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Abstract :   
 
Spiny lobsters (Panulirus longipes, P. penicillatus and P. versicolor) are an important resource in 
Seychelles, where they inhabit coastal carbonate and granite reefs that have been impacted by multiple 
coral bleaching events over the past two decades. Little is known about their biology and ecology in this 
region. Interspecific competition for food resources was previously suggested, but no quantitative data on 
the diets of spiny lobsters were available. Using carbon and nitrogen stable isotope compositions and 
fatty acid profiles of three spiny lobster species and their potential prey, a Bayesian mixing model for diet 
estimation was applied to compare the diet proportions of spiny lobsters among species and between reef 
types (carbonate and granite reefs). Model outputs suggested the three lobster species consume mainly 
crustaceans (Anomoura hermit crabs; half of the diet), then Echinoidea (sea urchins), algae and molluscs. 
P. versicolor was found to consume slightly more molluscs and algae than the two other studied species, 
which was consistent with its lower trophic level (2.4 vs 2.8 for the two other species). Trophic level did 
not increase with carapace length of spiny lobsters, but large individuals had higher carbon isotopic values 
suggesting that they might feed closer to the coast or more on detritus feeders than their smaller 
congeners. Diets of spiny lobsters were fairly similar between carbonate and granite reefs, except that 
lobster inhabiting granite reefs consumed more sea urchins. While our overall findings were consistent 
with gut contents of Panulirus spp. from other world regions, they should be confirmed, as the 
discrimination of several prey based on trophic tracers was low, which increased mixing model 
uncertainty. 
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Western Indian Ocean. 
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To maintain ecosystems in a healthy, productive, and resilient condition, several elem

ng species populations should be considered, such as interactions with other speci

nmental changes (Pikitch et al., 2004). To reach this goal, ecosystem-based fish

ement requires fisheries research to account for relationships between target specie

abitats, including trophic interactions (Bellchambers et al., 2010; Tam et al., 2017). 

Spiny lobsters Panulirus longipes, P. penicillatus and P. versicolor are impo

ical, social and economic resources in the Seychelles Archipelago, a small island state 

rn Indian Ocean (Fig. 1). They are found on shallow coral and granite reefs and in r

 recurrent coral bleaching events have resulted in the loss of coral cover and stru

exity on these reefs and an increase in macroalgae cover (Graham et al., 2006; Harris 

. Although variable depending on the year, approximately three metric tons of spiny lo

gipes, P. penicillatus and P. versicolor) are landed each year by the artisanal fishery (B

, most of it being sold to local hotels and restaurants. Declines in catch per unit effort (C

 in the 2016-2017 season, and continued suppressed CPUE from independent fishery su

esulted in a temporary closure of the fishery (SFA Fisheries Research Section, 2019)

ghted the need for an ecosystem-based approach to fishery management, particularly 

w ecological conditions, i.e. recurrent coral bleaching events and likely habitat modific

Despite the importance of spiny lobsters for the Seychelles, little is known about

y and ecology in the region (Barret, 2019). As part of a precautionary approach to fish

ement, a number of management measures are in place, including the prohibition of tra

lobsters (they may only be caught using snorkelling) (Payet and Isidore, 2002). This a

sible modification of the diet toward bait, as has been observed in Western Aus

rthur et al., 2011). However, the diet of spiny lobsters in the region remains unknow

 study based on trophic tracers, i.e. carbon and nitrogen stable isotope compositions (SI
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 a high probability of dietary competition among these species (Sabino et al., 2020). W

udy did not analyse the potential prey of spiny lobsters, results were consistent with th

t analysis of Panulirus spp. in other world regions: Panulirus spp. are opportunists, m

g on crustaceans and molluscs, and to a lesser extent on red algae (Briones-Fourzán 

Castañeda‐Fernández‐de‐Lara et al., 2005; Joll and Phillips, 1984; Mashaii et al., 2

ver, the proportion of algae might be underestimated due to a rapid gastric evacuation 

ddington, 2008). Additionally, the predominant benthic habitat surrounding a reef can 

tant source of variation for the diet of spiny lobsters (Blamey et al., 2019; Goñi et al., 

rthur et al., 2011). Similar variability in diet probably occurs for spiny lobsters 

elles, as their potential for dietary competition was higher in granite reefs than in carb

(Sabino et al., 2020), probably in relation to the higher prey diversity in carbonate 

son et al., 2019). However, quantitative diet studies are needed to better describe

c ecology while considering their different types of reef habitat in Seychelles. 

