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• Permethrin impairs behavior of adult
zebrafish (F0) following early life
exposure.

• F1 and F2 male offspring show a
decrease in anxiety-like behavior.

• Transcriptome data show transgenera-
tional glutamatergic signaling (GS) dis-
ruption.

• DNA methylation analyses also indicate
persistent dysregulation of GS.

• Epigenetic dysregulation of GS may
cause transgenerational behavioral
alterations.
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The pyrethroid insecticide permethrin is widely used for agricultural and domestic purposes. Previous data
indicated that it acts as a developmental neurotoxicant and can induce transgenerational effects in non-
target organisms. However, associated underlying mechanisms remain unclear. The aim of this study was
to investigate permethrin-related transgenerational effects in the zebrafish model, and to identify possible
molecular mechanisms underlying inheritance. Zebrafish (F0) were exposed to permethrin during early-
life (2 h post-fertilization up to 28 days). The F1 and F2 offspring generations were obtained by pairing ex-
posed F0 males and females, and were bred unexposed. Locomotor and anxiety behavior were investigated,
together with transcriptomic and epigenomic (DNAmethylation) changes in brains. Permethrin exposed F0
fish were hypoactive at adulthood, while males from the F1 and F2 generations showed a specific decrease
in anxiety-like behavior. In F0, transcriptomic data showed enrichment in pathways related to glutamater-
gic synapse activity, which may partly underlie the behavioral effects. In F1 and F2 males, dysregulation of
similar pathways was observed, including a subset of differentially methylated regions that were inherited
from the F0 to the F2 generation and indicated stable dysregulation of glutamatergic signaling. Altogether,
the present results provide novel evidence on the transgenerational neurotoxic effects of permethrin, as
tpellier, CNRS, Ifremer, IRD, Palavas, France.
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well as mechanistic insight: a transient exposure induces persistent transcriptional and DNA methylation
changes that may translate into transgenerational alteration of glutamatergic signaling and, thus, into
behavioral alterations.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Permethrin is one of the most common domestic and agricultural
pyrethroid insecticides worldwide (DeMars et al., 2021; Banks et al.,
2014). It is considered a safer alternative compared to many other
pesticides since permethrin does not accumulate in the environment
and is quickly metabolized and excreted by organisms (Holmstead
et al., 1978; Imgrund, 2003; Zhu et al., 2020). Nonetheless, a recent
study showed that photodegradation products of permethrin can po-
tentially be more harmful to aquatic organisms than the parent com-
pound (Zhu et al., 2020). Due to increasing usage, pyrethroids are
detected in human fluids in the low μg/L range (Barr et al., 2010;
Saillenfait et al., 2015), and in aquatic compartments in the ng/L to
high μg/L range (Hladik and Kuivila, 2009; Shahsavari et al., 2012;
Budd et al., 2020). Exposure to permethrin can elicit a variety of adverse
effects in various species, including neurotoxic effects and behavioral
deficits (Carloni et al., 2012; DeMicco et al., 2010; Fedeli et al., 2017;
Nunes et al., 2019; Saito et al., 2019; Yang et al., 2014; Furlong et al.,
2017; Shelton et al., 2014), as well as oxidative stress (Carloni et al.,
2012; Dhivya Vadhana et al., 2013; Nunes et al., 2019). Permethrin
has also been shown to act as an endocrine disrupter in fish (Tu et al.,
2016; Zhang et al., 2017).

In a previous study, we showed that early-life exposure of zebrafish
(F0) to permethrin induces transgenerational disruption of larvae be-
havior in the F1 and F2 generations (Blanc et al., 2020). Permethrin is
not known to be mutagenic (Pluijmen et al., 1984; Pednekar et al.,
1987), thus, transgenerational effects are more likely to be a conse-
quence of chemically-induced, inherited changes in epigenetic patterns
(Nilsson et al., 2019). Epigenetic mechanisms are mitotically and/or
meiotically heritable changes in gene function that cannot be explained
by changes in DNA sequence, and which can further lead to alterations
of cell function and impair the physiology of an organism (Holliday,
2014). During fetal development and early life, exposure to epigenetic
modifiers is of concern due to high epigenetic plasticity that can affect
normal and pathological development later on (Baccarelli and Bollati,
2009; Guerrero-Preston et al., 2010; Stel and Legler, 2015; Vaiserman,
2014). Additionally, cancer, neurological disorders, and several other
conditions have been associated with changes in the epigenetic land-
scape and were linked to chemical exposure (Grandjean, 2013;
Prusinski et al., 2016; Zoghbi and Beaudet, 2016). Some of these epige-
netic changes may be inherited, and thereby induce adversities in the
unexposed offspring, a phenomenon known as transgenerational epige-
netic inheritance (Liberman et al., 2019; Skinner et al., 2010; Skinner,
2008). For now, most evidence is based on persistent DNA methylation
changes in germ cells of exposed individuals, that can escape the epige-
netic reprogramming events occurring at fertilization and sex differen-
tiation. They are further transferred to somatic and germ cells of the
developing offspring, and remain «imprinted» in the epigenome over
generations (Liberman et al., 2019; Skinner, 2011). However, there are
studies showing that other epigenetic marks, such as histone post-
translational modifications and non-coding RNA regulation, can also
be inherited and likely work in concert to support inheritance phenom-
ena (Blake and Watson, 2016).

