Supplementary Information

Bacteria enhance the production of extracellular polymeric substances by the green dinoflagellate *Lepidodinium chlorophorum*

Pauline Roux, Raffaele Siano^{*}, Karine Collin, Gwenael Bilien, Corinne Sinquin, Laetitia Marchand, Agata Zykwinska, Christine Delbarre-Ladrat and Mathilde Schapira

*raffaele.siano@ifremer.fr

Supplementary Table S1. Mean bacteria per *L. chlorophorum* cell (mean ± s.d.) enumerated during the three different growth phases (lag: "Lag"; exponential: "Expo."; stationary: "Stat.") for the three different strains (RCC1489, KL1C4 and MAR1D2) in non-axenic (NA) and pseudo-axenic (PA) conditions. Mean and standard deviation values were calculated from the values measured in the three replicates (n = 3). The percentage of axenization was calculated with the following formula: *Axenization* (%) = $100 - (\frac{PA}{NA} * 100)$.

Strain	Time (days)	Growth phase	NA (bacteria cell ⁻¹)	PA (bacteria cell ⁻¹)	Axenization (%)
RCC1489	2	Lag	1030±199	104±2	90
	9	Expo.	348±19	59±10	83
	16	Stat.	697±84	71±4	90
KL1C4	2	Lag	1639±443	80±1	95
	9	Expo.	450±43	115±6	74
	16	Stat.	795±40	119±2	85
MAR1D2	2	Lag	204±10	121±17	41
	9	Expo.	136±16	60±5	56
	16	Stat.	184±23	78±7	58

Supplementary Table S2. Mean parameters (mean \pm s.d.) measured during the three different growth phases (lag: "Lag"; exponential: "Expo."; stationary: "Stat.") for the three different strains (RCC1489, KL1C4 and MAR1D2) in non-axenic and pseudo-axenic conditions. Mean and standard deviation were calculated from the values measured in the three replicates (n = 3). Cell concentration (*L. chlorophorum*; cells mL⁻¹); Bacterial concentration (Bacteria; bact. mL⁻¹); Maximum quantum yield of the photosystem II (Fv/Fm); Transparent exo-polymers particles concentration (TEP; mg Xeq L⁻¹); Particulate organic carbon concentration (POC; mg L⁻¹); Nitrate (NO₃⁻), Nitrite (NO₂⁻), Ammonium (NH₄⁺) and Phosphorus (PO₄³⁻) concentrations are expressed in μ M; Relative excess of viscosity (Viscosity; %).

