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Supplementary Note 1

The rheology of complex granular flows investigated in this
paper is based on careful measurements of the flow variables
and microstructural parameters in the steady flowing state. Al-
though shear-banding (strain localization) can occur in granular
materials, it is essential to avoid shear banding for the investiga-
tion of the rheological behavior by an appropriate choice of the
boundary and driving conditions. We find that the wall rough-
ness, flow thickness and inertial number determine the velocity
profiles. Supplementary Figures 1 and 2 display examples of
velocity profiles in cohesive and cohesionless flows. We see
that in all cases the granular material is sheared in its whole
volume, but the velocity profiles are not linear and the material
may slip at the walls. This implies that, in general, the aver-
age shear rates γ̇ can not be simply calculated from the wall
displacement rate but should account also for wall slip. This is
what we did for the calculation of γ̇. The shear rates used in the
paper are average values over the whole sample.
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Supplementary Figure 1: Velocity profiles for different values of the inertial
number. The cohesion index is ξ = 0.5 and liquid viscosity is η f = 1 mPa.s.
The velocities are average values in the steady-state flow and they are normal-
ized by the shearing velocity of the top wall.

Supplementary Note 2

The microstructure in the quasistatic limit Im → 0 is char-
acterized by the coordination number Zc and bond orientation
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Supplementary Figure 2: Velocity profiles for different values of the inertial
number and liquid viscosity. The unit of liquid viscosity η f is mPa.s, and the
samples are cohesionless. The velocities are average values in the steady state,
and they are normalized by the shearing velocity of the top wall.

anisotropy Ac. Both Zc and Ac decline almost linearly with in-
creasing cohesion index ξ, as shown in Supplementary Fig. 3:

Zc ' Z0(1 − a′ξ) (1)
Ac ' A0(1 − b′ξ) (2)

with a′ ' 0.005 and b′ ' 0.083. The data point for ξ = 0
corresponds to a dry sample with both cohesion and viscous
force set to zero.

Note that for cohesive contacts, the capillary bonds define a
network that includes both the contacts and the pairs of parti-
cles separated by a gap below the debonding distance. For the
calculation of Zc and Ac in the dry limit, we keep the same def-
inition of the network with the same value of the gap. Hence,
the coordination number Z0 ' 6.12 at vanishing cohesion and
inertia is defined for both contacts and pair of particles having
a gap below the debonding distance. In the same way, the bond
anisotropy A0 ' 0.07 represents the anisotropy in the same limit
and for the same network. The value of the coordination num-
ber for contact network is lower whereas the contact network
anisotropy is higher compared to the bond network.

The fitting forms shown in Fig. 5 for the normalized coor-
dination number Z/Zc and normalized anisotropy A/Ac are the
same as for Φ/Φc and µ/µc, respectively:

A
Ac

= 1 +
∆A

1 + IA/Im
(3)
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Supplementary Figure 3: Quasistatic microstructure. Bond coordination
number Zc (a) and bond orientation anisotropy Ac (b) in the quasi-static state
as a function of the cohesion index ξ. The symbols and their colors correspond
to the same sets of flow parameters as in Fig. 2.

Z
Zc

=
1

1 + Im/IZ
(4)

with ∆A ' 2.410, IA ' 0.215 and IZ ' 1.250. Note that, the
modified inertial number Im is defined here with α ' 0.062 and
β ' 0.075 as for µ/µc and Φ/Φc although the fitting parameters
are different.

Supplementary Note 3

We describe here in more detail the derivation of the effective
viscosities as a function of the packing fraction Φ in the NVT
ensemble from µ and Φ as functions of the generalized iner-
tial number Im in the NPT ensemble with temperature T = 0.
This transition was presented in Supplementary Ref. [1] for
dry granular flows and extended to dense inertial suspensions in
Supplementary Ref. [2]. For wet granular materials, we follow
the same argument by accounting for the viscous and cohesive
stresses in addition to the confining and inertial stresses.

In the NVT ensemble, the packing fraction Φ replaces the
normal stress σn as control parameter, and the rheology is char-
acterized by the effective normal and shear viscosities, ηn and
ηt, as a function of Φ. The key point is that at constant vol-
ume no external stress σp is imposed, and thus both the normal
stress σn and shear stress σt are induced by the shear rate γ̇.
The effective viscosities are defined by

σn = ηnγ̇, (5)
σt = ηtγ̇, (6)

implying that σn and σt vanish when γ̇ → 0.

As in the NPT ensemble, in the steady-state flow we have

σt = µσn. (7)

Since no external stress is imposed, the shear stress σt should
scale with the total shear-dependent internal stress σi + βσv,
where β is the same factor as in the NPT ensemble. Hence, we
set

σt = ct(σi + βσv), (8)

where ct is a dimensionless factor. From equations (7) and (8),
we get

σn = cn(σi + βσv), (9)

with

ct = µcn (10)

Another key point is that the NPT and NVT viewpoints de-
scribe the same stress state if the normal stress σn in the NVT
ensemble is equal to the normal stress imposed in the NPT en-
semble. This stress is σp enhanced by the presence of the co-
hesive stress:

σn = σp + ασc, (11)

where α is the same factor as in the NPT ensemble. Equations
(5), (6), (9) and (11) together with equation (1) in the paper and
the expressions of the inertial number I and cohesion index ξ,
lead to

cn =
1
I2
m

=
ηn

βη + ρs〈d〉2γ̇
, (12)

and

ct =
µ

I2
m

=
ηt

βη + ρs〈d〉2γ̇
. (13)

These expressions indicate that cn and ct represent dimension-
less viscosities with βη+ρs〈d〉2γ̇ playing the role of a reference
viscosity. The first term is the liquid viscosity and the second
term is the shear-induced inertial viscosity. By eliminating Im

between the analytical expressions of µ(Im) and Φ(Im) and from
the above expressions of cn and ct, one arrives at the expressions
of cn(Φ) and ct(Φ) given by equations (8) and (9).
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