation and biogeochemistry. The global 510 

volume weighted temperature shows the effect of warming ocean, the change in Drake passage and the AMOC 

show significant global changes in circulation. The integrated primary production shows changes in marine 

productivity and the air sea flux of CO2 shows the absorption of anthropogenic atmospheric carbon by the ocean. 

In addition, a diagnostic from Chapter 9 of IPCC AR5 for the ocean is added (Flato et al., 2013) which is 

included in recipe_flato13ipcc.yml. Figure 26 shows an analysis of the SST that documents the performance of 515 

models compared to one standard observational dataset, namely the SST part of the Hadley Centre Sea Ice and 

Sea Surface Temperature (HadISST) (Rayner et al., 2003) dataset. The SST plays an important role in climate 

simulations because it is the main oceanic driver of the atmosphere. As such, a good model performance for SST 

has long been a hallmark of accurate climate predictions. In this figure we reproduce Figure 9.14 of Flato et al. 

(2013). It shows both zonal mean and equatorial (meaning averaged over 5 degrees South to 5 degrees North) 520 

SST. For the zonal mean it shows (a) the error compared to observations for the individual models, (c ) the multi 

model mean with the standard deviation. For the equatorial average it shows (b) the individual model errors and 

(d) the multi model mean of the temperatures together with the observational dataset. In this way we can give a 

good overview of both the error and the absolute temperatures, resolved at the individual model level. 
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3.3.2 Southern ocean 525 

The Southern ocean is central to the global climate and the global carbon cycle, and to the climate’s response to 

increasing levels of atmospheric greenhouse gases, as it ventilates a large fraction of the global ocean volume. 

Roemmich et al. (2015) concluded that the Southern Ocean was responsible for 67-98% of the total oceanic heat 

uptake; the oceanic increase in heat accounts for 93% of the radiative imbalance at the top of the atmosphere. 

Global coupled climate models and Earth system models, however, vary widely in their simulations of the 530 

Southern Ocean and its role in and response to anthropogenic forcing. Due to the region’s complex water-mass 

structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, 

mixing, buoyancy fluxes, and topography. Russell et al. (2018) laid out a series of diagnostic, observational-

based metrics that highlight biases in critical components of the Southern Hemisphere climate system, especially 

those related to the uptake of heat and carbon by the ocean. These components include the surface fluxes 535 

(including wind and heat and carbon), the frontal structure, the circulation and transport within the ocean, the 

carbon system (in the ESMs) and the sea ice simulation. Each component is associated with one or more model 

diagnostics, and with relevant observational data sets that can be used for the model evaluation. Russell et al. 

(2018) noted that biases in the strength and position of the surface westerlies over the Southern Ocean were 

indicative of biases in several other variables. The strength, extent, and latitudinal position of the Southern 540 

Hemisphere surface westerlies are crucial to the simulation of the circulation, vertical exchange and overturning, 

and heat and carbon fluxes over the Southern Ocean. The net transfer of wind energy to the ocean depends 

critically on the strength and latitudinal structure of the winds. Equatorward-shifted winds are less aligned with 

the latitudes of the Drake Passage and are situated over shallower isopycnal surfaces, making them less effective 

at both driving the ACC and bringing dense deep water up to the surface. 545 

Figure 27 shows the annually-averaged, zonally-averaged zonal wind stress over the Southern Ocean from a 

sample of the CMIP5 climate simulations and the equivalent quantity from the Climate Forecast System 

Reanalysis (Saha et al., 2013). While most model metrics indicate that simulations generally bracket the 

observed quantity, this metric indicates that ALL of the models have an equatorward bias relative to the 

observations, an indication of a deeper modelling issue. Although Russell et al. (2018) only included six of the 550 

simulations submitted as part of CMIP5, the recipe recipe_russell18jgr.yml will recreate all of the metrics of this 

study for all CMIP5 simulations. Each metric assesses a simulated variable, or a climatically-relevant quantity 

calculated from one or more simulated variables (e.g. heat content is calculated from the simulated ocean 

temperature, thetao, while the meridional heat transport depends on both the temperature, thetao, and the 

meridional velocity, vo) relative to the observations. The recipe focuses on factors affecting the simulated heat 555 

and carbon uptake by the Southern Ocean. Figure 28 shows the relationship between the latitudinal width of the 

surface westerly winds over the Southern Ocean with the net heat uptake south of 30°S – the correlation (-0.8) is 

significant above the 98% level. 

3.3.3 Arctic ocean 

The Arctic ocean is one of the areas of the Earth where the effects of climate change are especially visible today. 560 

Two most prominent processes are Arctic amplification (Serreze and Barry, 2011) and decrease of the sea ice 

area and thickness (see Section 3.3.2). Both receive good coverage in the literature and are already well-studied. 

Much less attention is paid to the interior of the Arctic Ocean itself. In order to increase our confidence in 

projections of the Arctic climate future proper representation of the Arctic Ocean hydrography is necessary. 
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The vertical structure of temperature and salinity (T and S) in the ocean model is a key diagnostic that is used for 565 

ocean model evaluation. Realistic temperature and salinity distributions mean that the models properly represent 

dynamic and thermodynamic processes in the ocean. Different ocean basins have different hydrological regimes 

so it is important to perform analysis of vertical TS distribution for different basins separately. The basic 

diagnostic in this sense is mean vertical profiles of temperature and salinity over some basin averaged for a 

relatively long period of time. Figure 29 shows the mean (1970-2005) vertical ocean potential temperature 570 

distribution in the Eurasian Basin of the Arctic Ocean as produced with recipe_arctic_ocean.yml. In addition to 

individual vertical profiles for every model, we also show the mean over all participating models and similar 

profile from climatological data (PHC3, Steele et al. (2001)). The characteristics of vertical TS distribution can 

change with time, and consequently the vertical TS distribution is an important indicator of the behaviour of the 

coupled ocean-sea ice-atmosphere system in the North Atlantic and Arctic Oceans. One way to evaluate these 575 

changes is by using Hovmoller diagrams. We have created Hovmoller diagrams for two main Arctic Ocean 

basins – Eurasian and Amerasian with T and S spatially averaged on a monthly basis for every vertical level. 

This diagnostic allows the temporal evolution of vertical ocean potential temperature distribution to be assessed. 

The T-S diagrams allow the analysis of water masses and their potential for mixing. The lines of constant density 

for specific ranges of temperature and salinity are shown on the background of the T-S diagram. The dots on the 580 

diagram are individual grid points from specified region at all model levels within user specified depth range. 

The depths are colour coded. Examples of the mean (1970-2005) T-S diagram for Eurasian Basin of the Arctic 

Ocean shown in Figure 30 refer to recipe_arctic_ocean.yml. 

The spatial distribution of basic oceanographic variables characterises the properties and spreading of ocean 

water masses. For the coupled models, capturing the spatial distribution of oceanographic variables is especially 585 

important in order to correctly represent the ocean-ice-atmosphere interface. We have implemented plots with 

spatial maps of temperature, salinity and current speeds at original model levels. For temperature and salinity, we 

have also implemented spatial maps of model biases from the observed climatology with respect to PHC3 

climatology. For the model biases, values from the original model levels are linearly interpolated to the 

climatology levels and then spatially interpolated from the model grid to the regular PHC3 climatology grid. 590 

Resulting fields show model performance in simulating spatial distribution of temperature and salinity. Vertical 

transects through arbitrary sections are important for analysis of vertical distribution of ocean water properties 

and especially useful when exchange between different ocean basins is evaluated. Therefore, diagnostics that 

allow for the definition of an arbitrary ocean section by providing set of points on the ocean surface are also 

implemented. For each point, a vertical profile on the original model levels is interpolated. All profiles are then 595 

connected to form a transect. The great-circle distance between the points is calculated and used as along-track 

distance. One of the main use cases for transects is to create vertical sections across ocean passages. Transects 

that follow the pathway of the Atlantic water according to Ilıcak et al. (2016) are also included. Atlantic water is 

a key water mass of the Arctic Ocean and its proper representation is one of the main challenges in Arctic Ocean 

modelling. A diagnostic that calculates the temperature of the Atlantic water core for every model as the 600 

maximum potential temperature between 200 and 1000-meter depth in the Eurasian Basin is included in this 

release. The depth of the Atlantic water core is calculated as the model level depth where the maximum 

temperature is found in Eurasian Basin (Atlantic water core temperature). In order to evaluate the spatial 

distribution of Atlantic water in different climate models we also provide diagnostics with maps of the spatial 

distribution of water temperature at the depth of Atlantic water core in recipe_arctic_ocean.yml. 605 
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3.3.4 Sea Ice 

Sea ice is a critical component of the climate system, which considerably influences the ocean and atmosphere 

through different processes and feedbacks (Goosse et al., 2018). In the Arctic, sea ice has been dramatically 

retreating (Stroeve and Notz, 2018) and thinning (Kwok, 2018) in the past decades. In the Antarctic, there has 

been a small but significant increase in sea-ice cover from the beginning of satellite observations with large 610 

interannual variability, showing for example a sudden sea-ice retreat since late 2015 (Meehl et al., 2019; 

Schlosser et al., 2018)). Climate models constitute a useful tool to make projections of the future changes in sea 

ice (Massonnet et al., 2012). However, the different climate models largely disagree on the magnitude of sea-ice 

changes (Stroeve et al., 2012). One of the reasons for this disagreement is the lack of understanding and 

representing core thermodynamic and dynamic processes and feedbacks related to sea ice.  615 

In order to better understand and reduce model errors, two recipes related to sea ice have been implemented into 

ESMValTool v2.0. The first recipe, recipe_seaice_feedback.yml, is related to the negative sea-ice growth–

thickness feedback (Massonnet et al., 2018). In this recipe, one process-based diagnostic named the Ice 

Formation Efficiency (IFE) is computed based on monthly mean sea-ice volume estimated north of 80°N. The 

choice of this domain is motivated by the desire to minimize the influence of dynamic processes but also by the 620 

availability of sea-ice thickness measurements. The diagnostic intends to evaluate the strength of the negative 

sea-ice thickness/growth feedback, which causes late-summer negative anomalies in sea-ice area and volume to 

be partially recovered during the next growing season (Notz and Bitz, 2017). A chief cause behind the existence 

of this feedback is the non-linear inverse dependence between heat conduction fluxes and sea-ice thickness, 

which implies that thin sea ice grows faster than thick sea ice. To estimate the strength of that feedback, 625 

anomalies of the annual minimum of sea-ice volume north of 80°N are first estimated. Then, the increase in sea-

ice volume until the next annual maximum is computed for each year. The IFE is defined as the regression of 

this ice volume production onto the baseline summer volume anomaly (Figure 31). The IFE was applied to the 