SI and FAs are intrinsic ecological tracers commonly used to infer assimilated d

mers (Ramos and González-Solís, 2012), including in spiny lobsters (e.g. Blamey et al., 

 et al., 2009; Sabino et al., 2020; Waddington et al., 2008). ẟ13C values allow fo

ination of habitat types (e.g. coastal vs offshore, the latter being characterised by 

ve ẟ13C values; France, 1995) and ẟ15N values inform on the species’ trophic level du

richment with increasing trophic levels (Vander Zanden et al., 1997). SI reflect the d

lobsters in the last three months (Waddington and MacArthur, 2008). FAs makeup l

As of fat depots such as the hepatopancreas in crustaceans, reflect the FA profiles of

lated by consumers in the last few days to weeks, depending on species (Antonio

ux, 2016; Shu-Chien et al., 2017). Both SI and FA data can be used for the quantitativ
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 et al., 2018). 

The objective of this study was to compare the trophic ecology of the three tropical 

rs commonly caught in the Seychelles (P. longipes, P. penicillatus and P. versicolor) 

 FA data from spiny lobsters and their potential prey. Specifically, we were interested 

re the main preys of spiny lobster in Seychelles, (2) do diet and trophic level differ bet

lobster species, and (3) does spiny lobster diet differ between reef types (carbonate vs g

   

 

terial and methods 

2.1. Organism collection 

 lobsters and their potential prey were collected from the shallow coastal waters from

 the coast of Mahé, the main island of the Seychelles Archipelago, home to around 90

untry’s population, and supporting 60% of the licensed lobster fishermen. Based on liter

 S1), potential lobster prey (n=74 individuals from 13 species and 7 phylogenetic cla

ollected by scuba-divers at four sites (maximum 10 meters depth) (Fig. 1) in April 201

er 2019. Spiny lobsters (26 P. longipes, 31 P. penicillatus and 7 P. versicolor) were coll

ers on snorkel from 15 sites (12 granite and 3 carbonate reefs) in October 2018 and

(Table 1). Granite reefs are granitic rocky reefs with coral growth on the granite subs

rbonate reefs are continuous carbonate fringing reefs (Harris et al., 2014). Note that 

ate reefs have deteriorated or collapsed following multiple coral bleaching events (Ob

17) and therefore most lobsters in our study were found on granitic reefs. All organisms

 at -80°C immediately after collection until further processing (less than seven days

tion) at the Seychelles Fishing Authority Research Laboratory. For spiny lobsters, a sa

atopancreas (for FA analysis) and a sample of tail muscle (for SI analysis) were care
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issues were sampled for both FA and SI analysis. For echinoderms, a sample of muscl

lly dissected from the Aristotle’s lantern; for bivalves, gastropods and anomurans (dec

ostracans - hermit crabs), the whole body tissue was collected after removing the s

, polyps of Palythoa (anthozoan) were kept whole and algae (green algae of the Chloro

; brown algae of the Ochrophyta phylum; and red algae or Rhodophyta) were kept

mall epiphytes (< 1 mm).  

ey and spiny lobster samples were then kept at -80°C for a maximum of five months, fr

for 72 hours, then ground to a homogeneous powder with a ball mill, and stored agai

prior to subsequent analysis. 

 

2.2. Stable isotope analysis 

tential prey items, carbon isotope composition was analysed on a subsample acidified

t 0.5 to 2 N (according to the effervescence) to remove carbonate, then rinsed three 

istilled water, and freeze-dried for 48 hours. Nitrogen isotope composition was analys

ample of the bulk powder. For lobster muscle, the bulk powder was analysed for both c

trogen isotope composition, as the muscle did not contain carbonate neither high lipid co

ntent is 0.7% wet weight and C:N ratio remains < 3.5). Acidified and bulk powders

ted into tin capsules and analysed by continuous flow on a Flash EA2000 elemental ana

d to a Delta V Plus isotope ratio mass spectrometer (Thermo Fisher scientific) at the

ométrie Océan, University of Brest, France, or on a Flash EA1112 elemental ana

d to a Delta V Advantage isotope ratio mass spectrometer (Thermo Fisher scientific) 

s stable isotope facility, University of La Rochelle, France. Calibrations were base

nce materials (IAEA-600, IAEA-CH-6 and IAEA-N-2). Results were reported in the δ

n and expressed as parts per thousand (‰) relative to the international stan
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on replicate measurements of acetanilide was < 0.15 ‰ for both δ13C and δ15N values a

tories. Inter-laboratory replicate measurements on reference materials (n=9), aceta

 urea (n=3), casein (n=3), and lobster samples (n=3) found no significant differenc

 between laboratories, with all differences below the analytical precision (< 0.15 ‰)

were determined from % element weights. 

