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Abstract :

Metal isotopes are versatile pollutant source trackers, but biogeochemical processes can overprint or alter
the original source isotopic fingerprint and thus hinder contamination tracing. Here, we explore Fe isotope
systematics for the complete range of natural and metallurgical processes related to Ni lateritic ores from
Barro Alto, Brazil, to assess its potential as a tracer in polluted lateritic soil contexts developed in an
ultramafic system.

The homogeneous 657Fe values from protolith to soil confirmed that no significant Fe isotopic variation
occurred during the formation of the deep lateritic profile. In addition, no Fe isotopic fractionation was
found during the smelting process. Although the 857Fe values resulting from mining activities fall within
the range of terrestrial sample signatures, the conservation of the §57Fe values from the ores to the by-
products is an advantage for tracing anthropogenic sources when (i) the pyrometallurgical plant uses
feeding material with Fe ores imported from other geological formations exhibiting different 857Fe values
and/or (ii) the by-products are transported or dispersed to other locations with different 857Fe signatures
in the topsoil.
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Highlights

» Fe mobility does not induce isotopic fractionation during chemical weathering. » There is no evidence
of Fe isotope fractionation during the RKEF smelting process. » Smelting slags are stamped with 8%’Fe
values from Ni laterite ores. P The use of Fe isotopes as an environmental tracer in lateritic soils is
limited. > Fe isotopes may be a potential tracer of mining activities in non-lateritic soils.

Keywords : metal cycle, iron isotopes, laterite, chemical weathering, smelting process
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1. Introduction

The increasing global demand for metals has lédtémse mining activities and their consequent
remobilization and enrichment in surface compartsiemotably soils (Nriagu and Pacyna, 1988; Rauch
and Pacyna, 2009). Of particular concern is thecawitamination associated with metal extractiamir
saprolite ores, such as the extraction of Ni, whigreoncentration of approximately 3 wt% impliegh
economic value (Butt and Cluzel, 2013). Howevergicent decades, limonitic ore (i.e., metals assedi
with Fe oxyhydroxides) refining has increased aesult of the application of modern technologies
(allowing better yield recovery). In that ore, Fentents can reach 40 wt% and Ni can occur in
concentrations of up to 1 wt% in Fe oxides (priftyaliematite and goethite) (Manceau et al., 2000;

Quantin et al., 2002; Dublet et al., 2012 and 2@R&tié et al., 2018). Smelting processes such as th
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rotary kiln-electric furnace (RKEF) process areduseextract Ni from mixtures of saprolite and linite
ores, yielding crude ferronickel (FeNi) composedpproximately 70% Fe and 30% Ni (Crundwell et al.,
2011). In the feeding material, Fe is primarily st as Fe(lll) in Fe oxides and Fe(ll)/Fe(lll) the
saprolite (e.g., smectite-type, serpentine, pyrexepinel, olivine). The by-products of the orenie

process, i.e., fly ash and slag wastes, are Si-amieMg-rich materials.

Generally, the pyrometallurgical wastes are eitbtred in the surrounding environment in
settling ponds (fly ash), dumped (slags), or phytieeprocessed for metal recovery (fly ash). Such
disposal sites are susceptible to rainfall leachamyl wind remobilization that can lead to the
contamination of the superficial environment andegmajor risks to public health (Ettler et al., 201
The release of metals in soils by leaching is higlhe-dependent (Barna et al., 2004; Bril et 2008;
Seignez et al., 2008; Ettler and Johan, 2014) anckases when slag disposal sites are flooded rand/o
occurs in water-saturated environments (Ganne.e2@06; Navarro et al., 2008; Houben et al., 2013)
Thus, understanding the dynamics of metals at cuintged sites, i.e., their sources, pathways amkksi

is of the highest priority to develop effective @ommental management and monitoring programs.

For that purpose, the use of metal isotopic sigeatican be useful in the identification and
guantification of contaminant sources and for usterding how biogeochemical processes affect
contaminant transport (Bullen, 2014; Wiederhold]®0 The primary challenge to successfully applying
isotopes as environmental tracers is to identifgtogic signatures that are distinctive between
anthropogenic and natural materials and to decesvtthe original isotopic signal from subsequent
isotopic fractionations induced by biogeochemiaalcpsses. In the case of stable isotopes of ZrCalnd
industrial or metallurgical fractionation duringeorefining results in manufactured products and by-
products that are isotopically distinct from the#tural sources (e.g., Mattielli et al., 2006; Kawet al.,
2008; Sivry et al., 2008; Sonke et al., 2008; Shkiehl., 2010; Chrastny et al., 2016; Klein and &Ros
2020). In contrast, Cu and Ni show little or ndb#taisotope fractionation during ore refining byedting