Strains	Growth	L. chlorophorum	Fv/Fm	Bacteria	TEP	POC	NO₃ ⁻	NO ₂ ⁻	NH_4^+	PO4 ³⁻	рН	Viscosity
	phase	(cells mL ⁻¹)	(450 nm)	(bact. mL ⁻¹)	(mg Xeq L⁻¹)	(mg L ⁻¹)	(μM)	(μM)	(μM)	(μM)		(%)
NON-AXENIC												
RCC1489	Lag	2 10 ³ ±5 10 ²	0.68±0.01	2 10 ⁶ ±7 10 ⁴	3.4±0.7	6.2±0.2	868.5±1.8	2.5±0.0	0.3±0.0	34.0±0.0	8.1±0.0	2.1±0.4
	Expo.	12 10 ³ ±4 10 ²	0.66±0.02	4 10 ⁶ ±3 10 ⁵	9.0±0.4	14.3±1.3	725.4±4.4	5.2±0.3	1.5±0.7	27.3±0.6	8.7±0.1	2.7±0.4
	Stat.	10 10 ³ ±1 10 ³	0.65±0.01	7 10 ⁶ ±2 10 ⁵	17.4±1.2	20.4±0.2	663.8±5.1	10.2±3.4	1.8±0.2	24.7±0.6	8.7±0.0	2.0±0.4
KL1C4	Lag	2 10 ³ ±3 10 ²	0.65±0.01	3 10 ⁶ ±3 10 ⁵	3.9±0.8	6.4±0.2	882.0±1.0	4.0±0.0	0.4±0.0	34.3±0.6	8.1±0.0	2.7±0.4
	Expo.	11 10 ³ ±6 10 ²	0.64±0.01	5 10 ⁶ ±1 10 ⁵	10.8±1.1	14.3±0.7	794.1±1.1	4.9±0.0	0.8±0.3	30.0±0.0	8.5±0.0	1.6±1.1
	Stat.	11 10 ³ ±5 10 ²	0.61±0.01	9 10 ⁶ ±3 10 ⁵	15.8±2.1	18.6±0.5	692.8±0.6	5.9±0.2	1.9±0.4	26.0±0.0	8.6±0.0	2.0±0.4
MAR1D2	Lag	2 10 ³ ±3 10 ¹	0.72±0.02	6 10 ⁵ ±2 10 ⁴	3.5±0.6	6.6±0.4	931.5±4.2	0.9±0.1	0.4±0.2	50.7±2.3	8.2±0.0	0.6±0.5
	Expo.	12 10 ³ ±2 10 ²	0.68±0.01	2 10 ⁶ ±2 10 ⁴	12.2±3.5	13.5±1.4	778.5±4.0	6.1±0.2	1.0±0.4	32.7±0.6	8.6±0.0	2.7±0.5
	Stat.	14 10 ³ ±2 10 ³	0.55±0.00	3 10 ⁶ ±1 10 ⁵	17.2±4.9	17.5±0.8	669.3±5.1	9.4±1.4	0.9±0.2	29.7±0.6	8.7±0.1	0.8±0.3
					PSEUDO-A	XENIC						
RCC1489	Lag	2 10 ³ ±9 10 ¹	0.71±0.01	3 10 ⁵ ±6 10 ³	2.1±0.3	2.7±0.2	886.9±11.3	1.6±0.0	0.5±0.0	34.7±0.6	8.2±0.1	0.8±0.4
	Expo.	20 10 ³ ±2 10 ³	0.67±0.01	1 10 ⁶ ±9 10 ⁴	8.4±1.0	12.2±0.4	700.7±1.9	4.3±2.7	1.5±0.5	28.0±0.0	8.7±0.1	1.6±0.3
	Stat.	22 10 ³ ±6 10 ²	0.62±0.01	2 10 ⁶ ±1 10 ⁵	9.9±0.9	16.8±0.8	583.3±8.3	7.1±0.1	1.2±0.5	25.7±0.6	8.6±0.1	2.4±1.6
KL1C4	Lag	2 10 ³ ±1 10 ²	0.70±0.01	2 10 ⁵ ±5 10 ³	2.0±0.4	3±0.1	880.4±5.1	1.6±0.0	0.4±0.0	35.0±0.0	8.2±0.0	1.6±0.2
	Expo.	20 10 ³ ±8 10 ²	0.64±0.01	1 10 ⁶ ±9 10 ⁴	7.0±0.7	12.2±0.3	702.2±5.1	4.8±0.2	1.6±0.5	30.0±0.0	8.7±0.0	2.6±0.4
	Stat.	20 10 ³ ±1 10 ³	0.62±0.01	2 10 ⁶ ±1 10 ⁵	11.1±1.5	16.9±0.1	598.4±2.5	6.6±0.2	0.6±0.4	28.0±0.0	8.6±0.0	2.4±0.8
MAR1D2	Lag	2 10 ³ ±2 10 ²	0.71±0.01	3 10 ⁵ ±3 10 ⁴	2.0±0.5	1.4±0.2	946.8±9.0	2.6±0.0	0.6±0.3	48.0±8.5	7.9±0.0	1.1±0.4
	Expo.	19 10 ³ ±9 10 ²	0.69±0.01	1 10 ⁶ ±4 10 ⁴	10.0±2.1	10.6±0.6	754.1±6.0	5.9±0.3	0.9±0.8	33.0±0.0	8.7±0.0	0.1±0.2
	Stat.	23 10 ³ ±3 10 ²	0.67±0.01	2 10 ⁶ ±1 10 ⁵	14.7±5.1	16.9±1.1	597.1±16.8	13.0±1.3	0.8±0.6	30.0±1.0	8.7±0.0	0.8±0.3

Supplementary Table S3. Soluble Extracellular Polymers (SEP) from pellets characterized during the three different growth phases (lag: "Lag"; exponential: "Expo."; stationary: "Stat.") for the three different strains (RCC1489, KL1C4 and MAR1D2) in non-axenic and pseudo-axenic conditions (n = 1). Monosaccharide composition, proteins and sulphur are expressed in percentage of weight (wt %). Prot: Proteins; Rha: Rhamnose; Fuc: Fucose; Man: Mannose; Gal: Galactose; Glc: Glucose; GlcA: Glucuronic acid; GalA: Galacturonic acid; S: Sulphur; nd: not determined.

