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Abstract :   
 
Species are spread in space, whereas sampling is sparse. Thus, to describe and map along 
environmental gradients, it is necessary to interpolate the species abundance. Considering the plethora 
of valid methods, the researcher gets easily puzzled to choose the most appropriate interpolation 
approach with reference to the ecological question being asked.  
 
We propose a procedure to select among alternative spatial distribution models and we illustrate it with 
175 marine species distributions (35 species * 5 years). In a first step, the distribution of the variance 
explained by the predictive model (VEcv) given by 10-fold cross validation is estimated for each 
interpolation method. When the inter-quartile range of the VEcv distribution of the different methods 
overlap, the selection passes to a second step, using 11 measures belonging to three criteria: 1) error 
based measures, 2) spatial equivalence measures (center of gravity, inertia, isotropy and index of 
aggregation) and 3) measures based on the data integrity after interpolation, for example the percentage 
of area over the maximum sampled data.  
 
We applied our approach to marine species sampled using either stratified random survey (trawl) or 
systematic survey (acoustic). We found that 87% of all species distributions had overlapping VEcv and 
thus passed the first selection. In the second selection step, the best method varied with species and 
year, although general additive model (GAM), Thin Plate Spline (TPS), Universal Kriging (UKr) and 
Random Forest (Rfor) performed better for the trawl data and TPS, Ordinary Kriging (OKri) and UKr for 
the acoustic data. Further, the results differed within methods (e.g. kriging neighborhood and type of 
kriging) and small modifications on the specifications can have a large impact on the surfaces produced.  
 
The proposed approach 1) is accessible and intuitive, and does not require any complex software or 
sophisticated methodology; 2) shows exactly in what aspects each interpolation model is prevalent over 
the others and permits to make a decision accordingly to the objectives of the study; 3) takes into account 
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different criteria to evaluate each, properties of an interpolation method; 4) is universal and does not 
depend on the method used or the data characteristics. A detailed review on the subject is also included. 
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Highlights 

► A new method was developed to select among spatial distribution models using 2-steps. ► The 1st 
step uses the variance explained by the predictive model (10-fold cross validation). ► The 2nd step uses 
3 criteria: error based measures, spatial equivalence measures and data integrity. ► The method is 
illustrated using 175 marine species distributions (35 species x 5. years). ► The approach is accessible, 
clear, multi-criteria and is universal as it does not depend on the method used or the data characteristics. 
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Introduction 55 

Everything becomes clearer when it is presented in a figure. Maps of species distributions are 56 
required for numerous purposes, such as to visualize spatial variability, spot changes in the 57 
communities or provide estimations of variables of interest. Species distributions are mapped 58 
by interpolation, that is, predicting values at un-sampled areas using a modelling procedure 59 
applied to the sampled data. Ecological processes are inherent in species distributions (or spatial 60 
structure), such as those impacted by anthropogenic factors and climate change, and thus 61 
reflected in the respective maps. Coupled with species traits or phylogenetic information, 62 
species distribution maps can inform on the location of functional or phylogenetic hotspots.  63 
Interpolated species distributions are widely used in a range of fields and applications, including 64 
regional biodiversity assessments, spatial conservation prioritization, evolutionary biology, 65 
epidemiology, global change biology and wildlife management (Araujo and Peterson, 2012). 66 
Given the importance of spatial interpolation, new and more powerful methods are developed 67 
on a regular basis and continuous/progressive evaluation of these statistical models is necessary 68 
(Austin, 2007).  69 
There is a large body of literature on species distribution models (SDM, also known as 70 
bioclimatic envelope models, ecological niche models and habitat suitability models), that 71 
explore the relationship between geographical occurrences of species and corresponding 72 
environmental variables (Araújo and Guisan, 2006; Dormann et al., 2007; Elith and Leathwick, 73 
2009; Guisan and Zimmermann, 2000; Hui et al., 2013; Olden and Jackson, 2002). These are 74 
however, more challenging to apply on marine data to model than on its terrestrial counterparts. 75 
Marine fisheries data compared to its terrestrial counterpart (Lecours et al., 2016), typically have 76 
fewer sampling stations, in face of the large costs associated with the survey operations and 77 
cover irregular survey shape areas (e.g. 3-15 m depth along the coast). Further, marine species 78 
distributions are typically characterized by a large percentage of zero observations and a huge 79 
variability. Finally, the availability of environmental covariates in the marine field is generally 80 
scarcer, both in terms of geographic span and resolution, also due to difficulties associated with 81 
sampling. Thus, in face of this particularities of marine data, the challenges arisen by producing 82 
spatial models using this type of data have been often referred (Olden and Jackson, 2002).  83 
So, the next question that naturally arises is which method to choose? It is widely recognized 84 
that there are no magical recipes to determine the perfect interpolation model. Undoubtedly, 85 
this should be focused on the data per se, laying on the statistical theoretical background and 86 
respective assumptions (Bivand et al., 2013; Cressie, 1993; Li and Heap, 2008; Sluiter, 2009; 87 
Wackernagel, 1998; Webster and Oliver, 2007). Several methods pass this first selection, 88 
however we need a framework accounting for model selection and evaluation to help decision 89 
making. Such decision is a complex issue, central to ecological modelling, with huge 90 
implications (Naimi and Araújo, 2016). Model selection involves evaluation, validation, 91 
performance, accuracy, skill, efficiency or robustness. Nevertheless these concepts are hard to 92 
disentangle and have been used with different meanings on the literature (reviewed in Bellocchi 93 
et al., 2010).  94 
Generally, interpolators are compared using error based measurements, that is predicted vs. 95 
observed values, preferably obtained from cross-validation or jackknife processes (Li, 2016; 96 
reviewed by Li and Heap, 2008, 2011; Richter et al., 2012; Stow et al., 2009; Willmott et al., 97 
2015). Using primarily error-based criteria, comparisons among spatial interpolators have been 98 
done in the field of meteorology (Aalto et al., 2013), air quality (Hoffman, 2015), soil (Gasch 99 
et al., 2015; Hengl et al., 2004, 2015), marine sediment (Diesing et al., 2014; Lark et al., 2016; 100 
Li et al., 2011), bathymetry (Amante and Eakins, 2016) and environmental sciences (Li and 101 
Heap, 2011, 2008). Among these, Mean Absolute Error (MAE, bias or a measure of average 102 



