Holistic investigation of shore angler profiles to support marine protected areas management

Cambra Eléonore ${ }^{1,2, *}$, Bello Alice ${ }^{1,2}$, Kayal Mohsen ${ }^{3}$, Lenfant Philippe ${ }^{1,2}$, Vasseur Lauriane ${ }^{4}$, Verdoit-Jarraya Marion ${ }^{1,2}$
${ }^{1}$ UPVD, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, Université de Perpignan Via Domitia, F-66860, Perpignan, France
${ }^{2}$ CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, Université de Perpignan Via Domitia, F-66860, Perpignan, France
${ }^{3}$ ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de la Nouvelle-Calédonie, Nouméa, New Caledonia
${ }^{4}$ Parc naturel marin du golfe du Lion, 2 impasse de Charlemagne, 66700, Argelès-sur-Mer, France
* Corresponding author : Eléonore Cambra, email addresses : cambraeleonore@gmail.com ;
eleonore.cambra@univ-perp.fr

Abstract

: Marine Recreational Fishing (MRF) is growing worldwide in scientific interest, as evidenced by the increasing number of dedicated publications. Studies on the impacts and benefits to socio-ecosystems and mental health are driving this gradual awareness. In the Mediterranean, MRF is currently responsible for 10% of the catches though, in the context of small-scale fisheries decline, it may become dominant. Sustaining this activity represents a universal challenge for the future of mankind. However, the potential influence of anglers' heterogeneity on both the environment and the Catch Per Unit of Effort (CPUE), used internationally to evaluate fish harvest and as a stocks indicator, hinders MRF management. In addition, little data is available on onshore fishing, while the number of practitioners may increase sharply in the context of a socio-economic crisis, especially in marine protected areas (MPA). We conducted a yearround survey in 2017-2018 in a French Mediterranean MPA subject to tourist flows, during which 144 onshore anglers were polled by semi-directive interviews. We used a typology based on technical and socio-economic data of anglers to describe their behaviour diversity and its influence on CPUE and, more broadly, the marine environment in multi-species fisheries. We characterised four onshore angler profiles, segregated in space and time, including one identified as at risk of causing impacts. Our analyses support using total and per species CPUE independently of profiles to evaluate onshore MRF harvest, except for four species. CPUE seem based on the profiles' skills and self-regulation which induce similar yields between anglers in the absence of control. This demonstrates the importance of taking into account angler behaviour, as each profile could react differently to management actions and highlights that CPUE could be used to detect the effect of changes in regulation in the framework of adaptive management. Our results support that MRF regulations should be simplified and homogenised at the national level and cooperation with fishing shops in MPA co-management should be promoted.

Graphical abstract

Highlights

- Onshore recreational fishing is booming in Mediterranean marine protected areas. Lack of knowledge on anglers' behaviours hinders sustainable management. 4 angler's profiles segregated in space and time emerge from typological analyses. The profiles present similar yields (stock indicator's proxy) except for 4 species. The profiles exert specific pressures requiring their inclusion in marine policies.

Keywords : Anglers behaviour, Catch per unit of effort, Marine protected area, Participatory science, Recreational fisheries, Socio-ecosystems

1. Introduction

Neglected for a long time, as compared to professional fisheries, recreational fisheries (RF) are of growing interest to the scientific community (Cooke and Cowx, 2006). They are generally described as any fishing activity where the product is intended for the exclusive consumption of the angler's family (defined by the Code rural de la pêche maritime in France, Article R921-83, 2017) and could represent up to 12% of global fish harvest (Cooke and Cowx, 2004). With nearly 220 million anglers worldwide, RF could even become dominant in coastal and marine areas, where they are still marginally studied compared to freshwater (Arlinghaus et al., 2019). Scientists and authorities increasingly recognise marine recreational fisheries (MRF) impacts on fish stocks and the environment (McPhee et al., 2002) as well as their socioeconomic importance (Pita et al., 2018). As a result, they ask for better monitoring and management of the activity, as recently promulgated by the European Union for its member states (EU Parliament Adopted Text, 2018).

At this stage, the global lack of knowledge about MRF activities, particularly the heterogeneity of practitioners and their dynamics, hinders suitable management (Gordoa et al., 2019). On one hand, fishery policies are based on disputable stocks status indicators such as Catch Per Unit of Effort (CPUE), which are also used to extrapolate anglers' harvest (Freire et al., 2020). Generalised for decades in professional fisheries, CPUE involves a direct relationship between the stock's abundancy and the yields (DuFour et al., 2019), yet to be demonstrated for the various practicing populations in MRF. Indeed, the versatility of angler practices and behaviours may influence angling efficiency and raises the question of the validity of CPUE index in MRF (Cabanellas-Reboredo et al., 2017). We therefore hypothesise that the degree of specialisation and the fishing strategies specific to each angler influence his yields, but that the essence of behavioural variability can be summarised through typological approaches (Verdoit et al., 2003). In this case, the proportion of each cluster of individuals sharing common fishing habits (called profiles) would have to be taken into account in calculating the CPUE indicator, otherwise generating poor-reading of fish stocks changes detrimental to MRF management
(Maggs et al., 2016). On the other hand, the lack of knowledge about spatio-temporal fishermen distribution (Hunt et al., 2019) hinders the implementation of efficient awareness actions and restricts communication between managers and anglers. This acts against the interests of both protagonists and limits the impact of fishing regulations such as minimum catch size on stock decline. In the context of supporting sustainable management actions, participatory monitoring is an appropriate tool to characterise fishermen population as well as impacts and expectations (Brownscombe et al., 2019). It also fosters the emergence of ecological awareness and even co-management (Danylchuk and Cooke, 2011) while promoting transdisciplinary approaches and local-scale cooperation with fishermen, which often remains to be built (Symes and Hoefnagel, 2010). We therefore assume that the analysis of anglers' profiles would also provide operational guidance for RF management as their location and seasonality, as well as their knowledge, responses, and investment in the application of management measures, would be profile-dependent.

This study is at the crossroads of the work initiated by Bryan (Bryan, 1977) on the impact of specialisation on catches, which we extend to the onshore socio-ecosystem, and more recent studies on the validity of CPUE' index (Cabanellas-Reboredo et al., 2017; Ward et al., 2013). We propose an interdisciplinary approach unprecedented in France communicating local and national actions in support of RF management in the Natural Marine Park of the Gulf of Lion. We analyse a large dataset from in situ surveys to describe how the composition of the onshore fishing population and respective fishing strategies of each profile impact both the CPUE and more broadly the regional coastal socioecosystem in multi-species fisheries. Our study benefits fisheries management by proposing a basis for co-reflection between anglers, managers and fishing shops on the implementation of a seasonal, profile-targeted adaptive management strategy of MRF. It could thus allow a better distribution of managers' efforts both for the co-reflection activity itself and later, via the evaluation of catches, between fishing activities. Our study will support the application of the French Façade Strategic Document 2021-2027 which aims in part to set up a European action plan and surveillance program
for MRF. More broadly, this study could serve as a reference for the monitoring currently underway in the Mediterranean or even on a wider scale, as the Mediterranean represents a potential site of interest for a MRF workshop. The activity is indeed widely practised there (Giovos et al., 2018), likely by highly diverse anglers, from locals to seasonal fluxes of tourists bringing new fishing practices.