2.2. Fatty acid analysis 

mples of dry powders (n=141) were treated as described in Sardenne et al. (2019). L

xtracted from 50-100 mg of dry tissue with 6 mL of CHCl3:MeOH (2:1, v/v) mixture di

 into glass vials. Extracts were flushed with nitrogen, vortexed, sonicated for 15-20 min

ored for 24 hours at -20°C. Tricosanoic acid (23:0) was added as an internal standard

 lipid extract. Total lipids were transesterified with 800 µL of H2SO4 (3.8 % in MeO

 for 10 min then washed with hexane-saturated distilled water. Fatty acid methyl 

E) and dimethyl acetals (DMA; from vinyl ether lipids) were separated and quantified

 CP8400 gas chromatography equipped with a Zebron ZB-WAX column (30 m length

ternal diameter, 0.25 µm film thickness; Phenomenex) and a flame ionisation detector 

cean facility, University of Brest, France. Samples were injected in splitless mode at 2

rried by hydrogen gas. The oven temperature was raised from 60°C to 150 °C at 50 °C

70 °C at 3.5 °C.min-1, to 185 °C at 1.5 °C.min-1, to 225 °C at 2.4 °C.min-1 and then to 2

 °C.min-1. FAMEs were identified by comparing sample retention times to those of

al standard mixtures (37-components, BAME, PUFA no. 1, and PUFA no. 3 FAME

o) using Galaxie 1.9.3.2 software (Varian). The mean analytical variability of the m

.1%, based on Supelco 37-component FAME mix routinely checked. Individual FA r

xpressed as a percentage of the total identified FAs, for 44 FAs accounting for > 1.5%
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oncentration) and expressed in µg.mg-1 of dry tissue. 

2.3. Data analysis 

Fractionation factors (FFs) and trophic level calculation 

lations of trophic levels and Bayesian mixing model include FFs (also called ‘tr

ment factors’ or ‘trophic discriminant factors’) to take into account for isotopic enrich

vier isotopes (13C and 15N) between successive trophic levels, i.e. between consumer

rey. Although FFs are commonly set to 0.5‰ and 3.5‰ for ẟ13C and ẟ15N in marine sys

tively, FFs are influenced by biological factors (e.g., species, tissue, age, food nutr

utchan et al., 2003; Vander Zanden et al., 2001) and a large range of FF values have

o compute the trophic level of spiny lobsters based on ẟ15N values: e.g. 3.5‰ for 

dsii (Guest et al., 2009), 2.6‰ for P. cygnus (Waddington et al., 2008). To better tak

nt FFs variability in the Seychelles marine food web, FFs were estimated for each pot

f spiny lobster with simple linear regressions, as FFs tend to decrease with increasing iso

of prey (Caut et al., 2009). FFs estimation was thus based on the isotopic values of pot

and a diet experiment on P. cygnus (Waddington and MacArthur, 2008) (Fig. S1b)

ed FFs were used to compute the trophic levels of spiny lobsters (see below) and includ

yesian mixing model (see section 2.3.2).  

ic levels were calculated relative to the ẟ15N values of macroalgae (red, green and b

 average ẟ15N = 6.5 ± 0.5 ‰, n=18), according to the following equation: 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝛿𝛿15𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙  −  𝛿𝛿15𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑚𝑚𝑚𝑚𝑙𝑙 

𝐹𝐹𝐹𝐹15𝑁𝑁
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ig. S1b: 𝐹𝐹𝐹𝐹15𝑁𝑁 = 2.9 ± 0.4‰. This calculation assumes the isotopic baseline to be the

 three spiny lobster species. 

Diet estimation using mixing modelling method 

esian mixing model was run to estimate the proportional contribution of sampled prey 

 spiny lobsters, based on SI values and FA profiles summarized through PCA. Becaus

inatory power of mixing models starts to decline above six or seven potential prey 

ps et al., 2014), the prey species (n=13) were grouped as much as possible while respe

ylogeny (n=9 classes) (Table 2). The model was run with two different groupings to com

 diet among the three spiny lobster species, and (ii) the diet of spiny lobsters between

(granite vs carbonate reefs, regardless of the species because of low sample size

nced design). The Bayesian mixing model included three types of parameters that we

ow:   

) Fractionation factors. For SI, FFs were obtained as described in section 2.3.1. Fo

profiles, FFs were set to 0 as the bioconversion of FA was assumed to be negligible 

hepatopancreas of spiny lobster due to its high proportion of dietary lipids (Shu-Ch

al., 2017). 

i) Concentration dependencies. Disparities among prey in the concentrations of tr

tracers induce different contributions of each prey to consumers’ values (Phillip

Koch, 2002). Percent of carbon and nitrogen elements and total fat content were

included for each potential prey. 

ii) Priors. Model priors on diet source proportions should be included when potential so

have similar values of trophic tracers (Franco-Trecu et al., 2013). Priors on the nine
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Panulirus species (Table S1).  

es for the posterior distributions were drawn by Markov Chain Monte Carlo (MC

tion methods (10,000 iterations, 4 parallel MCMC chains, and 1,000 burn-in rate). M

rgence diagnostics are presented in Fig. S2. Strong negative correlations between

rtions may impair model estimations. To avoid this and to obtain a comprehensive ove

sters’ diet, proportions of prey classes were grouped a posteriori (Phillips et al., 2014)

enetic basis (i.e. Mollusc for Bivalvia and Gastropoda classes; Algae for Chlorop

phyta and Rhodophyta phylum). 