A recentwork found significant associations between pyrethroid ex-
posure and DNA methylation changes in human blood (Furlong et al.,
2020). In addition, previous studies have reported that permethrin af-
fects expression of DNA methyltransferases, the enzymes in charge of
DNA methylation, in the striatum of exposed rats (Fedeli et al., 2017)
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and in zebrafish embryos, along with other epigenetic factors (Blanc
et al., 2019). Furthermore, global DNA methylation changes have been
observed in the F1 offspring upon permethrin exposure (Bordoni
et al., 2015). Finally, specific changes in DNA methylation patterns in
sperm were linked to reproductive abnormalities in the F3 offspring of
rats exposed to a mixture of permethrin and the insect repellent N, N-
diethyl-meta-toluamide (DEET) (Manikkam et al., 2012a).

Zebrafish is a prominent model organism for ecotoxicological and
biomedical studies and is used for various routine testing for the risk as-
sessment of chemicals and complex environmental samples (Scholz
et al., 2008). Zebrafish have genetic similarities to mammals and epige-
netic pathways are alsomostly conservedwith somemechanistic differ-
ences such as the lack of parental imprinting (Kamstra et al., 2015).
Besides, zebrafish are used for several established behavioral tests to as-
sess different endpoints. For example, the novel tank allows to evaluate
the activity and exploratory behavior of the fish, which may reflect al-
terations in anxiety (Egan et al., 2009; Sackerman et al., 2010). Due to
their short life cycle, zebrafish is a model for transgenerational inheri-
tance research (Bugel et al., 2014; Kamstra et al., 2017), and previous
data showed that transgenerational effects observed in the zebrafish
were similar to that observed in mammals (Baker et al., 2014a).

So far, no link between behavior, genetic, and potential epigenetic
changes has been investigated following permethrin exposure. There
is also no information available on whether these changes may persist
in offspring generations and lead to transgenerational effects. In this
study, we combined investigations at three different levels of biological
organization in F0, F1 and F2 generations of zebrafish. To this end,we in-
vestigated in the same fish (1) the presence of a transgenerational be-
havioral phenotype in adults, (2) whole-brain transcriptomic changes
and (3) differentially methylated regions (DMRs) that may be impli-
cated in the heritable phenotype.

2. Material and methods

2.1. Fish exposure and sampling

This work has received approval for research ethics from the
Swedish Board of Agriculture, Jönköping, Sweden (#5.2.18-861/15),
and a certificate of approval is available upon request. The exposure of
the F0 generation and breeding F0, F1, and F2 fish were performed as
described previously (Blanc et al., 2020) and additional information is
available in supplementary data (Text S1). Briefly, 2-hour-post fertiliza-
tion (hpf) AB zebrafish embryos (ZFIN ID: ZDB-GENO-960809-7) were
transferred to exposure solutions containing 1 μg/L (permethrin low;
PL), 10 μg/L (permethrin high; PH) permethrin (Sigma-Aldrich,
PESTANAL analytical standard, purity >90% cis + trans isomers), or
dimethylsulfoxide 0.01% (DMSO, Sigma-Aldrich) as solvent control
(SC), and kept exposed in a flow-through system until 28 days post-
fertilization. 1 μg/L is in the range of the highest permethrin concentra-
tions found in surface water as it tends to bind to sediments where con-
centrations up to 20 μg/kg can be found (NORMAN EMPODAT Database,
2020). We have further demonstrated that a 28 day exposure to both 1
and 10 μg/L did not induce any observable defect on growth or survival
(Blanc et al., 2020). Chemical analysis was performed onwater samples
at day 0, 4, 14, 21 and 28. The results, presented in (Blanc et al., 2020),
excluded cross-contamination of the solvent controls and confirmed ex-
posure, althoughmeasured concentrationswere approx. 10 times lower
than the nominal ones (Blanc et al., 2020).

http://creativecommons.org/licenses/by-nc-nd/4.0/
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At 28 days post-fertilization, juveniles were transferred into clean
water and bred according to standard protocols (Westerfield, 2007).
The F1 and F2 generations were produced by mating exposed F0
males and females and were maintained under standard (unexposed)
conditions. When they reached 4 months of age, fish were euthanized
in saturated ethyl 4-aminobenzoate solution (500 mg/L, Sigma-
Aldrich) and individual brains (n = 4 per treatment and per sex)
were dissected and snap-frozen in liquid nitrogen, then kept at
−80 °C until processing.

2.2. Novel tank diving test

For F0 to F2 generations, locomotor and exploratory behavior in re-
sponse to a novel environment was investigated in 8–14 fish per sex
and condition. Fish were tested at the age of 9 months pf (mpf; F0), 7
mpf (F1) and 8 mpf (F2). The novel tank diving test is commonly used
to identify any impact on activity and anxiety level of fish via analysis
of travelled distance and vertical positioning (Levin et al., 2007). Fish
were transferred to the recording room the day before testing. They
were kept in individual 3 L tanks containing systemwater, in visual con-
tact with each other. Testing was performed between 1 and 5 p.m. Each
individual was transferred to a 1.5 L trapezoid tank and vertical posi-
tioning was immediately recorded (Basler® acA1300 camera) for
4 min. The test duration was reduced to take into account the absence
of prior incubation and the quicker relief of anxiety compared to what
was initially described (Levin et al., 2007). Water was exchanged be-
tween each run to avoid inter-individual interferences. All behavioral
data were automatically analyzed using Ethovision XT 13.0 (Noldus).
The tank was divided into 3 virtual zones: top, middle and bottom
(Sackerman et al., 2010). A list of measured exploratory variables is pre-
sented in Table S1. Statistical analyses were performed using Principal
Component Analysis (PCA) (package factoextra, R v3.6.1) on sex-
specific datasets (each including 10 metrics, 3 generations, 3 treat-
ments) as preliminary analyses revealed that the sexwas a significantly
contributing factor (Text S2). One-way Analysis of Variance followed by
Bonferroni's Multiple Comparison test was applied on major principal
components (PC) aswell as on a selection of individual variables related
to exploratory behavior (time spent in top third zone; distance travelled
in top third zone; average entry duration) and defensive innate behav-
ior (freezing as the frequency of events at a speed <1% of the running
average; angular velocity as a mean to represent erratic movements
via sharp changes in direction). Data were checked for the presence of
significant outliers (Grubbs' test, p ≤ 0.05). A p-value (p) < 0.05 was
considered as statistically significant.