error-magnitude) and Root Mean Squared Error (RMSE, for accuracy or over/under fitting) are 103 
the most commonly within the field of environmental sciences (Li and Heap, 2008; Richter et 104 
al., 2012; Willmott, 1982). However, as their magnitude depends on the scale/unit of the 105 
variable predicted, these are hardly comparable among variables or subjects. Further, most of 106 
these accuracy measures are algebraically related, being thus potentially redundant and 107 
collinear (Li, 2016; Li and Heap, 2011, 2008; Willmott et al., 2015). It has also been suggested 108 
the use of dimensionless measures, besides at least one error measure on the variable scale 109 
(modified coefficient of efficiency, Legates and McCabe Jr., 1999; coefficient of efficiency, 110 
Nash and Sutcliffe, 1970; index of aggreement, Willmott, 1981, 1982; modified index of 111 
aggreement, Willmott et al., 2012, 2015). Such approaches have been applied within the field 112 
of hydrology/climatology until recently, where Li (2016, 2017) revising Willmot’s D, 113 
advocated its use as an universal tool to assess the accuracy of predictive models within 114 
environmental sciences, naming it Variance Explained by predictive models, estimated by 115 
cross-validation (VEcv), that is: how well a model is predicted, relative to the average of the 116 
observations (also called coefficient of efficiency, Nash and Sutcliffe, 1970 or G-value or 117 
goodness-of- prediction measure).  118 
However, all these criteria often lead to overlapping results, that is several models having 119 
similar VEcv values, being difficult to select only one. Furthermore, these are based essentially 120 
on error measurements and do not take into account other fundamental aspects, such as spatial 121 
integrity (that is if the interpolation respects the spatial distribution of the data) or the spatial 122 
data limits of the interpolation relative to the original data. Additionally, whatever the criteria 123 
considered, it has long been demanded the establishment of a consistent and rationale set of 124 
procedures that should be used to compare spatial interpolation models (Fox 1981) (Willmott, 125 
1982). 126 
The objective of the current work, is therefore, to develop a simple and accessible protocol to 127 
compare the results given by different spatial interpolating methods, that integrates important 128 
aspects for mapping marine species distribution, namely not only error measures, but also 129 
spatial and data integrity after interpolation. The proposed protocol was applied to compare 20 130 
interpolation methods applied to 35 species distributions from two typical fisheries surveys 131 
(trawl and acoustic), carried out during 5 years. The interpolation methods considered comprise 132 
approaches only using geographic coordinates and methods using depth and other topographic 133 
variables derived from bathymetry.  134 

Materials and Methods 135 

DATA  136 

We considered two data sets for the species distributions case studies, one obtained from 137 
scientific groundfish bottom trawl surveys (EVHOE) and another from a scientific pelagic 138 
acoustic surveys (PELGAS).  139 
The bottom trawl survey is carried out annually during Autumn in the North Atlantic 140 
(“Evaluation Halieutique de l’Ouest Européen, EVHOE cruise, RV Thalassa, IFREMER,” 141 
n.d.). It ranges from the Bay of Biscay up to the Celtic sea, with a randomly stratified sampling 142 
strategy, comprising from 119 to 153 stations/year (“Evaluation Halieutique de l’Ouest 143 
Européen, EVHOE cruise, RV Thalassa, IFREMER,” n.d.)(map and location of sampling 144 
stations can be found in see Supplement 1). The biomass of the 29 fish species occurring more 145 
than 10 times/year during the survey and excluding the main pelagic species was used (see 146 
Supplement 1 for the species list names and further details on the survey). For the purpose of 147 



this study we used data between 2011 and 2015 with an average of 198 sampling stations 148 
(number of hauls per year can be found in Supplement 1). 149 
The pelagic survey (Doray, M., Duhamel E. , Huret M. , Petitgas P., 2002; Doray M., Badts V., 150 
Masse J., Duhamel E., Huret M., Doremus G., 2014) is an acoustic spring survey that aims at 151 
monitoring the Bay of Biscay pelagic ecosystem to inform fisheries and ecosystem 152 
management. Initially, PELGAS objective was to estimate biomass anchovy (Engraulis 153 
encrasicolus) and nowaday, the survey goals were extended to estimate the stocks of all the 154 
small pelagic fish species in the Bay of Biscay. From this survey we extracted the biomasses of 155 
six small pelagic fish species (see Supplement 1 for the species list and map), sampled over 156 
1345 to 1997 locations obtained from 29 acoustic radials perpendicular to the coast between 157 
2011 and 2015. 158 
In the simplest cases, interpolation can be carried out using only the geographic coordinates as 159 
explanatory variables. However, in marine systems bathymetry influences species spatial 160 
distribution and this information is available at global scale, and thus can be added to improve 161 
interpolation models. Bathymetry data was extracted from GEBCO data base and validated 162 
with depth data obtained during the EVHOE surveys (IMGeo). Additionally, other covariates 163 
derived from bathymetry can be included to improve interpolation models. Those additional 164 
covariates were added without referring to any specific ecological hypotheses, but likely 165 
serving as proxy of other unmeasured environmental variables. We extrapolated eleven 166 
covariates (IMCov) such as derived from bathymetry/elevation such as (Lecours et al., 2016; 167 
Wilson et al., 2007): slope, aspect, northerness, easterness, rough, profile curvature (surf.curv), 168 
bathymetric position index (TPI), terrain ruggedness index (TRI), surface flow (flowdir), local 169 
Moran I (moran) and distance to the nearest coast (dist.coast)(details of each variable and 170 
respective maps can be found in Supplement 2). Thus, all models using covariates (IMCov) 171 
were produced including all variables, whereas the final model, was produced with an automatic 172 
selection of these variables for each distribution. 173 