due to their high boiling points (Bigalke et al.01®; Ratié et al., 2016). As a consequence, the
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manufactured metals, slags and other metallurdfigadroducts have an isotopic signature similarit t

of the ore concentrates. In soil pollution contextgerlaps between ore and natural backgroundpsoto
compositions may compromise source tracking (Rettiél., 2016; Sillerova et al., 2017). To overcome
this drawback, the coupling of two stable metaltape systems has been used to enhance source
discrimination and deconvolution of the differemdreochemical processes involved in acid-mine nginin
(Borrok et al., 2009), coastal systems (Araudjolet2919a, b) and urban atmospheres (Souto-oliwatira

al., 2017, 2018).

In this work, we explore Fe isotope systematidaieritic soils from an ultramafic system and the
associated Ni ores refined in a pyrometallurgigatesm in Barro Alto, Brazil. Previously, an analago
study was conducted to investigate Ni isotopes,cwhilemonstrated a low level of Ni isotope
fractionation during ore refining that did not alldhe use of Ni isotopes as tracers of contaminatio
(Ratié et al., 2016). Here, we attempt to gain imesights by using Fe isotopes, which have nevenbee
explored in this context despite their potentialcontrast to Ni, Fe is redox-sensitive. Its salciation
differs from the Ni-bearing phases in the laterfifofile, and it occurs at an order of magnitudghler

concentrations.

Iron isotopes demonstrate special features ofifnaation, both abiotically and biotically induced
in natural and anthropic materials, that can béulise our case study (Dauphas et al., 2017; Walet
2019). As demonstrated by Poitrasson et al. (20@8) chemical weathering in Cameroon, the
lateritization process, which occurs over severdlian years, results in almost ri3’Fe variation. This
feature was subsequently confirmed on other la®rfitom China and the Philippines, the latter being
developed on peridotites (Liu et al., 2014; Li &t 8017). In contrast, modern soil studies fromhbo
temperate and tropical areas and even Paleoprotetdaterites showed much more significant Fe igiato
variation (Fante and Depaolo, 2004; Emmanuel et2805; Thompson et al., 2007; Wiederhold et al.,
2007; Yamaguchi et al., 2007; Fekiacova et al. 32@kerman et al., 2014). A key driving factor whs

separation of two iron pools having different iroedox states, and therefore contrasted Fe isotope
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signatures (Wu et al.,, 2019). Iron isotope systammatvas also successfully used to fingerprint
anthropogenic and natural sources in river sedisn@@en et al., 2014) in an alpine watershed inggact
by acid mine drainage (Borrok et al., 2009; Herlernd Schippers, 2008). Iron isotopes were asd u
to trace anthropogenic combustion through the ctidle of aerosols from sources in the Sahara, North
America, Europe (Flament et al., 2008; Conway e28i19) and Japan (Kurisu et al., 2016). Thesdiesiu
suggest that anthropogenic Fe signatures origmpétom metallurgical, industrial and urban actietican
display significant differences in Fe isotopes tieéato natural sources. However, the understanding
the potential fractionation of Fe in ore smeltimdifiing remains unclear. Only one study has been
conducted to date, which examines Fe productioarbgncient Galo-Roman bloomery process. The study
of a major Roman site of Fe production known ass“Martys” (Montagne Noire Massif, SW France)
showed no significant Fe isotope fractionation frtme Roman production of iron bars (Milot et al.,
2016). Thus, the present study aims to exploreh@)Fe isotope fractionation associated with Nirric
laterite ore formation, (2) the Fe isotope fractition associated with Ni laterite ore smelting agfthing
during the RKEF processing, and (3) the potentidF® isotopes to trace the environmental impact of

FeNi production.

