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ABSTRACT: In this study, we examine the role of curvature in modifying frontal stability. We first evaluate the classical

criterion that the Coriolis parameter f multiplied by the Ertel potential vorticity (PV) q is positive for stable flow and that

instability is possible when this quantity is negative. The first portion of this statement can be deduced from Ertel’s PV theorem,

assuming an initially positive fq. Moreover, the full statement is implicit in the governing equation for themean geostrophic flow,

as the discriminant, fq, changes sign. However, for curved fronts in cyclogeostrophic or gradient wind balance (GWB), an

additional term enters the discriminant owing to conservation of absolute angular momentum L. The resulting expression, (11
Cu)fq , 0 or Lq , 0, where Cu is a nondimensional number quantifying the curvature of the flow, simultaneously generalizes

Rayleigh’s criterion by accounting for baroclinicity and Hoskins’s criterion by accounting for centrifugal effects. In particular,

changes in the front’s vertical shear and stratification owing to curvature tilt the absolute vorticity vector away from its thermal

wind state; in an effort to conserve the product of absolute angular momentum and Ertel PV, this modifies gradient Rossby and

Richardson numbers permitted for stable flow. This forms the basis of a nondimensional expression that is valid for inviscid, curved

fronts on the f plane, which can be used to classify frontal instabilities. In conclusion, the classical criterion fq, 0 should be replaced

by the more general criterion for studies involving gravitational, centrifugal, and symmetric instabilities at curved density fronts. In

Part II of the study,we examine interesting outcomes of the criterion applied to low-Richardson-number fronts and vortices inGWB.

SIGNIFICANCE STATEMENT: Considerable progress has beenmade by considering ocean fronts to be in geostrophic

balance. By this, we mean that fluid parcels accelerate as a result of horizontal pressure gradients and Earth’s rotation. A

good example of this is in our efforts to understand symmetric instability, a process thought to impact energy, buoyancy, and

tracer budgets in the ocean. However, we wanted to know how the physics might change if we accounted for centrifugal

forces, or curvature. It turns out that this same question had been asked and answered nearly 100 years ago. However, the

new criteria that we introduce in Part I yield (in Part II) one result that is new: in low-stratifiedwaters, curved cyclonic fronts

become strongly unstable and curved anticyclonic fronts become marginally stable. This suggests that highly curved cy-

clonic fronts and vortices are symmetrically unstable, with potential implications for the aforementioned budgets.

KEYWORDS: Instability; Ocean dynamics; Potential vorticity; Turbulence; Frontogenesis/frontolysis; Fronts; Vortices;

Angular momentum

1. Introduction

There has been considerable interest in submesoscale

dynamics in the ocean in recent years. Nominally charac-

terized by horizontal scales of 0.1–10 km and temporal

scales of hours to days, this regime is host to a number of

instabilities not present within the quasigeostrophic (QG) re-

gime. In this dynamical framework, horizontal and vertical

shears are enhanced to such an extent that oneobserves an increase

in frontal instabilities (Thomas et al. 2008; McWilliams 2016).

These include baroclinic instability reminiscent of Charney-

and Eady-like instabilities (Charney 1947; Eady 1949), but also

frontal instabilities that occur when the Ertel potential

vorticity (PV) becomes opposite in sign to the background

QG PV, subsequently leading to turbulence and mixing.

This elevated interest in submesoscale dynamics has been

prompted by an increased ability to resolve finescale horizontal

and vertical gradients in observations, for example, from au-

tonomous float/glider measurements when combined with

satellite measurements. At the same time, there has been a

marked increase in computational capability, such that mod-

eling frontal flows at hundred-meter scales is now possible and

will soon become routine. Important to the oceanographer and

climate scientist is the potential of such small-scale dynamics

to modify large-scale dynamics, including 1) ocean circulation,

2) ocean–atmosphere heat exchange, and 3) tracer exchange

between the deep and upper oceans.

Interpreting dynamics at these fine spatial and temporal

scales, however, poses a significant challenge. While Earth’s

rotation plays an important role in the horizontal momentum

equations, it is largely acknowledged that strong mean flows

and enhanced shear can cause advective terms to be of equal

order at the submesoscale. Thus, simply assuming a geostrophic
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balance—that is, a balance between horizontal pressure gradient

andCoriolis terms—maynot be appropriate.Despite this, it must

be acknowledged that considerable progress has been made in

our understanding of dynamics at these fine scales by considering

the mean state to be in thermal wind balance (TWB) and the

perturbations themselves to be ageostrophic. One example

where this is perhaps most true is in better understanding a

phenomenon known as symmetric instability, and sometimes

referred to as generalized inertial instability, slant-wise convec-

tion, or simply centrifugal instability (Hoskins 1974; Thorpe and

Rotunno 1989; Thomas et al. 2008; Taylor and Ferrari 2009).

a. Background: Generalized inertial instability or

symmetric instability

Symmetric instability is a vertical shear instability found

within baroclinic fronts. Though the flow may be neither gravi-

tationally unstable nor inertially unstable, within a front it can

still be unstable to small disturbances in a direction inclined to

the horizontal, where disturbances typically take the form of

internal waves (Mooers 1975; Li et al. 2019). An understanding

of this phenomenon largely grew out of early investigations of

the stability of atmospheric vortices. While scientifically and

mathematically fascinating in their own right, such investiga-

tions had relevance for weather prediction in the atmosphere

and were therefore of practical importance, as well.

Notable contributions were made by several scientists, in-

cluding Solberg (1936), Fjortoft (1944, 1950), Eliassen (1951),

Ooyama (1966), andYanai and Tokioka (1969). Solberg (1936)

employed ring-displacement arguments of Rayleigh (1917) and

derived a stability criterion valid for axisymmetric baroclinic

vortices. Fjortoft (1950) also derived a necessary criterion for

stability of a vortex. Because his work employed energetic

arguments, the sufficiency of the criterion is often attributed to

Fjortoft (1950). Both scientists’ contributions are summarized

in work by Eliassen andKleinschmidt (1957) and vanMieghem

et al. (1951).

Ooyama (1966) later expanded on these efforts, demon-

strating that Fjortoft’s criterion for vortex stability also served to

define themarginally stable state andwas, therefore, a necessary

and sufficient criterion for instability. To do this, Ooyama (1966)

formulated an analytical initial value problem (IVP), integrated

the kinetic energy (KE) equation, and demonstrated that

instability occurs if at least one set of initial conditions results

in unbounded growth of total KE. In turn, motivated by

Ooyama’s work, Yanai and Tokioka (1969) constructed a nu-

merical IVP, integrated the equations of motion for a vortex,

and obtained an instability characterized by motion in the

meridional plane—that is, in radial and vertical directions.

Because of the azimuthal symmetry of parcel motion, the in-

stability is now known as symmetric instability though it largely

resembles classical inertial or centrifugal instability in appear-

ance (Kloosterziel et al. 2007, their Fig. 1).

The stability criterion for symmetric instability within axisym-

metric vortices, first given by Solberg (1936) and proved sufficient

by Fjortoft (1950) and Ooyama (1966), can be summarized as

follows. Instability is possible in an inviscid, baroclinic vortex when

F5 ( f 1 2y/r)( f 1 z)
� �

u
, 0, (1)

where the quantity in brackets is evaluated along isentropic

surfaces, f is the Coriolis parameter or planetary vorticity, y is

the mean azimuthal velocity, r is the radius, and z5 (1/r)›r(ry)

is the vertical component of mean relative vorticity. Since the

bracketed quantity corresponds to the Rayleigh discriminant1

for inertial instability of barotropic vortices (Chandrasekhar

1961; Kloosterziel and van Heijst 1991; Mutabazi et al. 1992),

one can equivalently view symmetric instability as an ‘‘inertial

instability on isentropes.’’ Equation (1) is therefore a generalized

Rayleigh criterion for baroclinic vortices. Astrophysicists also

use this criterion in studies pertaining to the stability of ac-

cretion disks where it is better known as Solberg’s criterion

(Nelson et al. 2013; Rüdiger et al. 2002). Finally, note that in

the oceanic context, Eq. (1) can be evaluated approximately

along isopycnals or, in the deep ocean, on neutral density

surfaces (Jackett and McDougall 1997).

b. Connection to Ertel’s PV

It was not until Hoskins (1974) that an explicit connection

between the criterion for symmetric instability and the Ertel

PVwasmade.Of particular note, Hoskins (1974) employed the

TWBmodel of Ooyama [1966, their Eq. (19)] and showed that

the criterion for instability can be restated as follows. In the

Northern Hemisphere, symmetric instability is possible within a

front in TWB2 when q , 0, where

q5v
a
� =b (2)

is the Ertel PV (Ertel 1942). In this expression, va 5 2V1
=3u’ f ẑ1=3 u is the absolute vorticity, = 3 u is relative

vorticity, and f 5 2jVj sinu is the vertical component of plan-

etary vorticity at latitude u. Moreover, b52gr/ro is buoyancy,

g is acceleration due to gravity, r is density, and ro is a reference

density. Multiplying by the Coriolis parameter to eliminate the

hemispheric dependence, assuming stable stratification and re-

stricting analysis away from the equator, the instability criterion

can be recast in nondimensional form:

q0 5 11Ro2Ri21 , 0: (3)

In this expression, Ro5 z/f is the gradient Rossby number,

Ri 5 N2/j›zuj2 is the gradient Richardson number, N2 5 ›zb

is the vertical stratification, and ›zu is the vertical shear of

alongfront velocity, u5 (0, y, 0). Here, overbars denote mean

quantities. This is the classic criterion for symmetric instability

of a front in TWB given in terms of nondimensional numbers

(Hoskins 1974). It has also motivated a decomposition of the

1 In Eq. (1), the bracketed quantity can be rewritten in terms of

the radial gradient of the square of absolute angular momentum,

therebymaking a direct connection betweenEq. (1) andRayleigh’s

original statement that the fluid ‘‘is stable only under the condi-

tion that the circulation always increases with r’’ (Rayleigh 1917;

Chandrasekhar 1961). Here, Rayleigh (1917) uses the term circulation

to refer to the angular momentum.
2 The Ooyama–Hoskins model is even more specific. It is char-

acterized by constant vertical and horizontal gradients in velocity

and density.
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occurrences of negative PV into separate categories that define

which terms are most important in reducing PV (Thomas et al.