CMIP5 ensemble (Massonnet et al., 2018). It was first found that all CMIP5 models, without exception, simulate 

negative IFE over the historical period, implying that all these models display a basic mechanism of ice volume 630 

recovery when large negative anomalies occur in late summer. However, the strength of the IFE was found to be 

simulated very differently by the models. The IFE was in fact found to be closely associated with the background 

mean sea-ice state of the models (defined as the annual mean sea-ice volume north of 80°N) with stronger 

feedback strength ice thins. In parallel, it was found that the strength of the IFE was directly connected to the 

long-term variability (persistence, year-to-year variability, decadal trends), providing prospects for the 635 

application of emergent constraints. However, the shortness of observational records of sea-ice thickness and 

their large uncertainty precluded rigorous applications of such constraints. The analyses nevertheless allowed (1) 

to pin down that the spread in CMIP5 ice volume projections is inherently linked to the way they represent the 

strength of sea ice feedbacks, which itself is closely linked to the model mean states, and (2) to provide guidance 

for the development of future observing systems in the Arctic, by stressing the need for more reliable estimates 640 

of sea ice thickness in the central Arctic basin. The second recipe, recipe_sea_ice_drift.yml, allows to quantify 

the relationships between Arctic sea-ice drift speed, concentration and thickness (Docquier et al., 2017). A 

decrease in concentration or thickness, as observed in recent decades in the Arctic Ocean (Kwok, 2018; Stroeve 

and Notz, 2018), leads to reduced sea-ice strength and internal stress, and thus larger sea-ice drift speed (Rampal 

et al., 2011). This in turn could provide higher export of sea ice out of the Arctic Basin, resulting in lower sea-ice 645 

concentration and further thinning. Olason and Notz (2014) investigate the relationships between Arctic sea-ice 
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drift speed, concentration and thickness using satellite and buoy observations. They show that both seasonal and 

recent long-term changes in sea ice drift are primarily correlated to changes in sea ice concentration and 

thickness. Our recipe allows to quantify these relationships in climate models. In this recipe, four process-based 

metrics are computed based on the multi-year monthly mean sea-ice drift speed, concentration and thickness, 650 

averaged over the Central Arctic. The first metric is the ratio between the modelled drift-concentration slope and 

the observed drift-concentration slope. The second metric is similar to the first one, except that sea-ice thickness 

is involved instead of sea-ice concentration. The third metric is the normalised distance between the model and 

observations in the drift-concentration space. The fourth metric is similar to the third one, except that sea-ice 

thickness is involved instead of sea-ice concentration. Sea-ice concentration from the European Organisation for 655 

the Exploitation of Meteorological Satellites Ocean and Sea Ice Satellite Application Facility (Lavergne et al., 

2019)), sea-ice thickness from the Pan-Arctic Ice-Ocean Modeling and Assimilation System reanalysis 

(PIOMAS, Zhang and Rothrock (2003)) and sea-ice drift from the International Arctic Buoy Programme (IABP, 

Tschudi et al. (2016)) are used as reference products to compute these metrics (Figure 32). 

3.4 Diagnostics for the evaluation of land processes 660 

3.4.1 Land Cover 

Land cover (LC) is either prescribed in the CMIP models or simulated using a Dynamic Global Vegetation 

Model (DGVM). Within the recent decade, numerous studies focused on the quantification of the impact of land 

cover change on climate (see Mahmood et al. (2014) and references therein for a comprehensive review). There 

is a growing body of evidence that vegetation, especially tree cover, significantly affects the terrestrial water 665 

cycle, energy balance (Alkama and Cescatti, 2016; Duveiller et al., 2018b) and carbon cycle (Achard et al., 

2014). However, understanding the impact of LC change on climate remains controversial and is still work in 

progress (Bonan, 2008; Ellison et al., 2012; Mahmood et al., 2014; Sheil and Murdiyarso, 2009). In order to 

judge the LC related ESM results, an independent assessment of the accuracy of the simulated spatial 

distributions of major land cover types is desirable to evaluate the DGVM accuracy for present climate 670 

conditions (Lauer et al., 2017). 

Recently in the frame of the European Space Agency (ESA) Climate Change Initiative (CCI), a new global LC 

dataset has been published (Defourny et al., 2014; Defourny et al., 2016) that can be used to evaluate or 

prescribe vegetation distributions for climate modelling. Effects of LC uncertainty in the ESA CCI LC dataset on 

land surface fluxes and climate are described by Hartley et al. (2017) and Georgievski and Hagemann (2018), 675 

respectively. Satellite derived LC classes cannot directly be used for the evaluation of ESM vegetation due to the 

different concepts of vegetation representation in DGVMs, which are typically based on the concept of plant 

functional types (PFTs) that are supposed to represent groups of LC with similar functional behaviour. Thus, an 

important first step is to map the ESA CCI LC classes to PFTs as described by Poulter et al. (2015). As the PFTs 

in ESMs differ, the current LC diagnostic analyses only major LC types (bare soil, crops, grass, shrubs, trees), 680 

which is similar to the approach chosen by Brovkin et al. (2013) and Lauer et al. (2017). The corresponding 

evaluation metric was implemented into the ESMValTool in recipe_landcover.yml. It evaluates areas, mean 

fractions and biases compared to ESA CCI LC data over four major regions (global land area, tropics (30°S-

30°N), northern extratropical land areas north of 30°N), and southern extratropical land areas south of 30°S). 

Currently the evaluation is using ESA CCI LC data for the epoch 2008-2012 that have been generated with the 685 

ESA CCI LC user tool at 0.5 degree resolution. Consequently, model data are interpolated to the same 

https://doi.org/10.5194/gmd-2019-291
Preprint. Discussion started: 26 November 2019
c© Author(s) 2019. CC BY 4.0 License.



18 

 

resolution. For the calculation of mean fractions per major region, a land area of these regions needs to be 

specified, which is currently taken from ESA CCI land cover. Example plots of accumulated area and biases in 

major LC types for different models are shown in Figure 33. 

3.4.2 Albedo changes associated to land cover transitions  690 

Land Cover Changes (LCC) can modify climate by altering land surface properties such as surface albedo, 

surface roughness and evaporative fraction. In particular, historical deforestation is believed to have led to an 

increase in surface albedo corresponding to a global radiative forcing of  -0.15 +/- 0.10 Wm
-2

 (Change, 2013). 

There are however large uncertainties, even concerning the sign of the effect, regarding the impacts of LUC on 

near-surface temperature due to persistent model disagreement (Davin et al., 2019; de Noblet-Ducoudré et al., 695 

2012; Lejeune et al., 2017; Pitman et al., 2009). These disagreements arise from uncertainties in 1) the interplay 

between radiative (albedo) and non-radiative processes (surface roughness and evaporative fraction), 2) the role 

of local versus large scale processes and feedbacks (Winckler et al., 2017) and 3) in the magnitude of change in 

given surface properties (e.g. albedo). Concerning the latter, Myhre et al. (2005) and Kvalevåg et al. (2010) 

suggest that the albedo change between natural vegetation and croplands is usually overestimated in climate 700 

simulations compared to satellite-derived observational evidence. In addition to this potential bias compared to 

observational data, there is a substantial spread in the models’ parameterized albedo response to land-cover 

perturbations. Boisier et al. (2012) identified that this is responsible for half of the dispersion in the albedo 

response to LCC since preindustrial times among models participating in the LUCID project, the remaining 

uncertainty resulting from differences in the imposed Land Cover. A more systematic evaluation of model 705 

performance in simulating LUC-induced changes in albedo based on latest available observations is therefore 

essential in order to reduce these uncertainties. 

A satellite-based dataset providing potential effect of a range of land cover transitions on the full surface energy 

balance (including albedo), at global scale, 1°-resolution, and monthly timescale was recently made available 

(Duveiller et al., 2018b). The potential albedo changes associated to vegetation transitions were extracted by a 710 

statistical treatment combining the recent ESA CCI LC data (see 3.4.1 for references) and the mean of the white-

sky and black-sky albedo values of the NASA MCD43C3 albedo product for the 2008-2012 period (see (Schaaf 

et al., 2002) for information on the retrieval algorithm). Because land cover-specific albedo values are not a 

standard output of climate models, in order to retrieve them a diagnostic was implemented into the ESMValTool 

in recipe_albedolandcover.yml. It follows a similar approach but applied on model outputs, i.e. determines the 715 

coefficients of multiple linear regressions fitted between the albedo values and the tree, shrub, short vegetation 

(crops and grasses) and bare soil fractions of each grid cell within spatially moving windows encompassing 5x5 

model grid cells. Solving these regressions provides the albedo values for trees, shrubs and short vegetation 

(crops and grasses) from which the albedo changes associated with transitions between these three LC types are 

derived. The diagnostic is applied on monthly data, and based on the value of the snow area fraction (snc) 720 

distinguishes between snow-free (snc<0.1) and snow-covered (snc>0.9) grid cells for each month. It can 

calculate albedo estimates for each of these two cases and each of the three land cover types. It eventually plots 

global maps of the albedo changes associated with the corresponding LC transitions for each model in their 

original resolution, next to the satellite-derived estimates from Duveiller et al. (2018a). Two versions of this 

observational dataset, corresponding to two vegetation classifications, are both freely available. The diagnostic 725 

shows data according to the IGBPgen classification, which entails only four LC classes that can be directly 
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compared to model PFTs. An example plot is shown in Figure 34 for the July albedo change associated with a 

transition from trees to short vegetation types (crops and grasses). Almost only snow-free areas are visible for 

this month, while grey areas indicate where the spatial coexistence of the two LC classes was not high enough 

for the regression technique to be performed, where the regression results did not pass the required quality 730 

checks, or grid cells which could not be categorised either as snow-free or as snow-covered (Duveiller et al., 

2018a).  