2. Material and Methods

2.1. Study area

The Natural Marine Park of the Gulf of Lion (NMPGL), established in France in 2011 (www.parc-marin-golfe-lion.fr), is the second largest park in the Mediterranean Sea (3000 km²) (Fig. 1). Management objectives tend to reconcile environmental protection with human usages including fisheries and tourism (Di Franco et al., 2016). Nevertheless, no fishing licenses are yet required and there are no specific rules targeting RF (apart the Mediterranean-wide minimum catch sizes) inside the NMPGL (Agence des aires marines protégées, 2014), except in the Cerbère-Banyuls Marine Reserve (CBMNR) (www.catalanes.espaces-naturels.fr) (Fig. 1).

Fig. 1 (2-column fitting image, no color). Map of the study area indicating the position of the Natural Marine Park of the Gulf of Lion (NMPGL) located in the Pyrénées-Orientales department, France, Northwestern Mediterranean Sea. The main harbours and towns are also indicated. Shaded area indicates the sandy coast of the park where this study was conducted (60 km stretch).
2.2. Surveys

A total of 144 outings were performed over a year (November 2017-October 2018) to describe the recreational shore fishermen population of the NMPGL's sandy coast (Fig. 1). The dates were randomly selected. For each outing, the number of fishermen was first counted, and then over a quarter were randomly polled in 20-minutes semi-directive interviews using roving-roving methods of sampling, with positions registered by GPS (Lockwood, 2000). The questionnaire focused on a wide range of variables (almost 120) to provide the first complete description of RF in the study area, notably covering socio-economic data and fishermen habits. A second part of the questionnaire focused on the day's fishing activity (techniques, baits type and origin, time allocated to fishing) and was completed by a biometric catch record (species identification, weight and height measurement) to evaluate yields. Over the study period, 795 fishermen were counted and 212 interviewed.

2.3. Profiles description

To select the variables that influenced the data set and avoid redundancies, the links between the variables were analysed. Fisher's exact tests were performed for the variables where at least one of the modalities had a statistical headcount of less than 5, and Chi-squared tests otherwise. The resulting p-values were used to create a binomial matrix of significant relationships (linked or not) which permitted classifying the variables by Ascending Hierarchical Classification on binary matrix. After verifying the appearance of the obtained dendrogram, variables with higher weight per cluster were selected and included in the final dataset used to establish typologies. This method allowed selecting the variables with the fewest missing values while preserving the variability of topics included in the questionnaire. Fishermen profiles were then characterised by a typology involving a Multiple

Correspondences Factorial Analysis followed by an Ascending Hierarchical Classification using Ward's method (Lebart et al., 1997). To compare each of the profiles, obtained from sub-populations, to the total sample population, each variable class frequency was compared to the population frequency using Fisher's exact tests. All the statistics were performed using R software (R Development Core Team, 2005).

2.4. Comparison of yields and catches

The respective Catch per unit of effort (namely the yields) in number of individuals (CPUE) and biomass in Weight per unit of effort (WPUE) for both per rod (number of captures or kg. rod $^{-1}$. hour $^{-1}$) and hook (number of captures or $\mathrm{kg}^{\mathrm{h}} \mathrm{hook}^{-1}$. hour $^{-1}$) were calculated per fisherman. Total CPUE and WPUE were compared between the profiles using Kruskal-Wallis non parametrical tests, as the assumption of data normality was not verified by Shapiro's test. Nevertheless, the means and standard deviations of total and per profile CPUE and WPUE have been calculated for information purposes and to support possible comparisons. When significant, the Kruskal-Wallis tests were followed by Dunn post-hoc tests to determine which profiles differed significantly. Furthermore, CPUE and WPUE per species were compared in the same way. CPUE and WPUE were calculated for the 14 species present in the biometric sampling which were, in order of importance, the Gilthead Seabream (Sparus aurata, Sparidae), the Weever (Trachinus spp., Trachinidae), the Common cuttlefish (Sepia officinalis, Sepiidae), the Bogue (Boops boops, Sparidae), the Garfish (Belone belone, Belonidae), the Common pandora (Pagellus erythrinus, Sparidae), the Goby (Gobius sp., Gobiidae), the White seabream (Diplodus sargus, Sparidae), the Salema (Sarpa salpa, Sparidae), the Squid (Loligo vulgaris, Loliginidae), the European seabass (Dicentrarchus labrax, Moronidae), the Surmullet (Mullus surmuletus, Mullidae), the European eel (Anguilla anguilla, Anguillidae), and the Grey Mullet (Chelon labrosus, Mugilidae).

3. Results

3.1. Variables conserved

Twenty-four variables (28.8\% of the complete dataset) among 144 questionnaires were conserved in the final analysis which can be classified in five categories: "Fisherman", "Fishing Habits", "Technical skills", "Daily practice" and "Perceptions and legislation knowledge". Two other variables: "Fisherman age" and "Catch-and-release practice" were also selected to advise management actions (See attachment).

3.2. Fishermen profiles

3.2.1. Total shore population

The shore fishing population ($\mathrm{N}=144$) sampled in the NMPGL was exclusively composed of men mostly between 50 and 59 years of age (25.18%) with little (1-5 years) to intermediate (11-20 years) fishing experience (Fig. 3). It was mostly composed of pensioners (29.17\%) or non-qualified workers (45.13\%) who fish occasionally (less than 30 times per year) for leisure more than for catches. They preferred practicing in the morning (24.31\%), in the municipalities of Canet (34.03\%) or Leucate (21.53\%), and especially in summer (49.31\%). Most fishermen performed from dikes (49.31\%), although surfcasting from the beach was also common (43.75\%). They chose their fishing spot principally based on tranquillity or accessibility. Most anglers (57.37\%) were locals, from the PyrénéesOrientales department, but a broad range of people from other non-neighbouring French departments (34.72%) and a few foreigners (1.39%) were also present. They practiced fishing from the shore only (73.61\%), few of them owning or renting a boat. Fishermen generally used live bait (86.81%), especially expensive worms (59.72\%) purchased locally, to target S. aurata (81.94\%). About 29.17\% of the fishermen also harvested bait, mainly crabs (54.71\%), mussels (42.85\%), or marine worms (45.22\%). They spent on average 100 to 500 euros (55.56%) to fish from 0 to 10 kg (63.19\%) per year, although budgets allocated to fishing could reach up to 5,000 euros per year for a maximum reported catch of 500 kg . In this fishery, 77.78% of fishermen were surveyed empty-handed and only 11.81% caught at least one target species. A large majority of the fishermen interviewed (73.61\%) perceived a decline in fishing resources, which they linked essentially to professional fishing (51.39\%) and water pollution
(25\%). Most of them considered RF regulations as Sufficiently strict (57.64\%) or Not sufficient (15.97\%). However, 60.42% of fishermen admitted that they did not know which species are protected inside the park or, for 59.72%, the minimum legal catch sizes for the main targeted species (D. Iabrax or S. aurata). Nevertheless, 92.25% of the interviewed fishermen also practiced catch-and-release.

