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Abstract :

Primary consumers in freshwater ecosystems, such as the zooplankton organism Daphnia magna, are
highly affected by cyanobacteria, both as they may use it as a food source but also by cyanobacterial
metabolites present in the water. Here, we investigate the impacts of cyanobacterial metabolites focussing
on the environmental realistic scenario of the naturally released mixture without crushing cyanobacterial
cells or their uptake as food. Therefore, D. magna were exposed to two concentrations of cell free
cyanobacterial spent medium from Microcystis aeruginosa PCC 7806 to represent higher and lower
ecologically-relevant concentrations of cyanobacterial metabolites. Including microcystin-LR, 11
metabolites have been detected of which 5 were quantified. Hypothesising concentration and time
dependent negative impact, survival, gene expression marking digestion and metabolism, oxidative stress
response, cell cycle and molting as well as activities of detoxification and antioxidant enzymes were
followed for 7 days. D. magna suffered from oxidative stress as both catalase and glutathione S-
transferase enzyme activities significantly decreased, suggesting enzyme exhaustibility after 3 and 7
days. Moreover, gene-expressions of the 4 stress markers (glutathione S-transferase, glutathione
peroxidase, catalase and thioredoxin) were merely downregulated after 7 days of exposure. Energy
allocation (expression of Glyceraldehyde-3-phosphate dehydrogenase) was increased after 3 days but
decreased as well after 7 days exposure. Cell cycle was impacted time dependently but differently by the
two concentrations, along with an increasing downregulation of myosin heavy chain responsible for cell
arrangement and muscular movements. Deregulation of nuclear hormone receptor genes indicate that D.
magna hormonal steering including molting seemed impaired despite no detection of microviridin J in the
extracts. As a consequence of all those responses and presumably of more than investigated molecular
and physiological changes, D. magna survival was impaired over time, in a concentration dependent
manner. Our results confirm that besides microcystin-LR, other secondary metabolites contribute to
negative impact on D. magna survival and stress response.
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Highlights

» Cell free M. aeruginosa spent medium affected Daphnia survival and physiology » Medium with higher
concentration of cyanobacterial metabolites was more detrimental » Other secondary metabolites,
besides microcystin-LR highly likely had negative impact on Daphnia
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Abbreviations

MC-LR: microcystin-LR

des-MC-LR: des-microcystin-LR

CP: cyanopeptolin

AC: aerucyclamide

CP-A: cyanopeptolin A

AC-A: aerucyclamide A

AC-D: aerucyclamide D

LC: cyanobacterial spent medium diluted with thelBGn the ratio 1:400
HC: cyanobacterial spent medium diluted with thelB@ the ratio 1:40
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1 INITDNNDI ICTINNI

Due to eutrophication in freshwater ecosystemsnalyacterial proliferation frequently
results in blooms that potentially produce bioaetor toxic metabolites that harm the
environment and humans (Heiskdral, 2008).Microcystisis one of the most widespread
cyanobacterial genus in freshwaters, wiicrocystis aeruginosdeing one of the most
commonly detected and investigated (8swret al, 2019) Like other cyanobacteria,
Microcystis produces a diverse range of secondary metabdhtgshave been shown to
impact life traits and physiology of aquatic organs including zooplankton such as
Daphnia(Lurling and van der Grinten, 2003; Merwe and Sehl2912). One of the most
detected toxins produced by cyanobacteria is mystaot (MC), with more than 250 variants
described so far (Mowet al, 2015; Svitev et al, 2019). Microcystins change the
phosphorylation state of proteins by inhibiting f@ida2A protein phosphatases, thus
disrupting pathways involving phosphorylation (Maat¢shet al, 1990; Trinkle-Mulcahy
and Lamond, 2006; Zurawadt al, 2005). Furthermore, microcystins trigger oxidatstress
in aquatic organisms (Amado and Monserrat, 2010).

Besides microcystinsMicrocystis sp.produces a wide range of intracellular and
extracellular secondary metabolites such as aeavagis, cyanopeptolins, cyclamides,
microginins and microviridins (Welker and Von D6hy2006), that have various negative
effects onDaphniaphysiology (Rohrlaclet al. 2001, Bisteret al 2004, Ishidaet al. 2007,
von Elertet al 2012).Similar to microcystins, cyanopeptolins (CP) aratbgsized through
non-ribosomal metabolic pathways, by non-ribosomaptide synthetases (NRPSs) and
polyketide synthase (PKS) (Welker and Von Do6hred06). CP are widely distributed and
diverse compounds with more than 82 variants desdriso far (Gademanet al. 2010).
Aeruginosins are synthesized non-ribosomally aeg ttan inhibit trypsin-type serine proteases
(Ishidaet al. 2000, 2007)CPs and aeruginosins are potent inhibitors ok#drene proteases
trypsin and chymotrypsin, that are among the magasiive enzymes iDaphnia(von Elert
et al. 2005; Gademann and Portmann 2008; Elkobi-Bealr 2013).Microviridins are one of
the largest oligopeptides produced in cyanobagtesth 13 to 14 amino acids (1600-1900 Da),
contrasting to the other groups, they are ribosiynsginthesized tricyclic depsipeptides. They

