1	
2	Supplementary information
3	
4	
5	More than redox, biological organic ligands control iron isotope fractionation
6	in the riparian wetland
7	
8	Elaheh Lotfi-Kalahroodi ^{1,*} , Anne-Catherine Pierson-Wickmann ¹ , Olivier Rouxel ² , Remi
9	Marsac ¹ , Martine LeCoz-Bouhnik ¹ , Khalil Hanna ³ and Mélanie Davranche ¹
10	
11	¹ Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, 35000 Rennes, France
12	² IFREMER, Unité de Géosciences Marines, 29280 Plouzané, France
13	³ Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS ISCR UMR6226, 35000
14	Rennes, France
15	

16 Rayleigh distillation and equilibrium fractionation models during anoxic periods

17 In both anoxic periods 1 and 3, the 0.2 μ m-30 kDa fractions had the highest δ^{56} Fe at $0.83 \pm 0.14\%$ and $0.72 \pm 0.16\%$ whereas, the soluble <30 kDa fractions exhibited negative 18 19 δ^{56} Fe at -0.59 ± 0.09‰ and -0.59 ± 0.10‰, respectively. For the anoxic period 1, the Fe isotope 20 fractionation between the > 3 μ m, 3-0.2 μ m and 0.2 μ m-30 kDa fractions and the <30 kDa 21 fraction were calculated at Δ^{56} Fe (>3µm)-(<30kDa) = 1.01 ± 0.13‰, Δ^{56} Fe (3-0.2 µm)-(<30 kDa) = 1.33 ± 22 0.28‰ and Δ^{56} Fe (0.2 µm-30 kDa)-(<30 kDa) = 1.41 ± 0.17‰, respectively (Table S3). Similarly, for the 23 anoxic period 3, the Fe isotope fractionation between the > 3 μ m, 3-0.2 μ m and 0.2 μ m-30 24 kDa fractions and the <30 kDa fraction were Δ^{56} Fe (>3 µm)-(<30 kDa) = 1.02 ± 0.17‰, Δ^{56} Fe (3-0.2 µm)-25 $(<30 \text{ kDa}) = 1.10 \pm 0.71\%$ and Δ^{56} Fe $(0.2 \mu \text{m}-30 \text{ kDa}) - (<30 \text{ kDa}) = 1.31 \pm 0.19\%$, respectively. The 26 production of such isotopically heavy Fe pool, both in particles and colloidal fraction so 27 revealed the release of isotopically light Fe in the < 30 kDa fractions. Considering the 28 enrichment of the > 30 kDa in heavy Fe isotopes due to DIR, simple isotopic mass balance 29 suggests after about 62 to 83% (Fe(II)/Fe_{tot} in the 0.2µm-30kDa fractions; Table 1) of Fe(III) 30 reduction through DIR, an isotopically heavy Fe pool of about 0.9 to 0.5‰ (Fractionation 31 factor= 1.0012‰) or 1.8 to 0.8‰ (Fractionation factor= 1.003 ‰) should remain at the end 32 of anoxic periods (Figs. S2 and S3). As previous studies demonstrated that dissimilatory Fe 33 reduction can produce isotopically light Fe(II), with an isotopic fractionation varying -3< α < -1.2 ‰^{1–4}. These fractionation factors were used in Rayleigh (open system) and equilibrium 34 35 (closed system) fractionation systems to compare our results with these two models in Figures 36 S2 and S3.

37 Figure legends:

Fig. S1. Transmission electron microscopy micrographs of Fe nanoaggregates embedded in an organic matrix in the 3-0.2 μ m fractions for oxic periods a) 1 b) 2 and c) 3. Their sizes seemed to decrease with the redox cycles. Micrographs were performed after the deposition of 10 μ L of each sample diluted in 1 mL of ethanol onto a 300-mesh copper grid coated with a lacey carbon film (Oxford Instruments, S166–3). The grids were observed using a transmission electron microscope (JEOL 2100 LAB6 operating at 200 kV) (THEMIS Analytical Facility at the University of Rennes 1).

