FN Archimer Export Format PT J TI Studies of Sub-Mesoscale Variability of the Ocean Upper Layer Based on Satellite Observations Data BT AF Chapron, Bertrand Kudryavtsev, V. N. Collard, Fabrice Rascle, Nicolas Kubryakov, A. A. Stanichny, S. V. AS 1:1,2;2:2,3;3:4;4:5;5:3;6:3; FF 1:PDG-ODE-LOPS-SIAM;2:;3:;4:;5:;6:; C1 Institute Francais de Recherche pour I’Exploitation de la Mer, Plouzané, France Russian State Hydrometeorological University, Saint-Petersburg, Russian Federation Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation OceanDataLab, Locmaria-Plouzané, France Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, México C2 IFREMER, FRANCE UNIV RUSSIAN STATE HYDROMETEOROL, RUSSIA RUSSIAN ACAD SCI, RUSSIA OCEANDATALAB, FRANCE CICESE, MEXICO SI BREST SE PDG-ODE-LOPS-SIAM UM LOPS IN WOS Ifremer UMR DOAJ copubli-france copubli-int-hors-europe copubli-sud TC 4 UR https://archimer.ifremer.fr/doc/00682/79420/82002.pdf LA English DT Article DE ;satellite observations;air-sea interaction;ocean upper layer dynamics;temporal and spatial variability AB Purpose. The approach represented in the article is applied to analysis of satellite scanner optical images of high spatial resolution for identifying and quantitative determining the characteristics of the sub-mesoscale dynamic processes in the ocean upper layer. Methods and Results. The Envisat AATSR and MERIS SAR-images are used as the satellite data, which permit to determine the ocean surface temperature and surface brightness in the visible range, respectively. Variations in the sea surface glitter contrasts are associated with modulations of the sea surface roughness (rms slope of short waves) on the currents. It is shown that the surface roughness contrasts correlate with the spatial inhomogeneities of the ocean surface temperature, tracing sub-mesoscale processes in the ocean (spiral eddies, filaments, local shears of currents). The described model of formation of surface manifestations is based on interaction between the Ekman current and the main flow vorticity. Conclusions. Possibility of detecting and quantitative assessing the intense current gradients in the vicinity of sub-mesoscale fronts is shown. These gradients are manifested in the optical satellite images through the ocean surface roughness modulations. The proposed approach makes it possible to study and to assess quantitatively the dynamic processes taking place in the vicinity of the sub-mesoscale fronts. These processes, in their turn, affect the exchange of momentum, heat and gases between the ocean and the atmosphere. The prospects of applying the sub-mesoscale variability defined from the satellite measurements, to development of the models and the systems for the ocean global observations and monitoring are discussed. PY 2020 SO Physical Oceanography SN 0928-5105 PU FSBSI MHI VL 27 IS 6 UT 000618843800004 BP 619 EP 630 DI 10.22449/1573-160X-2020-6-619-630 ID 79420 ER EF