are produced by different cyanobacterial genedyding Microcystissp., however, the natural
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Microviridin J has been identified as causing fatallting disruption inDaphnia pulicaria
via inhibition of Daphniaproteases, thus leading to the death of the asi(faeberniclet
al., 2001; Rohrlacket al, 2004). Cyclamides are cyclic hexapeptides wiyiotoxic
properties to crustacea (Ishidial, 2000; Portmanet al, 2008). Cyanopeptides can occur
in high frequency comparable to MC concentrationaquatic environments and thus may
pose problems for drinking water purification freurface water reservoirs (Beversdetf
al.,, 2018, 2017; Janssen, 2019; Natumi and Janssf().2 Concentrations of
cyanopeptolines (< 7 ugf), anabaenopeptins (< 1 ug)Land microginins (< 1 ug/t) have
been reported in surface waters (Beversdbdl, 2017), however, more research is needed
regarding their diversity and concentration in aguenvironments. Furthermore, their effect
on organisms as a single compound or in a mixtigeat investigated in detail.
Neverthelesst has been suggestéthat in natural conditions some oligopeptides may b
even more harmful than MCs and other cyanotoxingeain zooplankton species, in
particular as digestion inhibitors are active atchmlower concentrations than the classical
cyanotoxins (Von Eleret al, 2004). Digestive enzyme inhibition would cautanstion,
impair growth and reproduction, eventually leadioglow death (Von Elest al, 2004).
Among the freshwater zooplankton speci2aphniagraze on phytoplankton including
cyanobacteria, thereby connecting the primary prtodo to the consumers within the
aquatic food web (Geet al, 2016). Dominance of nutritionally inadequate foipjankton,
such as cyanobacteria, which lack important steants fatty acids necessary fdaphnia
growth and development, can represent an obstadidficient carbon transfer to higher
trophic levels (Martin-Creuzburet al, 2008). During their lifetime, howevdbaphniaare
able to develop tolerance to cyanobacterial meti@solas a physiological response to
bioactive compounds (Gustafsson and Hansson, ZD@i4:Rodriguezt al, 2012; Sarnelle
and Wilson, 2005). Several mechanisms have beerribed so far, such adaphnia’s
ability to remodel their digestive enzymes (Schwal®rgeret al 2012, von Eleret al
2012), or increase of antioxidant and biotransfdiomaenzyme activity (Daet al, 2013;
Ortiz-Rodriguez and Wiegand, 2010; Sadler and vtertE2014a). When exposed to

cyanobacterial metabolites that are chymotrypsuhtaypsin inhibitors Daphniaswitch to
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(Schwarzenbergeat al. 2012, von Eleret al. 2012). The antioxidative enzymatic defenses
include catalase (CAT), superoxide dismutase (S@Djathione-peroxidase (GPx), while
glutathione S-transferase (GST) is the detoxiftcatmechanism (Ighodaro and Akinloye,
2018; Pflugmacheret al, 1998). Daphnia can reduce oxidative stress caused by
cyanobacterial metabolites by increasing CAT atiiOrtiz- Rodriguez and Wiegand,
2010; Wojtal-Frankiewiczt al. 2014). Similar increased activity of antioxid&@®D and
CAT enzyme providing cellular protection againstR{3 found in a study whe@aphnia
magnawas fed withMicrocystisdiet (Lyuet al, 2016b).Daphniacan reduce the toxicity of
microcystin by increasing the activity of GST cgtihg the biotransformation via
conjugation to glutathione(Daoet al 2010; Ortiz-Rodrigueet al, 2012; Milest al 2016).
Furthermore, studies iDaphniahave shown that cyanobacterial metabolites cactaff
expression of genes involved in digestive systdsselmaret al, 2014; Drug et al, 2016;
Schwarzenbergest al, 2012), cell cycle (De Coninait al, 2014b; Giraudet al, 2017
Tong et al, 2017),and oxidative stress (De Coninck et al., 2014b; leyual., 20164a;
Rhiannon et al., 2011). However, characterizingidcaiptional responses @aphniato
cyanobacterial toxins so far focussed merely oectff microcystin or cyanobacterial media
without considering other bioactive molecules timéght be present apart from microcystin
(Asselmaret al, 2012; De Coninckt al, 2014a; Druget al, 2016; Lyuet al, 2016b).
Besides being affected by grazing on cyanobactesiaplankton can also be affected by
naturally produced cyanobacterial metabolites ssldain water (Barrio®t al, 2015;
Ferrdo-Filhoet al, 2014; Smutnét al, 2014). Nevertheless, most of the studies ingati
impact of cyanobacteria dbaphniagrazing on them, or exposure to extracts obtamed
crushing cyanobacterial cells (from a culture aonira field sample), or to purified
compounds (Daet al, 2013; Esterhuizen-Lonét al, 2016; Pengt al, 2018). Hence, it is
of interest to investigate iDaphnia are impaired by the presence of cyanobacterial
metabolites naturally released during cyanobadtewamal growth, without necessarily
feeding on them, or crushing cells. Furthermorewing the composition and concentration

of metabolites present in the medium, naturallyaséd as a product of cyanobacterial
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cyanobacterial metabolites.