2. Materialsand methods

2.1. Oredeposit and mining contexts

The RKEF process for the production of FeNi wast fiteveloped in 1953-1954 and was applied
commercially to the treatment of garnieritic ores New Caledonia. Later, it was adopted by FeNi
producers for Ni ore deposits across the globebDibrainican Republic, Colombia, Venezuela, Indonesia
Japan, etc. (Warner et al., 2006). In recent yeardeast three major new FeNi smelters have been
constructed and are in operation: Barro Alto ang¢@Ruma in Brazil and Koniambo in New Caledonia
(Oxley et al., 2016). The Ni deposits of Barro Alkacated in the midwestern region of Goias (in {€&n

Brazil), constitute a large Ni reserve that is eipld by the Anglo American company using open. pits



124 The metallurgical plant at Barro Alto uses the RKiEBcess to produce FeNi from a nominal 2.4
125 Mtly of ore. Its production has increased nearliplg- since 2011 to 43 kt of total Ni output in 2018
126  (Anglo American PLC Annual Report, 2012 and 20I8)e deposit, with the ore reserves estimated in
127 2018 at 52 Mt containing 586 kt of Ni (Anglo Amait PLC Annual Report, 2018), is in the Barro Alto
128 mafic-ultramafic complex that is part of the Prea@®aian shield. This ultramafic complex is composéd
129 serpentinized dunites, pyroxenites and gabbrosrdiar Filho et al., 2010). The mineralization

130 corresponds to the weathered surficial portionthefserpentinites (Butt and Cluzel, 2013).

131 Four main steps are involved in FeNi productioru@iwell et al., 2011): drying of the ore before
132 its introduction into the rotating kiln; calcinatiavith coal, oil or other organic products withhretkiln;
133 reduction in an electric furnace and refining af tholten FeNi in another electric furnace (Fig.These
134  processes generate enormous quantities of by-pio@balvi et al., 2004; Warner et al., 2006) camitzg

135 significant amounts of metals (e.g., Ni, Co, Cr,,Nr) (Ettler et al., 2016).

136 The fly ash (F) generated contains large amountseofnd Ni and is recovered by electrostatic
137 filters. The collected fly ash is then recycleditite calcination kiln (Fig. 1). The smelting sld§S) are
138 composed of high temperature silicates, amorphdasscas well as inclusions of small FeNi metallic
139 particles (Ettler et al., 2016). They are dumped stored near the plant. The molten FeNi is théineé
140 through a two-step process that produces two tgpesfining slags: black refining slag (BRS) anditeh
141 refining slag (WRS) after the removal of P andeSpectively. The FeNi is produced in the form o&Bm

142  ingots or water-granulated “beans”.

143 2.2. Samples

144 The list of samples is detailed in Table 1. The @arg for Fe isotope determinations included
145 geogenic samples from soils and lateritic profileshe Barro Alto ultramafic region (8 samples) and
146  materials used and produced during the RKEF presg§ssamples). The samples were selected based on
147  previous studies performed by our team on the BAlm massif (Ratié et al., 2015, 2016, 2018). The

148 choice was closely related to (i) the largest Faceatration variations to seek hypothetical isatopi
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fractionation associated with Fe enrichment, Feibhgaphases and Fe oxidation state changes along
different sections in the lateritic profile and fihe most significant Ni isotope variations usedéecipher

different chemical mechanisms involved in latedtian and smelting processes.

The anthropogenic materials included the Ni orepleyed as feeding material (n=2), the
smelting slags (SS, n=2), white and black refirstags (WRS and BRS, n=2) and the final manufactured

FeNi ingot (n=1). As previously mentioned, thedlsh is reinjected in the calcination step.

A 28 m deep lateritic profile drilled by the Anghkamerican company, sampled at intervals of 1 m,
labeled “RC”, was used for this study (Ratié ef 2018). As the overburden (0-3 m) was removed to
facilitate drilling by the mining company, the cfpeofile starts at a depth of 3 m. To completeptufile,
soil in the vicinity was collected at three diffatedepths: 0-10 cm (BAS1 0-10) or topsoil, 10-30 cm
(BAS1 10-30) and 30-80 cm (BAS1 30-80) (Ratié et 2015). Five lateritic samples of the RC profile
(RCO-1, RC6-7, RC16-17, RC24-25, and RC27-28) wgetected for Fe isotope characterization. RC0-1
was defined as the top of the lateritic profile.@RCwas the part of the lateritic profile dominatedFe
oxides. RC16-17 was the smectitic horizon exhibitiigh Ni content, and RC24-25 was a characteristic
saprolitic sample rich in serpentine and exhibitincelatively low Fe content. RC27-28 was the dsepe
sample, mainly composed of primary minerals (oyimnd was considered the protolith. The sample

selection strategy involved the sampling of a wertly gradient of the ultramafic parent rock.