Among this total shore population, four different profiles were highlighted by the typologies (Fig. 2): Vacationers, Occasional Local Fishermen, Experienced Local Fishermen, and Local Lure Fishermen. We named the different profiles according to their main characteristics (Fig. 3).

Fig. 2 (2-column fitting image, color). Diagram of the obtained dendrogram (b) and the four clusters emerging as sufficient to describe the recreational fishing population according to the diagram of inertia (a). Indeed, after four classes, the inertia curve appears to reach a plateau.

Fig. 3 (2-column fitting image, color). Diagram of the shared sample population characteristics (central circle) and specific characteristics of each recreational shore fishermen profile (outer circles) along the sandy coast of the Natural Marine Park of the Gulf of Lion for the period 2017-2018. The number of significantly different variables between the total population and the profiles is noted around the arrows.

3.2.2. The Vacationers

The main profile highlighted was the Vacationers, composed predominantly of fishermen from other French departments (52.63\%) rather than foreigners (only 2.63\%). They represented 52.77% of the sample ($\mathrm{N}=76$). This profile did not differ significantly from the total population in terms of age (mostly 40-49 years) and experience (highly variable but defined by the modality 1-5 years). All socioprofessional categories other than students were well represented. Anglers representing this profile were characterised by their occasional, mostly summer (64.47\%), practice and their attraction to sites that were less crowded and more accessible for parking (69.74\%).

In terms of habits, the Vacationers practiced almost exclusively from the shore, both from beaches (47.37\%) and dikes (43.42\%). They used bottom-fishing, generally in the morning (61.84\% practiced at least then), to predominantly target S. aurata (81.58\%). They differed significantly from the total population in their choice of fishing bait, preferring exogenous worms (57.89\%). Bait were purchased in 86.84% of cases and represented the highest portion of their fishing budget, with a box of popular American worms costing around 6.90 euros. They were characterised by low rates of harvesting (1.32\%) and of lure usage (2.63%). In two months, they spent the equivalent of one year's fishing budget for the other profiles (100-500 euros) to catch 0 to 10 kg per year on average (82.89%; 96.05% under $20 \mathrm{~kg} /$ year). This profile significantly represented both the highest rate of adequacy between species targeted and caught (90.89\%) and of catch-and-release practicing (95.95\%), despite the Vacationers showing the lowest level of knowledge on protected species (28.95\%) and minimum catch sizes (30.26\%).

3.2.3. The Occasional Local Fishermen

The second profile highlighted, the Occasional Local Fishermen (OLF), represented 26.39\% $(N=38)$ of the total sample population. This group was composed of active men, generally working in a poorly (34.21\%) or moderately qualified (21.05\%) profession, often in the construction industry. They had the same age distribution as the total population ($51.44 \pm 15.75, \mathrm{p}$-value: 0.97) with similar or lower fishing experience (28.95% between 6 and 10 years old). They practiced occasionally along Canet (44.74\%) and Leucate (31.58\%) coasts, mainly during summer (52.63\%). Coming from the PyrénéesOrientales region (55.26\%), but also from neighbouring French departments (18.42\%), they concentrated significantly on hard substrates (65.78\%) that they chose both for their tranquillity (44.74 $\%$) and for their natural settings (42.11\%) with a reputation for concentrating fish. Unlike the total population, they fished at night (23.68%) or any time they had free time (28.95%). They were also much more versatile in their fishing practice, visible in their usage of the marine space (44.74\% practicing both shore fishing and spear- or boat-fishing) as well as bait selection (though still favouring the worm at 42.11%) and origin (68.43% harvesting them and 10.53% using exclusively natural bait). They were much more specialised in their targeting, 94.74% fishing for S. aurata exclusively. OLF did not differ significantly from the total population in terms of catch (0-10 kg) or annual budget (100-500 euros) although an intermediate budget class (500-1,000 euros) was well represented (21.05\%). Despite their high level of specialisation and their versatility, their capture rate was low 76.32% are empty-handed) and their bycatch rate high (50\%).

They also held the view that fishing stocks were declining (68.42\%) because of professional fisheries (47.37\%) and pollution (23.68\%), though this profile also had the highest proportion of fishermen declaring fish populations as Increasing (7.89\%) or as Stagnant (15.79\%). The majority considered legislation as Sufficiently strict (60.53\%) but OLF were also characterised by the highest rate who consider it Too strict (7.89\%). They generally knew little about minimum catch sizes (42.11% could
cite at least one) and less about protected species (63.16% could not name one), but nevertheless practiced catch-and-release at 89.19\%.

3.2.4. The Experienced Local Fishermen

The Experienced Local Fishermen (ELF) profile represented 14.58% of the sample ($\mathrm{N}=21$). As compared to the Local Lure Fishermen (see next section), it brought together the most elderly people above the age of 50 years, and was characterised by the highest rate of the modality Higher than 70 years, absent in the LLF profile. This profile was defined by fishermen with average (11-20 years) to high levels of experience, practicing since childhood (51-60 years).

They were mostly end-of-career actives (only 28.57% of pensioners) from all socio-professional categories. They were local (90.48\%) or from bordering department (9.52\%) and practiced regularly (30 to 100 times per year) or very regularly (47.62% each), year-round (80.95%), mostly from dikes (61.9\%). They fished both the morning (38.10\%) and evening (42.86\%) and represented the only profile with individuals performing only in the afternoon (23.81\%). For a majority of them (66.67\%), the fishing sites were chosen based on the presence of a particular substrate or a targeted species (principally S. aurata and L. vulgaris). Similar to OLF, they were versatile in their use of marine space (38.1% of them fishing both onshore and offshore and 14.29% also practicing spear-fishing) but were more specialized in gear and bait. Indeed, ELF preferred using worms alone or in association with crustaceans (partially harvested in 71.43% of the cases) while bottom-fishing or lures, predominantly Turlutte to target cephalopods. They were also mobile, 14.29% of them applied for a fishing authorisation for the natural marine reserve of Cerbère-Banyuls located along the rocky coast (Fig. 1). Their technical knowledge was reflected in their catches (80% of targeted species), though the percentage of catch-free fishermen did not differ from other groups (76.19\%). Most likely attributable to their skills, the high budget allocated to fishing (42.86% spent between 1,000 to 2,500 euros per year to fish) and their annual presence, they were the profile that declared the most captures (33.33% reported catching more than

50 kg per year). Nevertheless, 48% of catches were under 20 kg per year and 23.81% were within the total population mean (0-10kg per year).

As with the other profiles, they predominantly perceived that catches were decreasing. However, they were more mitigated in the role of professional fishermen (42.86\%), also attributing declines to pollution (42.86\%) and poaching (14.29\%). They were the most aware of regulations, both in terms of minimum catch sizes (76.19\%) and protected species (76.19\%) and 57.14% would like the regulation to be reinforced (the majority of the rest considered it as Strict Enough). They also had similar catch-and-release rates as the Vacationers (about 95.5\%).