Therefore, the aim and novelty of this studephniaexposure to cell free cyanobacterial
spent medium obtained from a two weeks culturexpbaentially growingM. aeruginosa
containing metabolites naturally released duringt time. In addition, we detected and
guantified cyanobacterial metabolites present enniedium, beside commonly investigated
microcystin. We monitored markers of stress respoims order to predictDaphnia
physiological phenotypes as a response to cyanatcspent medium. We analyzed the
effects of cell free cyanobacterial spent mediumt ttontained a quantified mixture of
compounds on iPaphniasurvival, ii) activity of enzymes involved in oxtive stress and
detoxification and iii) expression of candidate gennvolved in digestion, growth and
development, detoxification and oxidative strespo@ise. We hypothesize a negative impact
on Daphniasurvival, a trigger of CAT and GST activities, wsll as expression of genes

involved inDaphniagrowth and development, digestion, detoxificatowl oxidative stress.
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2.1. Culture conditions

2.1.1. Microcystis aeruginosa PCC 7806

An axenic microcystin (MC) producingl. aeruginosastrain PCC 7806 was obtained
from the Pasteur Culture collection of Cyanobaaterin Paris, France
(https://research.pasteur.fr/en/team/collectiomy@nobacteria/). The strain was grown in
100% cyanobacterial BG11 medium (SIGMA), under &:1@h light:dark regime using
daylight white fluorescent tubes (Toshiba, 15 W15D) with 20umol photons rf s*
illumination at a constant temperature of 20+x1°Gn{® incubator). The culture was
maintained in exponential growth phase, while tkengity was regularly evaluated as

described in (Briand et al., 2012).

2.1.2. Daphnia magna

TheD. magnaclone was obtained from the PEARL INRA 1036 U3E.tAe exposure to
cyanobacteral metabolites was realizedMiaaeruginosaPCC 7806 spent medium, tbe
magnaclone was acclimated to BG11 medium (SIGMA). Befperforming experiments we
compared osmolarity of BG 11 medium with the osmlaof commonly used Artificial
Daphniamedium, Elendt M4 and Elendt M7. Osmolarity of BG medium was similar to
that of theseDaphnia media, thus not affectinBaphnia survival. During the first three
weeksD. magnawere slowly acclimated and adjusted to the cyaciial BG 11 medium
that was used in all the experiments, by graduatiseasing the % of BG11 medium until it
reached 100% in the end of the acclimation perdter the acclimation perio®. magna
were grown in 100% of BG11 medium for a month, befeeonates (< 36h old) were used in
the experiment. During the acclimation and culimatperiod no irregularities iDaphnia
survival, eating, movement and growth were noticeaggesting thaD. magnawere
successfully acclimated to the medium (BojadzijaiSat al,, 2020).D. magnawere grown
and cultivated in the aquarium at a constant teatpex of 20°C, light intensity of 2zmol

photons rif s* having a day/night cycle of 14h:10h (Sanyo MIR )L&#Ad daily renewal of
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Scenedesmus communigginating from lake Grand Lieu, France, that wsadated in our
laboratory (University of Rennes 1).

Sufficient food that 100Daphnia (According to OECD guidelines for testing of
chemicals 202) that should be available daily i iedium is equivalent to 2.8 - 5.6810
cells/mL of S. communisDaphniaare usually maintained in medium that is not appabe
for algal growth (Elendt M4, Elendt M7- OECD guinhas for testing of chemicals),
therefore whers. communisire introduced t®@aphniamedium, they are consumed before
growing in high densities. However, in our cultuBegohniawere adjusted to BG11 medium
that was also used f&. communisulture. Hence, it allowef. communi grow and reach
high densities (10x higher than the initial onethim one week) while being consumed by
Daphnia As high density ofS. communisdisrupts normalDaphnia functioning; its
concentration had to be adjusted to 2.8 - 5.6x#lls/mL to maintain equilibrium between
growth and consumption. In order to keep $r&eommunisulture in more accessible form
for consumption, in particular by neonates (i.eiceltular /in pairs instead of four cells

having long spikesfscenedesmuailture was diluted every few days before feeding.

2.2. Experimental design

All experiments were performed in 5 replicates ibh &juariums and lasted for 3 and 7
days. All Daphniawere fed daily withS. communiswhose density was monitored and
adjusted daily. For the control, 150 magnaneonates (< 36h old) per aquarium were raised
in BG11.

For the treatment, the cyanobacterial spent medsaprepared in the following way: from an
exponentially growingM. aeruginosaPCC 7806 culture, centrifuged cells were transtérr
in fresh sterile BG 11 medium to remove extracaluinetabolites. From the pellet, a
cyanobacterial culture of 2x1@ells/mL initial density was grown for two weeksaching a
cell density of 1x1®cell/mL. From that culture, cell free cyanobactksipent medium was
collected by filtering through 0.2 pm sterile cédlse nitrate filterD. magnawere exposed to
two concentrations of cyanobacterial spent mediajrdiluted with the BG11 in the ratio
1:40 (thereafter called HC for high concentratiangl b) 1:400 (thereafter called LC for low

8
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MC-LR in our experiments (final concentration of M®: LC: 0.5ug/L, HC: 5ug/L), as
dissolved MC ranges in the environment betweenab@ 11pug/L (Lahti et al, 1997,
Pawlik-Skowraiskaet al, 2008; Rastoget al, 2015; Siet al, 2015).

D. magnaneonates (150 per treatment) were exposed tof 2Hese two concentrations.
At the end of the exposure (3 days and respectivelgays), D. magna samples
(biotransformation, oxidative stress, energetidif@s) were taken by collecting them over a
mesh, briefly rinsed with fresh BG11 media, anérafemoval of the excess media, snap

frozen in liquid nitrogen and stored at -80°C uahhlysis.