Variability in trophic tracers and diet estimations 

s explaining variability in trophic tracers were assessed using ANOVA for univariate

ic level, ẟ13C and ẟ15N values), and PERMANOVA for multivariate FA profiles 

rmed data). SIMPER analysis was used to detect FAs that contribute the most to differ

 groups. For potential prey, the influence of the two fixed factors ‘Class’ (nine phyloge

s) and ‘Reef type’ (granite vs carbonate reefs) was assessed. For spiny lobsters, the influ

ecies’ (P. longipes, P. penicillatus, and P. versicolor), ‘Reef type’ (granite vs carb

 ‘Carapace length’ and the interaction ‘Species*Carapace length’ were considered as 

s. Homogeneity of residuals was tested with Levene’s test. Since homogeneity was foun

ups, parametric post hoc Tukey HSD tests were used to refine differences among gr

stimations, i.e. outputs from the Bayesian mixing model, were compared among spiny lo

s and between reef types in the Bayesian framework (no test value, only probabilities

ed). Jo
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GS program, and the “simmr” package  (Parnell et al., 2013). All results are report

 ± SD. 

ults 

ariability in trophic tracers among potential lobster prey  

g the potential prey of spiny lobsters, the phylogenetic species class (i.e. ‘Class’) expl

f the variability in trophic tracers, while reef type explained no difference. ẟ13C values v

en species’ class (F=39.6, df=8, p<0.001; 83.4% of explained variability), with v

g from -23.8 ± 0.7‰ for green algae of the Ulvophyceae class (Chlorodesmis spp.) to 

 for brown algae of the Phaeophyceae class (Turbinaria decurrens) (Fig. 2a). Reef

ned 0.5% of the variability in ẟ13C values (F=2.0, df=1, p=0.16). Similarly, ẟ15N v

 between species’ class (F=59.2, df=8, p<0.001; 88.2% of explained variability), with v

g from 6.0 ± 0.4‰ for Turbinaria decurrens to 12.4 ± 0.1‰ for the Echinoidea clas

 Echinothrix diadema) (Fig. 2a). The reef type explained only 0.1% of the variability in

 (F=0.3, df=1, p=0.59). Regarding FA profiles, species’ class and reef type explained 8

5.9, df=8, p < 0.001) and 0.3% (χ²=1.9, df=1, p = 0.17) of the variability, respectively.

tion captured 39.5% the variability in FA profiles with 16:0, 18:0 DMA, 18:4n-1, 20:1

3, and 22:5n-6 the six main discriminant FAs (Fig. 2b). PCA highlighted differences i

s according to the phylogenetic groups: (i) the algae group (including Chlorop

phycea, and Rodophyta phylums; PCA’ bottom left panel) with the highest levels in 

6:1n-7, and 18:3n-6; (ii) the Arthropod phylum (Malacostra class; PCA’ top left panel)

ghest levels in 18:1n-7, 20:4n-6 and 20:5n-3; (iii) the Mollusc phylum (Bivalvia

poda classes; PCA’ right panels), with the highest levels in three nonmethylated interr
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 22:4n-6; (iv) the Echinoderm phylum (Echinoidea class; PCA’ top right panel), wit

t levels in 18:0; and (v) the Cnidaria phylum (Anthozoa class), rich in 18:4n-1 (Fig

2). 

ariability in trophic tracers among spiny lobsters 

ding carapace length, individuals ranged from 60.2‒143.2 mm CL with P. penici

cantly larger than P. longipes and P. versicolor (F=17.2, df=2, p < 0.001; Fig. 3a). Regar

cies and due to unbalanced sampling design, individuals from both reef types were of si

ce length (101.3 ± 27.1 and 88.8 ± 16.7 mm CL for carbonate and granite reefs, respect

, df=1, p = 0.06). P. penicillatus tended however to be larger in carbonate than in granite

 1). Regarding ẟ13C values, studied individuals ranged from -15.3 to -12.2‰ wi

nce observed among species, reef type, or interaction between species and carapace l

, df=2, p = 0.13; F=0.3, df=1, p = 0.58; and F=2.3, df=2, p = 0.11, respectively). How

alues increased with carapace length (slope = 0.02 ; R² = 0.25 ; F=12.6, df=1, p < 0

 of explained variability), from -14.3 ± 0.6‰ below 80 mm CL to -13.0 ± 0.3‰ abov

L, especially for P. penicillatus (slope = 0.02, R²=0.20; F=8.6, df=1, p < 0.01; Fi

ding trophic level, studied individuals ranged from 2.3 to 3.1, and only an inter-sp

nce was detected (F=32.1, df=2, p < 0.001; 51.9% of explained variability), P. versi

 a significantly lower trophic level than the two other species (mean trophic level of 2

ig. 3b). No influence of carapace length, reef type, or interaction between specie

ce length on the trophic level was detected (F=0.1, df=1, p = 0.94; F=2.0, df=1, p = 0.17