45

- 46 **Fig. S2**. Evolution of δ^{56} Fe of phase A (Fe(II)) and phase B (Fe(III)) vs. f_A (Fe(II)/Fe_{tot}) fraction in
- 47 closed equilibrium (straight lines) and Rayleigh (dashed lines) models during anoxic period 1,
 48 using an isotopic fractionation at -1.2‰.
- 49 **Fig. S3.** Evolution of δ^{56} Fe of phase A (Fe(II)) and phase B (Fe(III)) vs. f_A (Fe(II)/Fe_{tot}) fraction in
- closed equilibrium (straight lines) and Rayleigh (dashed lines) models during anoxic period 1,
 using an isotopic fractionation at -3.0 ‰.
- **Fig. S4.** Evolution of δ^{56} Fe of phase A (Fe(II)) and phase B (Fe(III)) vs. f_A (Fe(II)/Fe_{tot}) fraction in
- closed equilibrium (straight lines) and Rayleigh (dashed lines) models during oxic period 1,
 using an isotopic fractionation at 2.9 ‰.
- 55
- 56
- 57
- 57
- 58

Fig. S1

Fig. S4

Time (day)	рΗ	Eh (mV)	DOC (mmol L ⁻¹)	Fe (II) (µmol L⁻¹)	Fe (III)(µmol L⁻¹)	Fe _{tot} (µmol L ⁻¹)	δ ⁵⁶ Fe±2SD (‰)	δ^{56} Fe' _{sample-soil} ±2SD (‰)	Fe(II)/Fe _{tot}
					Anoxic 1				
1, 0h	5.6	426	0.7 ± 0.1	2.6 ± 0.1	11.3 ± 0.4	13.8 ± 0.4	0.31 ± 0.13	-0.11 ± 0.15	0.19
2	6.0	391	1.6 ± 0.1	6.7 ± 0.3	16.0 ± 0.8	22.6 ± 0.7	0.15 ± 0.13	-0.27 ± 0.15	0.29
3	6.2	361	1.5 ± 0.1	8.8 ± 0.4	14.4 ± 0.8	23.2 ± 0.7	0.12 ± 0.06	-0.30 ± 0.10	0.38
6	6.5	278	2.4 ± 0.1	23.8 ± 1.2	20.9 ± 1.8	44.7 ± 1.3	0.10 ± 0.06	-0.32 ± 0.10	0.53
11	7.0	251	3.2 ± 0.2	46.6 ± 2.3	36.4 ± 3.4	83.1 ± 2.5	0.15 ± 0.08	-0.28 ± 0.11	0.56
16	7.6	-63	11.8 ± 0.6	96.6 ± 4.8	58.3 ± 6.7	154.9 ± 4.6	0.22 ± 0.06	-0.21 ± 0.10	0.62
20	7.5	-83	15.1 ± 0.8	124.2 ± 6.2	35.4 ± 7.8	159.5 ± 4.8	0.20 ± 0.06	-0.23 ± 0.10	0.78
					Anoxic 2				
38, Oh	7.0	218	3.1 ± 0.2	99.4 ± 5.0	43.8 ± 6.6	143.2 ± 4.3	0.12 ± 0.06	-0.31 ± 0.10	0.69
39	7.1	79	3.7 ± 0.2	113.6 ± 5.7	28.7 ± 7.1	142.3 ± 4.3	0.37 ± 0.06	-0.06 ± 0.10	0.80
40	7.0	-81	3.7 ± 0.2	116.3 ± 5.8	31.7 ± 7.3	148.0 ± 4.4	0.27 ± 0.06	-0.16 ± 0.10	0.79
43	7.1	-103	4.4 ± 0.2	123.6 ± 6.2	44.9 ± 8.0	168.5 ± 5.1	0.38 ± 0.06	-0.05 ± 0.10	0.73
48	7.2	-186	3.9 ± 0.2	128.8 ± 6.4	35.5 ± 7.5	164.4 ± 3.9	0.38 ± 0.06	-0.05 ± 0.10	0.78
54	7.1	-149	10.3 ± 0.5	188.0 ± 9.4	37.2 ± 11.6	225.3 ± 6.8	0.35 ± 0.09	-0.08 ± 0.12	0.83

Table S1 - Chemical and isotopic compositions of the soil solution (<0.2µm) in the anoxic/oxic cycles. The iron isotopic composition of the initial

67 wetland soil was measured at $0.43 \pm 0.08\%$.