2.3. Cyanobacterial secondary metabolites analysis

Cyanobacterial secondary metabolites previouslywkndo be produced by this
particular strain PCC7806 (Briard al, 2016; Rohrlaclet al, 2004; Sadler and von Elert,
2014b) were monitored after 2 weeks growth phase finitially 2x10 cells/mL to 1x16
cells/mL. Cyanobacterial cells were separated ftbensupernatant by centrifugation. Cell
free spent medium was filtered through @2 filter and 1 mL was lyophilized. Extraction of
lyophilized material was done in 0.5 ml 50% metHaand processed as described in
Bojadzija Savic et al, 2019. Waters Acquity Ultra-High Performance Ldju
Chromatography coupled to a Xevo quadrupole timiigiit mass spectrometer was used
for the metabolites analysis. Cyanobacterial pegtidiere detected using extracted ion
chromatograms for the respective specific massebeodifferent compounds (Bojadzija
Savic et al, 2019). Microcystin-LR (MC-LR), Microcystin-desR. (des-MC-LR),
cyanopeptolin A (CP-A), and aerucyclamide A (ACakd D (AC-D) were quantified using
linear relationship between peak area (MC-LR aredM€E-LR at 238 nm, CP-A at 220 nm,
and AC-A at 237 nm and AC-D at 240 nm) and knowmcemtrations of the toxin standards.
The microcystin-LR standard was purified as presipulescribed (Edwardst al, 1996).
CP-A standard and AC-A and AC-D standard were matifusing preparative HPLC
(Biotage Parallex Flex, Cardiff, UK) and Flex V3ftsaare for instrument control and data
acquisition as described in (Bojadzija Sast@l, 2020). Detection and quantification of the
cyanobacterial peptides was done by MassLynx wdftlvare.

2.3.D.magna survival
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(identified as not moving and decayiBgphniaon the bottom of the aquarium) with results

expressed in percentages of total individualsasthrt of the exposure.

2.4. Enzyme extraction and measurement

Fifty Daphniawere resuspended and homogenized in 1 mL of ikckeesdraction buffer
(0.1 M phosphate buffer pH 6.5, glycerol, 1 mmolTA) and 1.4 mmol dithioerythritol)
using Lysing Beads-Matrix E (MPbio) in the VibroihiWMiM200, (RETSCH) for 3 min at the
frequency of 25 Hz to break the cells, followeddantrifugation (10,000 g, 10 min, 4°C,
Sigma 3K18C). The supernatant was used for enzyneasumements using a
spectrofluorometer (SAFAS Monaco Xenius XC, Monaddatalase (CAT) activity was
assayed by measuring the rate of disappearancedpfat 240 nm (Chang and Kao, 1997).
GST was assayed at 340 nm using 1-chloro-2, 4rdbveéhzene (CDNB) as substrate. SOD
activity was determined using a photochemical asssed on the reduction of nitro blue
tetrazolium (NBT) according to total Superoxide migase (T-SOD) assay Kkit
(Hydroxylamine method, SIGMA KIT), however SOD ady in our experiments remained
below the level of detection. All enzyme activitieere related to the protein content in the

extract, measured according to Bradford (1976).

2.5. Candidate function gene expression

2.5.1. RNA extraction and reverse transcription

RNA extraction and reverse transcription was dareoraling to (Colineket al. 2010)
from the unexposed control and fr@aphniaexposed to LC and HC after 3 and 7 days. For
each condition and sampling time point, five RNAngées (i.e. biological replicates), each
consisting of a pool of 5Daphnig were usedDaphniawere ground to fine powder in 1.5
mL tubes placed in liquid nitrogen. Samples wergediwith lysis buffer (containing 1%
B-mercaptoethanol) from RNA extraction kits (Qiaganyl crushed for 10 min to complete
homogenization. RNA extraction and purification waserformed following the
manufacturer’s instructions (Qiagen). Total RNA welsted in 40 uL of DEPC-treated
water. RNA was quantified and quality-checked vétNanodrop 1000 (Thermo Scientific,
Waltham, MA). Three hundred nanograms of total Rk used in the reverse transcription

to cDNA, using the SuperScript ® IIl First-Strandynghesis System for RT-PCR

10
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20°C until use.

2.5.2. Real-time PCR

We wused primers of candidate genes involved Daphnia energy
(glyceraldehyde-3-phosphate dehydrogengsgadl), digestive system (proteaset383,
oxidative stress (glutathione S-transferags; glutathione peroxidasgpx catalasecat,
thioredoxin:trx,), cell cycle (histoneh2a myosin heavy chainmhcr) and molting (nuclear
hormone receptohr3, nuclear hormone receptdtiz-f1) that potentially could be affected by
cyanobacterial metabolites. We ugedctin as the reference gene. Oligonucleotide pgme
were obtained from the previously published refeesn(se€el'able 1. for details), having
efficiency between 92% and 105% (Girawd@l, 2017; Houdet al, 2013; Lyuet al, 2014,
Rhiannonret al, 2011; Schwarzenberget al, 2010; Tonget al, 2017; Wanget al, 2016).

Oligonucleotide primers were made by Integrated D&hnologies, BVBA.

Table 1.0Oligonucleotide primers used in the experiments.

Amplicon  Reference

Gene name Symbol  Primer sequence 5’-3'’ size

Glyceraldehyd gapdh F- TGCTGATGCCCCAATGTTTGTTGT 132 (Giraudoet al,

e-3-phosphate R-GCAGTTATGGCGTGGACGGTTGT 2017)

dehydrogenase

Protease ct383 F- TTGGCACCTTCCACCGAAT 183 (Schwarzenberge

CT383 R- TCATCAGGACTGGAGAAACGC retal, 2010)

Glutathione gst F- GGGAGTCTTTTACCACCGTTTC 150 (Wanget al,

S-transferase R- TCGCCAGCAGCATACTTGTT 2016)

(NCBI: No.