2.3. Sample preparation and Fe chemical separation

All the samples were homogenized and finely crushad approximately 100 mg of the samples
was aliquoted to Savillex vessels. The samples there digested on a hot plate using a multiple-atag
procedure with HF, HNO3, and HCI. First, an acictmie of 5 mL of concentrated HF and 1.5 mL of
HCIO, at 180°C was added until evaporation was comp&ibsequently, a mixture of concentrated HCI-
HNO; (3.75 mL and 1.25 mL, respectively) at 150°C wddeal and evaporated to dryness. Finally, the
samples were dissolved in an acid medium of 6 M &l split into aliquots for elemental and isotopic

determinations. For this step, the sample solutibguots were processed through chromatographic
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columns for chemical separation prior to isotopalysis. The iron was purified using Bio Rad AG1 X4
(200-400 mesh) anionic resin loaded into thermctdble Teflon columns for exchange
chromatography in an HCl medium as described byré&sion et al. (2004). Blank levels of the chemical
procedure reached ~4 ng of Fe, which is negligitiehe sample preparation process. All of the et
were of analytical grade or bidistilled and the pnpreparation for isotope analysis was conduicteke

clean laboratories of GEOPS (Université Paris Saéleance).

2.4. Iron isotope composition measur ements

Iron isotope measurements were performed at the @Edratory (Toulouse, France) using the
Observatoire Midi-Pyrénées ICP facility in highraedium mass resolution mode on a Thermo Electron
Neptune MC ICP MS. The Fe isotopic ratios were migiteed following the procedure detailed by

Poitrasson and Freydier (2005).

This method involved a mass bias correction usingombination of the “standard-sample
bracketing” approach using IRMM-14 as the Fe steshdad Ni doping of the purified Fe samples. This
approach accurately corrected for mass bias dewmtidue to residual matrix effects. The Fe isotope
compositions were expressed in the delta notaélative to the European reference material IRMMag4

follows:

557Fe = S,F—’"’”— 1 | x 1000 (Eq. 1).

Fe/ RMM=-14

The GET in-house hematite standard from Milhas éRges, France) was measured every 6
samples. The long-term external reproducibilitytitd method was estimated from replicate analyses of
this standard in every session. In this work, theand°'Fe value of individual measurements for hematite
was 0.762 + 0.083 %o (2 SD, n=21) in the GET labmmgtwhereas data pooled in groups of 3 (which is
the minimum number of times each sample should atlyrbe analyzed) yielded&'Fe = 0.764 + 0.057

%o (2 SD, n=7). These values are consistent witlsdHfoom previous measurements conducted for over
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three years in the same analytical sequences affidrmped in various laboratories (Poitrasson et al.,
2014). Variation in thé°'Fe reported for the samples in this study is exg@@éas two standard errors (2

SE) of the mean (n=3).

3. Results and discussion

3.1. Bulk compositions

The mineralogy and chemical composition of therendet of samples are discussed in detail in
Ratié et al. (2015, 2016) and Ettler et al. (20I6 weathered material derived from the ultramadiks
is strongly depleted in Mg and enriched in Fe fritra base to the top of the weathering profile. The
mineralogy of the weathered profile changes fromhbhse (RC27-28) to the top (BAS1 0-10, BAS1 10-
30, BAS1 30-80) from the dominance of primary maer(serpentine, chlorite, amphibole, olivine and
traces of quartz) to secondary minerals such ashigeeand hematite with some preserved primary
minerals such as chromite. Moreover, in order tantify the geochemical changes in laterite devalope
above ultramafic rocks, the ultramafic index ofeedtion (UMIA) was calculated using molar ratios

(Babechuk et al., 2014; Aiglsperger et al., 20E8) 2:

UMIA = 100 x Al,05 + Fe; 0 ] Eq.2
- Si0, T Mg0 + A0, + Fe,0,) £4-2)

Furthermore, a ternary plot illustrates the geneméthering trend of UM weathering in Barro
Alto (Fig. 2) with the initial loss of MgO, follows by SiQ losses and concomitant enrichment ofG|
and especially R®; (Fig. 2). However, the strong secondary silicifica (chalcedony) in the lateritic
regolith in Barro Alto modified the trend of theCBilosses (Ratié et al., 2018) and explained theivels
low UMIA values. This study's unweathered matehat a UMIA value of 4% whereas other lateritic
samples from the profile exhibit UMIA values rangifrom 6 to 44% (Table 1). Soil samples present
homogeneous UMIA values from 34 to 39%.