2.3. RNA-sequencing and qPCR validation

Total DNA and RNA from four brains per treatment (PH or SC), gen-
eration, and sex were consecutively extracted for Reduced Representa-
tive Bisulfite Sequencing (RRBS) and RNA-Sequencing (RNA-Seq),
respectively, using the Triprep extraction kit (Macherey-Nagel) accord-
ing to the manufacturer's instructions. Quality and quantity were spec-
trophotometrically evaluated using a Biodrop μLITE (BioDrop, UK). One
μg total RNA per sample was sent to BGI Europe for RNA sequencing. Li-
brary preparation and sequencing were handled by BGI Europe on
BGISeq-500 as paired-end 150 bp reads.

We performed technical validation of the RNA-Seq results using
qPCR. Within each generation, a set of genes with different biological
functions was selected. Both strongly (absolute fold-change ≥2) and
moderately regulated (absolute fold-change <2) genes in RNA-Seq
analyses were included. Comparisons were performed within genera-
tion/sex specific sub-datasets (see Table S3 for full results). Primers
(Eurofins Genomics, Germany) were designed using Primer3Plus
(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi)
(Table S2). cDNA was synthetized from 400 to 500 ng of RNA template
and each qPCR reaction included 2× SYBR® FAST MasterMix (KAPA
3

Biosystems), 200 nM of each primer, 2 μL of 1/10 diluted cDNA com-
pleted to 12 μL with MilliQ water. Potential gDNA contamination was
controlled with purified RNA (no reverse transcriptase control) and
each reaction was run in technical duplicates. Results were normalized
to the expression of rpl13a and b2m as they showed the highest stability
among 4 investigated genes (i.e. eef1a1, b2m, actb1 and rpl13a) (data
not shown). Fold-changes were calculated using the Pfaffl method
(Pfaffl, 2001). The results from the validation are available in Table S3
and revealed an overall correlation of 86% between fold-changes from
both techniques (Pearson correlation).

2.4. Reduced Representative Bisulfite Sequencing (RRBS)

RRBS experiments were performed at the Environmental
Epigenetics facility of the IHPE research unit, to identify differentially
methylated cytosines and differentially methylated regions (DMRs)
on DNA (Meissner et al., 2005). 100 ng of purified DNA was digested
with MspI and libraries were prepared for each sample using the
Diagenode RRBS kit Cat No C02030033 (Diagenode, Belgium),
according to the manufacturer's protocol. DNA-free water served as
negative control. The 48 samples were blindly divided into eight
pools to create the libraries as described in the Diagenode protocol.
qPCR was used to determine the optimal number of amplification
cycles. Relative fluorescence was plotted versus cycle number and
the cycle number that corresponds to roughly one-third of the max-
imum fluorescent intensity was used for PCR amplification (19 cycles
for all pools of libraries). Five μl of the PCR products were used to
check quality and quantity of libraries by electrophoresis on a 1.2%
agarose gel and Midori green direct staining. Purification was done
on an IP-Star system (Diagenode) with Ampure XP beads (Beckman
Coulter, USA). Libraries were resuspended in 20 μL of elution buffer,
and size distribution and concentration were profiled with an
Agilent Bioanalyzer High Sensitivity DNA Assay. Libraries were
sequenced on two NextSeq550 High Output flow cells (Illumina,
USA) as paired-end or single-end 150 bp reads. Randomization was
applied to dispatch samples from different generations/sex/
treatments on each flow cell.

2.5. Bioinformatic analyses

2.5.1. RNA-sequencing data analysis
Quality of the fastq files was checked using the FastQC software

(v0.11.8) (Andrews, 2010) and reads were mapped to the last version
of the zebrafish genome (Ensembl GRCz11, annotation GRCz11.97)
with StAR (v2.7.0) (Dobin et al., 2013). QC statistics are available in
Excel Table S1. Read count was performed with HTSeq (v0.11.2)
(Anders et al., 2015) and differential expression analysis with DESeq2
(v1.24.0) (Love et al., 2014). A gene showing an adjusted p-value for
multiple comparisons (padj) ≤ 0.05 (Benjamini-Hochberg correction)
was considered as a significantly differentially expressed gene (DEG).
Gene Set Enrichment Analysis (GSEA v4.0.3)was used for functional en-
richment against Gene Ontology (GO, 2019-07-31) and REACTOME
(2019-10-02) databases (Reimand et al., 2019; Subramanian et al.,
2005). The ranking metric used in GSEA analyses was the Walt statistic
given by DESeq2 (Esteve-Codina, 2018). At first, a gene set showing a
padj≤0.05 and abs (normalized enrichment score) (NES) > 1.5was con-
sidered as significantly enriched. The statistical threshold was further
relaxed to a padj≤0.25 to include borderline yet biologically relevant
findings to the analysis, as advised by GSEA documentation.