2013), including gravitational, inertial, and symmetric insta-

bilities. The reader is also referred to Li et al. (2012) and

Hamlington et al. (2014) for presentations of these instability

types in the presence of surface wave effects.

Somewhat coincidentwith these studies, Yanai (1961) appears

to have addressed a more challenging problem. In seeking to

understand formation mechanisms of tropical cyclones, Yanai

derived an Ooyama–Hoskins–like equation valid for fronts

with curvature. From this, he obtained an instability criterion

valid for fronts in cyclogeostrophic (hereafter gradient wind

balance; GWB) under certain restricted conditions.3 For a

vortex, owing to the boundary imposed at r 5 0, it demands

solutions in the form of Bessel functions and poses a unique

mathematical problem. This is likely why Ooyama (1966), years

later, concluded that an eigen- or normal-mode solution may

not exist and proceeded to solve the sufficiency problem in a

creative manner. This difficulty in solving the governing equa-

tion using classical normal-mode analysis was recently reiterated

by Kloosterziel (2010, p. 173, paragraph 2). It thus remains an

outstanding problem.

c. Motivations for the present study

Why then revisit this problem? If the criterion of Solberg

(1936) [cf. Eq. (1)], proved sufficient by Fjortoft (1950), and

Ooyama (1966), addresses the problem of symmetric instabil-

ity, why reconsider the impact of curvature on frontal stability?

While this criterion has been widely known in atmospheric

circles for nearly a century, the role of curvature on dynamics

at ocean fronts is typically neglected. Here, we do not have in

mind classical baroclinic instability in which potential energy

fuels the growing disturbance. This was addressed more re-

cently by Grooms (2015). Rather, we have in mind baroclinic

instabilities in which kinetic energy from the vertical shear in

the flow supplies the necessary energy (Taylor and Ferrari

2010; Thomas and Taylor 2010; D’Asaro et al. 2011; Thomas

et al. 2013; Bachman et al. 2017; Buckingham et al. 2019).

Notable exceptions to this statement include studies by Holmes

et al. (2014), Shakespeare (2016), Adams et al. (2017), and

Brannigan et al. (2017), which we briefly describe below.

Holmes et al. (2014) investigated changes in PV near trop-

ical instability waves (TIW) within high-resolution regional

simulations, finding that the centripetal acceleration modi-

fied the results in locations confined to sharp baroclinic fronts.

Shakespeare (2016) examined the cyclogeostrophic adjustment

and frontogenesis problem for curved density fronts, essentially

generalizing the work ofHoskins and Bretherton (1972). Adams

et al. (2017) examined submesoscale instabilities on the edge of a

mesoscale eddy in the Southern Ocean. Although Adams et al.

(2017) did not examine the relevant criterion given above, the

authors did examine the Ertel PV, finding that curvature did not

appreciably modify their results. Last, Brannigan et al. (2017)

explored these dynamics within numerical simulations of me-

soscale eddies, deriving a useful expression for the growth rate

of symmetric disturbances under limiting conditions relevant to

mesoscale eddies. In summary, although several studies have

considered the effect of curvature on frontal stability, the vast

majority of oceanographic studies employ TWB to understand

symmetric instability, something that may be a poor approxi-

mation for small-scale eddies or sharply curved fronts. Thus, the

first motivation is to reexamine frontal stability and instability

in the oceanic context and that may lead to new discoveries. We

find, for example, that it may help to explain why submesoscale

coherent vortices tend to be anticyclonic, thereby potentially

solving a puzzle about the distribution of relative vorticity at

small horizontal scales in the ocean (McWilliams 1985, 2016).

A second motivation for this study is slightly academic but

nonetheless relevant. Numerous studies have employed the

statement ‘‘fq , 0 implies potential for instability’’ without

precisely understanding the 1) origin or 2) range of validity of

this statement. With regard to origin, admittedly, the study of

Hoskins (1974) provides a clear case in which this statement is

true, serving as a useful reference. We ourselves have employed

this technique in earlier studies. However, such arguments are

restricted to the specific case of a front in TWB. It can, however,

be shown that the stability of a front can be deduced in part

from Ertel’s PV theorem applied to a thermodynamic variable

(e.g., density)—so long as the fluid is inviscid and baroclinic

fluid. That is, in the absence of friction and for a fluid where

isopycnals are inclined to pressure surfaces (i.e., =r3 =p 6¼ 0),

PV conservation demands density conservation and instabil-

ities are not possible. In contrast, where q is not conserved,

density is no longer conserved, implying that turbulent mixing

(diabatic) processes are possible.

However, this statement does not address the sufficiency

question. We find, for example, that the range of validity of the

PV criterion is limited. In particular, the criterion given by

Hoskins (1974) is not sufficient for curved baroclinic flow be-

cause it neglects centrifugal forces that fluid parcels experience

within such fronts. In summary, for curved fronts, fq, 0 is not

the correct criterion. One must account for centrifugal effects.

A third and final motivation is application driven. Frontal

instabilities such as those described in this study are ubiquitous

in the World Ocean and may have implications for climate. In

recent years, submesoscale instabilities have been identified

as having impacts on upper-ocean stratification (Fox-Kemper

et al. 2011), biogeochemistry and tracer exchange (Klein and

Lapeyre 2009; Lévy et al. 2012; Mahadevan 2016; Smith et al.

2016), and energetics associated with the wind-driven ocean

circulation (Thomas and Taylor 2010). Given that these spe-

cific areas each play a role in shaping Earth’s climate, it is

conceivable that their integrated effect may be important.

Thus, a longer-term but nonetheless relevant goal of this study

is to better understand the role submesoscale processes might

play in this climate system.

The historical introduction given above is largely concerned

with the stability of cylindrical vortices. However, GWB bal-

ance also has applicability to meandering fronts since, as in the

3 Yanai (1961) makes several approximations in his derivation

that restrict his solution. For example, Yanai (1961, his section 1.2.4)

assumes vertical and lateral shears and stratifications to be locally

constant, which may be inappropriate since GWB cannot generally

be satisfied in this manner.
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atmosphere, GWB is a useful approximation for the momen-

tum balance in the crests and troughs of ocean fronts. Such

flows can be found in boundary currents such as the Gulf

Stream Current and Kuroshio, or in the strong zonal flows of

the Antarctic Circumpolar Current (ACC). A quick glance at

surface kinetic energy in the ACC (Fig. 1) (see also Dong et al.

2006; Sokolov and Rintoul 2009; Cornillon et al. 2019, their

section 3.5), for example, will illustrate to the reader that GWB

is likely a reasonable model. In such cases, the radius of a

vortex r should be replaced by a radius of curvature R and the

azimuthal velocity should be replaced by an alongfront ve-

locity y. This is illustrated schematically in Fig. 2 and de-

scribed in greater detail in appendix B. TWB can then be

recovered in the limit ofR/‘. We acknowledge that a more

complete description of the role of curvature demands use of

the natural coordinates (Holton 1992; Wenegrat and Thomas

2017). However, for simplicity, we restrict our presentation of

the problem to one in cylindrical coordinates.

d. Outline of the study

Our study is broken up into two parts because of length. In

the first part of the study (this paper), we review theoretical

concepts and present a nondimensional form of an instability

criterion valid for curved fronts. These largely reflect the au-

thors’ efforts to understand the sufficient criterion in light of

the acknowledged importance of PV to symmetric instability

(Hoskins 1974, 2015). In a sense, the paper approaches the

problem from a ‘‘frontal dynamics’’ viewpoint rather than

through angular momentum conservation (Rayleigh 1917). In

the second part of the study (Buckingham et al. 2021, here-

inafter Part II), we investigate interesting outcomes of the

criterion applied to idealized fronts and vortices in GWB. In

particular, we examine stability in the low-Richardson-number

regime characteristic of symmetric instability.

The outline of the present portion of the study is as follows.

In section 2, we consider the statement that the Coriolis

parameter multiplied by the Ertel PV is positive for stable

flow but that negative values of this product indicate potential

for instability. We first do so in the context of Ertel’s PV the-

orem (section 2a), articulating that density conservation and

PV conservation are inseparable for inviscid, baroclinic flows,

such that there can be no turbulent diabatic process so long as

q is conserved. In section 2b, we examine governing equations

for the mean circulation within a front in TWB. Referencing

work by Hoskins and Bretherton (1972), we show that the

elliptic and hyperbolic nature of the governing equation con-

tains information closely tied to frontal stability and instability

(Holton 1992). Alternatively, this can be viewed as an ability

to invert the partial differential equation (PDE) for positive

values of fq but not for negative values of fq (Hoskins et al.