3.2.5. The Local Lure Fishermen

The Local Lure Fishermen (LLF) profile differed the most from the total population, with 22 variables differing significantly out of 26 (Fig.3), and represented 6.25% of the sample ($\mathrm{N}=9$). The $L L F$ were generally older and with more fishing experience. The $L L F$ profile comprised two distinct groups of practitioners: one group being 40-49 year olds (44.44\%), generally unemployed (11.11\%) or practicing an intermediate profession (22.22\%), with 6 to 20 years of experience (33.3\%) and the other being 60-69 year olds (44.44\%), pensioners, with 31 to 50 years of experience (55.55\%). This profile was characterised by individuals predominantly fishing since childhood and belonging exclusively to the Pyrénées-Orientales department (100\% locals).

They were characterised by their regularity: 77.77% fishing more than 100 times per year, 44.44% any time possible, and 11.11% sometimes twice a day, morning and evening. They fished yearround exclusively from the shore, characterising daytime fishing during the autumn and winter seasons (33.33\% each) and evening fishing during the summer (33.33\%). They chose their sites generally for the species targeted or the substrate (77.78\%). They did not harvest their baits and exclusively used lures (66.67%) or practiced surfcasting from the beach using purchased crustaceans and fishes. They generally caught a few species of strong gustatory interest such as D. labrax (44.44\%), L. vulgaris (22.22\%) and D. sargus (11.11\%), presenting lower pressure on S. aurata (22.22\%). Though some were
unemployed, they spent more money in RF than the other profiles with two modalities, 100 to 500 euros (33.33\%) and 2,500 to 5,000 euros (33.33\%), characterising the profile. They were also highly variable in their declarations of quantity of captures, with a majority reporting annual catches between 0 and 10 kg (33.33\%) but some claiming up to $100 \mathrm{~kg}(20 \%)$.

In terms of regulation, they were an intermediate profile with the highest rate acknowledging their ignorance of the fishing regulations (11.11\%) and the lowest rate of catch-and-release (still $85.71 \%)$. In fact, 55.56% of the fishermen knew both the protected species and the minimum catch size. Among them, 66.67% recognised the regulation as Strict Enough whereas 11.11% preferred stronger implementation, none considering it as Too strict. Surprisingly, during the interviews, none had a catch, except fishermen with no targeted species (22.22\%). They considered the fish populations to be declining (77\%) mainly due to professional fishing (66.67\%) and poaching (22.22\%).

3.3. Selectivity of catches and comparison of yields

The analysis of the 144 biometric records showed a differing specific distribution of catches, with only two species, S. aurata and D. sargus shared among the four fishermen profiles. The OLF caught diversified species, some with low gustatory interest, more so than other groups and particularly more than $L L F$ who caught few individuals and species (only 3 species).

The total CPUE (all species combined) did not show any significant difference if calculated per rod (mean 0.20 ± 0.60) or per hook (mean 0.19 ± 0.63). The same trend was observed for WPUE. For this reason, we chose to present in Table 1 only the results of the catches per rod, generally easier to obtain by visual surveys.

Comparing total CPUE and WPUE between the profiles did not show any significant differences. However, WPUE and CPUE analyses per species revealed a significant difference in yield between the profiles for four species among the 14 tested (Table 1). ELF presented a particular ability to catch

267 cephalopods which resulted in a higher yield than other profiles for these two species. LLF had significantly higher yields for D. labrax despite catches also made by ELF. P. erythrinus' yield was significantly higher for the OLF while they declared targeting the species in only 1.4% of cases. On the other hand, S. aurata's yield, which was overwhelmingly targeted by three out of four profiles, and still 44% by $L L F$, did not show any significant difference between the profiles.

		Profile 1 Vacationers $\begin{gathered} \mathrm{N}=76 \\ 52.77 \% \end{gathered}$	Profile 2 Occasional Local Fishermen $\begin{gathered} \mathrm{N}=38 \\ 26.39 \% \end{gathered}$	Profile 3 Experienced Local Fishermen $\begin{gathered} \mathrm{N}=21 \\ 14.58 \% \end{gathered}$	Profile 4 Local Lure Fishermen $\begin{gathered} \mathrm{N}=9 \\ 6.25 \% \end{gathered}$	Test	p-value	Significance
Species caught per profile among the sample (number of catches)		B. boops (6) S. aurata (23) B. belone (1) M. surmuletus (1) D. sargus (2)	A. anguilla (1) S. aurata (2) G. sp (1) P. erythrinus (6) D. sargus (1) S. salpa (2) T. sp (1)	L. vulgaris (3) S. aurata (1) D. labrax (1) C. Iabrosus (1) S. officinalis (6)	D. labrax (1) B. belone (2) D. sargus (1)			
$\begin{array}{r} \mathrm{T} \\ (\pm \text { stan } \end{array}$	al CPUE ard deviation)	0.21 ± 0.73	0.22 ± 0.66	0.08 ± 0.19	0.29 ± 0.50	KruskalWallis	0.75	\varnothing
$\begin{array}{r} \mathrm{T} \\ (\pm \text { stan } \end{array}$	al WPUE ard deviation)	0.02 ± 0.05	0.02 ± 0.06	0.04 ± 0.09	0.06 ± 0.11	KruskalWallis	0.73	\varnothing
CPUE per species	Loligo vulgaris	0	0	0.04 ± 0.11	0	KruskalWallis	$\begin{gathered} 2.9 \mathrm{e}-08 \\ \mathrm{C} 3^{* * *} \end{gathered}$	***
	Dicentrarchus labrax	0	0	0.01 ± 0.06	0.04 ± 0.13	KruskalWallis Post-hoc Dunn	$\begin{aligned} & 0.02 \\ & C 4^{*} \end{aligned}$	*
	Pagellus erythrinus	0	0.02 ± 0.07	0	0	KruskalWallis	$\begin{aligned} & 0.002 \\ & \mathrm{C} 2^{* *} \end{aligned}$	**
	Sepia officinalis	0	0	0.22 ± 0.68	0	KruskalWallis	$\begin{aligned} & 0.0005 \\ & \mathrm{C} 3^{* * *} \end{aligned}$	***
	Sparus aurata	0.04 ± 0.17	0.01 ± 0.09	0.005 ± 0.03	0	Kruskal- Wallis Post-hoc Dunn	0.23	\varnothing

Table 1. Comparison of total and per species Catch per Unit Effort in number of captures.rod ${ }^{-1} \cdot \mathrm{~h}^{-1}$ (CPUE) and in kg. $\operatorname{rod}^{-1} \cdot \mathrm{~h}^{-1}$ (WPUE) of the recreational fishermen profiles within the sample of the shore fishermen population of the sandy coast of the Natural Marine Park of the Gulf of Lion in 2017-2018.