EFX81634.1)

Glutathione gpx F- AACGTTACGATGCCAGTTCC 212 (Rhiannoret al,

peroxidase R- TCTTTCGAGCGGTTGAGATT 2011)

Catalase cat F- AGGTGCCTTTGGATACTTTGA 495 (Lyu et al,, 2014)
R- TTGCGTATTCCTTGGTCAGTC

Thioredoxin trx F- GTATCCACGCCAGTCCTTGTT 129 (Liu et al, 2019)
R- TCCTTCCACTTTTCCTCCCTTA

Histone 2A h2A F- CTGGTGCCCCTGTCTACCTA 219 (Giraudoet al,
R- TAGGGAGGAGAACAGCCTGA 2017)

Myosin heavy mhcrt F - GATGCCGTTTCCGAGATGAG 132 (Tonget al,

chain R - CTCGGCGGTCATGTGGTC 2017)

Nuclear hr3 F- AAGGTCGAGGATGAAGTGCG 81 (Giraudoet al,

11
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Nuclear ftz-f1 F- TCTTACCGGACATTCACGCC 71 (Giraudoet al,

hormone R- ACAGCCGTTGAGATGCTTGA 2017)

receptor

FTZ-F1

Beta-actin p-actin  F- GCCCTCTTCCAGCCCTCATTCT 189 (Houdeet al,
R- TGGGGCAAGGGCGGTGATTT 2013)

Real-time PCRs were performed on the LightCycldr gystem. Reactions were performed
in 384-well LightCycler plates, using LightCycleB@ High Resolution Melting Master Mix
and the crossing point (Cp), equivalent to the eybleshold (Ct), estimates were obtained
using the absolute quantification module in thdvgafe package. The PCR reactions were
performed in four replicates , containingd of cDNA sample, Zum each primer, and &L

of the High Resolution Melting Master Mix. After I8in at 95°C, the cycling conditions
were as follows: 60 cycles at 95°C for 10 s, 608€16 s, and 72°C for 15 s. To validate the
specificity of amplification, a post amplificatiomelt curve analysis was performed.
Amplicons were first denatured at 95°C for 1 mindahen cooled to 65 °C, and the
temperature was then gradually raised to 95°C).orfEékcence data were recorded
continuously during this period, and subsequeniblyzed using the Tm calling module in
the LightCycler 480 software.

(E )ACPtarget(control—treated sample)
target

R_

N ACPtarget(control—treated reference
(Ereference) get( s )

Relative expression ratios (R) (i.e. fold changeyrevcalculated using the efficiency
calibrated model of (Colinet et al., 2010; Pfazd01). In the Pfaffl model, CP is the crossing
point (i.e. Ct) and E the efficiency of PCRs. gPCRvalues of all candidate genes have been
provided inSupplementary 1 The ratio of the target gene is expressed inddesamples
versus matched controls (calibrators), and norredliasing the housekeeping reference

gene.

2.7. Statistical analyses

R Core Team (2013) was used to access statistiahfsas of the obtained data. All data

are presented as mean * standard deviation. Signifidifferences were determined at
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n<0.05. We performed t-tests to determine the wiffee between CAT. GST activities. as
wWell as gene expression petween ne control arament. Kepeated-measures analysis of
variance was done to determine the differenc®aphnia survival between Control/LC,
Control/HC and LC/HC ). Repeated-measures anabfsiariance is a mixed linear model
with day, treatment (Control vs Treatment) and raxtBon between day and treatment
considering the repeated measures on replicatedqina effect). Normality of residuals was
tested via Shapiro test (residuals normaly distebuvhen p>0.05). Anova was performed to
test the effects of the model. Pairwise comparisth correction for multiple comparison
was performed to check significant differences leetv control and the two treatments,
differences between LC and HC and if there was titependency effect on control and

treatment.
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3.1. Composition of the two weeks oltWl. aeruginosa PCC7806 medium

In the media produced by exponentially growiy aeruginosaPCC7806, 11
metabolites were detected after 2 weeks of culowaiM. aeruginosaPCC 7806 produced
MC-LR and des-MC-LR, cyanopeptolins, CP (963A, Al &), aerucyclamides, AC (A,B,C
and D) and aeruginosins (684 and 60=yre 1.).

100

50

Intensity (%)

11 12 13

Retention time (min)

Figure 1. Secondary metabolites detectedMin aeruginoséPCC 7806(A) aeruginosin 684B)
cyanopeptolin B(C) aeruginosin 602D) des-MCLR,(E) MC-LR, (F) CP A,(G) aerucyclamide D(H)
cyanopeptolin 963A(l) aerucyclamide A(J) aerucyclamide QK) aerucyclamide B.

The concentrations of five extracellular metabslitC-LR, des-MC-LR, CP-A,
AC-D, AC-A) in M. aeruginosa®CC 7806 after 2 weeks growth phase from 2x&lls/mL

initially to 1x1& cells/mL, and in dilutions HC and LC are showable 2.