2.5.2. RRBS data analysis
All analyses were done on the Galaxy instance of the UMR 5244 -

“Interactions Hôtes-Pathogènes-Environnements” laboratory http://
bioinfo.univ-perp.fr (Afgan et al., 2018). Quality of the sequencing
data was evaluated using FastQC (v0.71), and one replicate from F0
males was discarded due to poor sequencing quality. Adaptors were

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
http://bioinfo.univ-perp.fr
http://bioinfo.univ-perp.fr
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automatically trimmed using TrimGalore! (v0.4.3.1) (Krueger, 2012)
and reads were aligned with Bismark (v0.22.1) (Krueger and
Andrews, 2011) to the GRCz11 version of the zebrafish genome, with
the adjusted parameter “L,0,-0.6” for optimal alignment (Kamstra
et al., 2017).Methylation callingwas performedwith Bismark extractor.
QC statistics are available in the Excel Table S8. Data were normalized to
median read count and cytosine positions showing a coverage below 5
andabove the99.9 percentilewere discarded. At this stage,we observed
a batch effect between the two flow cells that were used in the experi-
ment (Fig. S1A). The built-in methylKit batch correction (R package
v1.12) (Akalin et al., 2012) is based on a principal component associa-
tion of available metadata. This type of batch correction has limited ap-
plication, particularly with high dimensional datasets, as it focuses on
the removal of a whole principal component that may contain more
than just variation associated to batch. For this reason, the authors pro-
vided ways of extracting and reimporting batch-corrected values into
their framework. We tested the built-in version and found that overall
batch specific differences were still observed (Fig. S1B). Currently, no
fully appropriate batch correction methodology has been published
for methylation data. For this reason, we extracted the percentage of
methylation for each identified position and used an Empirical Bayes
Framework previously developed to correct for batch effects in continu-
ous datasets, ComBat (Johnson et al., 2006).We provided themethodol-
ogy with the batch information as well as the model matrix relating to
sex, treatment, and generation of the fish to remove as much technical
information as possible while preserving biological information
(Fig. S1C). The resulting matrix was rescaled to 0–100 to be integrated
back into a methylKit object. To test whether the correction removed
any biological information, we compared the results from a within
batch differentially methylated position analysis. This showed that
100% of the regions identified after correction were also identified in
the dataset before correction and that there was a > 97% correlation be-
tween differential methylation values from both datasets (Fig. S2),
showing that the batch correction was successful and did not create
false-positive DMRs. However, the normalization step reduced the
number of significant DMRs by a factor of approximately 5, potentially
leading to underestimation of the amount of methylation changes. The
output was used in methylkit to perform differential analyses on artifi-
cially segmented 300 bp tiles (Kamstra et al., 2017). DMRswere defined
as 300 bp tiles including at least 4 cytosines showing a 5× coverage. An
initial cut-off of 10%differentialmethylation and padj≤0.05was used for
statistical significance, which was further relaxed to a padj≤0.25 as for
RNA-Seq data in order to discuss biologically meaningful findings. Sig-
nificant DMRs were visualized in the Integrative Genome Viewer (IGV
Fig. 1. PC1 (A) and PC2 (B) individual loadings after novel tank diving test in F0, F1, and F2 g
Permethrin; SC: Solvent Control (DMSO 0.01%). Numeric values are available in Table S8.
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v. 2.8.0) (Robinson et al., 2011) to compare methylation levels of spe-
cific cytosine positions between the different generations.

DMRs were associated to the closest transcriptional start site using
the genomation package with default parameters (v. 1.18.0) (Akalin
et al., 2015). Functional enrichment was performed using gprofiler2
(v.0.1.9) (Reimand et al., 2018) against the Gene Ontology and
Reactome databases. A custom background containing associated
genes from the full list of 300 bp tiles was used. A gene set was consid-
ered significantly enriched at a padj≤0.05.

Both RNA-Seq and RRBS data have been deposited in NCBI's Gene
Expression Omnibus (Edgar et al., 2002) and are accessible through
GEO Series accession number GSE154020 (reviewer access
token czwvcykovjajxkj) and GSE154206 (reviewer access token
sxuhiycgbryxhkv), respectively.

3. Results

3.1. Behavioral effects

Behavioral analyses were performed in permethrin and control fish
from all generations using the novel tank diving test. PCA analysis
yielded one major component (PC1) representing most of the explana-
tory variables (i.e., global locomotor activity) and explaining 46% and
53% of the total variability in behavior inmales and females, respectively
(Table S4). Positive scores were assigned to high exploratory and loco-
motor activity. In F0 males exposed to 10 μg/L (PH), we observed a sig-
nificant reduction in PC1, i.e. a lower locomotor activity compared to
control fish (p = 0.024, Fig. 1A). This was not seen in F0 males from
the lower exposure dose (PL). Although not significant, F0 females
showed the same tendency (p = 0.070, Fig. S3). No effect on global lo-
comotor activitywas observed in the F1 and F2 generations (Fig. 1A, S3).