INTERPOLATION METHODS 174 

Seven families of methods were applied to both case studies, aiming not be exhaustive: linear 175 
models (LM), general additive models (GAM), Inverse Distance Weighting (IDW), Thin Plate 176 
Spline (TPS), VORonoi triangulation (VOR), Kriging (Kr) and stochastic Conditional 177 
Simulation (CSim) for the methods using just geographic coordinates and eventually depth 178 
(dep)(IMGeo) and three families of methods using the 11 bottom topographical variables 179 
(IMCov): multiple regression (GLM), Regression Tree (RTre) and Random Forest (RFor) 180 
(Hengl et al., 2015, 2007, 2004, 2003; Li et al., 2011)(Supplement 3). Additionally, we used 181 
several alternatives on some methods, intended to quantify the within-model and between-182 
model variability (Araújo and Guisan, 2006), namely considering only geographic variables as 183 
covariates or adding depth as well (GAMl/ GAMd, MKri/ UKri), changing kriging 184 
neighborhood (OK03/ OK05/ OK07/ OK10/ OK20/ OK30 or the fitting procedure as automatic 185 
vs. manual (OKri/MKri)). We provided a brief description of the methods used in Supplement 186 
3 whereas additional details can be found in the vast literature (Bivand et al., 2013; Cressie, 187 
1993; Fortin and Dale, 2005) and more precisely in two reviews on the subject (Li and Heap, 188 
2008; Sluiter, 2009).  189 



CRITERIA FOR COMPARISON OF INTERPOLATORS  190 

Three complementary criteria were used to compare and evaluate the accuracy of interpolation 191 
models: (i) error based measures, (ii) changes in the spatial structure due to interpolation and 192 
(iii) data integrity after interpolation.  193 

1. Error based measures 194 

Error indices were estimated using predicted and observed values obtained by ten-fold cross-195 
validation (10-fold CV). Ten-fold cross-validation was done by randomly splitting the data into 196 
10 parts. We estimated the model using 9 of those 10 data set, whereas the observed values 197 
(10th split) are predicted using the model estimated. This process is repeated for each of the ten 198 
splits, obtaining predicted and observed values for the ten folds, which are then used to estimate 199 
the error measures. We performed a 10-fold CV, and instead of leave one out procedure, as this 200 
method has been considered to give too optimistic measures of error. The process of 10-fold 201 
CV was then repeated with a random split 100 times to obtain a distribution of the error indices. 202 
From predicted and observed values obtained by 10-fold, three measures were calculated: MAE 203 
(Mean Absolute Error), RMSE (Root Mean Squared Error) and the Variance explained by 204 
predicted models estimated using cross validation procedures (VEcv). For comparability with 205 
previous works, the MAE ( [0, ∞], the lower the better) and Root Mean Squared Error (RMSE, 206 
[0, ∞], the lower the better) were estimated (Richter et al., 2012). 207 
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VEcv a dimensionless measure, varies between 100 for an excellent model and -∞. VEcv lower 210 
than 0, indicates that the model is worse than the average and we rounded these values to -1 for 211 
visualization purposes.  212 
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To perform the first step of our selection procedure (Fig. 1), we estimated the average RMSE, 214 
MAE and VEcv from the distributions obtained by the 10-fold CV, along with the upper and 215 
lower quantiles of the VEcv (probability of 0.25 and 0.75). We classified the average VEcv 216 
following Li (2016), into: 1) very poor if VEcv £ 10%; 2), poor if 10 < VEcv £ 30%; 3), average 217 
30 < VEcv £ 50%; 4), good if 50 < VEcv £ 80%; 5) and excellent if VEcv > 80%.  218 
To harmonize the interpolation with the other interpolators considered in this study (MAE, 219 
RMSE), we calculated an inversion of the VEcv (VEcv.inv = abs(VEcv/100-1)*100), where 220 
the lowest value, indicates the worst the model.  221 