Significance of Kruskal-Wallis tests: \varnothing No significance, * : p-value<0.05, ** : p-value<0.01, *** : pvalue<0.001

4. Discussion

The four profiles from our typology generate different impacts on catch composition and the onshore socio-ecosystem according to their fishing strategy and specialisation. The population heterogeneity appears to have both an influence on the spatiotemporal distribution of effort and on the response to management measures but not on total and per species CPUE except for four species. Understanding the heterogeneity could therefore be used to guide management measures of spatial planning and resource sharing, benefitting professional fishing (Brown, 2016). Despite being identified as a promising area of research, the study of anglers populations remains at its infancy (Arlinghaus et al., 2019). Describing their heterogeneity appears to be a fundamental first step towards sustainable resource management, while understanding CPUE variation, one of the most accessible indicators for stock assessment, according to angler type is likewise crucial and understudied (Ward et al., 2016).

4.1. Exploring the link between profiles and yields

Our analyses seem to support that both total CPUE and WPUE can be used in onshore MRF as a relative indicator (Quinn and Deriso, 1999) for stock status independent of anglers profiles as they present similar yields. The population can therefore be considered as homogeneous when evaluating harvest and analysing CPUE trends. This result is contrary to our hypothesis and could be counterintuitive considering the strong differences between profiles as LLF and ELF seem more efficient. In fact, NMPGL's anglers appeared to behave opportunistically, exploiting the range of species available without being specialised enough for selectivity, except LLF and ELF. The similar CPUE of $E L F$ and $L L F$ profiles could be due to a fine balance between their selectivity and the catchability of highly gustatory, targeted species. Given that this was a multi-species fishery, these profiles did not differ from non-selective anglers, which can compensate for a lack of knowledge in open-access fisheries or in the absence of control. That is why OLF, and more broadly Vacationers, may be good
indicators of stocks status, as their CPUE may be less subject to the phenomenon of hyperstability, "the illusion of plenty" (Erisman et al., 2011), observed in specialised and selectively-sized populations (Wilson et al., 2020).

The typology cross-referenced to the CPUE analysis clearly showed the importance of anglers' specialisation, but only for 4 species (D. labrax, L. vulgaris, P. erythrinus, S. officinalis). Since management policies, particularly establishing quotas, often depend on stock-targeted management the interpretation of changes in yields for these species should be verified with regard to the degree of specialisation in anglers in situ. These profiles can be assimilated, analogous to professional fishing, as constituting different professions in the area.

4.2. Ranking profiles to improve awareness

Categorising NMPGL heterogeneous anglers' population into four typical profiles with various influence on the socio-ecosystem that stand out as symptomatic of seasons and municipalities provides a framework for testing management and awareness actions addressing global or profiletargeted needs.

The LLF and ELF profiles were the most experienced and technical in targeting highly gustatory interest species. They were familiar with the area and specialists within their respective species range. Their selectivity, proven by low bycatch and high catch-and-release rates, and knowledge of regulations makes these profiles less of a priority for awareness actions. However, due to their large allocated budgets, they should be monitored to evaluate their impacts on the local economy and high trophic level stocks. Vacationers represented an intermediate profile for awareness and control needs with high economic value and impacts spread over different species. Their impacts should not be perceived as minimal, due to their number, yields and the influence they can therefore exert on certain stocks, particularly those of commercial interest. As a large part of the RF activity in the NMPGL depends on a small number of moving species (Kayal et al., 2020) notably caught during their breeding period and in nurseries (Cheminée et al., 2017), instilling good practices in Vacationers is all the more
important. In contrast, OLF seems to be the most impactful profile. They represented empirical catchdriven approaches leading to a high bycatch rate. This partially unreleased bycatch suggested an additional mortality on small individuals and low expectations in managers for increasing catch-andrelease rates, a controversial but widespread management measure (Arlinghaus et al., 2007). Their common practices of harvesting bait may also impact low trophic levels. The aggregation of OLF on dikes during summer makes them easier to monitor. This study validates that management must adapt to seasonal changes in fishing population (Wilson et al., 2020) and highlights the importance of operational presence during summer. Summer profiles have a similar harvest per daytrip as other season profiles yet also seem the most numerous and sensitive to management pressure, and therefore should be prioritized.

Overall, anglers' population analysis reveals a great lack of knowledge about the fishing regulations, especially protected species. These shortcomings demonstrate the ineffectiveness of the current means deployed to reach the anglers and to convince them. Interestingly, the anglers of the NMPGL possess a certain ecological awareness and apply their own version of fisheries regulations whether or not they are familiar with them (Brownscombe et al., 2019), particularly the Vacationers and ELF. Evidence of this "self-regulation" is partly reflected in the high rate of catch-and-release for all profiles also observed in other European countries (Ferter et al., 2013). They are generally easy to reach and open to awareness campaigns with the exception of OLF. OLF were less open to discussion with managers, with a high rate considering the regulations as Too strict.

4.3. Management implication and limits

The success of sustainable management depends on three vectors: an anglers-centered management aimed at engaging their responsibility with respect to the resource, local operational management using traditional management tools such as seasonal closures, and a long term monitoring involving all the fishing actors to inform adaptive management (Cooke et al., 2019). The predominance of self-regulation and the low level of knowledge of the law demonstrate the need for
multiscale management (Elmer et al., 2017), as MRF in the NMPGL depend on intensive national and international tourist flows. The importance of these migrating anglers highlights the partial nature of current RF management, as a major portion of Vacationers annual activity is outside the NMPGL's jurisdiction. Anglers-targeted management could be effective by seasonally increasing controls on minimum catch sizes (MCS), as requested by $E L F$, which would mainly be restrictive for summer dwellers. Nevertheless, the effort required is currently a barrier, as strong inclusive federations do not exist unlike freshwater (Ward et al., 2016).

In addition, the low catch rates (Kayal et al., 2020) and regulatory knowledge raises the question to the relevance of introducing stricter anglers-targeted regulations for onshore MRF in areas heavily subjected to tourists. The catch difficulty along the shore associated with a consumption-oriented MRF (Cooke et al., 2018), though no anglers reported economic needs, casts doubts on the efficiency of quotas or licenses in the absence of strict control. These measures are all the more difficult to put in place since local shore anglers do not approve of them (Tunca et al., 2016).

Too little or over-complication of regulation can lead to the collapse of societal population's organisation, which would be detrimental to the socio-ecosystem. Here, the fact that the majority of anglers are witnessing a decline in stocks and are trying to manage themselves in spite of lacking regulatory knowledge underscores the opportunity and the importance of firstly homogenising and simplifying the current fishing regulations, at least on a national scale. This could facilitate the adherence and the appropriation of populations to simple management measures such as catch-andrelease even if the MCS have to be revised upwards. Furthermore, raising awareness should be primarily carried out upstream, in departments where the populations originate. Few people imagine that each angler in France catches the equivalent of 10 kg per year (Herfaut et al., 2013), which contributes to the 47 billion fish caught annually worldwide (Cooke and Cowx, 2004). Thus, the national level should provide a common legislative and educational framework, placing sustainable RF practices
on an equal footing with consumption. These actions could provide the psychological tools (Arlinghaus et al., 2019) and incentive-based approaches (Grafton et al., 2006) necessary to preserve resources.