Based on the overall sampling from Ratié et al18)0the industrial plant feeding material, i.e.,
the ore, exhibits high Fe and Mg contents of 118-¢ kg' and 81.4-110 g Ky respectively, whereas Ni

9
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content ranges from 16.9 to 23.2 g'kdron and Mg contents of the smelting slags ($Bpe from 68.8

to 142.7 g kg and 153 to 188 g Ky respectively, and the Ni concentration is rekdtiMow < 2 g kg").

According to a previous study of these smeltingtesmgEttler et al., 2016), more than 95% of the
total Fe occurs as Fe(ll) in the smelting slag, iehe 80% of the total Fe in the reinjected fly &sh
present as Fe(lll). The refined slags (WRS and B&8)richer in Fe (71.2-179 g Kgcompared with
smelting slags. Ferronickel is composed of roudghlg-thirds Fe (66-69 wt%) and one-third Ni (31-34
wit20).

The Anglo American plant uses 2.4 Mt/ly of Ni orepimduce 41,000 t/y of Ni as FeNi (Moore,
2012 and personal communications). The quantitMidghtroduced in the process, as calculated using a
ore Ni content of 1.96 + 0.23 wt%, is 47,000 + ®44. This led to a production yield of nearly 880%

Ni for the 2016 production (Anglo American PLC AmtlReport, 2017). For Fe, given the mean Fe
content in ore of 15.1 wt% and a production of 80,0 of FeNi, 362,400 t of Fe were processed and
82,000 t of Fe were produced as FeNi with almo$t &% the initial Fe remaining in the waste. The
difference between the incoming Fe/Ni and FeNi potidn corresponds to the residual Fe/Ni in the

different waste materials.

3.2. Iron isotope compositions

3.2.1. Ultramafic rocks weathering

Based on mantle-derived and crustal igneous rdhksbulk silicate Earth shows a homogenous
Fe isotopic signature of approximatéR/Fe = 0.10 + 0.03%o (Poitrasson and Freydier, 200fyd&sson,
2006; Johnson and Beard, 2006). In Barro Alto,dbepest sample from the profile (RC27-28), which
contains the typical mineral assembly of serpexgidiultramafic rocks, was determined to be thetleas
weathered sample and thus, it was considered eapegs/e of the protolith material (Ratié et aD18).
The base of the weathering profile (0.08 = 0.20%o)consistent with the bulk silicate Earth value

(Poitrasson, 2006).

10
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The 8°'Fe values of the weathered materials range froD-8.0.07%0 (BAS1 0-10) to 0.07 +
0.05%0 (RCO0-1) and fall within the range of valueparted in the literature for soils (Wu et al., 2D1
Given the level of analytical variation (2 SE), sheresults show no significant isotopic differenages
8°’Fe values between the protolith and the weatheratenials, similarly to other lateritic profiles
elsewhere. (Cameroon, Poitrasson et al., 2008)néCHiiu et al., 2014; Philippines, Li et al., 2017)
Therefore, Fe isotope composition remains constarihg the UM weathering in the Barro Alto complex.
In contrast, in Ni's case, weathering was assatiati¢h isotopic fractionation as part of the Ni was
leached, leading to a weathering profile depleteldeiavy Ni isotopes. This depletion of heavy Niopes
was interpreted as the preferential sorption armbripporation of light Ni isotopes into Fe oxides
(Wasylenki et al., 2015) and phyllosilicates (typd) (Ratié et al., 2018) in addition to Ni isotopi

fractionation during the first stage of weathering,, during mineral dissolution (Ratié et al.1302018).

Moreover, the gain and loss of Fe during chemiagdtivering can be evaluated by calculating the
enrichment factortg.’ (Table 1). A negative value fai reflects a true loss in Fe from the weathered
material compared with the protolith, and a positialue indicates a gain in Fe. . is 0, Fe is
considered immobile during weathering with respgedhe regolith. The entire Barro Alto profile diaps
Tre Values ranging from -0.10 to 0.22, which sugg#dsas Fe shows little mobility from all of the prigfi
layers (Table 1, Fig. 3). However, a caveat is thit inference does not consider possible soikitgn
changes that were not measured in this study. ©pegtaphy of the complex is characterized by a
succession of hills and valleys with altitudes iaggrom 750 m to 1100 m dominating the large plain
(De Oliveira et al., 1992). As a consequence, teathering conditions occurring on the complex are
considered as well drained. Under tropical condgjofrom base to top of the profile, olivine and
serpentine are replaced by Fe-oxides and Mg skcdirough a series of transitional phyllosilicgt@slin
et al. 1990; Butt and Cluzel, 2013). In additionlkd~e isotopic compositions remain homogeneousgalo
the lateritic profile (-0.10%. to 0.08%o), indicatiriat 3°'Fe values were not significantly altered by Fe

loss or gain during chemical weathering (Fig 3)e3éhfeatures agree with the oxidative conditionagl

11
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the lateritic profile and the high rate of lixiviam. Therefore, the formation of secondary Fe-lvepri

phases plays a minor role in fractionating Fe igetduring ultramafic rock weathering.