2. Spatial integrity 222 

Ideally, an interpolation method should preserve the geometrical properties of the data, and 223 
therefore its spatial structure. We evaluated changes in the data spatial structure due to 224 
interpolation using deviations on four spatial indicators, relative to its results on the sampled 225 
data. Four spatial indicators were considered in the current work, following the revision and 226 



work of (Rufino et al., 2019). The center of gravity (CG) indicates the mean spatial location of 227 
the population (Bez and Rivoirard, 2001; Woillez et al., 2009b). The Euclidean distance 228 
between the CG estimated using the sampled data (without considering different areas of 229 
influence for each sample) and the interpolated data was calculated. It was used as a measure 230 
of the impact of interpolation on the geometric center of the distribution. The inertia represents 231 
the spatial dispersion of the population around its CG, i.e. the mean square distance between 232 
individual fish and the CG (Bez and Rivoirard, 2001; Woillez et al., 2009b). Isotropy/anisotropy 233 
(isotropy) represents the dispersion shape of the inertia around the CG (i.e. round or ellipsoid), 234 
and it is simply the ratio between the two inertia axes (Woillez et al., 2009a).  235 
The Gini index quantifies the distribution’s aggregation or concentration, and represents twice 236 
the area between the identity function and the Lorenz curve. It is bounded between 1 and 0, and 237 
the highest its value the most concentrated is the biomass in fewest samples.  238 
To quantify geometric changes in the spatial distribution due to interpolation, the difference 239 
between the spatial indicators calculated for the sampled data and the indicators calculated in 240 
from the interpolated surfaces was estimated Thus, the absolute difference between inertia (log 241 
transformed for scaling), isotropy and Gini index of the interpolated surfaces and the respective 242 
ones estimated on the sampled data (DI = | Isample – Iinterpolation|) were used as a measure of the 243 
interpolation method spatial integrity. Therefore, the higher the value of the difference on these 244 
spatial measures, the higher the shift relative to the sampled data’s spatial structure cause by 245 
the interpolation method, thus the worse its performance. 246 

3. Data limits integrity  247 

Ideally, an interpolation method should preserve the samples data integrity and not predict 248 
values outside the data range or shifts in the mean biomass. To evaluate interpolator’s data 249 
integrity, we used four measures estimated on each interpolated surface:  250 
1) a.pix_under: relative area below/above minimum sampled biomass (pix_under = 251 
abs[(#pixels[max(B)interpolation < max(B)sample]/ #pixelsinterpolation]×100);  252 
2) a.pix_over: relative area above/bellow maximum sampled prediction (pix_over) 253 
(abspix_over = [(#pixels[max(B)interpolation > max(B)sample]/ #pixelsinterpolation]×100); 254 
3) a.mean_perc: relative change on the predicted mean biomass (mean_perc = abs[(μinterpolation 255 
– μsample)/μsample]×100); 256 
4) a.over_perc: relative change on the maximum prediction (over_prec = abs[(μinterpolation – 257 
μsample)/μsample]×100); 258 
Where Binterpolation is the interpolated biomass, Bsample is the samped biomass and #pixels, the 259 
number of pixels. As most of these measures were dimensionless, they can be compared among 260 
studies and methods and interpret as follow: the higher the value, the wose the performance of 261 
the interpolator (for comparability with the other indicators).  262 
The eleven criteria were scaled such as the highest the value, the greatest the impact of the 263 
interpolation on the spatial structure and data integrity or greater the errors, bias or accuracy. 264 
Additionally, these criteria were not strongly correlated between each other, except for the 265 
RMSE/MAE (which is expected algebraically), a.mean_perc with a.over_perc (r=-63%) and 266 
CGdist with a.inertia (r = 58%). Further, these criteria were also not strongly correlated with 267 
biomass, which is another desirable property. The correlation between indicators is shown in 268 
supplement 4. 269 



PROTOCOL TO COMPARE THE INTERPOLATORS  270 

The 2-steps protocol proposed to compare spatial interpolators is summarized in Fig. 1.  271 
First step:  272 
a) Estimate the distribution of VEcv obtained by 10-fold CV. Select the interpolation method 273 
with the highest average VEcv;  274 
b) Calculate the interquartile range (IQR) of each VEcv distribution (Q1, 25% and Q3, 75%);  275 
c) Select all interpolation methods where the IQR overlaps with the interpolation method that 276 
showed highest VEcv;  277 
d) If no other interpolation method IQR overlaps the highest VEcv IQR, the decision is reached, 278 
and the best method is clear. Otherwise, we continue to the second step. 279 
 Second step: 280 

a) Calculate all measures proposed above for each interpolation method: 3 error 281 

measures (VEcv, MAE and RMSE), 4 spatial indicators (distance of the center of 282 

gravity, difference in inertia, isotropy and Gini index) and the 4 data integrity 283 

measures; 284 

b) Do a principal component analysis (PCA), scaled and not centered on the indicators 285 

matrix for the distribution (species-year), that render the criteria ranges comparable, 286 

and that integrates all measures vs. all methods being evaluated; 287 

c) The inverse of the distance between the methods loadings on the first two PCA axes 288 

relative to the center of the PCA, is then used to rank the interpolation methods; The 289 

PCA further shows concretely what aspects of the sampled data, the interpolation 290 

model is not respecting; 291 

This protocol was applied to every species/year distribution, for all interpolation methods being 292 
assessed as a case study. All analyses were carried out using r-project. An R-script with a small 293 
simplified example is added in the supplement 5. 294 

Results  295 

FIRST SELECTION STEP: VECV CRITERIA 296 

Twenty two percent of the models performed very poorly, producing interpolated surfaces that 297 
were worse than the mean, as shown by the negative average of the variance explained by the 298 
predictive model (VEcv < 0 in 784 models; Fig. 2). The maximum variance explained by the 299 
predictive model of the interpolations (VEcv) was 86% (EVHOE.TRISESM.2013-Kr3 - 300 