57	7.1	-175	9.5 ± 0.5	184.8 ± 9.2	37.9 ± 11.4	222.7 ± 6.7	0.29 ± 0.09	-0.13 ± 0.12	0.83					
	Anoxic 3													
75, Oh	6.9	136	3.6 ± 0.2	182.9 ± 9.1	0.0 ± 10.5	174.3 ± 5.2	-0.15 ± 0.14	-0.58 ± 0.16	1.00					
76	7.0	-16	3.8 ± 0.2	202.9 ± 10.1	20.5 ± 12.2	223.4 ± 6.7	0.42 ± 0.06	-0.01 ± 0.10	0.91					
77	7.2	-49	3.9 ± 0.2	180.8 ± 9.0	30.4 ± 11.0	211.2 ± 6.3	0.41 ± 0.06	-0.01 ± 0.10	0.86					
80	7.1	-73	4.5 ± 0.2	212.9 ± 10.6	0.0 ± 12.4	212.3 ± 6.4	0.45 ± 0.06	0.02 ± 0.10	1.00					
85	7.1	-125	4.3 ± 0.2	217.9 ± 10.9	9.3 ± 12.9	227.3 ± 6.8	0.43 ± 0.06	0.01 ± 0.10	0.96					
90	7.2	-127	9.3 ± 0.5	231.1 ± 11.6	53.7 ± 14.4	284.8 ± 8.5	0.39 ± 0.06	-0.03 ± 0.10	0.81					
94	7.1	-175	9.7 ± 0.5	241.3 ± 12.1	34.5 ± 14.6	275.9 ± 8.3	0.39 ± 0.11	-0.04 ± 0.14	0.87					
Time (day)	рН	Eh (mV)	DOC (mmol L ⁻¹)	Fe (II) (µmol L ⁻¹)	Fe (III)(µmol L ⁻¹)	Fetot(µmol L ⁻¹)	δ ⁵⁶ Fe±2SD (‰)	δ ⁵⁶ Fe' _{sample-soil} ±2SD (‰)	Fe(II)/Fe _{tot}					
Time (day)	рН	Eh (mV)	DOC (mmol L ⁻¹)	Fe (II) (μmol L ⁻¹)	Fe (III)(µmol L ⁻¹) Oxic 1	Fe _{tot} (μmol L ⁻¹)	δ ⁵⁶ Fe±2SD (‰)	δ ⁵⁶ Fe' _{sample-soil} ±2SD (‰)	Fe(II)/Fe _{tot}					
Time (day) 21, 0h	рН 6.9	Eh (mV) -72	DOC (mmol L ⁻¹) 3.9 ± 0.2	Fe (II) (μmol L⁻¹) 52.9 ± 2.6	Fe (III)(μmol L ⁻¹) Oxic 1 71.4 ± 4.6	Fetot(μmol L ⁻¹) 124.3 ± 3.7	δ ⁵⁶ Fe±2SD (‰) 0.23 ± 0.13	δ ⁵⁶ Fe' _{sample-soil} ±2SD (‰) -0.20 ± 0.15	Fe(II)/Fe tot 0.43					
Time (day) 21, 0h 21, 1h	рН 6.9 6.7	Eh (mV) -72 45	DOC (mmol L ⁻¹) 3.9 ± 0.2 3.3 ± 0.2	Fe (II) (μmol L⁻¹) 52.9 ± 2.6 47.1 ± 2.4	Fe (III)(μmol L ⁻¹) Oxic 1 71.4 ± 4.6 33.0 ± 3.4	Fetot(μmol L ⁻¹) 124.3 ± 3.7 80.1 ± 2.4	δ ⁵⁶ Fe±2SD (‰) 0.23 ± 0.13 -0.33 ± 0.09	δ ⁵⁶ Fe' _{sample-soil} ±2SD (‰) -0.20 ± 0.15 -0.76 ± 0.12	Fe(II)/Fetot 0.43 0.59					
Time (day) 21, 0h 21, 1h 21, 2h	рН 6.9 6.7 6.6	Eh (mV) -72 45 142	DOC (mmol L⁻¹) 3.9 ± 0.2 3.3 ± 0.2 3.5 ± 0.2	Fe (II) (μmol L⁻¹) 52.9 ± 2.6 47.1 ± 2.4 13.5 ± 0.7	Fe (III)(μmol L ⁻¹) Oxic 1 71.4 ± 4.6 33.0 ± 3.4 40.7 ± 1.8	Fe tot(μmol L ⁻¹) 124.3 ± 3.7 80.1 ± 2.4 54.3 ± 1.6	δ ⁵⁶ Fe±2SD (‰) 0.23 ± 0.13 -0.33 ± 0.09 -0.37 ± 0.07	δ ⁵⁶ Fe' _{sample-soil} ±2SD (‰) -0.20±0.15 -0.76±0.12 -0.80±0.11	Fe(II)/Fetot 0.43 0.59 0.25					