3.5 Diagnostics for the evaluation of biogeochemical processes 

3.5.1 Terrestrial biogeochemistry 

With CO2 being the most important anthropogenic greenhouse gas, it is vital for ESMs to have a realistic 735 

representation of the carbon cycle. Atmospheric concentration of CO2 can be inferred from the difference 

between anthropogenic emissions and the land and ocean carbon sinks simulated by the models. These sinks are 

affected by atmospheric CO2 and climate change, thus introducing feedbacks between the climate system and the 

carbon cycle (Arora et al., 2013; Friedlingstein et al., 2006). Quantification of these feedbacks to estimate the 

evolution of these carbon sinks and thus the atmospheric CO2 concentration and the resulting climate change is 740 

paramount (Cox et al., 2013; Friedlingstein et al., 2014; Wenzel et al., 2014; Wenzel et al., 2016). The Anav et 

al. (2013) paper evaluated CMIP5 models in three different time scales: long-term trends, interannual variability 

and seasonal cycles for the main climatic variables controlling both the spatial and temporal characteristics of the 

carbon cycle, i.e. surface land temperature (tas), precipitation over land (pr), sea surface temperature (tos), land-

atmosphere (nbp) and ocean-atmosphere fluxes (fgco2), gross primary production (gpp), leaf area index (lai), and 745 

carbon content in soil and vegetation (csoil, cveg). Models are able to simulate key characteristics of the main 

climatic variables and their seasonal evolution, but deficiencies in the simulation of specific variables, especially 

in the land carbon cycle with a general overestimation of photosynthesis and leaf area index, as well as an 

underestimation of the primary production in the ocean, exist. 

The analysis from the Anav et al. (2013) can be reproduced with recipe_anav13jclim.yml. Alongside porting the 750 

existing recipe to v2, plots for the timeseries anomalies of tas, pr, SST, as well as timeseries for nbp and fgco2 

have been added, reproducing Figures 1, 2, 3, 5, and 13 of Anav et al. (2013), with the latter two also forming 

Figure 26 of Flato et al. (2013). In ESMValTool v2, observational estimates of gpp are included from the latest 

data release of the FLUXCOM project (Jung et al., 2019) which integrates FLUXNET measurements,  satellite 

remote sensing and climate data with machine learning to provide improved global products of land-atmosphere 755 

fluxes for evaluation. The routines needed to make carbon and energy fluxes from the FLUXCOM project 

CMOR-compliant to facilitate process based model evaluation is also made available as part of ESMValTool v2. 

As an example of the newly added plots, Figure 35 shows the timeseries for the land-atmosphere carbon flux 

nbp, similar to Figure 5 of Anav et al. (2013). Shading indicates the confidence interval of the CMIP5 ensemble 

standard deviation, derived from assuming a t-distribution centered on the ensemble mean (inner curve), while 760 

the gray shading shows the overall range of variability of the models. 

3.5.2 Ecosystem Turnover Times of Carbon 

The exchange of carbon between the land biosphere and atmosphere represents a key feedback mechanism that 

will determine the effect of global changes on the carbon cycle and vice-versa (Heimann and Reichstein, 2008). 

Despite significant implications, the uncertainties in simulated land carbon stocks that integrates the land-765 
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atmosphere carbon exchange are large, and, therefore, represent a major challenge for ESMs (Friedlingstein et 

al., 2014; Friend et al., 2014). One of the major factors leading to these uncertainties is the turnover time of 

carbon, the time period that a carbon atom on average spends in land ecosystems, from assimilation through 

photosynthesis to its release back into the atmosphere. This emergent ecosystem property, calculated, for 

example, as a ratio of long-term average total carbon stock to gross primary productivity, is not well-reproduced 770 

by most of the ESMs (Carvalhais et al., 2014; Koven et al., 2015). 

Carvalhais et al. (2014) evaluated the biases in ecosystem carbon turnover time in CMIP5 models, their 

associations with climate variables, and then quantified multimodel biases and agreements. The 

recipe_carvalhais2014nat.yml reproduces the analysis of Carvalhais et al. (2014). It requires the simulations of 

total ecosystem carbon stock (or its components), gross primary productivity, as well as precipitation and 775 

temperature. As an example, an evaluation of the zonal means of turnover time in CMIP5 models is shown in 

Figure 36. Most CMIP5 models (and multi-model ensemble) have a much shorter turnover time than the 

observation-based estimate across the whole latitudinal range. The spread among the models is also large and 

can vary by an order of magnitude. This results in not only a large bias in turnover time, but also a considerable 

disagreement among the models. In fact, the majority of CMIP5 models simulate turnover time more than four 780 

times shorter than the observation-based estimate in most regions globally (Figure 37). In arid and semi-arid 

regions model agreement is also low with 2 or fewer (out of 10) models within the observational uncertainty.  

In addition, the recipe also produces the full factorial model-model-observation comparison matrix that can be 

used to evaluate individual models. It further provides a quantitative measure of turnover times across different 

biomes, as well as its relationship with precipitation and temperature. 785 

3.5.3 Marine biogeochemistry 

ESMValTool v2 now includes a wide set of metrics to assess marine biogeochemistry performances of ESMs, 

contained in recipe_ocean_bgc.yml. This recipe allows a direct comparison of the models against observational 

data for temperature (thetao), salinity (so), oxygen (o2), nitrate (no3), phosphate (po4) and silicate (si) from 

World Ocean Atlas 2013 (WOA, Garcia et al. (2013)), CO2 air-sea fluxes (fgco2) estimated by Landschuetzer et 790 

al. (2016), Chlorophyll-a (chl) fields from ESACCI-OC (Volpe et al., 2019) and primary production expressed 

as carbon (intpp) produced by Oregon State University using MODIS data (Behrenfeld et al., 1997).  

We first demonstrate the recipe using the nitrate concentration in the CMIP5 HadGEM2-ES model in the r1i1p1 

ensemble member of the historical experiment in the years 2001-2005. However, this recipe can be expanded to 

include any other CMOR-ised ESM with a marine biogeochemical component, or any other field with a suitable 795 

observational dataset. The analysis produced by the recipe is a point to point comparison of the model against the 

observational dataset, similar to the method described in (De Mora et al., 2013). Figures 38 and 39 show the 

results of a comparison the surface dissolved nitrate concentration in the CMIP5 HadGEM2-ES model compared 

against the World Ocean Atlas nitrate. To produce these two figures, the surface layer is extracted, an average 

over the time dimension is produced, then the model are observational data are re-gridded to a common grid. 800 

Figure 38 includes four panels; the model and observations in the top two panes, then the difference and the 

quotient in the lower two panes. Figure 39 uses the same preprocessed data as Figure 38, with the model data 

plotted along the x axis and the observational data along the y-axis. A linear regression line of best fit is shown 

as a black line. A dashed line indicates the 1:1 line. The results of a linear regression are shown in the top left 

corner of the figure, where 𝛽̂
𝟎
 is the intercept, 𝛽

𝟏
 is the slope, R is the correlation, P is the P value, and N is the 805 
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number of data point pairs. Together, Figures 38 and 39 show a clear indication of the presence of biases in the 

surface layer, but also the spatial distribution of the model and observational data. Figure 40 shows the global 

average depth profile of the dissolved nitrate concentration in the CMIP5 HadGEM2-ES model and against the 

World Ocean Atlas dataset. The colour scale indicates the annual average, although in this specific case there is 

little observed inter-annual variability. This class of figure is useful to evaluate biases between model and 810 

observations over the entire depth profile of the ocean. A multiple panel comparison of satellite derived 

observations for marine primary production against 16 CMIP5 models over the period 1995-2004 is shown in 

Figure 41. By means of ESMValTool preprocessor, both observation and models data are redefined over a 

regular 1-degree horizontal grid and differences are then computed. 

3.5.4 Stratospheric temperature and trace species influencing stratospheric ozone chemistry 815 

The recipe_eyring06jgr.yml is integrated in v2.0 from the CCMVal-Diag tool described by Gettelman et al. 

(2012) to evaluate coupled chemistry-climate model (CCM) based on a set of core processes relevant for 

stratospheric ozone concentrations, centered around four main categories (radiation, dynamics, transport, and 

stratospheric chemistry). Each process is associated with one or more model diagnostics, and with relevant 

observational data sets that can be used for the model evaluation (Eyring et al., 2006; Eyring et al., 2005). 820 

Since most of the chemical reactions determining ozone distribution in the stratosphere depend on temperature, 

recipe_eyring06jgr.yml allows the comparison of modelled stratospheric temperature with observations in terms 

of climatological mean, variability and trends (Figure 42). Recipe_eyring06jgr.yml evaluates the main features of 

the atmospheric transport by examining the distribution of long-lived traces (such as methane or N2O), the 

vertical propagation of the annual cycle of water vapour (“tape recorder”) and the mean age of air. Due to its 825 

important role in driving stratospheric ozone depletion, especially in the polar regions, the recipe also includes 

the vertical distribution and temporal evolution of modelled chlorine (Cly). It also assesses the capability of the 

models to simulate realistic ozone vertical distributions (Figure 43) and total ozone annual cycle. 

4. Routine evaluation of CMIP6 models 

4.1 Running the ESMValTool alongside the ESGF 830 

The semi-automatic and automatic execution of the ESMValTool at DKRZ on CMIP6 data published in ESGF is 

supported by the following components: A) a locally hosted CMIP6 replica data pool, B) an automatic CMIP6 

data replication process, embracing ESMValTool data needs as replication priorities, C) a query mechanism to 

inform the ESMValTool on the availability on new data in the data pool. Based on these components both 

regularly scheduled ESMValTool executions as well as executions triggered by the availability of new data can 835 

be realised. Initially the automatic regular execution was implemented. The replica pool is hosted as part of the 

parallel Lustre HPC file system at DKRZ and associated to a dedicated data project which is supervised by a 

panel deciding on CMIP6 data storage priorities. 

ESMValTool data needs are managed in a GitHub repository and automatically integrated into the synda tool 

based CMIP6 replication pipeline at DKRZ. The content of the data pool is regularly indexed thus providing a 840 

high performance query mechanism on locally available data. This index is used to automatically update several 

recipes with all available CMIP6 models. If new model output has been published to the ESGF, an ESMValTool 
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execution is triggered and new plots are created. The results produced by the ESMValTool runs are 

automatically copied to the result cache which is used by the result browser (see next section). 