Trisopterus esmarkii in 2013). Three species/years showed negative VEcv for all models, and 301 
thus were eliminated from further analysis (CONGCON.2011, 2012 - Conger conger and 302 
LOPHPIS.2014 - Lophius piscatorius from 2014).  303 
The percentage of ‘bad’ models was higher for the bottom trawl survey data (EVHOE; 25%) 304 
than for the pelagic survey (PELGAS; 11% Fig. 2 and Fig. 3). For the bottom trawl survey, 305 
VEcv was slightly higher for GAM, TPS, geostatistical models (Kri) and RFor. As for the 306 
pelagic surveys, IDW, TPS, geostatistical models (Kri) and RFor reach better results (Fig. 2 307 
and Fig. 3). However, overall good VEcv were lower than 50%, except for the acoustic surveys. 308 
Only few species distributions sampled with the acoustic surveys attained ‘excellent’ VEcv 309 
classes, whereas most distributions were classified as good for IDW, TPS, Kriging and RForest 310 
(Fig. 2). For the bottom trawl data, most models were classified as average or poor according 311 
to the VEcv criteria (Fig. 2). LM1 and LM2 were systematically worse than the mean.  312 
Overall, the use of bottom covariates did not improve the interpolation’s VEcv (Fig. 3). The 313 
variance explained by the predictive model (VEcv) varied more among species than between 314 
years (Fig. 4 and Fig. 5). However, for some benthic species the models using covariates 315 
showed higher VEcv than models without covariates (e.g. CONGCON - Conger conger, 316 
PHYBLE- Phycis blennoides, SOLESOL - Solea solea, HELIDAC - Helicolenus 317 
dactylopterus, SCYOCAN - Scyliorhinus canicula and LEPIWHI - Lepidorhombus 318 
whiffiagonis) (Fig. 4). Overall best results were obtained by species sampled in the pelagic 319 
survey, Trisopterus esmarkii (TRISESM) and Merlangius merlangus (MERNMER) were 320 
exceptions to this, attaining also higher VEcv in bottom trawl survey. Inter-annual variability 321 
of VEcv varied across species, with species (e.g. Sardina pilchardus - SARDPIL or Trisopterus 322 
minutus - TRISMIN) showing very little change in the results among the years, whereas others 323 
such as Trisopterus luscus (TRISLUS), showing a more variable results, although overall the 324 
patterns observed in relation to each method, across the years were relatively stable, i.e. most 325 
of the years within species showed a similar results (Fig. 5). Kriging based methods showed 326 
very similar VEcv between each other, independently of the neighborhood considered (between 327 
3 and 30 points, i.e. OK03-OK30), the fitting of the variogram manually (MKri) or 328 
automatically (OKri), using depth as covariate (UKri) or even with conditional simulation 329 
(CSim) (Fig. 5). 330 
In 13% of the distributions the method with the highest VEcv showed no-overlapping of the 331 
IQR with all remaining methods (23 cases representing 15 species, out of the 172 sp/year 332 
distributions)(Fig. 5). Within those, in 10 cases, RFor was the best method, 6 cases it was 333 
GAMd, 3 cases UKr, 2 cases IDW and 1 case TPS and MKr. Sprattus sprattus (SPRASPR) was 334 
the only species from the pelagic survey with one distribution showing a clear winning method 335 
on the first step. In none of the case studies all years for one species showed only one best 336 
method. Thus, in the remaining 149 case studies a second selection step was required. 337 

SECOND SELECTION STEP: MULTIPLE CRITERIA 338 

The best interpolation method according to each criteria varied widely across species-years, 339 
confirming that different aspects of the distributions are taken into account by each measure 340 
(Fig. 6; note that cases with ties were omitted). For example, RFor was the best method in terms 341 
of a.pix_under, a.over.perc, CGdist, RMSE and MAE whereas UKri was the best according to 342 
a.mean_perc and GAMd produced the maps with less deviations on the isotropy and with more 343 
similar aggregation (Gini index, Fig. 6). It is also clear the contrast between the results given 344 
by different kriging neighborhood in the best method by criteria (Fig. 6).  345 
For a decision framework on the second step, all measures from each distribution were 346 
integrated using a principal component analysis, as illustrated for four species/years in Fig. 7. 347 



The variance explained by PC1 was always above 90%, although PC2 also proportionated 348 
important information in discriminating the issues of the different interpolators relatively to the 349 
measures considered. In the given examples, for Argentina sp. From 2014 (ARGENT.2014), 350 
GAM and TPS methods showed highest deviations in terms of pixels under minimum whereas 351 
kriging and Rfor showed highest spatial distortion, although integrating all criteria the best 352 
method would be Kr30. Similar interpretation can be done for every species/year distribution, 353 
and thus conclude that Callionymus lyra in 2012 (CLAMLYR.2012) best method would be 354 
GAM, for Conger conger in 2015 (CONGCON.2015) would be Kr30 whereas for Gadiculus 355 
argenteus in 2013 (GADIARG.2013) would be Kr7. 356 
The results of the protocol on the interpolator selection procedure, given the two steps together 357 
are found in Fig. 8. As already mentioned, few case studies were resolved on the first step (grey 358 
boxes). The use of the multi-criteria privileged GAM, TPS, UKr and Rfor for the trawl data set 359 
and TPS, OKri and UKr for the acoustic data set. It is also evident that the results differed 360 
within methods (e.g. kriging neighborhood and type of kriging) showing that small 361 
modifications on the methods can have a large impact on the surfaces produced. Further, it is 362 
interesting to observe such a large disparity on the best method, not only between species but 363 
also across years for the same species.  364 