Table 2. Concentrations of extracellular metabolites imioral medium of the 2 weeld. aeruginosaPCC
7806 and its HC and LC dilutions

Extracellular metabolite Original speit aeruginosa HC (pg/L) LC (ug/L)
PCC 7806 medium (ug/L)

MC-LR 218+21 5.45+0.53 0.55+0.05

Des-MC-LR 61+1 1.53+0.03 0.15+0.01

CP-A 135411 3.38+0.28 0.34+0.03

AC-D 93+10 2.33+0.25 0.2340.02
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3.1.Daphnia survival

The high concentration of the cyanobacterial medid@) caused a significant decrease
in survival from day 2 onwards, compared with tleateol, while exposure to the low
concentration (LC) caused significant decreaser afsey 3. Both concentration levels
significantly decreasedaphnia survival over the course of the experimebBiaphnia
survival was significantly higher in LC exposurerfr day 3 onwards (80% survival after 7

days) compared with the HC exposure (40% surviftat & days) figure 2.)

* * ok ¥ %ok ok * %k %ok % * sk ok
a a aa aaa daa

A A AA AAA AAA
100 o . : , :

Survival of D. magna (%)
B [=2] (o]
(=) o (=]

(%]
o
.

Days
—e—HC —e—LC —e—Control

Figure 2. D.magnasurvival when exposed to HC and LC. Control vs Ei@ontrol vs LC: a ; HC vs LCA. *,
a,A (p <0.05), **, aaAA (p < 0.01), **, aaaAAA (p < 0.01); repeated-measures analysis of variance

3.2. Antioxidant and detoxification enzymes

CAT activity was significantly lower on day 3 andyd7 in the LC exposure, compared
to the control. Similarly GST activity was sign#ictly lower on day 3 and 7 in the treatment
exposed to LC, compared to the control. Due tahigl mortality in the HC exposure, the
biomass of the remainir@aphniawas insufficient for enzyme analysis on both d&ygure

3).
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®Control ®WLC

Figure 3. CAT and GST activity ilD.magnaexposed to LC * (p < 0.05), ** (p < 0.01), *** (9 0.01), t-test

3.5.Selected genes expression

Glyceraldehyde 3-phosphate dehydrogengapdh) was significantly overexpressed on
day 3 whenDaphniawere exposed to both HC and LC, but downregulafest 7 days,
significant for LC Eigure 4. A). The gene coding for digestive enzyme Proteas88GT
(ct383 was significantly downregulated after 3 days esxpe to LC (day 3) d#icrocystis
spent medium, but not in the other treatmé&ingyre 4. B). Concerning the oxidative stress
and detoxification related genes, merely downrdgravas observed. The only exception
was the gene encoding for the detoxification enz@heathione S-transferasgsf which
was significantly upgulated on day 3 when exposeddC, while on day 7gst was
downregulated at LC treatmeriigure 4. C). Furthermore, Glutathione peroxidagmpX)
expression was significantly downregulated on daft& Daphniaexposure to LCKigure
4. D). Genes responsible for oxidative stress enzynedsl&se ¢at) (Figure 4. E) and
Thioredoxin {rx) (Figure 4. F) were downregulated on day 3 (LC) and day 7 (HG laD).

The response of the histone 2#28) gene was the opposite of this, when exposed tahtC
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exposed to HC or LCHgure 4. G). HC and LC also had significant negative effetgene
expression of Myosin heavy chamlfcr) that was significantly underregulated on day @ an
7 (Figure 4. H). Cyanobacterial secondary metabolites affecterigenes involved in the
molting cycle: the Nuclear hormone receptor HRB) and FTZ-F1 f{z-f1). While thehr3
was significantly upregulated on day 3 when expasetioth HC and LCKigure 4. |)

ftzawas significantly downregulated on day 7 when erpgds both HC and LGSgure 4. J).
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Figure 4. Effect of cyanobacterial media (LC and HC) on thlative gene expressions expressed as log2(fold
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for each sampling time. Replicates of culture eesented as a mean and error bars represetamnidas

18

3 7 3 7
Days

log2 (Fold change)

HLC

2.00 +

1.00 +

0.00 -

-1.00 +

-2.00 +

-3.00 -
3.00 +

2.00 +

1.00 +

-2.00 +

-3.00 -
3.00 +

2.00 +

1.00 +

-2.00 +

-3.00 -
3.00 +

2.00 +

1.00 +

0.00 -

-1.00 +

-2.00 +

-3.00 -
3.00 +

2.00 +

-1.00 +

-2.00 +

-3.00

0.00 - +
0.00 - +
-1.00 +

*x ! -_
= L
KKK

1.00 + i
0.00 - t

*xy

Py

Joyw

J

-z

KKK

B HC

-1

Days

3 7

deviations (n 5). * (p < 0.05), ** (p < 0.01), *** (p < 0.01), t-test



44~
450

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

A NDICICCINNI

Daphnia are unselective phytoplankton filter feeders, asdsuch can be exposed to
cyanobacterial metabolites by direct grazing onnoyacteria as well as by uptake of
metabolites released in the water. While previdusies have demonstrated the negative
impacts of cyanobacterial medium (Lanaras and &84, Neumanet al. 2000, Dacet al.
2010, 2013, Esterhuizen-Lonelt al 2016, Peng et al. 2018) daphnig the novelty of this
study was to connect responses from selected nsarkerthe gene-level to enzymatic
activities and to consequences for the survivaDofmagnaexposed to cyanobacterial
cell-free sprent medum. From the mixture of cyambtérgal metabolites in the medum we
identified 11 and quantified 5.