Time (day) 21, 0h 21, 1h 21, 2h 21, 10h	рН 6.9 6.7 6.6 6.3	Eh (mV) -72 45 142 198	DOC (mmol L⁻¹) 3.9 ± 0.2 3.3 ± 0.2 3.5 ± 0.2 2.2 ± 0.1	Fe (II) (μmol L⁻¹) 52.9 ± 2.6 47.1 ± 2.4 13.5 ± 0.7 5.9 ± 0.3	Fe (III)(μmol L ⁻¹) Oxic 1 71.4 ± 4.6 33.0 ± 3.4 40.7 ± 1.8 21.1 ± 0.9	Fe tot(μmol L ⁻¹) 124.3 ± 3.7 80.1 ± 2.4 54.3 ± 1.6 27.1 ± 0.8	δ ⁵⁶ Fe±2SD (‰) 0.23 ± 0.13 -0.33 ± 0.09 -0.37 ± 0.07 0.38 ± 0.06	δ ⁵⁶ Fe' _{sample-soil} ±2SD (‰) -0.20 ± 0.15 -0.76 ± 0.12 -0.80 ± 0.11 -0.05 ± 0.10	Fe(II)/Fetot 0.43 0.59 0.25 0.22					
Time (day) 21, 0h 21, 1h 21, 2h 21, 10h 22	рН 6.9 6.7 6.6 6.3 6.3	Eh (mV) -72 45 142 198 252	DOC (mmol L⁻¹) 3.9 ± 0.2 3.3 ± 0.2 3.5 ± 0.2 2.2 ± 0.1 1.7 ± 0.1	Fe (II) (μmol L⁻¹) 52.9 ± 2.6 47.1 ± 2.4 13.5 ± 0.7 5.9 ± 0.3 4.7 ± 0.2	Fe (III)(μmol L ⁻¹) Oxic 1 71.4 ± 4.6 33.0 ± 3.4 40.7 ± 1.8 21.1 ± 0.9 20.7 ± 0.8	Fe tot(μmol L ⁻¹) 124.3 ± 3.7 80.1 ± 2.4 54.3 ± 1.6 27.1 ± 0.8 25.4 ± 0.8	δ ⁵⁶ Fe±2SD (‰) 0.23 ± 0.13 -0.33 ± 0.09 -0.37 ± 0.07 0.38 ± 0.06 0.38 ± 0.06	$δ^{56}$ Fe'sample-soil ±2SD (‰) -0.20 ± 0.15 -0.76 ± 0.12 -0.80 ± 0.11 -0.05 ± 0.10 -0.05 ± 0.10	Fe(II)/Fetot 0.43 0.59 0.25 0.22 0.19					
Time (day) 21, 0h 21, 1h 21, 2h 21, 10h 22 25	рН 6.9 6.7 6.6 6.3 6.3 6.3	Eh (mV) -72 45 142 198 252 550	DOC (mmol L ⁻¹) 3.9 ± 0.2 3.3 ± 0.2 3.5 ± 0.2 2.2 ± 0.1 1.7 ± 0.1 2.5 ± 0.1	Fe (II) (μ mol L ⁻¹) 52.9 ± 2.6 47.1 ± 2.4 13.5 ± 0.7 5.9 ± 0.3 4.7 ± 0.2 10.3 ± 0.5	Fe (III)(µmol L ⁻¹) Oxic 1 71.4 ± 4.6 33.0 ± 3.4 40.7 ± 1.8 21.1 ± 0.9 20.7 ± 0.8 13.3 ± 0.9	Fetot(μ mol L ⁻¹) 124.3 ± 3.7 80.1 ± 2.4 54.3 ± 1.6 27.1 ± 0.8 25.4 ± 0.8 23.5 ± 0.7	δ^{56} Fe±2SD (‰) 0.23 ± 0.13 -0.33 ± 0.09 -0.37 ± 0.07 0.38 ± 0.06 0.38 ± 0.06 0.45 ± 0.06	$δ^{56}$ Fe' _{sample-soil} ±2SD (‰) -0.20 ± 0.15 -0.76 ± 0.12 -0.80 ± 0.11 -0.05 ± 0.10 -0.05 ± 0.10 0.02 ± 0.10	Fe(II)/Fetot 0.43 0.59 0.25 0.22 0.19 0.44					