Discussion 365 

In the current work we develop a two-step procedure to aid researchers select the best 366 
interpolation method for their data. The method uses a multi-criteria approach, that considers 367 
error-based measures, changes in the spatial structure and data integrity after interpolation and 368 
permits to determine in which particular aspect the interpolation is failing. The two-step 369 
procedure was illustrated by comparing 20 interpolation methods applied to 175 distributions, 370 
i.e. 35 species obtained during five years (2011-2015) of a typical bottom trawl survey and a 371 
pelagic acoustic survey. In the first step of the selection procedure, all interpolation methods 372 
within the highest VEcv’s interquartile ranges are selected. In 13% of the case-studies no other 373 
method had overlapping VEcv and thus, the selection is complete without having to go through 374 
a second step. However, in the remaining 87% of the cases multiple methods were within the 375 
best VEcv interquartile range and thus a second step was proposed, using additional criteria. 376 
The effect of the interpolation was then integrated using PCA from which an index was 377 
extracted to rank the quality of the interpolations.  378 
In the current work we aimed to use the simplest and most available approach to summarise the indicators 379 
in the second step, and this is why the PCA was selected. However, other multivariate statistical methods 380 
besides PCA could be used as an alternative  in future works. Furthermore, it is possible to use just the first 381 
component (instead of two as in the current work) or to use the suggested indicators per se. Further work is 382 
needed to develop this particular aspect.  383 
 384 

 385 

OTHER SELECTION PROCEDURES 386 

Hengl et al. (2013) considered that the selection of a mapping procedure should account for 387 
accuracy (considered to be measured by RMSE), bias (considered to be measured by MAE), 388 
robustness (model sensitivity — in how many situations would the algorithm completely fail / 389 
how much artifacts does it produces?), reliability (how good is the model in estimating the 390 



prediction error, i.e. how accurate is the prediction variance considering the true mapping 391 
accuracy?) and computation burden (the time needed to complete predictions). Visual 392 
examination has been considered as equally important as accuracy measurements (Li et al., 393 
2011), although it is largely subjective and not explicitly defined, consistent or repeatable (Stow 394 
et al., 2009). Model selection has involved evaluation, validation, performance, accuracy, skill, 395 
efficiency or robustness, although these concepts are hard to disentangle and have been used 396 
with different meanings on the literature (reviewed in Bellocchi et al., 2010). There is a clear 397 
absence of a unifying selection procedure for interpolation models, although the most recent 398 
works advocate the use of VEcv as a universal tool (Li, 2016, 2017). However, in 87% of the 399 
distributions studied in the current work such approach was not sufficient to discriminate among 400 
the interpolation methods, in view of the strong overlap between the respective distributions. 401 
Further, the measures used for model selection should be explicit, with a straightforward 402 
meaning and if possible, integrate multiple desirable properties of the interpolation procedure. 403 
Similar to the current study, other authors have suggested that method selection should be multi-404 
criteria (Stow et al., 2009) and that the use of a single error measure may lead to incorrect 405 
interpretation (Hoffman, 2015) . 406 

RMSE AND MAE 407 

Each different measure comes with advantages and drawbacks. RMSE provides a measure of 408 
error size, but it is sensitive to outliers as it places a lot of weight on large errors (Hernandez-409 
Stefanoni and Ponce-Hernandez, 2006). However, MAE and RMSE are among the best overall 410 
measures of model performance as they summarize the mean difference in the units of observed 411 
and predicted values (Willmott, 1982), although being highly correlated between each other, 412 
with biomass/occurrence and algebraically related. Variance explained by predictive model 413 
(VEcv) has been recently considered as the best error based criteria to evaluate interpolators 414 
(Li, 2017, 2016). Our results indicate that this measure is straightforward to interpret and quick 415 
evaluate thus it was included in the procedure, but for comparison with previous works, RMSE 416 
and MAE were also incorporated. . 417 

CROSS VALIDATION 418 

The error measures used to evaluate interpolation methods are traditionally estimated by cross 419 
validation procedures, either leave one out (LOO)(Kilibarda et al., 2014) or k-fold cross-420 
validation (generally five or ten)(Davis, 1987; Li et al., 2011)(for a schematic overview of the 421 
re-sampling strategies for model validation see Richter et al., 2012). First of all we decided to 422 
not perform LOO cross-validation because in the case of skewness distributions and extreme 423 
values of the input data, this kind of cross-validation might produce strange outputs (Hengl, 424 
2009). Secondly in highly clustered spatial distribution (like the species distributions 425 
considered), k (number of subsets, typically 5 or 10) should be large enough so that the data 426 
into the k-subsets contains enough information on the whole model domain and the spatial 427 
structure (Augustin et al., 2013). In our study, after a preliminary test, it was concluded that 10-428 
fold was a good compromise for marine species distribution (not reported for brevity). 429 
Additionally, as the results of cross-validation strongly depended on the way the data is split 430 
(folds), the process should be randomly repeated several times, and as consequence it is 431 
obtained a distribution of the measure, which can then be used to compare the model’s VEcv 432 
(like it was done in the first step of the procedure). It is important to note also that cross-433 
validation is not necessarily independent, indeed, points used for cross-validation are subset of 434 