4.2 ESMValTool result browser at DKRZ 845 

A result browser has been set up at http://cmip-esmvaltool.dkrz.de/. The ESMValTool results are visualized with 

the Freie University evaluation system (FREVA). Freva provides efficient and comprehensive access to the 

evaluation results and datasets. The application system is developed as an easy to use low-end application 

minimizing technical requirements for users and tool developers. Initially this website shows CMIP5 results that 

are already published. Newly produced results for CMIP6 are initially water-marked and are only made available 850 

without water-mark once quality control has happened and possible papers have been written. This strategy has 

been supported, encouraged, and approved by the WCRP Working Group of Coupled Modelling (WGCM). The 

result browser includes a search function that allows to sort by (a) ESMValTool recipes, (b) Projects, (c) CMIP6 

Realms, (d) Themes, (e) Domain, (f) Plot Type, (g) Statistics, (h) References, (i) Variables, (j) Models (including 

the multi-model mean and observations), and (k) Results. Each figure includes a figure caption that is displayed 855 

alongside with the figure, and also includes metadata. These metadata include the ESMValTool configuration 

used to calculate and plot the figure, Software versions, Date of production, Input data, Program's output, Notes, 

and Results. 

5. Summary and Outlook 

The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics 860 

tool specifically targeted to facilitate and enhance comprehensive evaluation of Earth System Models (ESMs) 

participating in the Coupled Model Intercomparison Project (CMIP). Since the first ESMValTool release in 2016 

(v1.0, Eyring et al. (2016c)), substantial technical improvements have been made by a continuously growing 

developer community and additional diagnostics have been added. The tool is now developed by more than 40 

institutions as open source code on a Github repository (https://github.com/ESMValGroup). 865 

This paper is part of a series of publications that describe the release of ESMValTool version 2.0 (v2.0). One of 

the main structural changes compared to v1.0 is the separation of the tool into ESMValCore and a Diagnostic 

Part. ESMValCore is an easy-to-install, well documented Python package that provides the core functionalities 

to perform common pre-processing operations and writes the output from models and observations to netCDF 

files (Righi et al., 2019). These preprocessed output files are then read by the Diagnostic Part that includes 870 

tailored diagnostics and performance metrics for specific scientific applications that are called by recipes. These 

recipes reproduce sets of diagnostics or performance metrics that have demonstrated their importance in ESM 

evaluation in the peer-reviewed literature. 

This paper describes recipes for the evaluation of large-scale diagnostics in ESMValTool v2.0. It focuses on 

those diagnostics that were not part of the first major release of the tool (Eyring et al., 2016c) and includes (1) 875 

integrative measures of model performance, as well as diagnostics for the evaluation of processes in (2) the 

atmosphere, (3) ocean and cryosphere, (4) land and (5) biogeochemistry. Recipes for extreme events and in 

support of regional model evaluation are described by Weigel et al. (2019) and recipes for emergent constraints 

and model weighting by Lauer et al. (2019). 
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Compared to v2.0, the integrative measures of model performance have been expanded with additional 880 

atmospheric variables as well as new variables from the ocean, sea-ice and land (extending Figure 9.7 of Flato et 

al. (2013)). In addition, the centered pattern correlation that allows the quantification of progress between 

different ensembles of CMIP models for multiple variables (extending Figure 9.6 of Flato et al. (2013)) and the 

single model performance index proposed by Reichler and Kim (2008) that allows an overall assessment of 

model performance have been added. For the purpose of model development it is important to look at many 885 

different metrics. AutoAssess that is developed by the UK Met Office therefore includes a mix of top-down 

metrics evaluating key model output variables and bottom-up process-oriented metrics. AutoAssess includes 11 

thematic areas which will all be implemented in ESMValTool, but for v2.0 as a technical demonstration only the 

area for the stratosphere was implemented. 

For the evaluation of processes in the atmosphere, the recipe to calculate multi-model averages (e.g., for surface 890 

temperature and precipitation) now not only includes absolute values but also the mean root mean square error of 

the seasonal cycle compared to observations. The time series of the anomalies in annual and global mean surface 

temperature with the models being subsampled as in the observations from HadCRUT4 is also included. In 

addition, a recipe for the evaluation of the precipitation quantile bias has been added. For atmospheric dynamics 

recipes to evaluate stratosphere-troposphere coupling and atmospheric blocking indices have been included. A 895 

new diagnostic tool for the evaluation of the water, energy and entropy budgets in climate models (TheDiaTo 

(v1.0), Lembo et al. (2019)) has been newly implemented and v2.0 was updated with a new version of the 

NCAR Climate Variability Diagnostic Package (Phillips et al., 2014). In addition, several other diagnostics to 

evaluate modes of variability as well as weather regimes calculated by the MiLES package (Davini, 2018) have 

been added in v2.0. 900 

To evaluate the broad behaviour of models for the global ocean, several diagnostics have been newly 

implemented, including diagnostics to evaluate the volume weighted global average temperature anomaly, the 

AMOC, the Drake Passage current, the global total flux of CO2 from the atmosphere into the ocean, and the 

global total integrated primary production from phytoplankton. A recipe to evaluate specifically the Southern 

ocean following Russell et al. (2018) has been included and for the Arctic ocean vertical ocean distributions (e.g. 905 

temperature and salinity) for different Artic ocean basins and a transect that follows the pathway of the Atlantic 

water can now be calculated. For sea-ice, a recipe related to the evaluation of the negative sea-ice growth–

thickness feedback which includes the Ice Formation Efficiency (IFE) aa a process-based diagnostic (Massonnet 

et al., 2018) and a recipe that can quantify the relationships between Arctic sea-ice drift speed, concentration and 

thickness (Docquier et al., 2017) have been added. 910 

For the evaluation of land processes, satellite derived land cover classes cannot directly be used for ESM 

vegetation evaluation because Dynamic Global Vegetation Models (DGVMs) use different concepts for 

vegetation representation, typically based on plant functional types (PFTs). A recipe has therefore been added 

that maps the ESA CCI land cover classes to PFTs as described by Poulter et al. (2015). It includes major land 

cover types (bare soil, crops, grass, shrubs, trees) similar to the evaluation study by Lauer et al. (2017). In 915 

addition, a recipe has been added that can be used to evaluate albedo changes associated to land cover transitions 

using the ESA CCI dataset of Duveiller et al. (2018b). 

For the terrestrial biosphere, a recipe that allows the evaluation of the main climatic variables controlling both 

the spatial and temporal characteristics of the carbon cycle on three different time scales (long-term trends, 

interannual variability and seasonal cycles) has been added following Anav et al. (2013). These key variables 920 
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include surface land temperature, precipitation over land, sea surface temperatures, land-atmosphere and ocean-

atmosphere fluxes, gross primary production, leaf area index, and carbon content in soil and vegetation. To 

evaluate the simulated land carbon stocks that integrates the land-atmosphere carbon exchange, a recipe to 

evaluate biases in ecosystem carbon turnover time, the time period that a carbon atom on average spends in land 

ecosystems, from assimilation through photosynthesis to its release back into the atmosphere (Carvalhais et al., 925 

2014) has been added. For marine biogeochemistry, v2.0 now includes a recipe that allows a direct comparison 

of the models against observational data for several variables including temperature, salinity, oxygen, nitrate, 

phosphate, silicate, CO2 air-sea fluxes, chlorophyll-a and primary production. The point to point comparison of 

the model against the observational dataset is similar to De Mora et al. (2013). To evaluate stratospheric 

dynamics and chemistry a recipe based on a set of core processes relevant for stratospheric ozone concentrations, 930 

centered around four main categories (radiation, dynamics, transport, and stratospheric chemistry) has been 

added (Eyring et al., 2006). Overall these recipes together with those already included in v1.0 allow a broad 

characterization of the models for key variables (such as temperature and precipitation) on the large-scale, but 

v2.0 also includes several process-oriented diagnostics. 

With this release, for the first time in CMIP it is now possible to evaluate the models as soon as the output is 935 

published to the Earth System Grid Federation (ESGF) in a quasi-operational manner. To achieve this, the 

ESMValTool has been fully integrated into the ESGF structure at the Deutsches Klima Rechenzentrum (DKRZ). 

The data from the ESGF are first copied to a local replica and the ESMValTool is then automatically executed 

alongside the ESGF as soon as new output arrives. An ESMValTool result browser has been set up that makes 

the evaluation results available to the wider community (http://cmip-esmvaltool.dkrz.de/). 940 

Another major advancement of ESMValTool v2.0 is that it provides full provenance and traceability (see Section 

5.2. in Righi et al. (2019) for details). Provenance information for example includes technical information such 

as global attributes of all input netCDF files, preprocessor settings, diagnostic script settings, and software 

version numbers but also diagnostic script name and recipe authors, funding projects, references for citation 

purposes, as well as tags for categorizing the result plots into various scientific topics (like chemistry, dynamics, 945 

sea-ice, etc.) realms (land, atmosphere, ocean, etc.) or statistics applied (RMSE, anomaly, trend, climatology, 

etc.). This not only facilitates the sorting of the results in the ESMValTool result browser but also qualifies the 

tool for the use in studies or assessments where provenance and traceability is particularly important. The current 

approach to provenance and tags (i.e. what is reported) can be adjusted to international provenance standards as 

they become available.  950 

These recent ESMValTool developments and their coupling to the ESGF results can now be exploited 

by global and regional ESM developers as well as by the data analysis and user communities, to better 

understand the large CMIP ensemble and to support data exploitation. In particular with the addition 

of provenance, the tool can also provide a valuable source to produce figures in national and 

international assessment reports (such as the IPCC climate assessments) to enhance the quality control, 955 

reproducibility and traceability of the figures included.  

The ESMValTool development community will further enhance the capabilities of the tool. Targeted 

technical enhancements will for example include the development of quicklook capabilities that allow 

to monitor the simulations while they are running to help identifying errors in the simulations early on, 

a further extension to the application to regional models so that a consistent evaluation between global 960 
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and regional models can be provided, and distributed computing functionalities. In addition, the tool 

will be expanded with additional diagnostics in various projects to further enhance comprehensive 

evaluation and analysis of the CMIP models. 

6. Code availability 

ESMValTool v2.0 is released under the Apache License, VERSION 2.0. The latest release of ESMValTool v2.0 965 

is publicly available on Zenodo at https://doi.org/10.5281/zenodo.3401363. The source code of the ESMValCore 

package, which is installed as a dependency of the ESMValTool v2.0, is also publicly available on Zenodo at 

https://doi.org/10.5281/zenodo.3387139. ESMValTool and ESMValCore are developed on the GitHub 

repositories available at https://github.com/ESMValGroup. 