37	6.4	541	2.2 ± 0.1	6.1 ± 0.3	13.5 ± 0.7	19.6 ± 0.6	0.56 ± 0.06	0.13 ± 0.10	0.31				
	Oxic 2												
58, 0h	6.9	-140	3.2 ± 0.2	161.2 ± 8.1	23.4 ± 9.8	184.6 ± 5.5	0.32 ± 0.09	-0.11 ± 0.12	0.87				
58, 1h	6.8	74	3.5 ± 0.2	145.6 ± 7.3	38.8 ± 9.1	184.5 ± 5.5	-0.07 ± 0.06	-0.49 ± 0.10	0.79				
58, 2h	6.7	147	4.4 ± 0.2	110.8 ± 5.5	26.1 ± 6.9	136.9 ± 4.1	-0.48 ± 0.06	-0.91 ± 0.10	0.81				
58, 10h	6.8	121	4.2 ± 0.2	61.3 ± 3.1	34.5 ± 4.2	95.8 ± 2.9	-0.44 ± 0.06	-0.87 ± 0.10	0.64				
59	6.7	197	3.1 ± 0.2	111.8 ± 5.6	18.0 ± 6.8	129.8 ± 3.9	-0.28 ± 0.06	-0.71 ± 0.10	0.86				
62	7.0	226	4.4 ± 0.2	125.3 ± 6.3	114.5 ± 9.5	239.8 ± 7.2	0.06 ± 0.09	-0.37 ± 0.12	0.52				
68	6.9	141	2.5 ± 0.1	92.1 ± 4.6	121.0 ± 7.9	213.1 ± 6.4	0.10 ± 0.10	-0.33 ± 0.13	0.43				
74	6.7	147	3.6 ± 0.2	117.0 ± 5.9	23.2 ± 8.7	140.2 ± 6.4	0.02 ± 0.06	-0.41 ± 0.10	0.83				
					Oxic 3								
95 <i>,</i> 0h	6.8	-118	3.6 ± 0.2	183.6 ± 9.2	24.5 ± 11.1	208.1 ± 6.2	0.28 ± 0.16	-0.14 ± 0.18	0.88				
95, 1h	6.8	7	4.0 ± 0.2	142.2 ± 7.1	73.2 ± 9.6	215.4 ± 6.5	0.16 ± 0.06	-0.27 ± 0.10	0.66				
95, 2h	7.1	-3	4.8 ± 0.2	142.8 ± 7.1	53.5 ± 9.3	196.3 ± 5.9	0.14 ± 0.06	-0.29 ± 0.10	0.73				
95, 10h	7.0	91	3.9 ± 0.2	140.8 ± 7.0	14.6 ± 8.4	155.4 ± 4.7	-0.19 ± 0.14	-0.61 ± 0.17	0.91				
96	6.6	121	2.9 ± 0.1	141.8 ± 7.1	20.6 ± 8.6	162.4 ± 4.9	-0.25 ± 0.06	-0.68 ± 0.10	0.87				
99	7.1	66	3.3 ± 0.2	185.0 ± 9.2	13.7 ± 11.0	198.7 ± 6.0	0.16 ± 0.06	-0.27 ± 0.10	0.93				
105	7.0	-80	4.7 ± 0.2	193.3 ± 9.7	65.3 ± 12.4	258.6 ± 7.8	0.32 ± 0.06	-0.11 ± 0.10	0.75				