In males, but not in females, PC2 specifically described anxiety-like
behavior (distance travelled, and time spent in top third area) and ex-
plained 19% of the total variability in behavior (Table S4). Positive PC2
scores were assigned to reduced anxiety. Significant reduction in
anxiety-like behavior was shown in PH F2 males (p = 0.030) and the
same tendency was observed in PH F1 males (p = 0.094; Fig. 1B). PH
F1males specifically displayed a significant increase in the total distance
travelled in Top area (p = 0.035; Fig. 2A) and an increase in the time
spent in this zone (p = 0.070; Fig. 2B). Same trends were observed for
PL F1 males (p = 0.089 for distance in Top and p = 0.082 for time in
Top). PH F2 males showed a significant increase in the time spent in
Top area (p = 0.048) but no change in the distance travelled in this
zone compared to controls (p=0.293; Fig. 2B). No effect was observed
enerations of adult male fish. #: p < 0.1; *: p < 0.05. PL: 1 μg/L Permethrin; PH: 10 μg/L



Fig. 2.Univariate analysis related to anxiety-like behavior inmales of the F1 and F2 generations. A:Distance travelled in top area; B: Time spent in Top area. #: p<0.1; *: p<0.05. PL: 1 μg/L
Permethrin; PH: 10 μg/L Permethrin; SC: Solvent Control (DMSO 0.01%). Numeric values are available in Table S8.
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in PL F2males. Besides, the data collected did not indicate any difference
in average entry duration (Fig. S4), nor in freezing episodes and erratic
movement frequency as markers for defensive innate behavior
measurements (Fig. S5-S6). Overall, exploratory behavior endpoints
suggest that both F1 and F2 PH males were less anxious than their SC
congeners. No effect on behavior was observed in F1 and F2 females
(Fig. S4-S8).

3.2. Transcriptional changes in zebrafish brain

RNA-Seq analyses were performed in zebrafish whole brains from
each generation (F0, F1, F2) to investigate transcriptomic changes
that may be associated with the behavioral defects. The results
showed an increasing number of significant differentially expressed
Fig. 3. A. Distribution of differentially expressed genes (DEGs) between upregulation (UP) an
females (F1_F), F2 males (F2_M) and F2 females (F2_F) following F0 early exposure to per
proportion of transcripts showing an absolute fold change above 2. B. Venn diagram showing
of males (padj≤0.05). Underlined numbers show significantly enriched gene sets according to
number of differentially expressed genes and overlapping between the 3 generations of fema
Gene Set Enrichment Analysis (GSEA) results (padj≤0.05).
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genes (DEGs) and enriched gene sets in permethrin-exposed fish
compared to controls from the F0 to F2 generation (Fig. 3). Overall,
there was little overlap in significant DEGs or pathways between
generations (Fig. 3B-C). In the F0 generation, a limited number of
genes, 22 in males and 27 in females, were significantly dysregulated
(Fig. 3). Nonetheless, GSEA analysis revealed 95 and 69 gene sets sig-
nificantly enriched in male and female, respectively (Fig. 3); out of
this, 19 were common to both sexes and related to transcription/
translation processes, eye development, and glutamatergic synaptic
activity (unblocking of NMDA receptors, glutamate binding and acti-
vation) (Fig. S9). Further, in zebrafish F0 males specifically, tran-
scriptional upregulation of NMDA receptors was accompanied by
upregulation of genes linked to AMPA glutamate receptor activity
(Table 1).
d downregulation (DOWN) in F0 males (F0_M), F0 females (F0_F), F1 males (F1_M), F1
methrin 10 μg/L (n = 4). The graphic displays the total number of DEGs as well as the
the number of differentially expressed genes and overlapping between the 3 generations
Gene Set Enrichment Analysis (GSEA) results (padj≤0.05). C. Venn diagram showing the
les (padj≤0.05). Underlined numbers show significantly enriched gene sets according to



Table 1
Transcriptional enrichment in glutamate signaling related gene sets in brains from all generations of males (n = 4). This table shows the Normalized Enrichment Score (NES) and asso-
ciated adjusted p-value (padj) as given by the Gene Set Enrichment Analysis (GSEA) output. Headings refer to F0 males (F0_M), F1 males (F1_M) and F2 males (F2_M). Complete results
from differential gene expression analyses and GSEA are available in the Excel Tables S2–S7 and S15–S17.

Gene set NES (padj) F0_M NES (padj) F1_M NES (padj) F2_M

Unblocking of NMDA receptors, glutamate binding and activation 2.18 (0.001)
NMDA selective glutamate receptor complex 1.89 (0.044)
Activation of NMDA receptors and postsynaptic events 1.98 (0.018)
AMPA glutamate receptor activity 1.92 (0.032) 1.76 (0.19) −1.70 (0.22)
NMDA glutamate receptor activity 1.81 (0.087)
Trafficking of GluR2-containing AMPA receptors 1.79 (0.17) −1.72 (0.21)
Glutamate binding, activation of AMPA receptors and synaptic plasticity 1.77 (0.19) −1.72 (0.21)
Synaptic transmission, glutamatergic −1.72 (0.2)
Trafficking of AMPA receptors 1.73 (0.21) −1.71 (0.22)
Regulation of synaptic transmission, glutamatergic −1.86 (0.13)
Activation of AMPA receptors 1.80 (0.095)
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In the F1 and F2 generations, we observed larger transcriptomic
changes in females compared to males, even though the measured be-
havioral changes were only observed in the latter. At first, no significant
effect on glutamatergic neural circuits was observed in the F1 or F2
generation (padj≤0.05). However, when relaxing the statistical cut-off
to an acceptable threshold for GSEA studies (p ≤ 0.05, padj≤0.25)
(Subramanian et al., 2005), we observed transcriptomic enrichment in
gene sets related to glutamatergic receptor activity in all generations
of males, but not in females (Table 1). The persistence of this effect
was specific to glutamatergic signaling as other enriched gene sets
were different between generations (Excel Tables S15–S17). The direc-
tion of regulation was however opposite between F0/F1 (up) and F2
(down) (Table 1).