1985; Thorpe and Rotunno 1989). In section 2c, we apply these

same arguments to a front in GWB. Starting from the inviscid,

nonhydrostatic, Boussinesq equations, we derive a governing

equation for the cross-frontal overturning or secondary circu-

lation within the front (appendix A). We then obtain a hy-

perbolic criterion, which we note is a generalized form of the

Rayleigh criterion first given by Solberg (1936). For a limiting

case applicable to symmetric instability, we also demonstrate

that this is a sufficient criterion. In words, this criterion states

that, for axisymmetric vortices or curved fronts with symmetry in

the alongfront direction, both the Ertel PV and absolute an-

gular momentum play governing roles in the stability of the front.

FIG. 1. Surface kinetic energy within a realistic, regional model of the Southern Ocean.

Surface kinetic energy has been estimated as KEs 5 (u2
s 1 y2s )/2, where us and ys are daily av-

erages of zonal and meridional velocities following 1.25-yr spinup. The model is known as the

Coastal andRegionalOceanCommunityModel (CROCO), the French branch of theRegional

Ocean Modeling System (ROMS). The simulation was initialized and forced at lateral

boundaries using the Southern Ocean State Estimate (SOSE) (Verdy and Mazloff 2017),

forced at the ocean surface using atmospheric reanalysis from the European Centre for

Medium-Range Weather Forecasts (Dee et al. 2011), and sea surface salinity has been nudged

toward a climatological state. The graphic is used here simply to illustrate curved fronts and

vortices that are typically encountered in the ACC.
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If either of these is negative (but not both), we have the po-

tential for instability. Moreover, since the criterion, F , 0, is

sufficient (Fjortoft 1950; Ooyama 1966; see also Cho et al. 1993;

Kloosterziel 2010), we can confidently state that instability is

guaranteed for fronts with symmetry in the direction of the

gradient wind shear. This applies to fronts and vortices on the f

plane. This subsequently forms the basis for a nondimensional

criterion presented in section 3 and discussed at length in

section 4. Section 5 summarizes and concludes the study, while

appendix B suggests a modification to an existing instability

classificationmethod (Thomas et al. 2013) that is consistent with

this criterion.

2. Theory

The classical method of deriving an instability criterion

involves the following recipe: 1) begin with the governing

equations (momentum, energy, and continuity), 2) decompose

variables into basic (mean) state and perturbations from these

mean states, 3) eliminate products of perturbations, 4) com-

bine these equations in a way that results in a single governing

equation, and 5) demonstrate that a growing solution to this

equation exists only under certain circumstances. This is the

classical linear, normal-mode instability approach and, rele-

vant to the present study, has been used byOoyama (1966) and

Hoskins (1974) for a front in TWB. Moreover, this approach

leads to additional insight about the energetics of the flow

(Li et al. 2012; Thomas et al. 2013). While we ourselves

have made an attempt at this, completing steps 1–4 in

appendix A, and step 5 for a limiting case, such an approach

has proven difficult for the general problem owing to

boundary conditions, making solutions inseparable in r and

z (Ooyama 1966; Kloosterziel 2010; Nelson et al. 2013).

Progress can be made by locally approximating vertical

and radial gradients in buoyancy and velocity as constant

(e.g., Brannigan et al. 2017), but such approximations neces-

sarily restrict the solution. Thus, we have instead adopted the

following approach.

We first develop arguments that the discriminant of the

governing equation for the mean circulation within a front in

TWB contains information about the stability of the flow. We

then apply this same logic to a front in GWB, first deriving

the governing equation, then obtaining the discriminant. Since

the hyperbolic condition corresponds to the generalization

of the Rayleigh criterion first proposed by Solberg (1936) and

later proved sufficient by Fjortoft (1950) and Ooyama (1966),

we then have a sufficient criterion for instability valid for curved

fronts in GWB. To place Part II of this work on terra firma, we

additionally describe a normal-mode solution comparable to

Hoskins (1974) that is valid for the case of symmetric insta-

bility (section e of appendix A). Prior to these steps, however,

we first formally define the Ertel PV, demonstrating that this

quantity is important for all baroclinic fronts.

a. Ertel’s PV theorem

Both rotation and stratification play important roles in the

stability of fluid parcels. If one of these environmental char-

acteristics reduces to zero, fluid parcels are no longer bound

but become unstable, translating away from their balanced or

equilibrium positions. These concepts of rotational and static

stability are built into the definition of Ertel PV.

Starting with the Navier–Stokes equations, it is possible to

derive a conservation equation for the absolute vorticity:

Dv
a

Dt
5v

a
� =u2v

a
= � u1=r3=p

r2
1=3

F
r
, (4)

where va 5 2V 1 = 3 u is the absolute vorticity, r is density,

p is pressure, and F is the frictional force acting on a fluid

parcel (Pedlosky 1987; Müller 1995; Kundu and Cohen

2008). Assuming frictional forces are zero (F 5 0) and

using the continuity equation, one can rearrange this to obtain

the conservation of absolute vorticity per unit mass of an

inviscid fluid:

D

Dt

�
v

a

r

�
5

�
v

a

r
� =

�
u1

=r3=p

r3
. (5)

FIG. 2. Illustration of mean flow y and radius of curvature R of a meandering front in the

Northern Hemisphere (f . 0), as well as potential instabilities at locations within this front.

The first meander has anticyclonic curvature (R , 0), and the second meander has cyclonic

curvature (R . 0). In this graphic, x and y correspond to alongfront and cross-front

displacements, consistent with Eq. (B7).
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Defining a scalar quantity l as (Dl/Dt)5C, one can manipulate

the equations [see, for example, Pedlosky (1987) orMüller (1995)]
to obtain

DP

Dt
5
v

a

r
� =C1=l � =r3=p

r3
, (6)

where P is the generalized Ertel PV:

P5
v

a

r
� =l . (7)

Equation (6) states that the quantity P is conserved so long as

the right-hand side is zero. This occurs when 1) frictional forces

are absent, 2) l is a conserved quantity (such that (Dl/Dt) 5
C5 0), and either 3a) the fluid is barotropic (i.e., =r3 =p5 0)

or 3b) the fluid is baroclinic (i.e., =r 3 =p 6¼ 0) but l is a

function of pressure and density (i.e., a ‘‘thermodynamic var-

iable’’ so that =l is always perpendicular to =r 3 =p). In the

present study, we are concerned with the baroclinic case, so

that specifying l in terms of density4 or buoyancy (e.g., l5 rg)

leads to conservation of PV [cf. Eq. (2)]:

DP

Dt
5

D

Dt

�
v

a

r
� =l

�
/

Dq

Dt
. (8)

The point we wish to make here is that, for a baroclinic fluid in

which density surfaces are inclined to pressure surfaces, con-

servation of buoyancy or density by definition implies conser-

vation of PV, and vice versa:Dq/Dt5 04Db/Dt5 0. That is,

conservation of PV necessitates adiabatic flow and mixing of

density is not possible. Assuming q in the Northern Hemisphere

to be initially positive, and q in the Southern Hemisphere to

be initially negative, then fq must be positive for any future

state. Thus, PV conservation places a strong constraint on the

sign of fq, though, by itself, does not yield a sufficient instability

criterion.

Away from boundaries in the ocean and atmosphere, the

Ertel PV is approximately conserved following a fluid parcel.

Moreover, at large horizontal scales, it has the same sign as

Earth’s vorticity in the respective hemispheres—that is, PV is

positive in the Northern Hemisphere and negative in the

Southern Hemisphere. However, in the presence of friction

and buoyancy loss, the product fq can be modified from its

stable state, reduced to zero, and even become negative. It is

at this point that one expects loss of balance and potential for

instability. Because of its dynamical importance for ocean

circulation and water-mass transformation, a framework exists

to quantify how q is modified in the oceans, and we refer

the reader to these excellent studies for further information

(e.g., Haynes and McIntyre 1987; Marshall and Nurser 1992;

Deremble et al. 2014; Morel et al. 2019).

b. Ellipticity and hyperbolicity of the governing
equation: Thermal wind balance

The potential for instability can be inferred from the

nature of the equations governing balanced flow. The equation

moves from an elliptic to hyperbolic form and it is at this point

that one anticipates instability. Although such methods are

restrictive—they cannot be used to establish sufficiency—they

nevertheless provide insight into the dynamics.

A model of frontogenesis was extensively studied by Hoskins

and Bretherton (1972). While a number of concepts are exam-

ined in their study, one subject they considered was the cross-

frontal circulation or overturning within a front as a result of

frontal intensification. The dynamics governing overturning

or cross-frontal circulationwithin a front in TWBcan be expressed

in terms of a streamfunction c [cf. Hoskins and Bretherton 1972,

their Eq. (3.45)]:

›
x

�
q

f
›
x
c

�
1 ›

Z

�
f 2u

o

g

1

r
›
z
c

�
522a›

x
u . (9)

Here, x5 x1 y/f denotes a generalized horizontal coordinate,

x is the cross-frontal distance, y is the alongfront velocity, q

is the Ertel PV, u is potential temperature, uo is a reference

temperature (assumed to be constant), g is gravity, r is pseu-

dodensity, z is the vertical coordinate, and a represents forcing

by themesoscale eddy field. This equation is a steady-state version

of the linearized governing equation typically examined in studies

of symmetric instability (Ooyama 1966; Hoskins 1974; Mooers

1975; Thomas et al. 2013; Li et al. 2019) and is also a form of

Sawyer–Eliassen equation (Sawyer 1956; Eliassen 1962).