111	7.0	-97	4.2 ± 0.2	260.0 ± 13.0	11.7 ± 15.3	271.7 ± 8.2*	0.31 ± 0.10	-0.12 ± 0.13	0.96
111**	6.1	571	2.7 ± 0.1	1.3 ± 0.1	10.2 ± 0.5	11.5 ± 0.6	0.52 ± 0.10	0.09 ± 0.13	0.11

* DOC: Dissolved organic carbon.
 ** After total oxidation: measured parameters after that rubber stopper of reactor has been opened.

Table S2 – The Fe isotopic compositions of the soil suspension and fluorescence indexes of the soil solution. HIX
 = humification index⁵; BIX = biological index⁶; SUVA = specific UV absorbance⁷.

Period	Time (day)	δ ⁵⁶ Fe ± 2SD (‰) Soil suspension	SUVA _{λ=254 nm} (L mg ⁻¹ m ⁻¹) soil solution	HIX soil solution	BIX soil solution
Anoxic-1	1	nd	3.14	3	0.36
Anoxic I	20	0.62 ± 0.09	0.20	9	0.42
Ovic-1	21	0.51 ± 0.09	1.82	19	0.40
OALC 1	37	0.50 ± 0.09	0.98	7	0.38
Anovic-2	38	0.54 ± 0.09	5.38	44	0.35
Anoxic-2	57	0.47 ± 0.09	2.43	31	0.40
Ovic?	58	0.52 ± 0.09	4.56	36	0.36
OXICZ	74	0.58 ± 0.13	4.02	31	0.39
Apovic 2	75	0.51 ± 0.13	4.57	61	0.38
Alloxic-5	94	0.61 ± 0.13	2.37	22	0.42
Ovic-3	95	0.55 ± 0.13	6.65	32	0.38
UAIC-5	111	0.56 ± 0.13	3.45	16	0.44

The errors of δ^{56} Fe ware calculated through standard deviation (2SD) of standard bracketing.

- 70 **Table S3** Iron isotopic fractionation ($\Delta^{56}Fe_{A-B}$) between the size fraction A (on the left, yellow
- column) and the size fraction B (on the top, blue row) for anoxic periods 1 and 3 and oxic
- period 1 and 3. The values were calculated by subtracting the δ^{56} Fe of the fraction B from the
- 73 δ^{56} Fe of the fraction A.

Δ ⁵⁶ Fe _{A-B}		Size fraction B	
Size fraction A	3-0.2 μm	0.2µm-30 kDa	<30 kDa
		Anoxic 1	
>3 μm	-0.32 ± 0.28	-0.40 ± 0.17	1.01 ± 0.13
3-0.2 μm		-0.08 ± 0.30	1.33 ± 0.28
0.2µm-30 kDa	0.08 ± 0.30		1.41 ± 0.17
		Anoxic 3	
>3 μm	-0.08 ± 0.71	-0.29 ± 0.21	1.02 ± 0.17
3-0.2 μm		-0.22 ± 0.72	1.10 ± 0.71
0.2µm-30 kDa	0.22 ± 0.72		1.31 ± 0.19
		Oxic 1	
>3 μm	0.13 ± 0.13	0.10 ± 0.26	-0.12 ± 0.10
3-0.2 μm		-0.02 ± 0.27	-0.25 ± 0.11
0.2µm-30 kDa	0.02 ± 0.27		ns
		Oxic 3	
>3 µm	0.11 ± 0.17	0.21 ± 0.52	-0.02 ± 0.19
3-0.2 μm		0.09 ± 0.51	-0.14 ± 0.18
0.2µm-30 kDa	-0.09 ± 0.51		-0.23 ± 0.52

---: Not defined isotopic fractionation.