the original sampling design. Consequently, if the original design is biased and/or non-435 
representative, then also the cross-validation might not reveal the true accuracy of a technique 436 
(Hengl, 2009). Further, error-based measures estimated by cross-validation results can be 437 
corrupted for clustered data sets on interpolator comparison (Hengl et al., 2013), highlighting 438 
the importance of having additional criteria in the selection procedure when the decision is not 439 
evident.  440 
Cross validation can also be used to define the spatial model (Fortin and Dale, 2005; Gaetan et 441 
al., 2010; Wackernagel, 1998) and kriging neighborhood (Paramo and Roa, 2003) within the 442 
geostatistical methods. This is particularly crucial, because the effectiveness of the kriging 443 
depends on how well the selected model fits the data (Fortin and Dale, 2005). There were only 444 
small changes in the variance explained by the predictive model observed between kriging 445 
computed with different neighborhood or to the process of defining the spatial model (manual 446 
vs. automatic), when compared to other methods, but large changes were observed when the 447 
other comparison criteria were included. For example, Gini index or the percentage of over 448 
predictions changed widely with kriging neighborhood. Such comparison can also provide an 449 
idea of the variation due to the parametrization between and within each different techniques, 450 
as recommended in Araújo & Guisan (Araújo and Guisan, 2006)(within-model vs. between-451 
model comparisons). Thus, the proposed protocol can also be applied as a tool to improve model 452 
specification by within model comparison, in future works. Similarly, the effect of a more 453 
detailed parametrization of the other interpolation methods on the quality of the predictions 454 
cannot be ignored. The method developed can also be used for such parametrization, as it was 455 
explored in the current work for kriging. 456 

SPATIAL AND DATA INTEGRITY 457 

Spatial indicators have been develop with the aim of quantifying distribution’s spatial patterns 458 
(Bez and Rivoirard, 2001; Woillez et al., 2009b, 2007), but have also been applied as a model 459 
validation tool, to compare the model’s outputs with sampled data for example (e.g. Huret et 460 
al., 2010)(Rufino et al., 2018). Additionally, these metrics are particularly sensitive to 461 
interpolation (Rufino et al., 2019) and are well suited to assess the spatial integrity of the sample 462 
data, after interpolation. The four metrics selected in our study highlight shifts in the main 463 
spatial features of the distributions, namely its location (center of gravity), dispersion (inertia), 464 
direction (isotropy) and aggregation (Gini index). It is expected (similar to what is done for 465 
modelling procedures) that a better interpolator would cause a minimum effect on those spatial 466 
aspects, when compared with the sampled data, therefore preserving the data spatial integrity. 467 
Future works can assess the use of other spatial indicators, such as the index of collocation for 468 
example, that may potentially be interesting with this aim. 469 
Similarly, a good interpolation method should preserve the data limits of the sampled data. This 470 
is often done within works of spatial analysis, but rarely mentioned and hardly quantified. All 471 
those measures used in the selection procedure were made relative to the area and in the same 472 
direction (i.e. the larger the value, the worst the mode) for comparability purposes.  473 

These aspects together are of outmost importance for species distributions maps, and have 474 
never been systematized previously. It can be argued that some of these measures just report 475 
the intrinsic properties of the interpolation methods and thus could be inferred solely on 476 
theoretical grounds. For example, kriging methods tend to under-estimate the maximum 477 
biomass (Bivand et al., 2013; Cressie, 1993). The proposed measures evidence those properties, 478 
and make them accessible without requiring a strong expertise on spatial analyses. On the other 479 
way, some measures, for example those with reference to the spatial integrity, are much less 480 
evident to describe theoretically. 481 



PURELY GEOGRAPHIC METHODS VS. METHODS USING COVARIATES 482 

Purely geographic methods, i.e. using only geographic coordinates to produce spatial 483 
predictions (i.e. ordinary kriging, TPS, IDW, etc.) are essential for the cases where there is a 484 
belief that geographic processes are dominant over environmental ones or in the absence of 485 
adequate environmental predictors (Elith and Leathwick, 2009). In the majority of cases the 486 
purpose of the statistical modelling is the prediction of species distribution, whereas the 487 
relationships between species and the environment tend to be a secondary consideration 488 
(Austin, 2002; Guisan and Zimmermann, 2000). This is also the focus of the current work and 489 
probably the commonest situation in marine studies or fisheries management. Thus, the applied 490 
models with covariates used only topographic variables directly derivable from depth, which is 491 
widely available. Unlike on its terrestrial counterpart, the effect of bottom topography on fish 492 
distribution is seldom tackled in fisheries ecology (Giannoulaki et al., 2006, 2003). These 493 
features are further advantageous for being relatively stable through time on these areas 494 
(Maravelias, 1999)(unlike other environmental characteristics) thus being potentially 495 
interesting also for long term studies, where other variables are not available.  496 
It can be expected that topographic information of the sea bottom is more important for 497 
demersal species than for the pelagic ones. However, sea bottom topography features are known 498 
to be determinant for small pelagics species (Giannoulaki et al., 2006; Maravelias, 1999) and 499 
some of these species occur also near the sea bottom (e.g. Scomber sp. and Trachurus 500 
trachurus). However, the models done with topographic variables were not better than those 501 
using just geographic variables for any pelagic species, but it is imperative to see the marine 502 
environment as a continuous system where all aspects are connnected, and thereby only 503 
manageable through an ecosystem approach (Cotter et al., 2009; Doray et al., 2018). Other 504 
relevant environmental variables such as temperature and productivity, would improve the 505 
models with covariates, but can be more species specific. When a set of ecological covariates 506 
is available, whatever these are, the current method is also applicable. 507 
 508 