Equation (9) is a second-order PDE that can be described as

elliptic, parabolic, and hyperbolic, with corresponding impli-

cations for the type of solutions expected for c (e.g., Kreyszig

1998). Balanced flow is expected when the PDE is elliptic,

linear waves are anticipated when the PDE is parabolic, and

growing or decaying wave-like solutions are expected when

the PDE is hyperbolic. The latter case, therefore, represents

potential for instability. It can readily be shown that the

PDE is hyperbolic when fq , 0, where one makes the sub-

stitution uo / ro and r / r. The condition q 5 0 yields the

marginally stable state corresponding to linear internal waves

(Müller 1995).
A physical interpretation of this singularity is as follows. In

this expression, the balanced flow is assumed to be forced by

the larger-scale flow field [i.e., the right-hand side of Eq. (9)]. In

an attempt to conserve PV, the horizontal and vertical shears

within the front become pronounced, so much so that the front

eventually becomes unstable. The associated frontal stratifi-

cation and shears are quantified by Ro and Ri, and the relation

between the two quantities is given by the nondimensional

PV: q0 5 1 1 Ro 2 Ri21 [cf. Eq. (3)]. As Ri decreases in

magnitude, Ro must correspondingly increase in magnitude

in order to conserve q0, and does so in an unbounded fashion,

leading to skewness in the distribution of relative vorticity. Note

that Ro can only increase unbounded in the positive direction

4 The coefficient of thermal expansion for seawater increases

with pressure (McDougall 1987) such that it introduces an addi-

tional term in Eq. (8) (Marshall and Nurser 1992; Straub 1999).

This is relevant since oceanic fronts and vortices can be found

within the deep and intermediate oceans. Where possible, we

therefore recommend neutral density g be used, where r in Eq. (8)

should be replaced by g (or similar) (Jackett and McDougall 1997;

Eden and Willebrand 1999).
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because Ri . 0. This interplay between Ro and Ri in the pres-

ence of PV conservation is summarized nicely by Thomas et al.

(2008, their Fig. 4e). Note that this is exactly what is stated by

Hoskins and Bretherton (1972, p. 19, item 11), where there they

have in mind Kelvin–Helmholtz instability.5 In summary, the

PDE contains dynamical information about mean shears and

stratification within the front, and this information is contained

within the discriminant.

c. Ellipticity and hyperbolicity of the governing
equation: Gradient wind balance

In an effort to generalize results of Hoskins and Bretherton

(1972) to curved fronts, Shakespeare (2016) derived a nonlinear

governing equation for the mean flow of a front in GWB.While

the governing PDE is not cast in terms of the overturning cir-

culation, c, it does describe the mean azimuthal flow and does

so in terms of the Ertel PV. It is therefore analogous to Eq. (9)

but is valid for flow in GWB. As noted by Shakespeare (2016),

the PDE is elliptic if q/f . 0, hyperbolic if q/f, 0, and parabolic

for q 5 0. Since the requirement q/f , 0 can be rewritten as

fq , 0, one finds that the hyperbolic constraint on the PDE is,

again, fq, 0.While the above description is true, an additional

constraint is implicit within the work of Shakespeare (2016) that is

not readily apparent from our discussion. His transformed coordi-

nate system assumes conservation of absolute angular momentum,

L, so that the hyperbolic constraint is fq, 0 subject to the condition

fL . 0. We briefly discuss this additional constraint below.

COMBINED IMPORTANCE OF ABSOLUTE ANGULAR

MOMENTUM AND ERTEL PV

There are added constraints that arise in special circum-

stances and these can modify the stability criterion. For studies

in which azimuthal symmetry is present, the absolute angular

momentum, L5 ry1 fr2/2, must also be conserved (Holton

1992). This can be shown by rewriting the azimuthal momen-

tum equation with ›u / 0 as DL/Dt 5 0 (Rayleigh 1917). To

aid in the present study, we have derived a governing equation

similar to Eq. (9) but applicable to an inviscid, axisymmetric

vortex in GWB and absent forcing (appendix A). Although

comparable derivations can be found elsewhere (Eliassen 1951;

Yanai 1961; Shapiro andWilloughby 1982), it is notable that our

derivation permits a nonhydrostatic pressure perturbation.

Since the governing equation is somewhat lengthy [cf.

Eq. (A15)], we summarize the final result. Examining the

discriminant of the governing equation, and using arguments

of ellipticity and hyperbolicity developed above, we obtain the

following hyperbolic condition:

F5 ( f 1 2y/r)(f 1 z)
� �

r
5
2Lq

r2
, 0 (10)

[cf. Eqs. (A18) and (A23)], or simply

Lq, 0: (11)

Also, see the cases discussed by Kloosterziel et al. (2007) and

Kloosterziel (2010). Given that absolute angular momentumL

typically shares the same sign as f (Holton 1992), this criterion

states that both the absolute angular momentum and Ertel PV

(or neither) must be conserved in the stable, axisymmetric bar-

oclinic vortex on the f plane. Cross referencing this expression

with Eq. (1), one notes that this is the generalization of the

Rayleigh (1917) criterion first proposed by Solberg (1936).

Moreover, we can see an obvious connection to the frontal

dynamics discussed in the context of PV (Hoskins and

Bretherton 1972; Hoskins 1974). Whereas shears and strat-

ification were contained in the TWB discriminant, now shears,

stratification, and centrifugal forces are accounted for in the

GWB discriminant. When the discriminant is zero or becomes

of opposite sign, fluid parcels are no longer bound to their

balanced state but can translate radially from the vortex center.

It is noteworthy that not even Rayleigh’s criterion for the

instability of a barotropic flow was initially given as a sufficient

criterion; his criterion was based on physical arguments (Rayleigh

1917; Chandrasekhar 1961). This is comparable to the above ex-

cept that here we have outlined the governing equation that leads

to this criterion, despite that a normal-mode solution may

not be immediately accessible. Moreover, in a limiting case

applicable to symmetric instability, we have established its

sufficiency (section e of appendix A). In this regard, we have

done our work since Part II is principally concerned with

symmetric instability.

d. Spinning-top analogy

We find the following helpful when attempting to convey

these dynamics to an audience that is not immersed in these

concepts. Perhaps it will help readers, as well. A heuristic but

nonetheless helpful way to understand the discussion above is

by way of analogy to a spinning top. In general, the conserva-

tion of angular momentum applies and the top continues to

rotate on a surface indefinitely. However, owing to friction, the

top will soon slow down and will cease to spin in an absolute

sense; it is then susceptible to disturbances in the form of at-

mospheric pressure perturbations or surface roughness that

allow it to topple over. For fluids in the ocean and atmosphere,

the dynamic is similar, only here the disturbances are internal

waves and the conserved quantities are the Ertel PV and

absolute angular momentum. As PV is the product of vor-

ticity and buoyancy gradients [cf. Eq. (2)], if either rotation

or stratification are zero—or their inner product—then fluid

parcels are no longer bound to a balanced state but can translate

away from their equilibrium position. For curved flows, we ad-

ditionally have the constraint that absolute angular momentum

of fluid parcels must be conserved. (In other words, the flow

cannot ‘‘spin’’ faster than what its initial angular momentum al-

lows). For stratified, rotating flow, this implies that if density

surfaces are inclined to angular momentum surfaces, then fluid

parcels can move outwardly along constant density surfaces,

reduce their angular momentum, and result in instability.

5 Although their statement might have been made prior to a

complete understanding of symmetric instability and its relation to

PV (Hoskins 1974), it is nonetheless complementary since sym-

metric instability is thought to result in Kelvin–Helmholtz insta-

bility, which is eventually arrested at the dissipative scale (Taylor

and Ferrari 2009).
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Although the associated instability criterion might have

been obtained in other ways (Solberg 1936; Fjortoft 1950;

Cho et al. 1993), here we have obtained the relevant expression

from a hyperbolic condition on the governing PDE, helping

build insight into the physics while at the same time making

evident the assumptions and limitations in this expression. Finally,

we have pointed out that, in a limiting case, a normal-mode

solution exists and we recover the criterion, F , 0 (section e

of appendix A). In particular, for this simplified model, the

growth rates for disturbances aligned with isopycnals are found

to scale with 2f2F0, where the primed notation denotes a

nondimensional formofF expressedbelow. In summary, for curved

fronts, both the Ertel PV and absolute angular momentum must

be conserved to ensure stability. This yields a generalization

of the Rayleigh criterion, F , 0, first given by Solberg (1936)

and later shown sufficient by Fjortoft (1950), Ooyama (1966),

and Cho et al. (1993).

3. Dimensional and nondimensional forms

The arguments given above were presented in order to

clarify the connection of Ertel PV, q, and absolute angular

momentum, L, to the present problem. Under these assump-

tions, we now express full dimensional and nondimensional

forms of the instability criterion for a flow in GWB. While we

have previously given a dimensional form of the criterion [e.g.,

Eq. (A17)], we do so again, demonstrating that one can start

directly from Eq. (10).