Cample	Time	Crowth	Drot	Dha	Fue	Man	Cal	Cla	ClcA	CalA	c
Sample		Growth	PIOL	KIId	FUC	IVIAII	Gai		GICA	GaiA	3
(pellet)	(days)	phase	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)
					NON-AX	ENIC					
RCC1489	2	Lag	nd	nd	nd	nd	nd	nd	nd	nd	nd
	9	Expo.	11.8	0	0	0.2	1.4	0.3	0	0	2.7
	16	Stat.	5.7	0.3	0	0.2	1.9	0.6	0	0	2.9
KL1C4	2	Lag	11.8	0	0	0	0.3	0.3	0	0	nd
	9	Expo.	8.2	0.4	0	0.3	2.9	0.7	0	0	3.6
	16	Stat.	5.1	0.3	0	0.2	2	0.4	0	0	3.3
MAR1D2	2	Lag	4.7	0	0	0	1.1	0	0	0	nd
	9	Expo.	14.2	0	0	0	3.5	0.5	0	0	3.1
	16	Stat.	7.9	0	0	0	2.3	0.2	0	0	4.7
					PSEUDO-A	AXENIC					
RCC1489	2	Lag	4.1	0	0	0.1	0.8	0.2	0	0	3.4
	9	Expo.	17.8	0.4	0	0.3	2.3	0.6	0	0	3.6
	16	Stat.	27.6	0	0	0	0	0	0	0	5.0
KL1C4	2	Lag	4.9	0	0	0.1	0.7	0	0	0	3.7
	9	Expo.	25.3	0.2	0	0.3	1.9	0.3	0	0	6.9
	16	Stat.	7.4	0	0	0	0.6	0.1	0	0	4.1
MAR1D2	2	Lag	3.3	0	0	0	0	0	0	0	nd
	9	Expo.	12.6	0	0	0	1.9	0	0	0	3.6
	16	Stat.	5.9	0	0	0	1.3	0	0	0	3.7

Supplementary Table S4. Weight-average molecular weight (Mw) and recovery yield of polysaccharides and proteins in the culture supernatants obtained for three *L. chlorophorum* strains (stationary phase): RCC1489, KL1C4 and MAR1D2 under non-axenic (NA) and pseudo-axenic (PA) conditions.

Studio	Mw	Polysaccharide (g/ı (Recovery (%))	mol)	Mw Protein (g/mol) (Recovery (%))				
Strain Stationary phase	Pic 1 6.4-8.4 (min)	Pic 2 8.4-10.2 (min)	Pic 3 10.2-10.6 (min)	Pic 1 6.4-8.4 (min)	Pic 2 8.4-10.2 (min)	Pic 3 10.2-10.6 (min)		
RCC1489 (NA)	9.953 10 ⁶	1.252 10 ⁶	3.320 10 ⁵	1.110 10 ⁶	1.757 10 ⁵	5.979 10 ⁴		
	(12.5)	(6.9)	(3.3)	(1.5)	(1.1)	(0.08)		
RCC1489 (PA)	6.271 10 ⁶	4.746 10 ⁵	4.239 10 ⁴	6.211 10 ⁵	1.399 10 ⁵	3.612 10 ³		
	(10.0)	(7.1)	(13.0)	(1.2)	(5.0)	(0.7)		
KL1C4 (NA)	1.076 10 ⁷	2.290 10 ⁶	5.119 10 ⁵	1.549 10 ⁶	3.885 10 ⁵	1.239 10 ⁴		
	(9.4)	(7.0)	(6.9)	(1.5)	(1.4)	(0.2)		
KL1C4 (PA)	2.535 10 ⁶	3.478×10⁵	6.296 10 ³	2.859 10⁵	5.787 10⁵	2.906 10 ³		
	(1.3)	(0.9)	(4.9)	(0.1)	(0.3)	(0.1)		
MAR1D2 (NA)	7.169 10 ⁶	2.954 10 ⁵	7.246 10 ⁴	9.778 10 ⁵	3.943 10 ⁴	4.824 10 ³		
	(9.3)	(21.4)	(9.2)	(1.5)	(2.7)	(0.3)		
MAR1D2 (PA)	4.787 10 ⁶	1.252 10 ⁵	3.440 10 ⁴	5.516 10 ⁵	2.367 10 ⁴	4.229 10 ³		
	(4.7)	(17.2)	(6.7)	(0.7)	(5.1)	(0.8)		

Supplementary Figure S1. HPSEC profiles (RI detectors) of culture supernatants obtained for three *L. chlorophorum* strains at stationary phase: RCC1489, KL1C4, MAR1D2 under non-axenic (NA) and pseudo-axenic (PA) conditions.

Supplementary Figure S2. Electrophoretic analysis of *L. chlorophorum* (RCC1489, KL1C4 and MAR1D2 strains) culture supernatants at the stationary phase under NA and PA conditions after SYPRO[™] Ruby (A), Schiff (B) and Stains All (C) staining. Lanes 1 to 5: references as follows, lane 1: Bovine Serum Albumin, lane 2: *E. coli* O111:B4 LPS, lane 3: Galactan sulphate 7.7% S, lane 4: Dextran sulphate sodium salt (MW 50 000, 16.0-19.0% S), lane 5: Dextran sulphate sodium salt (MW 500 000, 16.0-19.0% S). Lanes 6 and 7: RCC1489 under NA and PA conditions, lanes 8 and 9: KL1C4 under NA and PA conditions and lanes 10 and 11: MAR1D2 under NA and PA conditions.