7. Data availability 970 

CMIP5 data are available freely and publicly from the Earth System Grid Federation. Observations used in the 

evaluation are detailed in the various sections of the manuscript. They are not distributed with the ESMValTool, 

that is restricted to the code as open source software. 
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Tables 

Table 1. Overview of standard recipes implemented in ESMValTool v2.0 along with the section they are described, a 1010 
brief description, the variables used and the diagnostic scripts included. For further details we refer to the GitHub 

repository. 

Recipe name Chapter Description Variables Diagnostic scripts 

Section 3.1: Integrative Measures of Model Performance 

recipe_perfmetrics_CMIP5.yml 3.1.2.1 Recipe for 

plotting the 

performance 

metrics for the 

CMIP5 datasets, 

including the 

standard ECVs 

as in Flato et al. 

(2013), and 

some additional 

variables (e.g., 

ozone, sea-ice, 

aerosol) 

ta 

ua 

va 

zg 

hus 

tas  

ts 

pr  

clt  

rlut  

rsut  

lwcre  

swcre                    

od550aer 

od870aer 

abs550aer               

od550lt1aer 

toz 

sm 

perfmetrics/main.ncl 

 

perfmetrics/collect.ncl 

recipe_smpi.yml 3.1.2.3 Recipe for 

computing 

Single Model 

Performance 

Index. Follows 

Reichler and 

Kim (2008) 

ta 

va 

ua 

hus 

tas 

psl 

pr 

tos 

sic 

hfds 

tauu 

tauv 

perfmetrics/main.ncl 

 

perfmetrics/collect.ncl 
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recipe_autoassess_*.yml 3.1.2.4 Recipe for mix 

of top-down 

metrics 

evaluating key 

model output 

variables and 

bottom-up 

metrics 

tas 

tsl 

snw 

mrsos 

rsns 

rlns 

rtnt 

rsnt 

swcre 

lwcre 

rsns 

rlns 

rsut 

rlut 

rsutcs 

rldscs 

rlutcs 

prw 

pr 

cllmtisccp 

clltkisccp 

clmmtisccp 

clmtkisccp 

clhmtisccp 

clhtkisccp 

ta 

ua 

hus 

 

autoassess/autoassess_area_base.py 

 

autoassess/plot_autoassess_metrics.py 

 

autoassess/autoassess_radiation_rms.py 

Section 3.2: Detection of systematic biases in the physical climate: atmosphere 

recipe_flato13ipcc.yml 3.1.2 

3.2.1 

3.3.1 

Reproducing 

selected figures 

from IPCC 

AR5, chap. 9 

(Flato et al., 

2013) 9.2, 9.4, 

9.5, 9.6, 9.8, 

9.14. 

tas 

pr 

swcre 

lwcre 

netcre 

rlut 

tos 

 

clouds/clouds_bias.ncl 

 

clouds/clouds_ipcc.ncl 

 

ipcc_ar5/tsline.ncl 

 

ipcc_ar5/ch09_fig09_06.ncl 

 

ipcc_ar5/ch09_fig09_06_collect.ncl 

 

ipcc_ar5/ch09_fig09_14.py 

recipe_quantilebias.yml 3.2.2 Recipe for 

calculation of 

precipitation 

quantile bias 

pr quantilebias/quantilebias.R 

recipe_zmnam.yml 3.2.3.1 Recipe for zonal 

mean Northern 

Annular Mode. 

The diagnostics 

compute the 

index and the 

spatial pattern to 

assess the 

simulation of 

the strat-trop 

coupling in the 

boreal 

hemisphere 

zg zmnam/zmnam.py  

recipe_miles_block.yml 3.2.3.2 Recipe for 

computing 1-d 

and 2-d 

atmospheric 

blocking indices 

and diagnostic  

zg miles/miles_block.R 
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recipe_thermodyn_diagtool.yml 3.2.4 Recipe for the 

computation of 

various aspects 

associated with 

the 

thermodynamics 

of the climate 

system, such as 

energy and 

water mass 

budgets, 

meridional 

enthalpy 

transports, the 

Lorenz Energy 

Cycle and the 

material entropy 

production. 

hfls 

hfss          

pr          

ps          

prsn          

rlds          

rlus          

rlut          

rsds          

rsus          

rsdt          

rsut          

ts          

hus          

tas          

uas          

vas          

ta          

ua          

va          

wap 

thermodyn_diagtool/thermodyn_diagnostics.py 

recipe_CVDP.yml 3.2.5.1 Recipe for 

executing the 

NCAR CVDP 

pakage in the 

ESMValTool 

framework. 

ts 

tas 

pr 

psl 

cvdp/cvdp_wrapper.py 

recipe_modes_of_variability.yml 3.2.5.2 Recipe to 

compute the 

RMSE between 

the observed 

and modelled 

patterns of 

variability 

obtained 

through 

classification 

and their 

relative bias 

(percentage) in 

the frequency of 

occurrence and 

the persistence 

of each mode. 

zg magic_bsc/weather_regime.r 

recipe_miles_regimes.yml 3.2.5.2 Recipe for 

computing 

Euro-Atlantic 

weather regimes 

using the 

MiLES package 

based on k-

means 

clustering 

zg miles/miles_regimes.R 

recipe_miles_eof.yml 3.2.5.3 Recipe for 

computing and 

the  Northern 

Hemisphere 

EOFs 

zg miles/miles_eof.R 
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recipe_combined_indices.yml 3.2.5.4 Recipe for 

computing 

seasonal means 

or running 

averages, 

combining 

indices from 

multiple models 

and computing 

area averages 

psl magic_bsc/combined_indices.r 

Section 3.3: Detection of systematic biases in the physical climate: ocean and cryosphere 

recipe_ocean_scalar_fields.yml 3.3.1 Recipe to 

reproduce time 

series figures of 

scalar quantities 

in the ocean. 

gtintpp 

gtfgco2 

amoc 

mfo 

thetaoga 

soga 

zostoga 

ocean/diagnostic_timeseries.py 

recipe_ocean_amoc.yml 3.3.1 Recipe to 

reproduce time 

series figures of 

the AMOC,  the 

Drake passage 

current and the 

stream function 

amoc 

mfo 

msftmyz 

ocean/diagnostic_timeseries.py 

ocean/diagnostic_transects.py 

recipe_russell18jgr.yml 3.3.2 Recipe to 

reproduce figure 

from Russell et 

al. (2018) 

tauu 

tauuo 

thetao 

uo 

sic 

so 

vo 

fgco2 

ph 

russell18jgr/russell18jgr-polar.ncl 

 

russell18jgr/russell18jgr-fig*.ncl 

 

 

recipe_arctic_ocean.yml 3.3.3 Recipe for 

evaluation of 

ocean 

components of 

climate models 

in the Arctic 

Ocean 

thetao(K) 

so (0.001) 

arctic_ocean/arctic_ocean.py 

recipe_seaice_feedback.yml 3.3.4 Recipe to 

evaluate the 

negative ice 

growth- and ice 

thickness 

feedback 

sit seaice_feedback/negative_seaice_feedback.py 

recipe_sea_ice_drift.yml 3.3.4 Recipe for sea 

ice drift 

evaluation 

sic 

sithick 

sispeed 

seaice_drift/seaice_drift.py 

recipe_SeaIce.yml 3.3.4 Recipe for 

plotting sea ice 

diagnostics at 

the Arctic and 

Antarctic 

sic seaice/SeaIce_ancyc.ncl 

 

seaice/SeaIce_tsline.ncl 

 

seaice/SeaIce_polcon.ncl 

 

seaice/SeaIce_polcon_diff.ncl 

     

Section 3.4: Detection of systematic biases in the physical climate: land 
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recipe_landcover.yml 3.4.1 Recipe for 

plotting the 

accumulated 

area, average 

fraction and bias 

of landcover 

classes in 

comparison to 

ESA_CCI_LC 

data for the full 

globe and large 

scale regions. 

baresoilFrac 

grassFrac 

treeFrac 

shrubFrac 

cropFrac 

landcover/landcover.py 

recipe_albedolandcover.yml 3.4.2 Recipe for 

evaluate land 

cover-specific 

albedo values. 

alb landcover/albedolandcover.py 

Section 3.5: Detection of biogeochemical biases 

recipe_anav13jclim.yml 3.5.1 Recipe to 

reproduce most 

of the figures of 

Anav et al. 

(2013) 

tas 

pr 

tos 

nbp_grid 

lai_grid 

gpp_grid 

cSoil_grid 

cVeg_grid 

fgco2_grid 

 

carbon_cycle/mvi.ncl 

 

carbon_cycle/main.ncl 

 

carbon_cycle/two_variables.ncl 

 

perfmetrics/main.ncl 

 

perfmetrics/collect.ncl 

recipe_carvalhais2014nat.yml 3.5.2 Recipe to 

evaluated the 

biases in 

ecosystem 

carbon turnover 

time. 

tau (non-

CMOR 

variable, that 

is derived as 

the ratio of 

total 

ecosystem 

carbon stock 

and gross 

primary 

productivity) 

regrid_areaweighted.py 

 

compare_tau_modelVobs_matrix.py 

 

compare_tau_modelVobs_climatebins.py 

 

compare_zonal_tau.py 

 

compare_zonal_correlations_tauVclimate.py 

 

recipe_ocean_bgc.yml 3.5.3 Recipe to 

evaluate the 

marine 

biogeochemistry 

models of 

CMIP5. There 

are also some 

physical 

evaluation 

metrics. 

thetao 

so 

no3 

o2 

si 

chl 

dfe 

talk 

intpp 

mfo 

fgco2 

 

ocean/diagnostic_timeseries.py 

 

ocean/diagnostic_profiles.py 

 

ocean/diagnostic_maps.py 

 

ocean/diagnostic_model_vs_obs.py 

 

ocean/diagnostic_transects.py 

recipe_eyring06jgr.yml 3.5.4 Recipe to 

reproduce 

stratospheric 

dynamics and 

chemistry 

figures from 

Eyring et al. 