We first define a coordinate system x5 (r, u, z), such that the

unit vectors in these directions (r̂, û, ẑ) form an orthonormal

basis. We also define the velocities in these directions as

u5 (u, y, w). The mean Ertel PV for a flow in GWB is given by

q5 (f 1 z)N2 2

�
f 1

2y

r

�
j›

z
yj2 , (12)

where, again, overbars denotemean quantities. As in appendixA,

we have neglected the meridional component of Coriolis and

have defined the lateral buoyancy gradient from the vertical

derivative of the horizontal momentum equations:

›
r
b5

�
f 1

2y

r

�
›
z
y . (13)

This defines the mean state (i.e., GWB), where perturbations

from this state are much smaller in magnitude than mean

quantities. Confining our solution to stable stratification away

from the equator, we can divide Eq. (12) by fN2 to obtain the

nondimensional Ertel PV for a flow in GWB:

q0 5 11Ro2 (11Cu)Ri21 5 0, (14)

where we have defined Ro5 z/f as the gradient Rossby

number, Ri5N2/j›zyj2 as the gradient Richardson number,

and Cu5 2y/( fr) as the curvature number—that is, a signed,

nondimensional parameter that quantifies the curvature of

the flow. First, note that y is the mean alongfront component

of the flow and includes both geostrophic and cyclostrophic

components. Second, in the limit Cu / 0, Eq. (14) reduces to

the Ertel PV under TWB. Third, Cu is not independent of

Ro since Ro5 z/f 5 (fr)
21
›r(ry)5 ›ry/f 1Cu/2. Nevertheless,

it becomes useful for separating the effects of centrifugal ac-

celerations and shear on the stability of the flow. We also note

that an expression comparable to Eq. (14) is given by Lazar

et al. [2013, their Eq. (C4)].

Both the Ertel PV and absolute angular momentum are

conserved for curved stable fronts, but instability can result if

one (but not both) of these quantities is negative. Beginning

with Eq. (10), a necessary and sufficient criterion for instability

is then

F5L0fq5 (11Cu)fq, 0, (15)

where, again, L5 ry1 fr2/2 is the absolute angular momentum

(Holton 1992), L0 5 2L/(fr2) 5 1 1 Cu is a nondimensional

form of absolute angular momentum, and Cu is the curvature

number defined above. Together with the expression for the

PV under GWB [cf. Eq. (14)], we obtain an instability criterion

that is valid for inviscid, baroclinic flow in GWB:

F5 (11Cu)fq5

�
f 1

2y

r

�
(f 1 z)N2 2

�
f 1

2y

r

�2

j›
z
yj2 , 0:

(16)

Expressed in nondimensional form, we have

F0 5L0q0 5 (11Cu)(11Ro)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
barotropic component

2 (11Cu)
2
Ri21|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

baroclinic component

, 0, (17)

where we have expressed the discriminant F0 as a sum of

barotropic and baroclinic components to help with discussions

below. While one would be justified in referring to F as the

‘‘Solberg discriminant’’ or even the ‘‘generalized Hoskins

discriminant’’ [Eq. (16) generalizes fq, 0], we have chosen to

adopt the phrase ‘‘generalized Rayleigh discriminant’’ when

speaking of F and the associated criterion.

It is worth considering a few limiting cases of the criterion to

check for consistency. Here, we refer to the dimensional form

of the criterion [cf. Eq. (16)]. Away from fronts, j›zyj2 5 0, and

in the absence of vorticity the criterion reduces to f 2N2 , 0.

Away from the equator, this is simply the criterion for gravi-

tational instability. Assuming stably stratified flow,N2. 0, and

no vertical shear, the criterion reduces to the Rayleigh cri-

terion for inertial instability of barotropic vortices: F/N2 5
( f 1 z)( f 1 2y/r), 0 (Kloosterziel and vanHeijst 1991;Mutabazi

et al. 1992). Last, in the TWB limit (i.e., r / ‘), the expression

simplifies to the criterion for symmetric instability (Hoskins 1974).

While a full understanding of the generalized Rayleigh criterion

requires a more thorough discussion, several comments relevant

to Part II of our study are provided below.

4. Comments on the nondimensional criterion

Most geophysical flows are borne with L having the same sign

as f, except perhaps near the equator (Holton 1992). In this case,

L0 5 2L/(fr2)5 11Cu. 0. This canbe rationalizedbyconsidering

the absolute angular momentum of a fluid parcel on the sphere

(http://glossary.ametsoc.org/wiki/Absolute_angular_momentum)
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and noting that it is largely determined by Earth’s angular

momentum. Now, for cyclonic flow Cu . 0, whereas for

anticyclonic flow Cu , 0. Thus, examining the barotropic

component of the stability discriminant, (1 1 Cu)(1 1 Ro),

one finds that Cu and Ro play similar roles in the stability

of curved fronts, bounding the intensity of anticyclonic flow.

One limits centripetal accelerations, while the other limits

horizontal shear.

We next examine the baroclinic component of the stability

discriminant F0, first starting with a discussion of the Ertel

PV [cf. Eq. (14)]. Away from fronts, PV conservation requires

1 1 Ro . 0. This simply reiterates what was said above.

However, in the presence of lateral gradients in density, the

baroclinic component of q0 modifies this requirement, re-

ducing the magnitude of Ro required for instability. One

way to interpret this dynamically is that increased vertical

shear and reduced vertical stratification act together to tilt the

absolute vorticity vector away from the vertical, reducing the

magnitude of Rossby numbers required for instability. Or

conversely, reducing the range of Rossby numbers permitted

for stability.

For a front in TWB, the baroclinic portion of PV tilts the

vorticity vector away from the vertical. For a front in GWB,

this tilting is now modified by the centripetal acceleration.

Recall, Cu . 0 for cyclonic flow, whereas Cu , 0 for anticy-

clonic flow. Thus, relative to its thermal wind state, this tilting

is away from the vertical (cyclonic) and toward the vertical

(anticyclonic). Also, multiplication of the baroclinic component

of PV by L0 results in the term 2(1 1 Cu)2Ri21. Since this

is negative definite, it always reduces the stability of the front,

but less so for anticyclones than for cyclones.

In summary, the role of curvature in modifying frontal sta-

bility is to twofold: it 1) limits the permitted range of Rossby

numbers (barotropic) and 2) modifies this range through vor-

tex tilting (baroclinic). The latter is the central focus of Part II.

Itemized notes on the nondimensional criterion

For reference, several aspects of the nondimensional Rayleigh

criterion are summarized below:

1) Curvature number Cu is a signed quantity and typically

shares the same sign as Ro.6 This is independent of hemi-

sphere since it is divided by f. Therefore, one can unam-

biguously describe curvature as cyclonic (Cu . 0) or

anticyclonic (Cu , 0).

2) For small Cu (i.e., as r / ‘), we recover the classical

criterion for symmetric instability valid under TWB (Hoskins

1974) [cf. Eq. (3)]. Equation (17) therefore supersedes the

nondimensional form of Hoskins’s criterion [cf. Eq. (3)].

Note, that it does so without assuming gradients in density

and velocity are constant.

3) With regard to the barotropic portion of F0, curvature limits

the intensity of anticyclonic flow, restricting the magnitude

of Rossby numbers. Scaling the curvature number as Cu ;

2ym/(frm), where ym and rm are characteristic scales for the

azimuthal velocity and radius, one finds that bulk Rossby

numbers scale as Rob ; ym/(frm) . 20.5.

4) With regard to the baroclinic portion of F0, curvature is

important when the gradient Richardson number Ri is low.

Since the sign of Cu differs for cyclones and anticyclones,

the possibility of two interesting phenomena emerge:

(i) anticyclonic flows can increase in nondimensional PV, and

(ii) cyclonic flows can decrease in nondimensional PV,

potentially having q0 , 0 for cases in which Ro ,

CuRi21. Given Ri near unity, this is clearly possible

when Ro , Cu.

5) With regard to the full discriminantF0, The above effects in
i and ii are slightly obscured in the full discriminant since Cu

andRo no longer cancel each other in the expression forF0.
We instead observe that the two terms compete: (11Cu)(11

Ro) and 2(1 1 Cu)2Ri21, with the latter being negative

definite, reducing the stability of the flow. For example, for

cases in which Cu . Ro and Ri 5 1, we can expect

instability. Note, however, that the magnitude of the baro-

clinic component ofF0 remains sensitive to whether the flow

is cyclonic or anticyclonic. That is, symmetric instability

(elevated importance of baroclinic component) is enhanced

for cyclonic flow when compared with anticyclonic flow.

Having established the criterion for instability applicable to

curved density fronts, we now make two brief comments.

First, it would be useful to modify the instability categories

of Thomas et al. (2013) to account for curvature. While this

is largely straightforward, a difficulty arises from the fact

that, except in the limiting case described in section e of

appendix A, a normal-mode solution to the governing equation

[cf. Eq. (A15)] does not yet exist (Ooyama 1966; Kloosterziel

2010), thereby obscuring an obvious relationship between

the energy for the disturbances and nondimensional numbers.

However, because their technique proves powerful for helping

to understand the dynamics associated with gravitational, cen-

trifugal and symmetric instabilities, we propose a simple modi-

fication to their classification method consistent with F0 , 0

(appendix B and Table B1).

The second comment pertains to the stability of intense

anticyclones. As pointed out by a reviewer, Eq. (17) suggests

that for large enough Ri, one can encounter a case of an anti-

cyclone characterized byRo,21 (negative absolute vorticity)

and Cu , 21 (negative absolute angular momentum) and yet

still be stable since (11Cu)(11Ro). (11Cu)2Ri21. Indeed,

we see this effect in portions of our parameter space for

Ro , 21 and Ri . 2, suggesting intense anticyclones can be

stable so long as both the PV and absolute angular momentum

are not conserved. (Such a phenomenon is evident in stability

maps for certain vortices presented in Part II.) Thus, this is a

unique but theoretically possible phenomenon. One can ra-

tionalize, however, that most geophysical flows will begin with

6 Coherent eddies or vortices are often observed with rings of

negative relative vorticity immediately outside the radius of max-

imum velocity. In these regions, Cu and Ro can have different

signs. While we suspect that the momentum balance within this

region may depart from GWB, leading more to a ‘‘turbulent gra-

dient wind’’ relationship, we nevertheless note that a reversal in

vorticity (‘‘shield’’) is present in many geophysical vortices.
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fq . 0 and fL . 0, or equivalently L0 . 0 and q0 . 0, thus

approaching the marginally stable state from the ‘‘other side’’

of the parameter space.