	•				
Date	DOC* (mmol L ⁻¹) SUVA		Fe (II) (µmol L⁻¹)	Fe _{tot} (µmol L ⁻¹)	δ ⁵⁶ Fe ± 2SD (‰)
			Oxic		
20/01/2017	1.0 ± 0.1	4.5	nd	60 ± 3	-0.21 ± 0.06
09/02/2017	1.9 ± 0.1	2.7	nd	15 ± 1	0.04 ± 0.14
			Anoxic		
21/02/2017	10.8 ± 0.5	3.2	nd	382 ± 19	-0.54 ± 0.09
08/03/2017	11.3 ± 0.0	2.8	74 ± 4	509 ± 25	-0.46 ± 0.09
21/03/2017	10.8 ± 0.5	3.4	93 ± 5	475 ± 24	-0.38 ± 0.09
04/04/2017	6.7 ± 0.3	4.8	160 ± 8	413 ± 21	-0.24 ± 0.14
02/05/2017	1.6 ± 0.1	5.9	221 ± 11	645 ± 32	-0.80 ± 0.07
			Oxic		
01/06/2017	nd	nd	78 ± 4	314 ± 16	nd

Table S4 - Chemical and isotopic compositions of the natural soil solution filtrate at 0.2 μm
 during seasonal anoxic and oxic periods in the wetland.

* DOC: Dissolved organic carbon. nd: not determined.

Table S5 – Chemical composition of the soil used to prepare soil solutions collected at 0-10cm depth.

77	The analysis was	performed	by SARM	(France).
----	------------------	-----------	---------	-----------

Compound	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na₂O	K₂O	TiO ₂	P ₂ O ₅	Total
(wt. %)	63.04	10.15	5.23	0.10	0.57	0.29	0.42	1.79	0.78	0.17	100.13

Workflow schema

81

82 References

- Crosby, H. A., Johnson, C. M., Roden, E. E. & Beard, B. L. Coupled Fe (II)– Fe (III) electron
 and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory
 iron oxide reduction. *Environ. Sci. Technol.* **39**, 6698–6704 (2005).
- Icopini, G. A., Anbar, A. D., Ruebush, S. S., Tien, M. & Brantley, S. L. Iron isotope
 fractionation during microbial reduction of iron: the importance of adsorption. *Geology* 32, 205–208 (2004).
- Crosby, H. A., Roden, E. E., Johnson, C. M. & Beard, B. L. The mechanisms of iron isotope
 fractionation produced during dissimilatory Fe(III) reduction by Shewanella
 putrefaciens and Geobacter sulfurreducens. *Geobiology* 5, 169–189 (2007).
- Johnson, C. M., Roden, E. E., Welch, S. A. & Beard, B. L. Experimental constraints on Fe
 isotope fractionation during magnetite and Fe carbonate formation coupled to
 dissimilatory hydrous ferric oxide reduction. *Geochim. Cosmochim. Acta* 69, 963–993
 (2005).
- Solnay, A., Baigar, E., Jimenez, M., Steinweg, B. & Saccomandi, F. Differentiating with
 fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to
 drying. *Chemosphere* 38, 45–50 (1999).
- 99 6. Huguet, A. *et al.* Properties of fluorescent dissolved organic matter in the Gironde
 100 Estuary. *Org. Geochem.* 40, 706–719 (2009).
- 101 7. Matilainen, A. *et al.* An overview of the methods used in the characterisation of natural
 102 organic matter (NOM) in relation to drinking water treatment. *Chemosphere* 83, 1431–
 103 1442 (2011).

104