In addition to anglers-targeted actions, local adaptations involving the entire fabric of actors to prevent impacts and adapt fishing strategies upstream must be deployed (Martin and Pope, 2011). As most of the bait were purchased locally, implementing agreements with the commercial sector on available minimum hook sizes or a list of banned high-performance bait could increase selectivity and/or lower the yield of anglers (Alós et al., 2009). These measures would be easy for managers to implement and monitor and, through analysing sales, provide a proxy for the state of health of the activity or detect changes in the fishing population.

Typological approaches allow spatio-temporal profile-targeting management actions, particularly relevant for species whose yields stand out as profile-dependent. In addition, estimating specific strategies' potential for adaptation theoretically allows the anticipation of the anglers' responses to the proposed management measures (Arlinghaus et al., 2019). For example, because of their selectivity, LLF and ELF do not seem to fish to their maximum capacity and should be monitored as they could adapt to fishing evolutions (e.g. stock decrease). The comparative study of profiles' CPUE could potentially serve as an indicator of the efficiency of management measures as profiles may differ in terms of adaptability.

These multi-scale approaches are all the more important as they allow upstream control of anglers' flow and accompanies the change in practice for future generations, reviving the role of educational MPA (Elmer et al., 2017). This approach could prove to be of priority interest in the context of a socioeconomic crisis where it seems fundamental preserve the nature of RF (e.g. anticipating overfishing or poaching) and its benefits, especially on mental health (Cooke et al., 2018).

4.4 Towards a generalisation of profiling?

While there are many descriptions of fishing populations based on a large number of socioeconomic parameters, they are often single-factorial, focus on freshwater and vary in analysis used,
thus limiting comparisons at national, Mediterranean and international levels. However, some signs reinforce the hypothesis of a common trend at the north-western Mediterranean level and perhaps at broader scales. For example, squid's catches stand out in our study as a trait of skilled anglers, which is shared with the Adriatic Sea (Cabanellas-Reboredo et al., 2017). As the profiles seem to be defined by specialisation towards one or a range of species and fishing centrality to lifestyle, it seems consistent that they could be generalised at least on a scale for which the species are common. At international scales, anglers profiles in the NMPGL present interesting similarities with those of American freshwater lakes, especially with the trout fishermen population (Bryan, 1977). Indeed, the four profiles of the study, described according to a specialisation continuum, seem sufficient to also capture the complexity of the NMPGL anglers' population. While other studies recognise 3 profiles (e.g. Beardmore et al., 2013), the democratisation of lures induces in our analysis the appearance of a fourth class among the experienced likely to evolve rapidly. Furthermore, the socio-economic variables emerging in the classification are close to those found by other authors (e.g. Graefe, 1981). Surprisingly, it is the variables linked to the bait (choice and origin) that emerge here as structuring the clusters. The fact that similar profiles emerge from similar variables suggests two hypotheses, one of a certain temporal stability, though their proportions can vary between sites or years, and the other that these profiles could be generalised to developed countries where RF do not present a subsistence fishery. This is particularly possible since techniques used within the NMPGL were by the way nationally and internationally shared (Font et al., 2012; Herfaut et al., 2013). Practices seem to be globalised by the commercial flows of equipment and bait, but also by tourism fluxes. Indeed, the NMPGL is under the influence of strong national tourist flows as the rest of the Mediterranean and the world (Freire et al., 2020).

These results could presuppose that the Mediterranean could be a model RF study, as it concentrates international issues on a smaller scale. Moreover, in addition to the profiles' similarities, the analysis of Mediterranean RF highlights common trends with the international studies, e.g. catch rates, since RF is estimated to be responsible for 10% of total catches in the Mediterranean (WWF,
2018) and 12% internationally (Cooke and Cowx, 2004). Promoting similar analysis protocols appears necessary as inter-site comparisons is fundamental for validating hypotheses.

5. Conclusion

Our study provides the first integrative vision of the onshore RF practising population in the French NW Mediterranean, highlighting the importance of the activity for local economy. It presents an opening for reflection on the interconnection of typological and fisheries management approaches and highlights international similarities between angler profiles. It also underscores the importance of classification approaches along the specialisation gradient, which seems particularly suited to management and yield analysis. Our study also further supports the use of total shore CPUE and WPUE in RF to evaluate stock status independent of profiles in the study area, but shows that this would need to be standardised for the four species with yields influenced by anglers strategies. Participatory monitoring permitted evaluating the current state of angler awareness and presents a pre-requisite for a shift towards public engagement. Acquiring data through the cooperation of non-federated anglers will increase the inclusion of their perspective in management workshops and benefit to anglers and professional fishermen by preventing conflicts suspected in our analysis. Finally, our typological analysis underlines the importance of bait choice and origin in the profiles' construction. Moving forward, it seems essential to characterise RF impacts on low marine trophic levels. Bait collection in RF may be of greater environmental impact than on exploitation of stocks as compared to professional fisheries. In the long term, it would be interesting to monitor the evolution of anglers profiles, to detect changes in behaviours, especially after implementing new regulations or in the context of ongoing socio-economical crisis.

Author contribution

P.L, M.V-J and L. V. led the project. E.C, A.B and M.V-J designed the methodology. E.C. performed the analyses and wrote the manuscript. P.L, M.V-J and M.K reviewed the entire document. All the authors contributed to field data acquisition, proofreading and gave final approval for the publication.

Aknowledgement

We would like to thank the fishermen who accepted to participate and the municipalities of PortBarcarès for providing us port space. We also thank M. Cigala, S. Corso, S. Cambreling, P. Douchet, T. Estaque, R. Marsac, P. Salvado, C. White, M. Clairicia, G. Saragoni and R. Crec'hriou for helping on the field and with logistics. We thank the managers of the NMRCB, notably V. Hartmann, and the NMPLGL, particularly C. Jabouin, for supporting the realization of our studies and J. Ballard for English reviewing. Funding: This work was supported by the French Office for Biodiversity, the Region Occitanie and the University of Perpignan FREE.

Data availability

The data having been collected for less than 3 years, they are not yet made publicly available but they will thereafter. The data are currently stored in a database available from Marion VERDOITJARRAYA (marion.jarraya@univ-perp.fr) and belong to the CEFREM laboratory affiliated to the University of Perpignan and to the French Office for Biodiversity.

References

Agence des aires marines protégées, 2014. Plan de gestion du parc naturel marin du golfe du Lion version 1.21.