5. Summary and conclusions

In this study, we have examined the role of curvature in

modifying frontal stability. We first reconsidered the statement

that the Coriolis parameter, f, multiplied by the Ertel potential

vorticity (PV), q, is positive for stable flow and that instability is

possible when this product is negative. We revisited Ertel’s PV

theorem, noting that density and PV are intimately linked to the

point that PV conservation implies density conservation and vice

versa. In the absence of friction and buoyancy loss, and assuming

the scalar fq starts from a positive value, it must remain positive

and turbulent diabatic processes (i.e., mixing) are not possible.

Quoting Hoskins, ‘‘the basic zonal flow considered. . .cannot

be generated from this state of no [meridional or cross-frontal]

motion by any frictionless, adiabatic motion what[so]ever’’

(Hoskins 1974, p. 481), where the text in brackets has been

added for clarity. The logical extension of this argument is also

summarized nicely by Hoskins (1974): ‘‘[F]rictional and heating

effects are needed to generate instability to symmetric motions

in a previously stable atmosphere.’’ In summary, although insuf-

ficient to guarantee instability, one might rationalize a portion

of the preceding statement directly from Ertel’s PV theorem,

assuming an initially positive state, fq.

Second, we examined the governing equation for the sec-

ondary circulation within a front in thermal wind balance

(TWB). By recalling work by Hoskins and Bretherton (1972),

we noted that the transition of the equation from elliptic to

hyperbolic form corresponds to the marginally stable state

(q 5 0). As stated above, this can equivalently be thought of

as an ability to invert the PDE for positive values of fq but

not for negative values of fq (Hoskins et al. 1985; Thorpe and

Rotunno 1989; Shakespeare 2016). This subsequently moti-

vated us to derive a governing equation for the overturning

circulation within a front in gradient wind balance (GWB).

While the full details are presented in appendix A, the deri-

vation is valid under the following limiting conditions: non-

hydrostatic, Boussinesq, inviscid, and axisymmetric flow (i.e.,

having alongfront symmetry) on the f plane. Next, in at-

tempting to solve the linear instability problem, we discovered

(i) this may not be possible for the general problem using

normal-mode methods and (ii) the hyperbolic condition on

this PDE is well known. It corresponds to the criterion first

proposed by Solberg (1936), which is itself a generalization

of (i) Rayleigh’s criterion by accounting for baroclinicity and

(ii) Hoskins’s criterion by accounting for centrifugal effects.

Since the criterion has been established as sufficient (Fjortoft

1950; Ooyama 1966; Cho et al. 1993), we can confidently state

that the expression is a necessary and sufficient criterion for

instability. In words, one states that the product of Ertel PV and

absolute angular momentum must be positive for stability within

an inviscid front but that if either of these quantities (but not both)

are negative, instability will result. Section e in appendix A

provides a limiting solution to the governing equation, and we

recover this criterion.

Third, we presented dimensional and nondimensional forms

of the criterion. A useful dimensional form is

F5 (11Cu)fq, 0

[cf. Eq. (16)], where Cu5 2y/(fr) is a signed, nondimensional

number quantifying the curvature of the flow. This nondi-

mensional number emerges naturally from expressions of

stability–both in the expression for PV and in absolute angular

momentum.7 The reason this ‘‘generalized Hoskins criterion’’

is useful is that in the limit of Cu / 0 the criterion reduces to

that valid for fronts in TWB (Hoskins 1974). Alternatively,

one can write Lq , 0, although it is important to note that

dimensional units are different.

A particularly useful nondimensional form of the criterion

is given by Eq. (17):

F0 5L0q0 5 (11Cu)(11Ro)2 (11Cu)
2
Ri21 , 0,

where q0 is the nondimensional Ertel PV (for a flow in GWB),

L0 is a nondimensional form of absolute angular momentum,

Ro is the gradient Rossby number, Ri is the gradient Richardson

number, and Cu is defined above. We highlighted several aspects

of this criterion, a few of which are detailed below.

1) We found that the baroclinic term is modified from its

TWB state by the curvature of the flow and provided an

interpretation in terms of vortex tilting. This expression also

motivated us to revisit the instability categories (e.g., Thomas

et al. 2013), and we obtained revised barotropic and baroclinic

instability angles, fo and f1 (appendix B; Table B1). In the

limit Cu / 0, these angles reduce to those of Thomas et al.

(2013), fRo and fRi, such that they can be used in place of

their angles. Recall that the relevant question being an-

swered here is, ‘‘What aspect of the flow is most responsible

for reducing the stability discriminant F0?’’
2) We noted that the barotropic component of the stability

discriminant, (1 1 Cu)(1 1 Ro), contains two limits on

Rossby numbers for stable flow. While one is the result

of conservation of barotropic potential vorticity (leading

to the statement 1 1 Ro . 0), a limit on Rossby numbers

is also imposed through conservation of absolute angular

momentum L (leading to the statement 1 1 Cu . 0). In

effect, it limits centripetal accelerations within an anticy-

clonic curved front. This statement implies that centripetal

accelerations within anticyclonic curved fronts can never

be greater than the magnitude of the Coriolis acceleration

divided by two. This, in turn, places strong constraints on

bulk Rossby numbers. For example, scale analysis shows

that Rob . 20.5 is a good ‘‘rule of thumb.’’

3) At low Richardson numbers, the baroclinic component

of F0 has elevated importance and is dependent upon the

curvature of the flow. Since Cu . 0 for cyclonic flow, while

Cu , 0 for anticyclonic flow, this implies that there may

7 The latter is comparable to how the gradient Rossby number,

Ro, emerges when speaking of the stability of barotropic flow in the

presence of PV conservation or absolute vorticity conservation.
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exist values of Ri for which cyclonically curved flows are

less stable than anticyclonically curved flows for the same

gradient Rossby number. This is particularly interesting to

the authors and becomes the central focus of Part II.

6. Discussion

While each of the preceding points is certainly theoretically

stimulating—with the third opening up new directions for

studies involving symmetric instability—another potentially

interesting corollary of this work is as follows. It is typically

assumed that, away from boundaries, the Ertel PV is the con-

served quantity: Dq/Dt 5 0 [cf. Eq. (8)]. However, the

mathematical and physical arguments above suggest a dif-

ferent conservation principle is at work within curved fronts

on the f plane. In the absence of friction and diabatic processes,

it isF that is conserved, leading to the statementDF/Dt5 0, or

DF0/Dt 5 0 in nondimensional space.

To understand the implications of this statement consider

the following. Imagine a fluid parcel contained within a

meandering front (Fig. 2). As the fluid parcel proceeds along its

path and in the absence of frictional and buoyancy forcing at

the ocean surface, it is typically assumed that vorticity, strati-

fication, and vertical shear (or lateral buoyancy gradients)

change in an effort to conserve PV (i.e., in a Lagrangian sense).

However, we instead observe that vorticity, stratification, vertical

shear, and curvature (or centripetal accelerations)must change

to conserveF. In nondimensional form, one would say that Ro,

Ri, and Cu are altered to keep F0 constant. Equivalent argu-
ments can be made for a vortex that has formed via frictional

or buoyancy forcing within a boundary layer (e.g., Spall 1995;

Thomas 2008; Gula et al. 2019), but that translates away from

this environment.

These arguments, of course, assume that meridional depar-

tures of the fluid parcel from its mean location are finite in

order that the assumption of constant Coriolis parameter is

valid. They also assume GWB remains a good description of

the momentum balance as the fluid parcel proceeds along its

path. We can expect viscous effects to relax the stability cri-

terion to some extent, where we have borrowed from theory

and laboratory experiments of centrifugal instability (Taylor

1923). Additional understanding might be obtained by ex-

pressing the governing equations in spherical coordinates.

Nevertheless, confining ourselves to submesoscale fronts or

zonally oriented fronts away from the equator, and considering

that PV is typically assumed to be the conserved quantity in the

oceans, this approach to analyzing the dynamics of fluid parcels

is new.
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APPENDIX A

A Generalized Rayleigh–Hoskins Criterion and a
Limiting Solution

Below, we obtain a stability criterion valid for an inviscid,

stratified, axisymmetric vortex or curved density fronts with

alongfront symmetry. Though our solution cannot be shown to

be sufficient, it nonetheless matches the criterion first proposed

by Solberg (1936) and later proved sufficient by Fjortoft (1950)

and Ooyama (1966). Other approaches to obtaining this cri-

terion include those based on ring-displacement arguments

(e.g., Solberg 1936; Kloosterziel and van Heijst 1991) together

with an energy–Casimir method (Fjortoft 1950), and Lyapunov

stability methods (Cho et al. 1993; Kloosterziel 2010). We first

derive an equation that governs secondary circulation within

an axisymmetric vortex. The mean state is assumed to be in

cyclogeostrophic or gradient wind balance (GWB) and sec-

ondary circulation is assumed to occur within a meridional

plane perpendicular to the mean flow—that is, in radial and

vertical directions, only. Last, we neglect the meridional compo-

nent of the Coriolis vector ~f 5 2V cosu, arguing the flow to be

either sufficiently away from the equator or sufficiently stratified

such that N/~f � 1 (Colin de Verdière 2012). Similar derivations

can be found by Eliassen (1951), Yanai (1961), and Shapiro and

Willoughby (1982), among others.

