A 4,565-My-old andesite from an extinct chondritic protoplanet

Type Article
Date 2021-03
Language English
Author(s) Barrat Jean-AlixORCID1, Chaussidon MarcORCID2, Yamaguchi AkiraORCID3, Beck Pierre4, Villeneuve Johan5, Byrne David J.5, Broadley Michael W.5, Marty Bernard5
Affiliation(s) 1 : Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
2 : Institut de physique du globe de Paris, CNRS, Université de Paris, F-75005 Paris, France
3 : National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan
4 : CNRS, Institut de Planetologie et d’Astrophysique de Grenoble, F-38400 Saint Martin d'Hères, France
5 : Université de Lorraine, CNRS, CRPG, F-54000 Nancy, France
Source Proceedings Of The National Academy Of Sciences Of The United States Of America (0027-8424) (Proceedings of the National Academy of Sciences), 2021-03 , Vol. 118 , N. 11 , P. e2026129118 (7p.)
DOI 10.1073/pnas.2026129118
WOS© Times Cited 37
Keyword(s) andesitic magmatism, early solar system, planetary differentiation, differentiated meteorites
Abstract

The age of iron meteorites implies that accretion of protoplanets began during the first millions of years of the solar system. Due to the heat generated by 26Al decay, many early protoplanets were fully differentiated with an igneous crust produced during the cooling of a magma ocean and the segregation at depth of a metallic core. The formation and nature of the primordial crust generated during the early stages of melting is poorly understood, due in part to the scarcity of available samples. The newly discovered meteorite Erg Chech 002 (EC 002) originates from one such primitive igneous crust and has an andesite bulk composition. It derives from the partial melting of a noncarbonaceous chondritic reservoir, with no depletion in alkalis relative to the Sun’s photosphere and at a high degree of melting of around 25%. Moreover, EC 002 is, to date, the oldest known piece of an igneous crust with a 26Al-26Mg crystallization age of 4,565.0 million years (My). Partial melting took place at 1,220 °C up to several hundred kyr before, implying an accretion of the EC 002 parent body ca. 4,566 My ago. Protoplanets covered by andesitic crusts were probably frequent. However, no asteroid shares the spectral features of EC 002, indicating that almost all of these bodies have disappeared, either because they went on to form the building blocks of larger bodies or planets or were simply destroyed.

Full Text
File Pages Size Access
Publisher's official version 7 1 MB Open access
Appendix 25 3 MB Open access
Top of the page

How to cite 

Barrat Jean-Alix, Chaussidon Marc, Yamaguchi Akira, Beck Pierre, Villeneuve Johan, Byrne David J., Broadley Michael W., Marty Bernard (2021). A 4,565-My-old andesite from an extinct chondritic protoplanet. Proceedings Of The National Academy Of Sciences Of The United States Of America, 118(11), e2026129118 (7p.). Publisher's official version : https://doi.org/10.1073/pnas.2026129118 , Open Access version : https://archimer.ifremer.fr/doc/00685/79674/