, df=2, p = 0.75, respectively). Regarding FA profiles, only the carapace length was fou

influencing factor (χ²=17.8, df=1, p < 0.001; 7.2% of explained variability). No influen
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1, df=2, p = 0.13; χ²=0.4, df=1, p = 0.55; and χ²=3.3, df=2, p = 0.19, respectively). 

ixing model outputs  

Model diagnostics 

C chains of the mixing model did converge to 1. However, a posteriori groupings 

ed due to negative correlations between Malacostraca and Phaeophycea (Pear

ation coefficient r ranged from -0.57 to -0.92 according to lobster species and reef type

sser extent between Echinoidea and Malacostraca or Gastropoda. Despite the groupi

phyta, Ochrophyta, and Rodophyta (under the ‘Algae’ group) and of Gastropoda

ia (under the ‘Mollusc’ group), a strong negative correlation remained for some groups

between Malacostraca and Alga and of -0.69 between Echinoidea and Mollusc; Fig

ting the low discrimination of these groups in lobster diets and the possible overestim

lacostraca and Echinoidea proportions over Algae and Mollusc proportions in the 

rs’ diet.  

Model outputs 

pecific comparisons. Similar trends were observed for the three spiny lobster species,

ostraca identified as their main prey (average proportion: 47-63% of the diet), follow

oidea (16-32% of the diet), Algae (8-18% of the diet), Mollusc (5-17% of the diet)

zoa (1-2% of the diet) (Fig. 5a). Due to large distributions in model outputs, d

rtions of most potential prey were similar among spiny lobsters (at α=0.05). For inst

 proportions for Malacostraca were as follows: P. penicillatus 63±14%, P. lon
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med more Malacostraca than P. longipes and P. versicolor, respectively. Notic

nces mainly concerned P. versicolor: (i) 94.8% and 88.3% probability that P. versi

med less Echinoidea than P. longipes and P. penicillatus, respectively; (ii) 78.6% and 8

ility that P. versicolor consumed more Mollusc than P. longipes and P. penicil

tively, and (iii) 50.2% and 66.2% probability that P. versicolor consumed more Algae

gipes and P. penicillatus, respectively (Fig. 5a). 

abitats comparison. Spiny lobsters caught from both carbonate reefs (n=7) and granite

) were found to mainly feed on Malacostraca (half of their diets; Fig. 5b). However, 

rs from granite reefs had 83.9% and 92.4% probability of feeding more on Echinoide

 Molluscs than their congeners from carbonate reefs, respectively (Fig. 5b).  

cussion 

iet of three spiny lobsters (Panulirus spp.) from Mahé Island, Seychelles was investi

on SI compositions and FA profiles of muscle and hepatopancreas, respectively, and

ial prey, using a Bayesian mixing model. Based on model outputs, half of the diet f

lobster species consisted of Malacostraca. Increasing ẟ13C values with increasing car

 suggested that spiny lobsters might fed closer to the coast or more on detritus feeders

sing size length, and individuals from carbonate reefs fed more on Molluscs than those

e reefs. The main inter-specific difference observed was the lower trophic lev

sicolor, related to its higher consumption of algae and molluscs than the two other spec
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stimations from the mixing model were based on trophic tracers, and thus correspond

similation over several days to months, based on turnover rates of SI and FA muscl

pancreas (Antonio and Richoux, 2016; Waddington and MacArthur, 2008). Accordi

ixing model, diet profiles of the three spiny lobster species were similar, 

ostraca:Anomura (hermit crabs) found to be their main prey. A similar finding has

ed from a reef lagoon of Puerto Morelos, Mexico, where hermit crabs and brachyurans

ain prey in the gut contents of P. argus juveniles (Briones-Fourzán et al., 2

nderance of crustaceans in the diet of spiny lobsters has been observed in several Panu

sually in similar proportions to those of molluscs, depending on environmental factors

f type, season etc. (Table S1). In our study, molluscs (gastropods + bivalves) ranked th

 in main prey items of spiny lobsters, which was lower than expected based on data fro

ure (first to third main prey; Table S1). Around Mahé Island, bivalves do not form 

ents (Selin et al., 1992; Taylor, 1968) and represent less than 14% of molluscs, whic

ated by gastropods (Barnes et al., 2009). It may explain why few bivalves were foun

 at the sampled sites (only the oyster Pinctada margaritifera). Consequently, biv

buted to a low proportion of the Seychelles spiny lobster’ diets (< 10% of the diets wha

ecies), while they can be an important food source of Panulirus spp. in other regions o