(2006) 

ta 

ua 

vt100 

vmrch4 

vmrh2o 

mnstrage 

vmrhcl 

vmrcly 

vmro3 

toz 

eyring06jgr/eyring06jgr_fig*.ncl 
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Figures 1015 

  

Figure 1. Relative space-time root-mean-square deviation (RMSD) calculated from the climatological seasonal cycle of 

the CMIP5 simulations. The years averaged depend on the years with observational data available. A relative 

performance is displayed, with blue shading indicating better and red shading indicating worse performance than the 

median of all model results. A diagonal split of a grid square shows the relative error with respect to the reference 1020 
data set (lower right triangle) and the alternative data set (upper left triangle). White boxes are used when data are 

not available for a given model and variable. The performance metrics are shown separately for atmosphere, ocean 

and sea-ice (left), and land (right). The figure shows that performance varies across CMIP5 models and variables, 

with some models comparing better with observations for one variable and another model performing better for a 

different variable. Except for global average temperatures at 200 hPa (ta_Glob-200) where most but not all models 1025 
have a systematic bias, the multi-model mean outperforms any individual model. Extended from Figure 9.7 of Flato et 

al. (2013) and produced with recipe_perfmetrics_CMIP5.yml., see details in Section 3.1.1. 
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Figure 2. Centred pattern correlations for the annual mean climatology over the period 1980-1999 between models 1030 
and observations. Results for individual CMIP5 models are shown (thin dashes), as well as the ensemble average 

(longer thick dash) and median (open circle). The correlations are computed between the models and the reference 

dataset. When an alternate observational dataset is present, its correlation to the reference dataset is also shown (solid 

green circles). The models are first regridded to 4° longitude by 5° latitude to ensure the pattern correlations give a 

fair comparison across all model resolutions. The figure shows both a large model spread as well as a large spread in 1035 
the correlation depending on the variable, signifying that some aspects of the simulated climate agree better with 

observations than others. Similar to Figure 9.6 of Flato et al. (2013) and produced with recipe_flato13ipcc.yml, see 

details in Section 3.1.2. 
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 1040 

Figure 3. Single Model Performance Index I2 for individual models (orange circles). The size of each circle represents 

the 95% confidence interval of the bootstrap ensemble. The black circle indicates the I2 of the CMIP5 multi-model 

mean. The I2 values vary around one, with underperforming models having a value greater than one, while values 

below one represent more accurate models. This allows for a quick estimation which models are performing the best 

on average across the sampled variables and in this case shows that the common practice of taking the multi-model 1045 
mean as best overall model is accurate. Similar to Reichler and Kim (2008) Figure 1 and produced with 

recipe_smpi.yml, see details in Section 3.1.3. 
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Figure 4. AutoAssess time-height plot of zonal mean zonal wind averaged between 5S and 5N for UKESM1-0-LL over 1050 
the period 1995-2014. Zonal wind anomalies propagate downward from the upper stratosphere. The figure shows that 

the period of the QBO in this model is about 6 years, significantly longer than the observed period of ~2.3 years. 

Produced with recipe_autoassess_*.yml., see details in Section 3.1.4. 
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 1055 

Figure 5. Annual-mean surface (2 m) air temperature (°C) for the period 1980-2005. (a) Multi-model (ensemble) mean 

constructed with one realization of all available models used in the CMIP5 historical experiment. (b) Multi-model 

mean bias as the difference between the CMIP5 multi-model mean and the climatology from ECMWF reanalysis of 

the  global atmosphere and surface conditions (ERA)-Interim (Dee et al., 2011). (c) Mean absolute model error with 

respect to the climatology from ERA-Interim. (d) Mean root mean square error of the seasonal cycle with respect to 1060 
the ERA-Interim. The multi-model mean near-surface temperature agrees with ERA-Interim mostly within ±2 C. 

Larger biases can be seen in regions with sharp gradients in temperature, for example in areas with high topography 

such as the Himalaya, the sea ice edge in the North Atlantic, and over the coastal upwelling regions in the subtropical 

oceans. Updated from Fig. 9.2 of Flato et al. (2013) and produced with recipe_flato13ipcc.yml, see details in Section 

3.2.1. 1065 

  

https://doi.org/10.5194/gmd-2019-291
Preprint. Discussion started: 26 November 2019
c© Author(s) 2019. CC BY 4.0 License.



37 

 

 

Figure 6. Annual-mean precipitation rate (mm day-1) for the period 1980-2005. (a) Multi-model (ensemble) mean 

constructed with one realization of all available models used in the CMIP5 historical experiment. (b) Multi-model 

mean bias as the difference between the CMIP5 multi-model mean and the analyses from the Global Precipitation 1070 
Climatology Project (Adler et al., 2003). (c) Mean root mean square error of the seasonal cycle with respect 

toobservations. (d) Mean relative model error with respect to observations. Biases in the simulated multi-model mean 

precipitation include too low precipitation along the Equator in the western Pacific and too high precipitation 

amounts in the tropics south of the Equator. Updated from Fig. 9.4 of Flato et al. (2013) and produced with 

recipe_flato13ipcc.yml, see details in Section 3.2.1. 1075 
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Figure 7. Anomalies in annual and global mean surface temperature of CMIP5 models and HadCRUT4 observations. 

Yellow shading indicates the reference period (1961 -1990); vertical dashed grey lines represent times of major 

volcanic eruptions. The right bar shows the global mean surface temperature of the reference period. CMIP5 model 1080 
data are subsampled by the HadCRUT4 observational data mask and processed like described in Jones et al. (2013). 

All simulations are historical experiments up to and including 2005 and the RCP 4.5 scenario after 2005. Overall, the 

models represent quite good the annual global-mean surface temperature increase over the historical period including 

the more rapid warming in the second half of the 20th century and the cooling immediately following large volcanic 

eruptions. Extended from Figure 9.8 of Flato et al. (2013) and produced with recipe_flato13ipcc.yml, see details in 1085 
Section 3.2.1. 

  

https://doi.org/10.5194/gmd-2019-291
Preprint. Discussion started: 26 November 2019
c© Author(s) 2019. CC BY 4.0 License.



39 

 

 

Figure 8. Quantile (75%) bias evaluated for an example subset of CMIP5 models over the period 1979 to 2005 using 

GPCP-SG v 2.3 gridded precipitation as a reference dataset. Biases depend on models and geographical regions but 1090 
similar patterns can be recognized (see e.g., overestimation over Africa for models in the right column and the 

underestimation pattern crossing central Asia from Siberia to the Arabic pensinsula). The HadGEM2-ES model show 

a largely reduced bias as compared to the other models in this subset. Similar to Mehran et al. (2014) and produced 

with recipe_quantilebias.yml. See details in Section 3.2.2. 

  1095 
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Figure 9. The zonal mean NAM index (left) at 250 hPa for the atmosphere-only CMIP5 simulation of the Max Planck 

Institute for Meteorology (MPI-ESM-MR) model, and the regression map of the monthly geopotential height on this 

zonal-mean NAM index (right). Note the variability on different temporal scales of the index, from monthly to 

decadal. The well-known annular pattern, with opposite anomalies between polar and mid-latitudes, can be 1100 
appreciated in the regression plot. Similar to Figure 2 of Baldwin and Thompson [2009] and produced with 

recipe_zmnam.yml, see details in Section 3.2.3.1. 
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Figure 10. 2-d Blocking Events following the Davini et al. (2012) index over the 1979-2008 DJF period for (left) 1105 
CMIP5 MPI-ESM-MR historical r1i1p1 run (center) ERA-Interim Reanalysis and (right) their differences.  The MPI-

ESM-MR shows the well-known underestimation of atmospheric blocking – typical of many climate models – over 

Central Europe, where blocking frequencies are about the half when compared to reanalysis. Slight overestimation of 

low latitude blocking and North Pacific blocking can be also observed, while Greenland blocking frequencies show 

negligible bias. Produced with recipe_miles_block.yml, see details in Section 3.2.3.2. 1110 
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Figure 11. A Lorenz Energy Cycle flux diagram for one year of a CMIP5 model pre-industrial control run (cfr. 

(Ulbrich et al., 1991)). “A” stands for available potential energy (APE), “K” for kinetic energy (KE), “Z” for zonal 

mean, “S” for stationary eddies, “T” for transient eddies. “+” indicates source of energy, “-” a sink. For the energy 1115 
reservoirs, the unit of measure is J*m-2, for the energy conversion terms, the unit of measure is W*m-2. Most of the 

energy is clearly stored in terms of APE in the zonal mean flux. The energy conversion happens almost instantly in 

converting APE energy from the zonal mean flow into the eddy and through them into KE. The two processes are 

usually referred to as “baroclinic conversion”. For a non-steady state equilibrium system, the APE source has to equal 

the KE dissipation (through frictional heating in the zonal mean flow and eddies). Similar to Figure 5 of Lembo et al. 1120 
(2019) and produced with recipe_thermodyn_diagtool.yml, see details in Section 3.2.4. 
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Figure 12. annual mean meridional sections of zonal mean meridional total (top), atmospheric (middle), oceanic 

(bottom) heat transports for 12 CMIP5 models control runs. Transports are implied from meridionally integrating 1125 
TOA, atmospheric and surface energy budgets (cfr. Trenberth et al. (2001)), then applying the usual correction 

accounting for energy imbalances, as in Carissimo et al. (1985). Values are in W. The model spread has roughly the 

same magnitude in the atmospheric and oceanic transports, but its relevance is much larger for the oceanic 

transports. The model spread is also crucial in the magnitude and sign of the atmospheric heat transports across the 

Equator, given its implications for the atmospheric general circulation. Add brief discussion of the results. Similar to 1130 
Figure 8 of Lembo et al. (2019) and produced with recipe_thermodyn_diagtool.yml, see details in Section 3.2.4. 
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Figure 13. Global ENSO teleconnections during the peak phase (December-February) as simulated by 41 CMIP5 

models (individual panels labelled by model name) and observations (upper left panel) for the historical period (1900-1135 
2005 for models and 1920-2017 for observations). These patterns are based on composite differences between all El 

Nino events and all La Nina events (using a +/- 1 standard deviation threshold of the Nino3.4 SST Index) occurring in 

the period of record. Color shading denotes SST and terrestrial TREFHT (◦C), and contours denote SLP (contour 

interval of 2hPa, with negative values dashed). The period of record is given in the upper left of each panel, and the 

number of El Nino and La Nina events that contribute to the composites are given in the upper right (for example, 1140 
“18/14” denotes 18 El Nino events and 14 La Nina events). Observational composites use ERSSTv5 for SST, BEST for 