Additionally, even with the relatively high uncertty on the least weathered sample (RC27-28),
lateritic profile resulting from peridotites weathmgy (Li et al., 2017; our study) displayed#Fe lighter
than those resulting from crustal rocks weathe(basalt: Liu et al., 2014, granodioritic rock: Pagtson
et al., 2008). This feature may be explained byligfeter means®>’Fe of peridotites relative to Earth’s

crustal rocks (Weyer and lonov, 2007; Zhao e28l1,0; Craddock et al., 2013; Poitrasson et al.3p01

3.2.2. Metallurgical production

The Fe isotopic composition of the metallurgicahptes ranges from -0.10 + 0.09%. (smelting
slags) to 0.07 = 0.12%. (FeNi). The Fe isotope casitums are analytically indistinguishable from the

feeding materials to the final FeNi product, in wast to Ni isotopes (Fig. 4).

Although the process vyields for Fe are very lonw¥622the isotope composition is homogeneous
in all by-products. Given the high-temperature reltyprocesses that occur in the Earth’s core ard th
differentiation in an early silicate magma ocedrseems logical that there is not significant Fedpe
fractionation in the FeNi alloy and the ultramaditicate melt (Poitrasson et al., 2009). Within th&.7
GPa pressures, the chemical and Fe isotope equitibwas reached at 2,000°C within 1008 Feqetan-
silicate glass 0.047 £ 0.063 %0). The high temperature condititmend in the electric furnace at 1,600°C
could induce a similar rapid equilibrium and hemueibit detectable Fe isotopic fractionation betwee

FeNi and the feeding material.

In the furnace, metal isotope fractionation is dejat on the relative isotope mass difference, the
viscosity of the alloy, the mass of the matrix asoamd the temperature range (Ott, 1969; Loddira]. et
1970; Ginoza and March, 1985). In the RKEF procedt® smelting temperature (1,600°C) is very close
to the Fe fusion point (1,538°C), and the homogaséUFe value in the metallurgical wastes argues for
an absence of the thermal gradients responsiblpdesible metal stable isotope fractionation. lket,fa

modern enhanced industrial processes such as RiKER;e distribution is homogeneous at the molten
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scale during the different steps. This inferencesupported by experiments reproducing the ancient
bloomery process at 1,300°C, which shows no sicanifi Fe isotopic heterogeneity within the Fe metal

products, although they did not go beyond the pststie at such low temperatures (Milot et al., 2016

3.2.3. Implications for environmental tracing

Our results demonstrated no evidence of significaat isotope fractionation in the whole
sequence of lateritization and the smelting adisiin Barro Alto, leading to conservation of the F
isotopic signature. This result implies that Feaigonservative isotope tracer for Fe-ores and metal
limonitic ores. Therefore, the me@nFe value was set at 0.01 + 0.11 %o (2SD) for the levisamples

(lateritic, soil, slags, and FeNi) from the Barrtt)AUM complex (Fig. 5).

Such an outcome hinders the use of Fe isotopes esvéronmental tracer in the context of soils
impacted by metallurgical activity if the raw magércomes from the same locality, which is the caise
Barro Alto. However, the conservation of tféFe values from the feeding material to the metgiba
wastes can be advantageous to trace anthropogenizes in cases (i) where pyrometallurgical plases
feeding material imported from another deposit kiting §°'Fe values that are distinct from local
environment and when (ii) the metallurgical by-prots deposited in open-air undergo redox reactions
triggered by changes in the biogeochemical conditiof the surrounding environment. A compilation of
publisheds®'Fe of ores (Milot et al., 2016, 2018) has noted tha iron isotopic signature exhibits a wide
range of values from -2.8 %o to 2.4 %o for differenineral deposits (sedimentary, hydrothermal, skarn
and supergene deposits (e.g., Graham et al., 208« et al., 2006; Johnson et al., 2008; Fabralet
2011; Wang et al., 2011; Cheng et al., 2015; Rilet2015; Wawryk and Foden, 2015; Texeira et al.,
2017). Moreover, modern soils from temperate afeags, Fantle and Depaolo, 2004; Emmanuel et al.,
2005; Wiederhold et al., 2007; Fekiacova et alL0u et al., 2019) and wet tropical soils involyiFe
redox cycling (Thompson et al., 2007; Akerman gt2014) yield*'Fe ranges of -0.78 %o to 1.08 %o (Wu
et al., 2019). This range represents significanititians relative to the naturéi’Fe values in Barro Alto