 (e.g. Gulf of Mexico, Baja California; Table S1) and of other spiny lobsters e.g. Jasu

ield et al., 2000; Pollock, 1979). Echninoidea (sea urchins) were found to be an impo

omponent for the three species (16‒32% of the diet). Our results are in accordance

ations from other regions, although Seychelles spiny lobsters seemed to rely mo

oidea compared to the 4‒28% and 4‒8% gut volume for P. guttatus and P. argus 

an peninsula, Mexico, respectively (Briones-Fourzán et al., 2019). This relatively

mption of sea urchin could be related to the high abundance of sea urchins in shallow 
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 of both sea urchins and spiny lobsters in Seychelles (Sabino et al., 2020; Sardenne 

. However, spiny lobsters from granite reefs seemed to feed more on Echinoidea and le

scs than individuals from carbonate reefs, while sea urchins are mainly found in patchy

hé Island, i.e. reefs with a sand, rock or rubble base (Jan-Claas, 2020). This suggests 

rs might move between reef types, despite narrow home ranges being suspected for 

s and similar to results from related species (650 m² per week based on 50% utilis

ution of P. interruptus from California, USA; Withy-Allen and Hovel, 2013). 

ecific differences in diet proportions were small, but P. versicolor consumed slightly 

than the two other species, which is consistent with its lower trophic level (2.4 vs. 2.8)

 difference could help to reduce interspecific competition, as even a small differen

c level favoured co-occurrence between Panulirus species on Caribbean reefs (Segura-G

2016). Overall, the trophic levels of Seychelles spiny lobsters (ranging from 2.3 to 3.1, n

imilar to those derived from ẟ15N values for P. cygnus from Western Australia (1.9

ington et al., 2008) and Jasus edwardsii from New Zealand (2.5‒4.0) (Jack and Wing, 2

arge ranges highlight the lobster’s diet plasticity and their opportunistic feeding beha

 S1). Regardless of the species, no ontogenetic change in trophic level was observed (i

ation between ẟ15N derived trophic level and carapace length). In contrast, ẟ13C v

sed with spiny lobster size, indicating that large individuals may feed closer to the co

on prey with a strong benthic affinity (e.g. prey feeding on benthic organic matter with

alues) than their smaller/younger congeners. While limited information is availab

r size distribution with bathymetry in shallow areas, ontogenetic changes in d

ences are known for other spiny lobster species: e.g. it was observed for Jasus paulen

ii and P. cygnus  (Blamey et al., 2019; Dumas et al., 2013; Haley et al., 2011; Mayfi

00). However, size related changes either in spatial distribution or in diet remain 
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s to be included in the mixing model, but it would be interesting to explore this aspect fu

luding juveniles in the dataset. 

udy caveats  

ts regarding mixing model outputs should be highlighted, since uncertainties in the estim

 proportions of algae, Malacostra, and Echinoidea remain strong despite a post

ations of specific prey classes, which could thus bias the results. These uncertainties

ain origins: (i) a low discrimination of some potential prey based on their SI compos

 profiles. Using additional trophic tracers such as sulphur or mercury stable isotopes m

ve this discrimination (e.g. Higgs et al., 2016; Jack et al., 2009); and (ii) the influence 

eters, which were estimated from linear regressions based on one diet experiment 

onal diet experiments would be required to accurately estimate FFs (for both SI and 

us increase robustness of the model setup as previously highlighted (Brett et al., 

s et al., 2014). 

from the model parameters, more samples of spiny lobsters from carbonate reefs a

les/small adults is needed. Due to loss of carbonate reefs in the region, samples of lob

his habitat was small and could prevent detection of any differences between reef type

netic stages. Some potential prey were also probably missing, especially bivalve

od species, which have reduced contributions to lobster’s diets. 

ture directions 

Several integrated trophic indicators are particularly suitable for the implementation 

tem-based fisheries management, including the monitoring of trophic levels of catche

an number of trophic links per species (Tam et al., 2017). The present study will prov
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ce, the seasonal monitoring of trophic level would help to detect diet shifts in the pas

s (e.g. following coral bleaching or after the fishing season). For the sampling to be

 muscle tissue can be sampled from the last segment of the fourth walking leg (ca. 0.5

sue is required), which will start to grow again at the next molt, as after natural auto

oring may also allow trophic links per spiny lobsters species to be identified, espe

ing (i) potential shift in the diets of spiny lobsters before and after coral bleachin

ate reefs, as the dietary competition among spiny lobsters has increased after the 

ing event of 2016 (Sabino et al., 2020); and (ii) the influence of predator abundanc

ring diets in heavily fished and protected regions throughout the ontogeny of spiny lob

 lobsters have several predators especially at juvenile stage, such as octopus, small sh

ers, and snappers, which influence their sheltering and foraging behaviours (Ellis, 

 and Herrkind, 1992). 