Alós, J., Arlinghaus, R., Palmer, M., March, D., Álvarez, I., 2009. The influence of type of natural bait on fish catches and hooking location in a mixed-species marine recreational fishery, with implications for management. Fisheries Research 97, 270-277. https://doi.org/10.1016/j.fishres.2009.03.003

Arlinghaus, R., Cooke, S.J., Lyman, J., Policansky, D., Schwab, A., Suski, C., Sutton, S.G., Thorstad, E.B., 2007. Understanding the Complexity of Catch-and-Release in Recreational Fishing: An Integrative

Synthesis of Global Knowledge from Historical, Ethical, Social, and Biological Perspectives. Reviews in Fisheries Science 15, 75-167. https://doi.org/10.1080/10641260601149432

Arlinghaus, Robert, Abbott, J.K., Fenichel, E.P., Carpenter, S.R., Hunt, L.M., Alós, J., Klefoth, T., Cooke, S.J., Hilborn, R., Jensen, O.P., Wilberg, M.J., Post, J.R., Manfredo, M.J., 2019. Opinion: Governing the recreational dimension of global fisheries. PNAS 116, 5209-5213.
https://doi.org/10.1073/pnas. 1902796116
Arlinghaus, R., Beardmore, B., Riepe, C., Pagel, T., 2019. Species-specific preference heterogeneity in German freshwater anglers, with implications for management. Journal of Outdoor Recreation and Tourism 100216. https://doi.org/10.1016/j.jort.2019.03.006

Beardmore, B., Haider, W., Hunt, L.M., Arlinghaus, R., 2013. Evaluating the Ability of Specialization Indicators to Explain Fishing Preferences. Leisure Sciences 35, 273-292.
https://doi.org/10.1080/01490400.2013.780539
Brown, C.J., 2016. Social, economic and environmental effects of closing commercial fisheries to enhance recreational fishing. Marine Policy 73, 204-209.
https://doi.org/10.1016/j.marpol.2016.08.010
Brownscombe, J.W., Hyder, K., Potts, W., Wilson, K.L., Pope, K.L., Danylchuk, A.J., Cooke, S.J., Clarke, A., Arlinghaus, R., Post, J.R., 2019. The future of recreational fisheries: Advances in science, monitoring, management, and practice. Fisheries Research 211, 247-255.
https://doi.org/10.1016/j.fishres.2018.10.019
Bryan, H., 1977. Leisure value systems and recreational specialization: The case of trout fishermen. Journal of leisure research 9, 174-187. doi:10.1080/00222216.1977.11970328

Cabanellas-Reboredo, M., Palmer, M., Alós, J., Morales-Nin, B., 2017. Estimating harvest and its uncertainty in heterogeneous recreational fisheries. Fisheries Research 188, 100-111. https://doi.org/10.1016/j.fishres.2016.12.008

Cheminée, A., Rider, M., Lenfant, P., Zawadzki, A., Mercière, A., Crec’hriou, R., Mercader, M., Saragoni, G., Neveu, R., Ternon, Q., Pastor, J., 2017. Shallow rocky nursery habitat for fish: Spatial variability of juvenile fishes among this poorly protected essential habitat. Marine Pollution Bulletin 119, 245-254. https://doi.org/10.1016/j.marpolbul.2017.03.051

Code rural de la pêche maritime, Article R921-83, 2017. Article R921-83 du Code rural et de la pêche maritime, Modifié par Décret n ${ }^{\circ} 2017-942$ du 10 mai 2017 - art. 7 [WWW Document]. URL
https://www.legifrance.gouv.fr/affichCode.do?idSectionTA=LEGISCTA000029979371\&cidTexte=LEGI TEXT000006071367 (accessed 9.5.19).

Cooke, S.J., Cowx, I.G., 2004. The Role of Recreational Fishing in Global Fish Crises. BioScience 54, 857-859. https://doi.org/10.1641/0006-3568(2004)054[0857:TRORFI]2.0.CO;2

Cooke, S.J., Cowx, I.G., 2006. Contrasting recreational and commercial fishing: Searching for common issues to promote unified conservation of fisheries resources and aquatic environments. Biological Conservation 128, 93-108. https://doi.org/10.1016/j.biocon.2005.09.019

Cooke, S., Twardek, W., Lennox, R., Zolderdo, A., Bower, S., Gutowsky, L., Danylchuk, A., Arlinghaus, R., Beard, D., 2018. The nexus of fun and nutrition: Recreational fishing is also about food. Fish and Fisheries 19, 201-224. https://doi.org/10.1111/faf. 12246

Cooke, S.J., Twardek, W.M., Reid, A.J., Lennox, R.J., Danylchuk, S.C., Brownscombe, J.W., Bower, S.D., Arlinghaus, R., Hyder, K., Danylchuk, A.J., 2019. Searching for responsible and sustainable recreational fisheries in the Anthropocene. Journal of Fish Biology 94, 845-856.
https://doi.org/10.1111/jfb. 13935
Danylchuk, A.J., Cooke, S.J., 2011. Engaging the recreational angling community to implement and manage aquatic protected areas. Conservation Biology 25, 458-464. doi: 10.1111/j.15231739.2010.01631.x

Di Franco, A., Thiriet, P., Di Carlo, G., Dimitriadis, C., Francour, P., Gutiérrez, N.L., De Grissac, A.J., Koutsoubas, D., Milazzo, M., del Mar Otero, M., 2016. Five key attributes can increase marine protected areas performance for small-scale fisheries management. Scientific reports 6, 38135. https://doi.org/10.1038/srep38135

DuFour, M., Qian, S., Mayer, C., Vandergoot, C., 2019. Evaluating catchability in a large-scale gillnet survey using hydroacoustics: Making the case for coupled surveys. Fisheries Research 211, 309-318. https://doi.org/10.1016/j.fishres.2018.11.009

Elmer, L.K., Kelly, L.A., Rivest, S., Steell, S.C., Twardek, W.M., Danylchuk, A.J., Arlinghaus, R., Bennett, J.R., Cooke, S.J., 2017. Angling into the Future: Ten Commandments for Recreational Fisheries Science, Management, and Stewardship in a Good Anthropocene. Environ Manage 60, 165-175. https://doi.org/10.1007/s00267-017-0895-3

Erisman, B., Allen, L., Claisse, J., Pondella, D., Miller, E., Murray, J., Walters, C., 2011. The illusion of plenty: Hyperstability masks collapses in two recreational fisheries that target fish spawning aggregations. Canadian Journal of Fisheries and Aquatic Sciences 68, 1705-1716. https://doi.org/10.1139/f2011-090

EU Parliament Adopted Text, 2018. European Parliament resolution of 12 June 2018 on the state of play of recreational fisheries in the European Union (2017/2120(INI))
http://www.europarl.europa.eu/doceo/document/TA-8-2018-0243_EN.html (accessed 9.6.19).
Ferter, K., Weltersbach, M.S., Strehlow, H.V., Vølstad, J.H., Alós, J., Arlinghaus, R., Armstrong, M., Dorow, M., de Graaf, M., van der Hammen, T., Hyder, K., Levrel, H., Paulrud, A., Radtke, K., Rocklin, D., Sparrevohn, C.R., Veiga, P., 2013. Unexpectedly high catch-and-release rates in European marine recreational fisheries: implications for science and management. ICES J Mar Sci 70(7), 1319-1329. https://doi.org/10.1093/icesjms/fst104

Font, T., Lloret, J., Piante, C., 2012. Pêche de loisir dans les Aires Marines Protégées en Méditerranée. Projet MedPAN Nord. WWF-France. 259 pages.