soils, ranging from -0.10 %o to 0.02 %o only. Basadthe Fe isotopic range of the non-UM soils, we
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performed a calculation to estimate the amountraflng slags needed to create a significant ghitie
non-UM soils (Supplementary Information). That pagsnmhe use of Fe isotopes to trace contamination
when raw materials from other locations are empdoyas long as they are not regular lateritic soils.
Therefore, the use of a different feeding matdaathe industrial plant at the Barro Alto site vidallow
tracing of the anthropogenic input to the localimnment. In this case, Fe isotopes could be abett
tracer than Ni isotopes that showed isotope fraation during the smelting process (Ratié et 21162

and a much larger range of isotopic compositiothénsoil and lateritic ores (Fig. 4).

Finally, a review published by Warner et al. (2088% shown similar concentration results during
different steps of the Ni RKEF smelting processewughout the world (the Dominican Republic,
Colombia, Venezuela, Brazil, Japan, New Caledomidonesia, Ukraine, Macedonia and Greece). The
feeding material from Barro Alto exhibits means @amtration values of 2 wt% of Ni and 15.3 wt% of Fe
(n =13, Ratié et al., 2016), whereas the globatagye is 1.9 + 0.5 wt% and 17 + 5 wt%, respectivEhe
total average Fe content in slag material is 10 wt9Barro Alto, whereas the global mean value i 15
10 wt%. The feeding material composition and thénmeastes are, therefore, similar for the BarrcoAlt
smelter and the global laterite Ni smelters. Moaxpthe calcination, smelting and refining tempaned
used are similar for the Barro Alto plant (850°C60D°C and 1,550°C, respectively) and the othedcit
RKEF smelters (880 + 120°C, n=13; 1,570 = 35°C, h25 1,440 + 120°C, n = 10, respectively). This
comparison suggests that the Fe isotope systerhavibe during pyrometallurgical processing at the

Barro Alto plant is likely applicable to other ptarelsewhere in the world.

4. Conclusions

For the first time, this study shows the Fe isotopmposition for the complete series of natural
and anthropogenic processes in the Barro Alto mtific complex. No significant Fe isotope variations
were identified in either the pedogenesis of ltesoils or the pyrometallurgical processes ofdxi
refining. Thed®>'Fe value of the protolith fell within the range tbe Fe isotope composition of the bulk

silicate Earth, which is estimated at approximat@ly %. (Poitrasson, 2006), and is similar to deep
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lateritic profiles studied elsewhere. In the Nieldte RKEF smelting process at Barro Alto, the dapi
equilibrium of Fe isotopes between the differenagds composing the FeNi ore melt at 1,600°C in the
electric furnace results in undetectable Fe isotdmctionation. Laboratory experiments suppors thi
mechanism under controlled conditions with highsptee and temperature equilibration between FeNi

alloys and ultramafic silicate melts (Poitrassorlgt2009).

As a consequence, tl#’Fe values obtained from both pedogenesis (prottdittopsoil) and
pyrometallurgical samples are homogeneous and rhalleage the discrimination of anthropic and
natural sources. Further studies should verify pbtential fractionation induced by postdepositional
processes as demonstrated for Ni (Ratié et al.6)2@hd Zn (Yin et al., 2018). Nonetheless, the
conservation of thes*’Fe values from the ores to the by-products is amartdge for tracing
anthropogenic sources when (i) the pyrometallutgitant uses feeding material with Fe ores imported
from other geological unities exhibiting differestFe values and/or (i) the by-products are tranggort
or dispersed to other locations with differéniFe values in the topsoil. In these cases, Fe isstopuld
be a more suitable environmental tracer of anthgep@ sources than Ni isotopes for tracing

contamination in non-UM soils related to mining amdelting materials dispersion.
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Table captions

Table 1. List of natural and pyrometallurgical samples amgirt Fe and Zr contentSie, =
([Fel/[Zr]sampid [Fe/[ZMprotwoiith -1), Where the sample RC27-28 represents the lighotdhe UMIA
values are expressed using Eq 2. The Fe isotoppazition and two standard errors are calculated
from the 3 analyses using Student’s t-correctetbfg@latzner, 1997)Fe/amu is the deviation of the
Fe isotope composition of a sample relative tosfamdard and normalized to a mass difference of 1

atomic mass unit (amu).