usion 

iny lobsters from Seychelles are generalist feeders that appear to mainly feed on crustac

chins and algae. Dietary differences related to species, reef type and ontogeny were w

 versicolor had a lower trophic level than the two other species. Lobsters from carb

ed more on Molluscs than those from granite reefs, and large lobsters probably fed clo

ast or more on detritus feeders than the small ones. These results should however be re

cluding more individuals (including size ranges) and prey types, trophic tracers

eters from diet experiments. 
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Figure 1. Sampling sites of spiny lobsters Panulirus longipes, P. penicilatus and P. versicolor 628 

an Mahé 

Isl  Sites 630 

co
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d their potential prey collected from the coastal shallow waters of the west coast of 

and, Seychelles, located in the Western Indian Ocean (red star on the top right panel).

rrespond to granite reefs unless specified (three carbonate reefs). 
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Figure 2. topic values, 634 
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Trophic tracers of spiny lobsters and their potential prey presented with (A) a biplot of nitrogen (δ15N) and carbon (δ13N) iso

principal component analysis based on 44 fatty acids with spiny lobsters’ observations superimposed (only FA contributin

ination are indicated in grey).  
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oxplots of (A) carapace length, and (B) trophic level, for three spiny lobster species of Mahé Island, Seychelles. Trophic le

sed on ẟ15N values of the lobster tail muscle relative to the ẟ15N values of macroalgae (red, green and brown macroalgae) 

 methods for details). Stars denotes significant differences between species (Tukey HSD test; NS = p > 0.05, * = p < 0.05,

*** = p < 0.001). 
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Figure 4. Relationships between ẟ13C values (‰) of tail muscle and carapace length (mm) of 

three ns). 

Blac

Journal Pre-proof
 spiny lobsters (n = 64) caught from Mahé Island, Seychelles (simple linear regressio

k line is linear regression for the three species together (slope = 0.02, R² = 0.25). 
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utputs of the Bayesian mixing model estimating the prey proportions in the diet of spiny lobsters (A) among species, and (

ased on isotopic values and fatty acid profiles. To improve model diagnostics, bivalves and gastropods were grouped a poste

’ group, and brown, green and red algae were grouped under the ‘Algae’ group. Proportions’ summary (Mean ± SD) is in
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le 1. Details on the sampling design of spiny losbters from reefs of Mahé Island, Seychel

 

 

 

Species Habitat type N

Panulirus longipes Carbonate reefs 3 77.6 ± 5.1

Panulirus longipes Granite reefs 23 78.7 ± 10.6

Panulirus penicillatus Carbonate reefs 4 119.1 ± 21.7

Panulirus penicillatus Granite reefs 27 98.5 ± 16.0
Panulirus versicolor Granite reefs 7 84.3 ± 15.5

Carapace length 
(mm)

Jo
ur

na
l P

re
-p

ro
of
34 



 

Phylum Class Spe
Chlorophyta Chlorophyta Chlo 0.8 8.0

Ulvophyceae Chlo 0.1 ± 0.0 0.4 ± 0.1
Ochrophyta Phaeophyceae Turb 0.1 ± 0.0 0.0 ± 0.1
Rhodophyta Rhodophyta Rho 0.0 0.0

Rhodophyta Rho 1.3 ± 1.7 1.0 ± 0.2
Arthropod Malacostraca Calc 0.9 ± 0.2 3.7 ± 1.3

Malacostraca Dard 1.1 ± 0.2 5.5 ± 2.5
Cnidaria Anthozoa Paly 0.3 ± 0.1 3.9 ± 0.6
Echinoderm Echinoidea Echi 1.0 ± 0.1 0.7 ± 0.1
Mollusc Bivalvia Pinc 1.8 ± 0.5 12.6 ± 3.4

Gastropoda Con 0.5 ± 0.6 0.8 ± 0.7
Gastropoda Latir 0.1 ± 0.0 0.2 ± 0.0
Gastropoda Vasu 0.5 ± 0.2 1.5 ± 1.9

Arthropod Malacostraca Pan 0.7 ± 0.1 4.0 ± 1.0
Malacostraca Pan 0.5 ± 0.2 4.3 ± 2.2
Malacostraca Pan 0.7 ± 0.2 4.1 ± 1.2
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22:6n-3 (%)) 22:5n-6 (%)

 

