FN Archimer Export Format PT J TI Validation of the dynamic load characteristics on a Tidal Stream Turbine when subjected to wave and current interaction BT AF Lloyd, Catherine Allmark, Matthew Ordonez-Sanchez, Stephanie Martinez, Rodrigo Johnstone, Cameron Germain, Gregory Gaurier, Benoit Mason-Jones, Allan O'Doherty, Tim AS 1:1;2:1;3:2;4:2;5:2;6:3;7:;8:1;9:1; FF 1:;2:;3:;4:;5:;6:PDG-REM-RDT-LCSM;7:PDG-REM-RDT-LCSM;8:;9:; C1 Cardiff Marine Energy Research Group, School of Engineering, Cardiff University, Queens Buildings, 14-17, The Parade, Cardiff, CF24 3AA, UK Energy Systems Research Unit, Department of Mechanical and Aerospace Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XQ, UK IFREMER, Marine and Structures Laboratory, Centre Manche, Mer du Nord, 150 Quai Gambetta, 62200, Boulogne-sur-Mer, France C2 UNIV CARDIFF, UK UNIV STRATHCLYDE, UK IFREMER, FRANCE SI BOULOGNE SE PDG-REM-RDT-LCSM IN WOS Ifremer UPR copubli-europe IF 4.372 TC 10 UR https://archimer.ifremer.fr/doc/00678/78987/81381.pdf LA English DT Article DE ;Tidal stream turbine;Wave-current interaction;Computational fluid dynamics;Regular waves;Experimental validation;Marine energy AB A comparison of a tidal turbine's performance and structural loads is conducted using lab-scale numerical models and experimental testing under multiple current-only and wave-current conditions at the IFREMER wave-current flume. Experimental testing, used to validate CFD models, was accomplished using a 0.9 m diameter, 3-bladed tidal turbine and had a blockage ratio of 8% while the turbine was submerged. Initial investigations analysed the performance and loads on the turbine under uniform and profiled current-only conditions. The presence of a profiled velocity gradient was found to have a negligible effect on the average performance characteristics; however, transient thrust, torque and out of plane bending moment loads experienced much greater variations. These load fluctuations were further increased with increasing levels of shear in the velocity profile, while peaks in the turbine loads coincided with its rotational frequency. The addition of regular, Stokes 2nd Order Theory waves added to the complexity of the flow conditions experienced by the turbine. The effect on the average performance characteristics were negligible while the total turbine thrust and torque fluctuations increased by 35 times that of the current-only cases. Peaks in the loads aligned with the wave surface elevation, indicating the importance of transient analyses of dynamic loads. PY 2021 PD FEB SO Ocean Engineering SN 0029-8018 PU Elsevier BV VL 222 UT 000619212100001 DI 10.1016/j.oceaneng.2020.108360 ID 78987 ER EF