Freire, K.M.F., Belhabib, D., Espedido, J.C., Hood, L., Kleisner, K.M., Lam, V.W.L., Machado, M.L., Mendonça, J.T., Meeuwig, J.J., Moro, P.S., Motta, F.S., Palomares, M.-L.D., Smith, N., Teh, L., Zeller, D., Zylich, K., Pauly, D., 2020. Estimating Global Catches of Marine Recreational Fisheries. Front. Mar. Sci. 7. https://doi.org/10.3389/fmars.2020.00012

Giovos, I., Keramidas, I., Antoniou, C., Deidun, A., Font, T., Kleitou, P., Lloret, J., Matic-Skoko, S., Said, A., Tiralongo, F., Moutopoulos, D., 2018. Identifying recreational fisheries in the Mediterranean Sea through social media. Fisheries Management and Ecology 25, 287-295.
https://doi.org/10.1111/fme. 12293

Gordoa, A., Dedeu, A.L., Boada, J., 2019. Recreational fishing in Spain: First national estimates of fisher population size, fishing activity and fisher social profile. Fisheries Research 211, 1-12. https://doi.org/10.1016/j.fishres.2018.10.026

Graefe, A.R., 1981. Understanding diverse fishing groups: the case of drum fishermen. Marine recreational fisheries 6, 69-79.

Grafton, R.Q., Arnason, R., Bjørndal, T., Campbell, D., Campbell, H.F., Clark, C.W., Connor, R., Dupont, D.P., Hannesson, R., Hilborn, R., Kirkley, J.E., Kompas, T., Lane, D.E., Munro, G.R., Pascoe, S., Squires, D., Steinshamn, S.I., Turris, B.R., Weninger, Q., 2006. Incentive-based approaches to sustainable fisheries. Can. J. Fish. Aquat. Sci. 63, 699-710. https://doi.org/10.1139/f05-247

Herfaut, J., Levrel, H., Thébaud, O., Véron, G., 2013. The nationwide assessment of marine recreational fishing: A French example. Ocean \& Coastal Management 78, 121-131. https://doi.org/10.1016/j.ocecoaman.2013.02.026

Hunt, L.M., Camp, E., Poorten, B. van, Arlinghaus, R., 2019. Catch and Non-catch-related Determinants of Where Anglers Fish: A Review of Three Decades of Site Choice Research in Recreational Fisheries. Reviews in Fisheries Science \& Aquaculture 27, 261-286.
https://doi.org/10.1080/23308249.2019.1583166
Kayal, M., Cigala, M., Cambra, E., Soulat, N., Mercader, M., Lebras, A., Ivanoff, P., Sébési, L., LassusDebat, A., Hartmann, V., Bradtke, M., Lenfant, P., Jabouin, C., Dubreuil, J., Pelletier, D., Joguet, M., Mellionnec, S.L., Brichet, M., Binche, J.-L., Payrot, J., Saragoni, G., Crec'hriou, R., Verdoit-Jarraya, M., 2020. Marine reserve benefits and recreational fishing yields: the winners and the losers. PLoS ONE 15(12):e0237685. https://doi.org/10.1371/journal.pone. 0237685

Lebart, L., Morineau, A., Piron, M., 1997. Statistique exploratoire multidimensionnelle, 2e cycle. Dunod, Paris.

Lockwood, R.N., 2000. Chapter 14: Conducting Roving and Access Site Angler Surveys. In Schneider, James C. (Ed) Manual of fisheries survey methods II

Maggs, J.Q., Mann, B.Q., Potts, W.M., Dunlop, S.W., 2016. Traditional management strategies fail to arrest a decline in the catch-per-unit-effort of an iconic marine recreational fishery species with evidence of hyperstability. Fisheries Management and Ecology 23, 187-199.
https://doi.org/10.1111/fme. 12125
Martin, D.R., Pope, K.L., 2011. Luring anglers to enhance fisheries. Journal of Environmental Management, Adaptive management for Natural Resources 92, 1409-1413.
https://doi.org/10.1016/j.jenvman.2010.10.002
McPhee, D.P., Leadbitter, D., Skilleter, G.A., 2002. Swallowing the bait: is recreational fishing in Australia ecologically sustainable? Pac. Conserv. Biol. 8, 40-51. https://doi.org/10.1071/pc020040

Pita, P., Hyder, K., Gomes, P., Pita, C., Rangel, M., Veiga, P., Vingada, J., Villasante, S., 2018. Economic, social and ecological attributes of marine recreational fisheries in Galicia, Spain. Fisheries Research 208, 58-69. https://doi.org/10.1016/j.fishres.2018.07.014

Quinn, T.J., Deriso, R.B., 1999. Quantitative Fish Dynamics. Oxford University Press.
R Development Core Team (2005). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL:http://www.Rproject.org.

Symes, D., Hoefnagel, E., 2010. Fisheries policy, research and the social sciences in Europe: Challenges for the 21st century. Marine Policy 34, 268-275.
https://doi.org/10.1016/j.marpol.2009.07.006
Tunca, S., Ünal, V., Miran, B., Güçlüsoy, H., Gordoa, A., 2016. Biosocioeconomic analysis of marine recreational fisheries: A comparative case study from the Eastern Mediterranean, Turkey. Fisheries Research 174, 270-279. https://doi.org/10.1016/j.fishres.2015.10.025

Verdoit, M., Pelletier, D., Bellail, R., 2003. Are commercial logbook and scientific CPUE data useful for characterizing the spatial and seasonal distribution of exploited populations? The case of the Celtic Sea whiting. Aquatic Living Resources 16, 467-485. https://doi.org/10.1016/j.aquliv.2003.07.002

Ward, H.G.M., Askey, P.J., Post, J.R., 2013. A mechanistic understanding of hyperstability in catch per unit effort and density-dependent catchability in a multistock recreational fishery. Can. J. Fish. Aquat. Sci. 70, 1542-1550. https://doi.org/10.1139/cjfas-2013-0264

Ward, H.G.M., Allen, M.S., Camp, E.V., Cole, N., Hunt, L.M., Matthias, B., Post, J.R., Wilson, K., Arlinghaus, R., 2016. Understanding and Managing Social-Ecological Feedbacks in Spatially Structured Recreational Fisheries: The Overlooked Behavioral Dimension. Fisheries 41, 524-535. https://doi.org/10.1080/03632415.2016.1207632

Wilson, K.L., Foos, A., Barker, O.E., Farineau, A., Gisi, J.D., Post, J.R., 2020. Social-ecological feedbacks drive spatial exploitation in a northern freshwater fishery: A halo of depletion. Journal of Applied Ecology 57, 206-218. https://doi.org/10.1111/1365-2664.13563
www.catalanes.espaces-naturels.fr._http://www.catalanes.espaces-naturels.fr/les-rnc/reserve-de-cerbere-banyuls (accessed 27.3.20).

WWF, 2018. Evaluating Europe's course to sustainable fisheries by 2020. pp 18.
www.parc-marin-golfe-lion.fr, http://www.parc-marin-golfe-lion.fr/ (accessed 1.17.20).