Table 2. Me proportions 

of fatty acid ster species 

caught from  provided. 
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cies N
rophyta spp 2 -17.7 7.2 0.7 23.0 0.0 5.1 0.0 3.3 4.1 5.5
rodesmis spp 6 -23.8 ± 0.7 6.5 ± 0.3 3.2 ± 0.6 41.6 ± 2.6 0.0 ± 0.0 9.1 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 1.6 ± 0.3 1.9 ± 0.3
inaria decurrens 5 -10.8 ± 1.6 6.0 ± 0.4 2.5 ± 0.4 35.6 ± 3.4 0.0 ± 0.0 13.8 ± 0.9 0.0 ± 0.0 0.0 ± 0.1 13.5 ± 0.8 1.7 ± 0.4

dophyta sp1 2 -22.8 6.3 0.3 51.3 0.0 11.9 0.0 0.0 8.6 5.0
dophyta sp2 3 -16.0 ± 1.0 7.2 ± 0.3 0.3 ± 0.1 45.0 ± 4.7 0.0 ± 0.0 5.5 ± 1.9 0.1 ± 0.1 0.4 ± 0.2 12.2 ± 7.1 1.8 ± 0.2
inus laevimanus 10 -14.3 ± 1.3 7.8 ± 0.4 2.9 ± 0.8 22.6 ± 5.6 3.1 ± 1.0 5.8 ± 0.7 0.0 ± 0.0 0.3 ± 0.1 14.3 ± 2.6 11.1 ± 1.7
anus lagopodes 5 -15.0 ± 0.6 8.7 ± 0.4 2.0 ± 0.4 20.9 ± 5.6 3.3 ± 2.3 6.3 ± 1.0 0.0 ± 0.0 0.3 ± 0.1 11.8 ± 2.5 11.5 ± 2.8

thoa natalensis 9 -13.9 ± 0.2 8.4 ± 0.6 0.7 ± 0.2 24.3 ± 2.3 5.4 ± 1.2 2.3 ± 0.2 4.5 ± 2.3 0.7 ± 0.3 7.8 ± 1.4 2.4 ± 0.6
nothrix diadema 3 -13.7 ± 0.9 12.4 ± 0.1 3.5 ± 0.1 10.7 ± 0.1 6.7 ± 0.9 0.4 ± 0.1 0.1 ± 0.0 8.7 ± 0.6 26.7 ± 0.4 7.4 ± 1.7
tada margaritifera 7 -17.5 ± 1.0 7.6 ± 0.4 5.1 ± 2.4 12.5 ± 5.1 7.4 ± 4.1 4.0 ± 0.8 0.1 ± 0.1 5.4 ± 1.7 6.1 ± 1.4 4.1 ± 2.4
us spp 7 -13.7 ± 2.0 10.8 ± 1.8 3.8 ± 1.4 12.0 ± 7.5 8.5 ± 2.4 2.7 ± 0.7 0.0 ± 0.0 5.5 ± 1.2 11.3 ± 3.2 3.0 ± 1.8
olagena smaragdulus 8 -13.6 ± 1.5 10.7 ± 0.3 3.1 ± 0.2 5.9 ± 0.3 8.5 ± 1.7 2.5 ± 0.2 0.2 ± 0.1 8.1 ± 0.5 14.3 ± 0.5 1.3 ± 0.2
m turbinellus 7 -13.7 ± 1.5 11.2 ± 0.2 3.0 ± 1.0 5.7 ± 1.4 7.7 ± 3.4 1.6 ± 0.4 0.1 ± 0.0 6.6 ± 1.1 15.3 ± 1.5 1.9 ± 0.2

ulirus longipes 26 -14.3 ± 0.6 11.5 ± 0.3 52.7 ± 16.4 17.1 ± 2.1 2.4 ± 0.6 7.4 ± 1.4 0.0 ± 0.0 2.9 ± 0.6 10.8 ± 1.3 7.7 ± 1.3
ulirus penicillatus 31 -13.6 ± 0.7 11.7 ± 0.4 52.7 ± 20.1 17.4 ± 2.0 2.3 ± 0.8 10.5 ± 3.6 0.0 ± 0.0 2.8 ± 0.9 8.5 ± 1.9 7.1 ± 2.0
ulirus versicolor 7 -13.5 ± 0.9 10.5 ± 0.2 43.6 ± 22.5 17.6 ± 2.1 2.5 ± 0.7 7.6 ± 2.0 0.0 ± 0.0 2.4 ± 0.7 11.3 ± 2.3 7.8 ± 1.3

ẟ13C (‰) 20:5n-3 (%20:4n-6 (%)20:1n-11 (%)18:4n-1 (%)18:1n-9 (%)18:0DMA (%)16:0 (%)ẟ15N (‰) TLC (µg.mg-1)

an ± standard deviation for isotopic values (ẟ13C and ẟ15N, in ‰), total lipid content (TLC, in µg.mg -1 in dry weight), and 

s contributing the most to species discrimination (in % of total fatty acids) for 13 potential prey species and three spiny lob

 reefs around Mahé Island, Seychelles. See material and methods for details on analysis. When n = 2, only mean values are
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