a. Governing equations

Let us first define a coordinate system x5 (r, u, z) such that

unit vectors in these directions (r̂, û, ẑ) form an orthonormal

basis. We then define velocities in these directions as u5 (u, y,w)

(Lamb 1932). The equations governing nonhydrostatic, Boussinesq

flow on an f plane are then

D
t
u2

y2

r
2 fy1

›
r
p

r
o

5 0, (A1)

D
t
y1

uy

r
1 fu1

›
u
p

r
o

5 0, (A2)

D
t
w2b1

›
z
p

r
o

5 0, (A3)

D
t
b5 0, and (A4)

1

r
›
r
(ru)1

1

r
›
u
y1 ›

z
w5 0, (A5)

where (D/Dt) 5 ›t 1 u � = 5 ›t 1 u›r 1 (y/r)›u 1 w›z is the

material or substantial derivative, p is pressure, f is the Coriolis

parameter, b 5 2gr/ro is buoyancy, g is acceleration due to

gravity, r is density, and ro is a reference density. If we further

assume azimuthal symmetry, ›u 5 0, partition variables into

mean and perturbations quantities (e.g., buoyancy, velocity,

pressure) and eliminate products of perturbations, we obtain

the following linearized set of perturbation equations:

›
t
u0 2

�
f 1

2y

r

�
y0 1 ›

r
P5 0, (A6)

›
t
y0 1 (f 1 z)u0 1w0›

z
y5 0, (A7)
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›
t
w0 2 b0 1 ›

z
P5 0, (A8)

›
t
b0 1 u0›

r
b1w0›

z
b5 0, and (A9)

›
r
u0 1

u0

r
1 ›

z
w0 5 0, (A10)

where the mean state is given by

›
r
b5

�
f 1

2y

r

�
›
z
y . (A11)

Here, overbars denote mean quantities, primes denote per-

turbations from these mean values, P 5 p0/ro is the reduced

pressure perturbation (Gill 1982), and z5 ›ry1 y/r is the

mean relative vorticity. The time derivative of vertical ve-

locity perturbation in the z-momentum equation permits a

nonhydrostatic pressure perturbation, making the deriva-

tion differ from both Eliassen (1951) and Yanai (1961) (see

also Lazar et al. 2013). This set of equations (A6)–(A10)

can also be compared with the geostrophic equivalent (e.g.,

Mooers 1975).

We can combine these equations [cf. Eqs. (A6)–(A9)] into a

single vorticity equation governing the meridional velocities u0

and w0, as follows. Although other methods are possible, here

we follow the method of Lazar et al. (2013). See, for example,

Eq. (2.11) of their study. We take ›t{›z[Eq. (A6) 2 ›r[Eq. (A8)]}

and then use ›r[Eq. (A9)] and ›z[Eq. (A7)] to replace ›trb
0 and

›tzy
0, respectively. Doing so gives

›2t (›zu
0 2 ›

r
w0)2 (›

r
u0)G2 u0(›

r
G)2 (›

r
w0)H2w0(›

z
G)

1
2

r
(›

z
y)[u0( f 1 z)1w0(›

z
y)]1

�
f 1

2y

r

�
[›

z
u0( f 1 z)

1 u0(›
z
z)1 ›

z
w0(›

z
y)1w0(›2zy)]5 0, (A12)

where we have defined G5 ›rb and H5 ›zb for brevity. The

continuity equation [cf. Eq. (A10)] allows us to define a per-

turbation streamfunction c such that

u0 5 ›
z
c and (A13)

w0 52
1

r
›
r
(rc)52

�
›
r
c1

c

r

�
. (A14)

Then, the governing equation reduces to a second-order PDE

in c:

›2t

�
›2zc1 ›2rc1

›
r
c

r
2

c

r2

�
2 (›2rzc)G2 (›

z
c)(›

r
G)1

�
›2rc1

›
r
c

r
2

c

r2

�
H1

�
›
r
c1

c

r

�
(›

z
G)1

2

r
(›

z
y)

�
(›

z
c)( f 1 z)

1

�
›
r
c1

c

r

�
(›

z
y)

�
1

�
f 1

2y

r

��
(›2zc)( f 1 z)1 (›

z
c)(›

z
z)2

�
›2rzc1

›
z
c

r

�
(›

z
y)2

�
›
r
c1

c

r

�
(›2zy)

�
5 0 (A15)

If we examine the limit of this expression as r / ‘, assume

constant shear and stratification (i.e., ›rb, ›zb, ›ry, and ›zy

are constant), and replace the vertical shear using Eq. (A11), it

is readily shown that Eq. (A15) reduces to the Ooyama–

Hoskins equation valid under TWB:

›2t (›
2
zc1 ›2rc)1 (N2›2rc2 2M2›2rzc1F2›2zc)5 0: (A16)

To facilitate comparison with Eq. (19) of Ooyama (1966) or

the first equation of Hoskins (1974), in the above expression

we have defined M2 5 ›rb, N
2 5 ›zb, and F2 5 f (f 1 z). We

return to this simplified model below in our discussion

of a more general model for flows in GWB (section e of

appendix A).

b. Ellipticity and hyperbolicity

While a general solution to Eq. (A15) is not evident to the

present authors (see also Ooyama 1966; Kloosterziel 2010),

progress can nevertheless be made by examining the discrim-

inant of the equation, which depends on the basic (mean) state.

Assuming solutions of the form c 5 C(r, z)est, and restricting

our solution to the steady state (i.e., ›2t /s2 5 0), we obtain

the following elliptic and hyperbolic conditions. The dis-

criminant of the PDE is D 5 B2 2 AC, with A 5 N2,

B522(f 1 2y/r)›zy, andC5 (f 1 z)( f 1 2y/r). Thus, the PDE

is elliptic when D , 0 and hyperbolic when D . 0. The latter is

of interest, giving

F5 ( f 1 z)

�
f 1

2y

r

�
N2 2

�
f 1

2y

r

�2

j›
z
yj2 , 0: (A17)

Expressed in isopycnal coordinates, for which ›rb5 ›zy5 0

and N2 5 ›zb. 0, the criterion is

F5 [(f 1 2y/r)( f 1 z)]
r
, 0, (A18)

where the expression in square brackets is evaluated along

constant density surfaces. This matches the historical criterion

attributed to Solberg (1936) and proved sufficient by Fjortoft

(1950) andOoyama (1966).We refer the reader to more recent

discussions of this criterion by Cho et al. (1993), Kloosterziel

(2010), and Yim et al. (2019).

c. PV, absolute angular momentum, and additional

forms of the criterion

It is helpful to manipulate Eq. (A17) in order to see an

explicit connection to the Ertel PV and absolute angular

momentum. To understand how Eq. (A17) relates to the

Ertel PV, we first define a signed, nondimensional number

as Cu5 2y/(fr), referred to in the main text as the curva-

ture number. We then express the Ertel PV for a front in

GWB as

q5 ( f 1 z)N2 2

�
f 1

2y

r

�
j›

z
yj2 , (A19)
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allowing us to rewrite Eq. (A17) as

F5 (11Cu)fq, 0: (A20)

Written in this form, it is immediately obvious that it is a

generalization of Hoskins’s criterion. For fronts in TWB, the

criterion reduces to F 5 fq , 0.

The additional constraint on the curvature number Cu can

be shown to result for axisymmetric flows, only. Moreover, it

can be shown to result directly from conservation of absolute

angular momentum. To see this, one first expresses the azimuthal

momentum equation [cf. Eq. (A2) with ›u / 0] as

›
t
y1u›

r
y1

uy

r
1w›

z
y1 fu5 0: (A21)

Following Rayleigh (1917), we note that this can be rewritten as

(›
t
1 u›

r
1w›

z
y)L5DL/Dt5 0, (A22)

where L5 ry 1 fr2/2 is the absolute angular momentum on an

f plane (Holton 1992). Were gradients present in the azimuthal

direction, this expression would not hold. For example, a

pressure gradient on the right-hand side of Eq. (A21) would

imply that DL/Dt 6¼ 0. To what extent this criterion is valid,

then, in the presence of baroclinic instability (Charney 1947;

Eady 1949) is unknown to the authors. A study by Billant and

Gallaire (2005) may shed light on this question.

Given this definition of L, one can alternatively express

the curvature number in terms of L as 11 Cu5 2L/( fr2). This

motivates the following form of the instability criterion:

F5
2Lq

r2
, 0 (A23)

(Kloosterziel et al. 2007), or simply

Lq, 0: (A24)

Thus, both PV and absolute angular momentum play govern-

ing roles in the stability of the axisymmetric vortex. If one of

these (but not both) is negative, we can anticipate instability. If

both are negative, the product will be positive, corresponding

to a stable, intense anticyclone that is a geophysically unlikely

but theoretically possible scenario.

d. Connection to Rayleigh (1917)

Rayleigh has stated that the fluid ‘‘is stable only under the

condition that the circulation [K5 ry] always increases with r’’

(Rayleigh 1917; Chandrasekhar 1961), where the text in

brackets has been added for clarity. In replacing Rayleigh’s

circulation K with absolute angular momentum L, one finds

that a necessary and sufficient criterion for inertial instability is

1

r3
d

dr
(L2)5x2 5 ( f 1 2y/r)( f 1 z), 0: (A25)

(Kloosterziel et al. 2007). Together with Eq. (A18), this dem-

onstrates that if the gradient of squared absolute angular mo-

mentum L2 is taken along an isopycnal and decreases with

increasing distance from the vortex center, the flow is unstable.