Sample Depth [Fe] [2r] tFe Al,O; Fe,0; MgO SiO, UMIA 5°'Fe 2 SE 6Fe/amu
name gkg® mgkg* mol kg™ % %o
Soil samples
BAS1 0-10 0-10 cm 271 14 -0.10 0.56 2.27 2.59 1.97 38.3 -0.10 + 0.07 -0.03
BAS110-30 10-30cm 261 13 -0.09 0.51 2.19 2.06 2.13 39.1 0.02 + 0.15 0.01
BAS130-80 30-80cm 255 13 -0.08 0.71 2.28 3.69 2.13 34.0 0.00 + 0.13 0.00
Lateritic samples
RCO-1 3-4m 256 11 0.08 0.15 2.29 0.68 6.05 26.6 0.07 + 0.05 0.02
RC6-7 9-10 m 369 14 0.22 0.28 3.31 0.08 4.47 44.0 -0.06 = 0.11 -0.02
RC16-17 19-20m 85 4 0.01 0.17 0.76 1.46 451 135 0.02 + 0.19 0.01
RC24-25 27-28 m 67 3 0.05 0.07 0.60 6.17 4.13 6.1 0.02 + 034 0.01
RC27-28 30-31m 49 2 0.00 0.03 0.43 5.88 4.30 4.4 0.08 + 0.20 0.03
By-products

Orel 165 0.00 + 0.18 0.00
Ore5 118 0.03 + 0.20 0.01
SS7 106 -0.10 = 0.09 -0.03
SS8 124 0.05 + 014 0.02
WRS 71 0.07 + 0.08 0.02
BRS 179 0.05 + 011 0.02
FeNi2 689 0.07 + 012 0.02




Figure captions

Figure 1. Schematic view of the FeNi smelting and refininggasses modified from Ettler et al.
(2016) showing the average Ni and Fe contentsen(lmx 7), F (n=10), SS (n=8), WRS (n=1), BRS
(n=1) and FeNi (n=2) (Ratié et al., 2016).

Figure 2: Ternary plot showing the molar composition &d+Fe0;, Si0,, MgO) and its relationship
with the ultramafic index of alteration (UMIA) sateg. The yellow arrow shows the general trend of

weathering among the plotted samples.

Figure 3: Iron isotope valuesi{’Fe in %o) vs. there, Normalized by Zr (Poitrasson et al., 2008; our
study), Th (Liu et al., 2014) and Ti (Li et al.,220. The blue band represents iée value of the
bulk silicate Earth (Poitrasson et al., 2006).

Figure 4: 5Ni/amu anddFe/amu values for the lateritic profile, ultramafi¢M) soils, and products
from mining (feed material) and smelting (smeltsiggs, refining slags, and FeNi) activitiékli/amu
values were calculated based on &ff&™Ni values in Ratié et al. (2015, 2016, 2018). Theeg band
represents th&Ni/amu value of the bulk silicate Earth (Gall et @017) and the blue band represents
the 6Fe/lamu value of the bulk silicate Earth (Poitrass@006). The dotted line separates

anthropogenic samples from geogenic samples.

Figure 5: Iron isotopic composition vs. the inverse Fe cotregion (g/kg). The blue area represents
the mears>'Fe value of the whole Barro Alto complex (0.01 #13o). The orange arrow represents

the range 08°'Fe values for non-ultramafic soils (Wu et al., 2019
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| nvestigation of Feisotope systematicsfor the complete sequence
of natural and metallurgical processes of Ni lateritic ores:

| mplications for environmental sourcetracing

Gildas Ratié, Jérémie Garnief, Lucieth Cruz Vieirg&, Daniel F. Aradjo’, Michael Komarek,

Franck Poitrassori, Cécile Quantiii

Highlights

» Femobility does not induce isotopic fractionation during chemical wesathering.

* Thereisno evidence of Feisotope fractionation during the RKEF smelting process.
«  Smelting slags are stamped with §°’Fe values from Ni laterite ores.

» Theuse of Feisotopes as an environmental tracer in lateritic soilsis limited.

* Feisotopes may be apotential tracer of mining activities in non-lateritic soils.
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