Of note, we also reported significant transcriptomic enrichment in
epigenetic mechanisms: histone acetylation (F0_M, F2_M, F1_F, F2_F)
and histone methylation/demethylation (F0_F, F1_F) pathways
(Fig. S10).

3.3. Epigenetic alterations in zebrafish brain

As a possiblemechanism for inheritance of behavioral defects, we in-
vestigated DNA methylation changes induced by permethrin exposure,
and their stability over generations in zebrafish brain using RRBS. We
observed a generation-specific clustering (F0 vs F1–F2) of the methyla-
tion profiles that was independent of sex and treatment (Fig. S1C). This
may be explained by the higher genetic and epigenetic variability
among the F0 fish group compared to F1–F2 groups due to the breeding
set-up, since we included a higher number of contributing spawns in
the F0 generation compared to F1 and F2 (18 vs 7) (Blanc et al., 2020).
This, however, did not prevent from assessing intra-generation and
inter-condition changes in DNA methylation and further compare
DMRs between generations.

We could identify several DMRs within each generation, including
significant overlaps between generations (Fig. 4). In the F0 generation,
110 and 121 DMRs (out of 17,456 identified regions) were identified
in males and females, respectively, out of which 28 were common to
both sexes (Table S5).

When looking at DMR inheritance, a total of 13 and 8 DMRs were
overlapping between all generations in males and females, respectively
(Fig. 4, Table S6). In males, these overlapping DMRs were consistently
either hyper- or hypomethylated across generations with only one ex-
ception, whereas results in females suggest more complex interactions
with half of the DMRs being hypomethylated in one generation and
hypermethylated in the next (Fig. 5).

Visualization of all inherited regions using the Integrative Genome
Viewer confirmed that the most robust DMR in both sexes was on
chr24 and associated to vim, encoding for a structural protein expressed
in all body cell types, including in brain glial cells (Schnitzer et al., 1981;
Cerdà et al., 1998) (Fig. S11). This region showed inheritance of
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epigenetic alteration of eight cytosine positions from F0 to F2 genera-
tions. Within the list of genes associated with inherited DMRs in males
only, from F0 to F2 generations, fmr1 (chr14, translational regulator
within the nervous system), and pnocb (chr20, regulation of nociception
via opioid-receptor binding activity) appeared as interesting candidates
as theymay be relevant to behavioral alterations (Demin et al., 2018; Ng
et al., 2013) (Fig. S12-S13). Whereas fmr1 showed inheritance of DNA
hypermethylation at the exact same cytosine positions, effects on
pnocb-associatedDMRwere involving different cytosines and directions
of regulation across generations (Fig. S13).

We further performed pathway analysis using the list of genes asso-
ciated to the DMRs (Fig. S14). In F0 males, the gene set “AMPA gluta-
mate receptor activity” was significantly enriched, as observed in
RNA-Seq data (Table S7). When slightly relaxing the statistical cut-off
(p ≤ 0.05, padj≤0.25), the results indicated that DNA methylation
changes were linked to additional pathways related to glutamatergic
signaling in F0 and F2 males, but this could not be identified in F1
(Table S7).

4. Discussion

Developmental exposure to pyrethroids such as permethrin has
been shown to induce neurobehavioral deficits in various species
(Nunes et al., 2019; Saito et al., 2019; Furlong et al., 2017; Shelton
et al., 2014). However, if and how these effects are inherited across gen-
erations is unknown. In this study, we show that early-life exposure of
zebrafish to permethrin induces transgenerational behavioral alter-
ations as well as persistent epigenetic and transcriptional modifications
that are linked to glutamatergic signaling disruption.

Permethrin exposure induced a late onset reduction in overall swim-
ming activity, findings that are in line with a recent study performed in
zebrafish (Nunes et al., 2020). The results further showed that males
were more sensitive, as previously observed in mammals (Imanishi
et al., 2013; Saito et al., 2019).

Acute exposure to permethrin induces overactivation of voltage-
gated sodium channels in the nervous system, which in turn leads to
constant depolarization of nerve cells, increase in the excitatory
postsynaptic potential, tremors, and further paralysis and death
(Vijverberg and van den Bercken, 1990). Sodium channels of inverte-
brates and fish are particularly sensitive to acute pyrethroid exposure
compared tomammals (Bradbury and Coats, 1989), whichmakes pyre-
throid use a specific threat to aquatic communities. However, mecha-
nisms underlying delayed neurotoxicity after low-dose exposure to
permethrin are not well known and were poorly investigated in fish.
Inmammals, possible molecular changes were linked to neurodegener-
ation and synaptic morphology (Carloni et al., 2012; Carloni et al.,
2013). In addition, early-life exposure of rodents to permethrin was
shown to impair glutamatergic signaling in vitro and in vivo (Carloni
et al., 2012; Shafer et al., 2008), and another study linked overactivation