As M. aeruginosavas grown in BG11D. magnahad to be acclimatised to this medium
during several weeks before the experiment. Suinafzahe control group throughout the
experiment was always high (>98%). These resubsirardine with the literature where
non-treatedD. magnasurvival was always high (close to 100%) in thestfi8 days of
experiments, although specifiz. magnacultivation medium was used (Da&b al 2010,
Ortiz-Rodriguezt al 2012), suggesting that BG 11 medium used in tuatysdid not have
impact on thd. magnasurvival. Apart from increased CAT activities nb@r changes were
observed in the control group over the exposure,twe nevertheless suggest for further
studies to compromise between both media by adungssary minerals, e.g. calcium, using
diluted BG 11, while keeping the osmolarity asemsured in our exposures.

Cyanobacterial spent medium had a dose and timendept negative impact db.
magna survival, verifying our hypothesis. The concenta used (Table 2.) were
detrimental thus preventinD. magnafrom acclimatisation during the exposure period.
These detrimental effects within 7 days were nqieeied as these concentrations were
chosen according to previous studies showing tiiativaal of D. magnarapidly decreased
during 3 weeks exposure to crude extract contaibihgy/L of dissolved microcystin, while
exposure to ng/L did not impacDaphniasurvival much (Daet al, 2010). Similar results
were observed by Lirling and van der Grinten (200Bgre exposure to 3.pg/L of
dissolved microcystin showed no significant decegaasurvival over 7 days. When exposed

to crude extract or artificial mixtures of pure naicystins containing 6Qg/L of total MC
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appear to have an impact dn pulexsurvival for 6 days (Esterhuizen-Lonelt al, 2016).
Our results are, however, in line with studies esipgD. magnao M. aeruginosaontaining
1.4-9ug/L of MC, where feeding was inhibited, followed imgrease of mortality in the first
week of the treatment (DeMott, 1999; Denwital, 1991; Ghadouarit al, 2004; Rohrlack
et al, 2001).D. laevis(two clones) andD. similis exposed to fiveMlicrocystisextracts in
which microcystins were detected (434 - 538 mg/lyaphilized sample) suffered decreased
survival, reproduction and disturbance in egg potidn after 48 h (Herrerat al. 2015).
Crude extract obtained froMicrocystisspp. had lethal effect dd. magnaneonates, with
LC50 (48 h) ranging from 168-3142.7 mg microcystin (total) DW £ (Pham, 2018).
Susceptibility to microcystin is, however, not oslyecies-specific, bidaphniaspecies can
also show different responses within their clonesMott, 1999; Hairstoret al, 1999;
Rohrlacket al, 2001).

As both concentrations in our experiment causedatity (20% for LC and 60% for
HC) within the 7 days exposure, we suggest a ldghmagnasensitivity to the other
cyanobacterial metabolites present in the speniumedas besides MC-LR and desmethyl
MC-LR, cyanopeptolin-A, aerucyclamides A and D wguantified, and aeruginosins (602
and 684), cyanopeptolins (B and 963) and aerucydksr(B and C) detected. HC and LC of
Microcystisspent medium downregulated a gene encoding trestiig enzyme protease,
ct383 thus potentially interfered witlh. magnadigestion and as a consequence could
contribute to the increasing mortality in a concatbn and time dependent manner.
Similarly, whenD. magnawere fed with MC-producing strain of PCC 7806 wiyge,ct383
was downregulated after 6 days, leading to redutadl chymotrypsin activity
(Schwarzenbergeat al., 2010).

When fed withMicrocystisstrain UWOCC MRC (a non-microcystin producing stya
lethal molting disruption ilDaphniaspp. has been observed, suggesting that cyanadbhcte
proteases, other than microcystin, could interfeith the molting cycle (Kaeberniost al.,
2001). Despite the absence of microviridins J inrmedium, known to impair the molting
cycle in Daphniavia protease inhibition (Rohrlackt al, 2004), upregulation of a gene

coding for nuclear hormone receptbr3) followed by significant downregulation ¢iiz-f1
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observed. Our results suggest that other metabdtiéve a role in impairment of these
pathways which may affe@aphniamolting.

Activity of anti-oxidative stress enzymes is a calicdefense mechanism against the
induction of oxidative stress by microcystins (Amadnd Monserrat, 2010). Through
increased oxidative stress enzyme activities atokamtion,D. magnaare able to enhance
acclimation to cyanobacterial metabolites (OrtizdRguezet al, 2012). CAT is a highly
efficient antioxidant enzyme, responsible for rerc of H,O, concentrations in the cells
(Fridovich, 1998). Elevated CAT activity can pretveoxidative damage caused by
cyanotoxins thus provides oxidative protection Baphnia (Wojtal-Frankiewiczet al.,
2013). Increased CAT activity was observed in adaiftd neonates after 24 h when exposed
to 100 pg/L pure MC-LR, while exposure to 5 ug/L IR or less, CAT activity was similar
to control (Ortiz-Rodrigueet al, 2012). In our experiments, genes of antioxigarsymes,
cat and trx, were downregulated, confirming the results of tmzyene activity. The
significant decrease in CAT activity on days 3 ahdsuggests that these enzymes were
exhausted due to the presence of the mixture ohatyacterial compounds in the
concentrations applied. Similarly, CAT decreasedDinmagnaafter being exposed to
cyanobacterial crude extract (containing 60 pgtaltvC) during the whole exposure period
of 72 h while the pure toxin MC-LR increased it$haty (Esterhuizen-Londet al. 2016).
Even when D. magna were exposed to extracts from non-microcystin and
non-cylindrospermopsin medium, their CAT decreasiéer day 1 and 7 (Daet al, 2013).