This implies that isopycnals inclined to surfaces of absolute

angular momentum are an indication of instability, a metric

often used in meteorology (Holton 1992).

e. A limiting solution

While the foregoing arguments make the generalized Rayleigh

criterion a very likely one, one should still like to establish its

sufficiency directly from the governing perturbation equation.

Here, we have borrowed words from Chandrasekhar (1961,

chapter 7, section 66) in his discussion of Rayleigh’s barotropic

criterion. Below, we do this for the case of symmetric instability.

Eigen- or normal-mode solutions to Eq. (A15) can be obtained

for limiting cases (Yanai 1961; Nelson et al. 2013; Brannigan et al.

2017). For cases in which the gradients of density and velocity

can be considered to vary slowly over the scale of perturbations,

one can use the Wentzel–Kramers–Brillouin approximation to

obtain an expression for the growth rate of the disturbance. This

has been done, for instance, by Brannigan et al. (2017, their ap-

pendix C), where they approximate the solution at r 5 ro. For

parcel motions aligned with isopycnals—that is, describing the

fastest-growing mode—their expression simplifies to s2/f2 5 (1 1
Cu)2Ri21 2 (1 1 Cu)(11 Ro) 5 2F0, demonstrating that 1) in-

stability occurs for F0 , 0, giving positive growth rates, and 2)

energetic disturbances within symmetric instability have growth

rates that scale as s2 ; f2F0, where F0 is a nondimensional gen-

eralized Rayleigh discriminant. Thus, F0 , 0 is a necessary and

sufficient criterion for instability. In this expression, Ro5 z/f ,

Ri5N2/j›zyj2, and Cu has been defined above.

This same result can be obtained directly from the governing

equation [cf. Eq. (A15)]. One simply 1) approximates all

gradients in velocity and buoyancy as constant near a radius ro
sufficiently far from the vortex center, 2) assumes a normal-mode

solution c 5 Coe
stei(kr1mz), where k and m are horizontal and

vertical wavenumbers, and 3) requires that the vertical scale of the

disturbance be much smaller than the radius ro, or 1/(mro) � 1.

We find this results in a simple analytical frontal model and dis-

persion relation, despite that it only applies for large mro.

Conducting the above steps leads to a frontal model that is

comparable to the Ooyama–Hoskins model [cf. Eq. (A16)]

except that F2 5 f (f 1 z) is replaced by the barotropic Rayleigh

discriminant x2 5 ( f 1 2y/r)( f 1 z) and M2 5 ›rb implicitly

contains curvature effects [cf. Eq. (A11)]:

›2t (›
2
zc1 ›2rc)1 (N2›2rc2 2M2›2rzc1x2›2zc)5 0: (A26)

Introducing the modal form c and defining t 5 tanb 5 k/m,

where 2b defines the angle that the velocity vector (u0, w0)
makes with the horizontal plane (Hoskins 1974; Thomas et al.

2013), we obtain the following dispersion relation:

s2

f 2
52cos2b

�
N2t2

f 2
2

2M2t

f 2
1
x2

f 2

�
, (A27)

where cos2b5 (11 t2)21. As was done by Hoskins (1974), we

can then define a variable—say, F 5 x2N2 2 M4—that can be

shown to be minus the discriminant of the quadratic expression,

placing constraints on the sign of F for growing disturbances

(s2 . 0). In addition, by rearranging the quadratic expression in

parentheses (e.g., Bachman and Taylor 2014; Brannigan et al.

2017), one can rewrite the dispersion relation as
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s2

f 2
52cos2b

"
N2

f 2

�
t2

M2

N2

�2

1F0
#
, (A28)

whereF0 5 x2/f 2 2M4/( f 2N2) is the nondimensional Rayleigh

discriminant defined above. For modes aligned with isopycnals,

t 5 k/m5M2/N2, the dimensional dispersion relation simplifies

tos252f2F0 cos2b. Since cos2b. 0 for all b, this demonstrates

that 1) F0 must be negative for growing disturbances and

2) disturbances under symmetric instability grow at a

squared rate that scales as 2f 2F0.
Given this model and normal-mode solution, is possible to

obtain expressions for energy sources in the perturbation or tur-

bulent kinetic energy equation (e.g., Smyth andMcWilliams 1998;

Brannigan et al. 2017) using Eqs. (A6)–(A9). This was done, for

example, for the case of TWB by Thomas et al. (2013). Given the

restrictions inherent in our model [cf. Eq. (A26)] and our uncer-

tainty with regard to its applicability to submesoscale fronts and

vortices, we leave this as an exercise for the reader or will consider

this ourselves in a future study. For now, we simply note that a

limiting normal-mode solution is possible and that, for symmetric

instability, the squared growth rates of disturbances scale as s2 ;
2f2F0, where F0 5 (1 1 Cu)(1 1 Ro) 2 (1 1 Cu)22Ri21 is a

nondimensional form of the Rayleigh discriminant.

APPENDIX B

Instability Categories (GI, CI, SI) for
Curved Density Fronts

Thomas et al. (2013) introduced a method of categorizing in-

stability types using nondimensional numbers, Ro and Ri, and

their effect on the Ertel PV. It is a visually powerful tech-

nique because it allows one to gauge in a graphical manner

what drives the discriminant to have opposite sign and, thus, is

an indication of instability. This should be qualified because–at

least in observations–one might simply be seeing the result of

an instability that has already occurred. In light of the present

study, where curvature plays an important role, it appears

helpful to modify these instability categories.

The categorization of instabilities depends upon modified gradi-

ent Rossby and Richardson numbers (Thomas et al. 2013). These

values express the relative roles of horizontal shear, stratification,

and vertical shear in modifying the Ertel PV (Ertel 1942). See, also,

Li et al. (2012) and Hamlington et al. (2014) for cases in which

surfacewaveeffects arepresent.As in themain text [cf.Eq. (14)], the

nondimensional Ertel PV under gradient wind balance (GWB) is

q0 5 11Ro2 (11Cu)Ri21 , (B1)

For clarity, we again define gradient Rossby, Richardson, and

curvature numbers as

Ro5 z/f , (B2)

Ri5
N2

j›zyj2
, (B3)

Cu5
2y

fR
. (B4)

In Eqs. (B2)–(B4), y is mean alongfront component of the

flow and includes both geostrophic and ageostrophic velocities.

Also, note that we have replaced the radius of a vortex r with a

local radius of curvature R to illustrate more clearly how the

expressions might be applied to both curved fronts and vortices

(cf. Fig. 2). For curved fronts, the mean flow is no longer a

signed quantity, so that R must be signed—that is, positive for

cyclonic flow and negative for anticyclonic flow [cf. Eq. (B7)].

For curved fronts with symmetry in the direction of the

gradient wind shear, the relevant discriminant is not the Ertel

PV but the product of the Ertel PV and absolute angular

momentum [cf. Eq. (17)]:

F0 5L0q0 5 (11Cu)(11Ro)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
barotropic component

2 (11Cu)
2
Ri21|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

baroclinic component

, 0: (B5)

where L0 5 1 1 Cu is the nondimensional absolute angular

momentum. The first term in Eq. (B5) contains information

about inertial or centrifugal instability, and the second term

contains information about gravitational and symmetric

instability, both of which are amplified in low-stratified

environments.

Given this interpretation, it is simple to modify the insta-

bility categories of Thomas et al. (2013):

f
Ro

/f
o
5 tan21[2(11Cu)(11Ro)]

f
Ri
/f

1
5 tan21[2(11Cu)

2
Ri21] , (B6)

where fRo and fRi are the barotropic and baroclinic angles

previously defined by Thomas et al. (2013). As noted by

Hamlington et al. (2014), the inverse tangent effectively com-

presses the dynamically relevant information contained in Ro,

Ri, and Cu into a smaller range of values. To determine the

instability type, one would estimate Ro, Ri, and Cu within dif-

ferent parts of the front or vortex, compute the angles fo and f1

and then classify the flow. Note that the expressions in Eq. (B6)

reduce to those of Thomas et al. (2013) in the limit Cu/ 0 so that

these are valid for both straight and curved fronts. The possible

instabilities include gravitational instability (GI), symmetric in-

stability (SI), and pure inertial or centrifugal instability (CI), and

the classification of these instability types from the above angles

is given in Table B1 (see also Hamlington et al. 2014).

Note that the instability classification given above is not

interpreted in terms of energy exchange under linear instability.

Rather, it should be interpreted as an answer to the question,

‘‘What aspect of the flow is most responsible for reducing the

stability discriminant, F0?’’ In this manner, our definition dif-

fers slightly from that given by Thomas et al. (2013), though

we note that the growth rates of disturbances do scale with F0

for parcel motions aligned with isopycnals—that is, symmetric

instability (section e of appendix A). We are presently investi-

gating application of these instability categories to observations

and model simulations.

Radius of curvature

To help the reader to apply this expression to curved fronts

that might not have a distinct radius, we note that it is

straightforward to calculate the radius of curvature, R, along
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smooth contours, such as dynamic height or a frontal boundary

separating different sea surface temperatures. One simply es-

timates the radius of curvature as R 5 1/k, where

k5
_x €y2 _y €x

( _x2 1 _y2)3/2
. (B7)

is the geometric curvature, and _x, _y, €x, and €y denote first and

second derivatives of zonal and meridional displacements

with respect to distance along the boundary s—for example,

_x5 dx/ds (cf. Fig. 2). We note, however, that one must ensure

smooth contours to obtain a realistic locally valid estimate ofR.

In this sense, it is somewhat subjective, but minimal smoothing

produces reasonable estimates (Buckingham et al. 2017, their

appendix A).
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