Fig. 4. Changes in DNAmethylation in F0, F1 and F2 generations of zebrafish following F0 early-life exposure to permethrin 10 μg/L (n= 4; except for treated F0 males where n= 3). A.
Distribution of the Differentially Methylated Regions (DMRs) between hypo- and hypermethylation within each dataset (padj≤0.05): F0 males (F0_M), F0 females (F0_F), F1 males
(F1_M), F1 females (F1_F), F2 males (F2_M) and F2 females (F2_F). B. Venn diagram showing the number of DMRs and overlaps between the 3 generations in males (padj≤0.05). C.
Venn diagram showing the number of DMRs and overlaps between the 3 generations in females (padj≤0.05).
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of glutamatergic NMDA receptors to a depressive-like behavior (i.e.
reduced mobility) in rats (Cattani et al., 2017). Altogether, this
indicates that upregulation of genes related to glutamatergic synap-
tic activity may support the behavioral effects observed in the F0
generation.
Fig. 5.Heatmap showing inherited differentially methylated regions (padj≤0.05) in F0, F1, and
n=3). Rowheadings refer to genes associated toDMRs. If none, it refers to theDMRas chromos
F1 males (F1_M), F1 females (F1_F), F2 males (F2_M) and F2 females (F2_F). Numeric values a
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Further, we showed for the first time that the indirectly exposed F1
and the unexposed F2 generations of male offspring were also affected,
as they displayed a reduction in their anxiety-like behavior. While the
data did not indicate a change in defensive innate behavior endpoints,
other parameters that relate to anxiety, such as time spent and/or
F2 generations of males (left) or females (right) (n= 4; except for treated F0males where
omename.starting position. Columnheadings refer to F0males (F0_M), F0 females (F0_F),
re available in Table S6 and Excel Tables S9–S14.
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distance swam in the Top area of the tank, were altered (Cachat et al.,
2010). This effect was significant in the highest tested concentration,
whereas there was only a trend suggesting that similar alterations
may happen in the low concentration. This result supports the presence
of a transgenerational phenotype of developmental origin caused by F0
exposure to permethrin that confirms previous data from zebrafish lar-
vae (Blanc et al., 2020). Sex differences in transgenerational effectswere
observed following other exposure scenario andmay suggest a different
capacity for adaptation and recovery (Baker et al., 2014b; Crews et al.,
2007; Vera-Chang et al., 2018). In this regard, gene expression data
showed that in F1 and in F2, the number of DEGs was higher in females
compared to males, which may highlight sex-specific adaptive or com-
pensatory mechanisms at play.

These results further support the notion that direct effects of devel-
opmental exposure (i.e. effects in F0) can be partly dissimilar to the ones
resulting from germ cell exposure (F1) or transgenerational inheritance
(F2) as described in previous studies (Alfonso et al., 2019; Bell and
Hellman, 2019; Schmitt et al., 2020; Blanc et al., 2021). In this study,
F0 males were hypoactive, while more specific effects on anxiety relief
were identified in F1 and F2males. At themolecular level, gene expres-
sion and epigenetic changes were however similar between all three
generations, and no specific similarity relevant to behavior could be
identified between both F1 and F2 only. Thus, we hypothesize that be-
havioral alterations were partly inherited from F0 to F1 and F2, and
that the hypoactive phenotype in F0 prevented from measuring more
subtle behavioral changes, such as alterations in the anxiety level of F0
males. This is further strengthened by the identification of additional
molecular effects specific to the F0 generation that could explain the ag-
gravated phenotype.

Pathway analysis in F1 and F2 generations strengthened the hypoth-
esis that behavioral alterations may be linked to glutamatergic synapse
activity, as the related transcriptional changes were also specific to
males. However, more investigation into the impact of the transcrip-
tional regulation of this pathway is needed, in particular as glutamate-
related pathways were upregulated in F1 but downregulated in F2,
while observing similar behavioral phenotypes. We can only speculate
on how these opposite patterns could lead to similar phenotypes. It is
possible that despite opposite transcriptional changes, similar alter-
ations in these pathways at the level of protein expression or function
are induced in both generations. Furthermore, F1 and F2may show sim-
ilar transcriptional changes in specific brain areas, which cannot be ad-
dressed in this study as the analyses were performed on whole brains,
and thus represent overall changes. For these reasons, further investiga-
tions focusing on protein expression and functionality as well on spe-
cific brain regions may clarify the effects of permethrin on the
glutamatergic system of zebrafish.