In combination with the observed lethality, ouruls suggest thaD. magnaoxidative
defence response was repressed in such way thddtime damages may have occurred
resulting in lethal effects.

In D. magna and D. longispin&jcreased GST activity can detoxify microcystintaa
certain concentration or exposure duration, whieim @lso be transferred to the next
generation (Ortiz-Rodriguest al, 2012; Wojtal-Frankiewicet al. 2013, 2014). Despite the
upregulation ofystwithin the first 3 days, our exposures, howevegrdased GST activity,
compared with the control on day 3 and day 7, whexpression ofgst gene was

downregulated as well. Our GST results concernoora maximum two out of on average 7
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have had a different response. Asselizel (2012) showed that sigma-clagggenes irD.
pulexwere upregulated when fed on MC-produdvigaeruginosaafter 16 days. However,
our results are in line with previous studies wheteort term exposure (48 h) to
microcystin-producingvl. aeruginosaPCC7806 increaseatdklta-gsttranscript levels, while
long term exposure (15 days) downregulated thenu gtyal., 2016a). Similar decrease in
GST activities were observedh magnaexposed to cyanobacterial medium (containing 60
png/L total MC) after 24 h and 72 h (Esterhuizen-dibet al, 2016). Furthermore, GST
activity in D. magnadecreased with increased MC-LR concentrations ftOrto 200Qug/L
(Chenet al, 2005), suggesting enzymes exhaustibility as s¢&m in (Daet al, 2013).

Our results suggest that even lower concentrabdMC in the cyanobacterial medium,
along with the other cyanobacterial metabolites aif@ct enzyme activity in a similar way
like cyanobacterial medium containing higher migsity concentrations. Besides
cyanobacterial metabolites that were detected, abacterial medium could contain
undetected compounds that could potentially interfgith overall ecotoxicity (Smutnét
al., 2014) or inhibit enzymes activity, such as memoSF608 that was shown to have
inhibitory impact on GST (Wiegaret al, 2002).

WhenDaphniaare in toxic environments, mobilization of detasdttion and antioxidant
defense mechanisms, as well as growth and develdpomnes with energetic cost (Calow,
1991; McKee and Knowles, 1986; Pasteal, 2004). For instancd). magnaexposed to
nickel (Paneet al, 2004) or the fungicide tebuconazole (McKee andudles, 1986) showed
increased energy consumption, as glycogen andslipegtels were decreased. In our
experiments energetic resouces were instantly ugsible by the induction ofjapdh
(involved in glycolysis) at day 3. Upregulationgdpdhhas been observed Ih magnain
response to diet containing microcystins after gsdaf the experiment, suggesting that
ingestion of microcystin induces glycolysis andtpno catabolism (Schwarzenberggtral,
2009). Our results further suggest that severeetiepl of energy affected also the muscular
activity, as the myosin heavy chain was immediaaelg significantly downregulated in both
experimental exposures (HC and LC). Depletion ofrgym in combination with

downregulation of the myosin heavy chain could peva mechanistic explanation of the

22



577
571
572
573
574
575
576
577
578
579
580
581
582
583

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

600

| ISR S RSN P P IS 4 - b [, .U W P N . S S | AP o WO PR Y

al., 2001; Ghadouarit al, 2004).

The response of the histone 2A geh2A) (involved in normal cell cycle progression)
may indicate two different cellular pathways, degieg on the exposure concentration. The
downregulation at LC hints on apoptotic procesadsle the upregulation at HC exposure
may imply cellular dysfunction occurring during netic processes, indicating a stronger
negative effect of HC medium ddaphnia,that is in line with the higher mortality in this
exposure. Activation of apoptotic pathways are oy correlated with the decline in
mhcrt(Tonget al, 2017) that was also observed in our study, ssiggeapoptotic processes
in D. magna caused by cyanobacterial metabolites. Used ctratEms of cyanobacterial
metabolites in our exposures may have been toofbrgbhaphniato adapt, therefore use of
lower concentration in future studies would providieeper understading &@aphnids

molecular response to the cyanobacterial metakolite

5. CONCLUSION

In conclusionD. magnasurvival was strongly affected by cyanobacterigrgpnedium
at both LC and HC, due to the combined effect of M the other secondary metabolites
presentD. magnawere not able to acclimate during the short expoperiod. Medium with
the highest tested concentration of cyanobacterethbolites was the most detrimental as
expected. Exposure to cyanobacterial compoundshénM. aeruginosaspent medium
affectedD. magnagenes involved in i) digestion, thus mobilizatidntloe limited internal
energetic resources, ii) oxidative stress and d@takon, iii) muscular activity and iv) cell
regulation including the molting process. We albsayved consequences of cyanobacterial
medium on detoxification and antioxidant capacitigdsich were dose and in particular
time-dependent indicating an exhaustion of the eresywith high concentration or long
exposure duration. Despite this, the concentratwei® chosen based on available data of
pure MCs or MCs in crude extracts causing low ligh&or following sublethal effects an

even lower concentration is recommended.
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Cdll free M. aeruginosa spent medium affected Daphnia survival and physiology
Medium with higher concentration of cyanobacterial metabolites was more detrimental
Other secondary metabolites, besides microcystin-LR highly likely had negative impact
on Daphnia
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