TAS and ERA20C updated with ERA-I for PSL. Models produce a wide range of ENSO amplitudes and 

teleconnections. Note that even when based on over 100 years of record, the ENSO composites are subject to 

uncertainty due to sampling variability (Deser et al., 2017) ,Deser et al., 2018). Figure produced with 

recipe_CVDP.yml., see details in Section 3.2.5.1. 1145 
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Figure 14. Representation of the AMO in 41 CMIP5 models (individual panels labelled by model name) and 

observations (upper left panel) for the historical period (1900-2005 for models and 1920-2017 for observations). These 

patterns are based regressing monthly SST anomalies (denoted SSTA*) at each grid box onto the timeseries of the 

AMO SSTA* Index (defined as SSTA* averaged over the North Atlantic 0-60N, 80W-0W), where the asterisk denotes 1150 
that the global (60N-60S) mean SSTA has been subtracted from SSTA at each grid box following Trenberth and Shea 

(2006). The pattern of SSTA* associated with the AMO is generally realistically simulated by models within the North 

Atlantic basin, although its amplitude varies. However, outside of the North Atlantic, the models show a wide range of 

spatial patterns and polarities of the AMO. Figure produced with recipe_CVDP.yml., see details in Section 3.2.5.1. 
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 1155 

Figure 15. Four modes of variability for autumn (September-October-November) in the North Atlantic European 

Sector during the reference period 1971-2000 for the BCC-CSM1-1 historical simulations. The frequency of 

occurrence of each variability mode is indicated in the title of each map. The four clusters are reminiscent of the 

Atlantic Ridge, the Scandinavian blocking, the NAO+ and the NAO- pattern, respectively. Result for 

recipe_modes_of_variability.yml, see details in Section 3.2.5.2. 1160 
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Figure 16. Four modes of variability for autumn (September-October-November) in the North Atlantic European 

Sector for the RCP 8.5 scenario using BCC-CSM1-1 future projection during the period 2020-2075. The frequency of 

occurrence of each variability mode is indicated in the title of each map. The four clusters are reminiscent of the 

Atlantic Ridge, the Scandinavian blocking, the NAO+ and the NAO- pattern, respectively. Result for 1165 
recipe_modes_of_variability.yml, see details in Section 3.2.5.2. 
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Figure 17. RMSE between the spatial patterns obtained for the future ‘Pre’ (2020-2075) and the reference ‘Obs’ 

(1971-2000) modes of variability from the BCC-CSM1-1 simulations in autumn (September-October-November). Low 1170 
RMSE values along the diagonal show that the modes of variability simulated by the future projection (Figure 16) 

match the reference modes of variability (Figure 15). Result for recipe_modes_of_variability.yml see details in Section 

3.2.5.2. 
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Figure 18. 500 hPa geopotential height anomalies associated to the Atlantic Ridge weather regime over the 1979-2008 

DJF period for (left) CMIP5 MPI-ESM-MR historical r1i1p1 run (center) ERA-Interim Reanalysis and (right) their 

differences. The frequency of occupancy of each regime is reported on the top of each panel. The Atlantic ridge 

regimes, which is usually badly simulated by climate models, it is reproduced with the right frequency of occupancy 

and pattern in MPI-ESM-MR when compared to ERA-Interim reanalysis. Produced with recipe_miles_regimes.yml, 1180 
see details in Section 3.2.5.2. 

  

https://doi.org/10.5194/gmd-2019-291
Preprint. Discussion started: 26 November 2019
c© Author(s) 2019. CC BY 4.0 License.



50 

 

 

Figure 19. Linear regression over the 500hPa geopotential height of the first North Atlantic EOF (i.e. the North 

Atlantic Oscillation, NAO) over the 1979-2008  DJF period for (left) CMIP5 MPI-ESM-MR historical r1i1p1 run 1185 
(center) ERA-Interim Reanalysis and (right) their differences. The variance explained is reported on the top of each 

panel. It is possible to see how the NAO is well represented by MPI-ESM-LR, although the variance explained is 

underestimated and the northern center of action, which is found close to Iceland in reanalysis, is westward displaced 

over Greenland. Produced with recipe_miles_eof.yml, see details in Section 3.2.5.3. 

  1190 
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Figure 20. Time series of the standardized sea surface temperature (tos) area averaged over the Nino 3.4 region 

during the boreal winter (December-January-February). The time series correspond to the MPI-ESM-MR (red) and 

BCC-CSM1-1 (blue) models and their mean (black) during the period 1950-2005 for the ensemble r1p1i1 of the 

historical simulations. Produced with recipe_combined_indices.yml., see details in Section 3.2.5.4. 1195 
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Figure 21. The volume weighted global mean temperature anomaly in several CMIP5 models, in the historical 

experiment, in the r1i1j1 ensemble member, with a 6 year moving average smoothing function. The anomaly is 

calculated against the mean of all years in the historical experiment before 1900. The multi model mean is shown as a 

dashed line. Nearly all CMIP5 models show an increase in the mean temperature of the ocean over the historical 1200 
period. Produced with recipe_ocean_scalar_fields.yml described in Section 3.3.1. 
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Figure 22. The Atlantic Meridional Overturn Circulation (AMOC) in several CMIP5 models, in the historical 

experiment, in the r1i1j1 ensemble member, with a 6 year moving average smoothing function. The multi model mean 1205 
is shown as a dashed line. The AMOC indicates the strength of the northbound current and this current transfers 

heat from tropical water to the North Atlantic. All CMIP5 models show some interannual variability in the AMOC 

behaviour, but it is not clear whether the decline in the multi model mean over the historical period is statistically 

significant. Produced with recipe_ocean_amoc.yml described in Section 3.3.1. 
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Figure 23. The Antarctic circumpolar current calculated through Drake Passage for a range of CMIP5 models in the 

historical experiment in the r1i1j1 ensemble member, with a 6 year moving average smoothing function. The multi 

model mean is shown as a dashed line. The ACC was recently measured through the Drake Passage at 173.3±10.7 Sv 

[Donohue et al., 2016], and four of the CMIP5 models fall within this range. Produced with recipe_ocean_amoc.yml 

described in Section 3.3.1. 1215 
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Figure 24. The global total air to sea flux of CO2 for a range of CMIP5 models in the historical experiment in the 

r1i1j1 ensemble member, with a 6 year moving average smoothing function. The multi model mean is shown as a 

dashed line. These models agree very closely on the behaviour of the air to sea flux of CO2 over the historical period; 

all models show an increase from close to zero, and rising up to approximately 2 Pg of Carbon per year by the start of 1220 
the 21st century. Produced with recipe_ocean_scalar_fields.yml described in Section 3.3.1. 
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Figure 25. The global total integrated primary production from phytoplankton for a range of CMIP5 models in the 

historical experiment in the r1i1j1 ensemble member, with a 6 year moving average smoothing function. The multi 1225 
model mean is shown as a dashed line. All CMIP5 models show little inter-annual variability in the integrated marine 

primary production, and there is no clear trend in the multi model mean. Produced with 

recipe_ocean_scalar_fields.yml described in Section 3.3.1. 
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Figure 26. (a) Zonally averaged sea surface temperature (SST) error in CMIP5 models. (b) Equatorial SST error in 

CMIP5 models. (c) Zonally averaged multi-model mean SST error for CMIP5 together with inter-model standard 

deviation (shading). (d) Equatorial multi-model mean SST in CMIP5 together with inter-model standard deviation 

(shading) and observations (black). Model climatologies are derived from the 1979-1999 mean of the historical 

simulations. The Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) (Rayner et al., 2003) observational 1235 
climatology for 1979-1999 is used as a reference for the error calculation (a), (b), and (c); and for observations in (d). 

This figure is a reproduction of Fig. 9.14 of AR5 and shows the overall good agreement of the CMIP5 models among 

themselves as well as compared to observations, but also highlights the global areas with largest uncertainty and 

biggest room for improvement. This is an important benchmark for the upcoming CMIP6 ensemble of models. It is 

produced as part of recipe_flato13ipcc.yml and documented in Section 3.3.1. 1240 
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Figure 27. The zonal and annual means of the zonal wind stress (N/m2) for the reanalysis, six of the CMIP5 

simulations and the BSOSE state estimate—note that each of the model simulations (colors) and B-SOSE (gray) have 1245 
the peak wind stress equatorward of the observations (black). Also shown are the latitudes of the observed ‘‘poleward 

zero wind stress’’ and the ‘‘equatorward zero wind stress’’ which delineate the ‘‘width of the westerly band” that is 

highly correlated with total heat uptake by the Southern Ocean. Enhanced from figure produced by 

recipe_russell18jgr.yml. see Section 3.3.2. For further discussion of this figure, see the original in Russell et al. (2018). 
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Figure 28. Scatter plot of the width of the Southern Hemisphere westerly wind band (in degrees of latitude) against 

the annual-mean integrated heat uptake south of 30°S (in PW—negative uptake is heat lost from the ocean), along 

with the ‘‘best fit’’ linear relationship for the models and observations shown. Enhanced from figure produced by 

recipe_russell18jgr.yml. see in Section 3.3.2. For further discussion of this figure, see the original in Russell et al. 1255 
(2018). The calculation of the ‘‘observed’’ heat flux into the Southern Ocean is described in the text. The correlation is 

significant above the 98% level based on a simple t test. 
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Figure 29. Mean (1970-2005) vertical potential temperature distribution in the Eurasian basin for CMIP5 coupled 1260 
ocean models, PHC3 climatology (dotted red line) and multi-model mean (dotted black line). Models tend to 

overestimate temperature in the interior of the Arctic Ocean and have too deep Atlantic water depth. Similar to 

Figure 7 of Ilıcak,  et al. 2016 and produced with recipe_arctic_ocean.yml , see details in Section 3.3.3. 
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Figure 30. Mean (1970-2005) T-S diagrams for Eurasian Basin of the Arctic Ocean. PHC3.0 shows climatological 

values for selected CMIP5 models and PHC3.0 observations. Most models can’t properly represent Arctic Ocean 

water masses and ether have wrong values for temperature and salinity or miss specific water masses completely. 

Produced with recipe_arctic_ocean.yml , see details in Section 3.3.3. 