DNA methylation analyses also pointed to effects related to gluta-
matergic signaling, which persisted across all three generations.
Changes in DNA methylation have been previously linked to late onset
and transgenerational effects and have a functional role in disease etiol-
ogy, development, and behavior in various species (Liberman et al.,
2019; McGhee and Bell, 2014; Tran and Miyake, 2017). They could
therefore be themechanism underlying inheritance of the observed be-
havioral defects inmale fish (Andersen et al., 2013; Bordoni et al., 2015;
Manikkam et al., 2012b). Observing sex-specific inheritance of effects in
the domesticated zebrafish AB strain, which does not possess known
genetic determination of sex, is somewhat unexpected. However,
Vera-Chang et al. (2018) observed such effect in response to fluoxetine
exposure, another compound affecting anxiety levels in fish (Vera-
Chang et al., 2018). Fluoxetine exposure led to distinct behavioral
changes in zebrafish males compared to females across generations,
which could partly be attributed to sex-specific levels of sex steroids. In-
terestingly, permethrin has also been shown to interfere with the male
hormone system in rodents (Kim et al., 2005), and with the endocrine
system of zebrafish embryos (Zhang et al., 2017). In our study, no
monitoring of steroids was performed, but transcriptomic and
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epigenetic alterations pointed to sex-specific changes in glutamate sig-
naling. Interestingly, it was shown before that themethylation status of
glutamate receptorswas only involved in regulating the depression-like
behavior of male rats, but not females, supporting that mechanisms are
sex-specific (Lin et al., 2018). Thus, it is possible that similar epigenetic
alterations induce sex-specific behavioral alterations in organisms, al-
though mechanisms require further clarification. In the present case,
however, most of the methylation changes were also sex-specific. Sev-
eral DMRs, inherited from the F0 to the F2 generation of males, were as-
sociated to genes implicated in the control of behavior and linked to
glutamatergic signaling: vim, pnocb, and fmr1. Vimentin (vim) is an in-
termediate filament protein expressed in glial cells such as astrocytes
(Cerdà et al., 1998), which is important for synapse reorganization
and neuron regeneration after brain injury (Krohn et al., 1995; Zupanc
and Clint, 2003). In addition, vimentin misexpression in rat prefrontal
cortex was linked to locomotor and anxiety-like behavior changes fol-
lowing adolescent social isolation (Sun et al., 2017), and interactions be-
tween glutamatergic signaling and vimentin expression were reported
in other studies (Kawakami, 2000; McNearney et al., 2009). Further, as-
trocyte dysregulation was incriminated in developmental neurotoxic
effects of permethrin in rat (Saito et al., 2019), overall suggesting that
transgenerational epigenetic dysregulation of vimentin may have pro-
found effects on astrocyte function within the tripartite glutamatergic
synapse. Prepronociceptin b (pnocb) is responsible for modulating
nociception and locomotor behavior (Demin et al., 2018). Nociceptin
signaling can disturb the GABA/glutamatergic balance and favor the de-
velopment of Parkinson's disease, for which permethrin is under suspi-
cion as a causal agent (Mercatelli et al., 2019). Finally, glutamatergic
signals regulate the trafficking of the FMR-protein encoded by fmr1 at
dendrites and synapses in vitro (Antar et al., 2004), and knock-out of
fmr1 produces an anxiolytic-like phenotype and impairment of avoid-
ance learning in zebrafish (Ng et al., 2013). Methylation changes associ-
ated to the described genes and pathways implicate epigenetic
regulation of neuronal development and glutamatergic synapse activity
in the observed transgenerational and sex-specific behavioral effects.
However, we could not well correlate DEGs and predicted cis-
regulated genes from DMRs, which limits our conclusions. The lack of
correlation betweenmethylation and transcription changes is acknowl-
edged within the field (Kamstra et al., 2018; Falisse et al., 2018) and
both technical and biological factors may be at cause. As observed in
other studies (Falisse et al., 2018; Kamstra et al., 2017),most of the iden-
tified DMRs were located at intergenic regions (≈70% in average, data
not shown). Thus, the restrictive association of DMRs to potential cis-
regulated genes, and the limited scope of RRBS analyses (screen of
3–5% of the methylome) likely underestimated functional associations.
Besides, the relationship between genomic structure and gene activity
is not fully understood yet and surely involves different levels of epige-
netic remodeling which were not all measured in the present study
(Bemer, 2017).

Nonetheless, this study identified several candidate DMRs that were
inherited over three generations of zebrafish and that may have impli-
cations in the behavioral effects. However, it cannot be excluded that
the observed transgenerational effects are not subsequent to DNA
methylation changes. Other epigenetic mechanisms could be involved,
such as micro-RNAs or histone modifications (Blake and Watson,
2016). Histonemodifications are important epigenetic marks for proper
nervous system development and are the target of neurotoxic com-
pounds (Lilja et al., 2013; Song et al., 2010). Towhich extent thesemod-
ifications can contribute to epigenetic inheritance in vertebrates is a
very active domain of research (Rose and Klose, 2014; Lismer et al.,
2020). We reported previously that the histone demethylase Kdm5ba
was dysregulated in zebrafish embryos exposed to permethrin (Blanc
et al., 2019) and we also observed enrichment in histone modification
pathways in the present work. Another study suggested the involve-
ment of histone modifications on H3 and H4 rather than DNAmethyla-
tion changes to support permethrin epigenetic effects (Fedeli et al.,
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2017). Besides, Valles et al. (2020) recently showed sex-specific inheri-
tance of histonemodifications in zebrafish following ancestral exposure
to arsenic; thus, suggesting that chemical exposure can induce sex-
specific epigenetic alterations, which may turn into sex-specific behav-
ioral changes. Therefore, identifying DNA regions enriched or depleted
in specific histonemarksmay provide further insight into the epigenetic
component of the observed alterations.

In conclusion, early-life exposure to permethrin induced late-onset
behavioral defects in F0 adult zebrafish and a transgenerational de-
crease in anxiety-like behavior in males. Transcriptional and epigenetic
data indicated inherited molecular changes linked to dysregulation of
glutamatergic signaling as a potential mechanism underlying the de-
layed and transgenerational neurobehavioral alterations inmales. Func-
tional analyses are now warranted to confirm the role of the identified
pathways in the behavioral alterations, especially since some of the ef-
fects in our study were not strongly significant, possibly due to the lim-
ited number of replicates per condition. It would also be of interest to
extend the phenotypical characterization to cognitive defects – learning
and memory, as they could help to clarify the role of some molecular
changes observed in both males and females, or the ones that are
generation-specific (Feng et al., 2010; Saito et al., 2019; Shelton et al.,
2014). In addition, future research may also focus on the identification
of critical windows of exposure within the first 28 days, and on
distinguishing between paternal and maternal contributions to germ-
line mediated transgenerational epigenetic inheritance. In fact,
the study of epigenetic changes in parental gametes would help
characterizing the role of epigenetics in mediating the observed
transgenerational effects, by understanding 1) how they could carry
on information to the next generation, and 2) how these could translate
into persistent sex-specific brain alterations. Nevertheless, the present
results show that neurobehavioral effects of pyrethroid exposure previ-
ously identified in other organisms may not be restricted to exposed
generations and may therefore have profound long-term consequences
on environmental health.
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