  1270 
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Figure 31. Quantitative evaluation of the Ice Formation Efficiency (IFE). (a) Example time series (1970-1979) of the 

monthly mean Arctic sea-ice volume north of 80°N of one CMIP5 model (ACCESS1-0), with its annual minimum and 

maximum values marked with the dark and light dots, respectively. (b) Estimation of the IFE, defined as the 

regression between anomalies of sea-ice volume produced during the growing season (difference between one annual 1275 
maximum and the preceding minimum) and anomalies of the preceding minimum. A value IFE = -1 means that the 

late-summer ice volume anomaly is fully recovered during the following winter (strong negative feedback damping all 

anomalies) while a value IFE = 0 means that the wintertime volume production is essentially decoupled from the late-

summer anomalies (inexistent feedback). Similar to Extended Data Figure 7a-b of Massonnet et al. (2018) and 

produced with recipe_seaice_feedback.yml, see details in Section 3.3.4. 1280 
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Figure 32. Scatter plots of modelled (red) and observed (blue) monthly mean sea-ice drift speed against sea-ice 

concentration (left panels) and sea-ice thickness (right panels) temporally averaged over the period 1979–2005 and 1285 
spatially averaged over the SCICEX box. Top panels show results from the GDFL-ESM2G model and bottom panels 

show results from the MPI-ESM-LR model (CMIP5 historical runs). Observations/reanalysis are shown in all panels 

(IABP for drift speed, OSI-450 for concentration, and PIOMAS for thickness). Numbers denote months. Dotted lines 

show linear regressions. Results show that the GFDL-ESM2G model can reproduce the sea-ice drift speed - 

concentration/thickness relationships compared to observations, with higher drift speed with lower 1290 
concentration/thickness, despite the too thin ice in the model, while the MPI-ESM-LR model cannot reproduce this 

result. This figure was produced in a similar way as Figure 4 of Docquier et al. (2017) with recipe_sea_ice_drift.yml, 

see details in Section 3.3.4. 
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Figure 33. Panels show plots produced by the metric recipe_landcover.yml using model output from historical CMIP5 

simulations (period 2008-2012) of the ESMs MPI-ESM and INMCM4 compared to land cover observations provided 

by ESA CCI for different regions. The upper two panels display the relative bias [%] between the models and the 

observations for either one model (i.e. MPI-ESM) and several land cover types (upper, left) or for one land cover type 

(i.e. bare soil fraction) and all selected models (upper, right). The lower plots display the accumulated area [10
6
 km

2
] 1300 

(lower, left) as well as the average cover fraction [%] (lower, right) for a selected land cover type (bare soil fraction) 

and all selected models and observations for different. Thus, the landcover analysis provides a quick overview for 

major land cover types and the ability of different models to reproduce them. The metric is based on the analysis 

presented in Lauer et al. (2017) and Georgievski et al. (2018) and discussed in section 3.4.1. 

  1305 
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Figure 34. Albedo change due to a transition from landcover type 'tree' to 'crops and grasses' calculated through 

fitting, for each grid cell, a multiple linear regression model to the different land cover fractions (predictors) and 

albedo (predictant) within a window encompassing 5X5 grid cells centered over that grid cell of interest     . Results 

are shown for (left) the MPI-ESM-LR model (2001-2005 July mean) and (right) the observational dataset from 1310 
Duveiller et al. (2018) (2008-2012 July mean). July albedo difference between trees and crops or grasses is about at 

least twice as high in the MPI-ESM-LR model as in the observations, strongly suggesting that the simulated summer 

albedo increase from historical land cover changes is overestimated in this model. The results reveal that the July 

albedo difference between trees and crops or grasses is about at least twice as high in the MPI-ESM-LR model as in 

the observations, strongly suggesting that the simulated summer albedo increase from historical LCC is overestimated 1315 
in this model. Produced with recipe_landcoveralbedo.yml, see details in Section 3.4.2. 
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Figure 35. Timeseries plot of the global land-atmosphere CO2 flux (nbp) for CMIP5 models compared to 

observational estimates by GCP, Le Quere et al. (2018)) (black line). Gray shading represents the range of the CMIP5 1320 
models, green shading shows the confidence interval evaluated from the CMIP5 ensemble standard deviation 

assuming a t distribution centered at the multi-model mean (white line). Vertical lines indicate volcanic eruptions 

(grey) and El Niño events (orange). As positive values correspond to a carbon uptake of the land, the plot shows a 

slight increase in the land carbon uptake over the whole period. Similar to Figure 5 of Anav et al. (2013) and 

produced with recipe_anav13jclim.yml, see details in Section 3.5.1. 1325 
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Figure 36. Zonal distribution of ecosystem turnover time of carbon (in years). The zonal values are calculated as the 

ratio of total carbon stock and the gross primary productivity per latitude. The individual models are plotted in 

coloured thin lines, the multimodel ensemble in thick blue line, and the observation-based estimate (Carvalhais et al., 1330 
2014) in thick black line with shaded region showing the observational uncertainty. The median of all models is 

adopted as the multimodel ensemble. Note the logarithmic horizontal axis. The models follow the gradient of 

increasing turnover times of carbon from tropics to higher latitudes, much related to temperature decreases, as 

observed in observations. However, for most of the latitudinal bands, with the exception of one model, most 

simulations reveal turnover times that are faster than the observations. Produced with recipe_carvalhais2014nat.yml, 1335 
see details in Section 3.5.2. 
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Figure 37. Global distribution of the biases in the multi-model ensemble ecosystem turnover time of carbon (years) 1340 
and the multi-model agreement in CMIP5 models. The bias is calculated as the ratio between multi-model ensemble 

and observation-based estimate (Carvalhais et al., 2014). The stippling indicates the regions where only two or fewer 

models (out of 10) are within the range of observational uncertainties (5th and 95th percentiles). A generalized 

underestimation of turnover times of carbon is apparently dominant in water limited regions. In most of these regions 

most models show estimates outside of the observational uncertainties (stippling). These results challenge the 1345 
combined effects of water and temperature limitations on turnover times of carbon and suggest the need for 

improvement on the description of the water cycle in terrestrial ecosystems. Produced with 

recipe_carvalhais2014nat.yml, see details in Section 3.5.2. 
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Figure 38. The surface dissolved nitrate concentration in the CMIP5  HadGEM2-ES model compared against the 

World Ocean Atlas 2013 nitrate. The top two figures show the surface fields, the bottom two show the difference and 

the quotient between the two datasets. This figure highlights that the HadGEM2-ES model is proficient at 

reproducing the surface nitrate concentration in the Atlantic ocean, and in mid latitudes, but may struggle to 

reproduce observations at high latitudes. Produced with recipe_ocean_bgc.yml, see details in Section 3.5.3. 1355 
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Figure 39. The surface dissolved nitrate concentration in the CMIP5 HadGEM2-ES model compared against the 

World Ocean Atlas 2013 nitrate. This figure shows the paired model and observational datasets. A linear regression 

line of best fit is shown as a black line. A dashed line indicates the 1:1 line. The result of a linear regression are shown 1360 
in the top left corner of the figure, where 𝜷̂𝟎is the intersect, 𝜷𝟏 is the slope, R is the correlation, P is the P value, and N 

is the number of data point pairs As both the fitted slope and the correlation coefficient are near one, the HadGEM2-

ES simulation excelled at reproducing the observed values of the surface nitrate concentration. Produced with 

recipe_ocean_bgc.yml, see details in Section 3.5.3. 

 1365 
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Figure 40. The global area-weighted average depth profile of the dissolved nitrate concentration in the CMIP5  

HadGEM2-ES model and against the World Ocean Atlas 2013. This figure shows that while the model and the 1370 
observations both show a similar overall depth structure, the model is not able to produce the observed maximum 

nitrate concentration at approximately 1000 m depth and overestimates the nitrate concentration deeper in the water 

column. Produced with recipe_ocean_bgc.yml, see details in Section 3.5.3. 
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Figure 41. Global maps of marine Primary Production as carbon (mol m-2 yr-1) estimated from MODIS satellite data 

using Eppley-VGPM algorithm (Top panel) and differences computed for 16 CMIP5 models data averaged over the 

period 1995-2004. Systematic biases characterize all models mainly in the equatorial Pacific and Antarctic regions, in 

some cases with opposite sign, and coastal ocean productivity is generally underestimated with major deviations in the 

equatorial zone. See Section 3.5.3 for details on recipe_ocean_bgc.yml. 1380 
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Figure 42. Climatological mean temperature biases for (top) 60–90N and (bottom) 60–90S for the (left) winter and 

(right) spring seasons. The climatological means for the CCMs and NCEP data from 1980 to 1999 and for UKMO 1385 
from 1992 to 2001 are included. Biases are calculated relative to ERA-40 reanalyses. The grey area shows ERA-40 

plus and minus 1 standard deviation about the climatological mean. High-latitude temperatures in winter and spring 

are particularly important for correctly modelling PSC induced polar ozone depletion. In the middle stratosphere 

there are large variations between the analyses and most models, with no clear bias direction, whereas the 

temperature bias in the troposphere between analyses and models is somewhat smaller, but is in most models negative 1390 
around 200hPa. The upper stratosphere is only available for a few models, and while for most shown seasons the 

agreement is relatively good, the spread between analyses and models is very large for the Antarctic polar regions in 

JJA. Similar to Figure 1 of Eyring et al. (2006), produced with the recipe_eyring06jgr.yml. See details in Section 3.5.4. 
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Figure 43. Climatological zonal mean ozone mixing ratios from the CMIP5 simulations and HALOE in ppmv. 

Vertical profiles at (a) 80N in March, (b) 0 in March, and (c) 80S in October. Latitudinal profiles at 50 hPa in (d) 

March and (e) October. The grey area shows HALOE plus and minus 1 standard deviation (s) about the 

climatological zonal mean. Ozone is clearly overestimated by most models, compared to the observations, in the 

Northern high latitudes between 50 hPa and 10 hPa, which becomes also apparent in the climatological zonal mean at 1400 
50 hPa. Southern high latitudes are slightly better represented in the models at 50 hPa  with a more general spread 

around the observations, but at lower pressure levels an overestimation of ozone compared to the observations 

becomes apparent in some models. Similar to Figure 5 of Eyring et al. (2006), produced with the 

recipe_eyring06jgr.yml. See details in Section 3.5.4. 

  1405 
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