SPATIAL AUTOCORRELATION 509 

The notion of spatial autocorrelation is largely attributed to Tobler's 1st Law of Geography, 510 
“Everything is related to everything else, but near things are more related than distant things” 511 
(Tobler, 1970). Spatial autocorrelation is widely present in marine species species distribution 512 
and is an essential aspect to acount for in spatial prediction (Dormann et al., 2007; Elith and 513 
Leathwick, 2009; Legendre, 1993). We verified using a large empirical data set that models 514 
accounting for spatial autocorrelation (i.e. geostatitical models) showed higher VEcv overall 515 
both for the bottom trawl data and for the acoustic pelagic survey. This difference was more 516 
pronounced on the acoustic pelagic data, where the number of samples is also much higher and 517 
the spatial models of the variogram, better defined (pers. obs. MMR). Improving the spatial 518 
model definition increases the effectiveness of kriging (Fortin and Dale, 2005). This was also 519 
observed in Rufino et al (2006) using simulated data, where the precision and accuracy of the 520 
kriging predictions increased with the sample size, as well as the importance of spatial 521 
autocorrelation. On the other way, in some cases, high data variability may hamper the retrieval 522 
of the spatial models and mask spatial autocorrelation (Rufino et al., 2006).  523 
The clumped spatial patterns typical of marine species distribution can emerge simply as a result 524 
of the spatial autocorrelation of the environmental and of biotic processes (Legendre, 1993). In 525 
the current work, most species evidenced the presence of auto-correlation in the experimental 526 



variogram model. Strong residual geographic patterning generally indicates that either key 527 
environmental predictors are missing, that the model is mis-specified or that geographic factors 528 
are influential (Elith and Leathwick, 2009). In a study as broad as the current one this would be 529 
a natural consequence as it was not the aim to explore the key environmental predictors of each 530 
species, nether to parametrise in detail each method. Recent works have shown excellent results 531 
on the application of combined methods (random forest + kriging) in other areas (Appelhans et 532 
al., 2015; Diesing et al., 2014; Hengl et al., 2015; Li et al., 2011, 2013, 2016), and thus it would 533 
be interesting to explore such applications to marine SDM on future works. Further, the 534 
selection protocol is extensible interpolation methods on the spatio-temporal domain. 535 
It is evident that the best interpolation changed widely across species and years, and thus in 536 
each case a detailed analysis is required. Furthermore, the fact that certain interpolation models 537 
performed better for some species in a certain dataset, does not imply that it will always perform 538 
better with other fisheries datasets (Davis, 1987). Nevertheless, our application of the selection 539 
protocol to the two surveys reveals general guidelines for the variability of the results given by 540 
different interpolation methods. It is clear that each model need to be parameterized in detail, 541 
individually and according to the species data for a proper spatial analysis and that neglecting 542 
ecological knowledge is a limiting factor in the use of statistical modelling to predict species 543 
distribution (Austin, 2002). 544 
We conclude that the proposed 2-step approach for method’s selection has several benefits: 1) 545 
it is accessible and does not require any complex software or sophisticated method; 2) it is 546 
explicit in the sense that it evidences the benefits of each interpolation model relative to the 547 
others, empirically, that is on the maps produced and thus, permits to make a decision 548 
accordingly to the objectives of each study; 3) it takes into account different criteria, thus 549 
integrating several desirable properties of interpolation methods; 4) it does not depend on the 550 
method used or the data characteristics, thus being universal and can be applied to virtually any 551 
method developed in the future.  552 
 553 
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FIGURE LEGENDS: 788 

Fig. 1: Graphical abstract: Conceptual diagram of the method developed to compare the 789 
interpolators. 790 
Fig. 2: Frequency of the variance explained by predictive model classes between spatial 791 
interpolation methods, for the bottom trawl survey (EVHOE, upper panel) and the acoustic 792 
pelagic survey (PELGAS, lower panel). Find further details on the methods codes in text. 793 
Fig. 3 : Variance explained by the predictive model between spatial interpolation method’s 794 
main families, by survey (blue triangles for pelagic survey, PELGAS and red bals for bottom 795 
trawl survey, EVHOE)(mean and respective 95% CI estimated using bootstrap). LM: linear 796 
model; GAM: generalised additive models; IDW: inverse distance weighting; Vor: voronoi 797 
triangulation; TPS: thin plate spline; Kri: kriging and conditional simulation; Covar: multiple 798 
regression, regretion tree and random forest (simple and mixed, i.e. with kriged residuals). 799 
Please find further details on the methods codes in the text. 800 
Fig. 4 : Variance explained by the predictive model between species, for interpolation methods 801 
using topographic covariates (orange line with squares, IMCov) and for methods just using 802 
geographic coordinates and eventually depth (green line with diamonds, IMGeo). Filled 803 
symbols represent the species captured in the bottom trawl survey whereas open symbols 804 
indicate the acoustic pelagic survey. Mean and respective 95% CI estimated using bootstrap is 805 
represented. Species were ordered by IMGeo VEcv. Find further details on the species codes 806 
in the text. 807 
Fig. 5: Variance explained by the model of each interpolation method (median), estimated by 808 
cross validation for all species-year distributions. Red points indicate that the interpolation 809 
method was within the best method interquartile range and red star indicate the best VEcv in 810 
each case whereas black dots indicate models that did not passed for thr second step. Grey 811 
shadded area correspond to methods carried out using the 11 topographic covariates (IMCov), 812 
whereas white background shows methods using only lat+long and some depth (IMGeo). Please 813 
find further details on the methods and species codes in the text. 814 
Fig. 6: Distributions and methods that required the second step. Winning interpolation method 815 
according to each measure criteria (left panel; only cases where more than one method showing 816 
its VEcv within the highest method VEcv interquartile range were selected and situations with 817 
ties were excluded, i.e. several methods showing the same classification according to the 818 
criteria). Winning method for each measure-criteria by species-year distribution (right panel). 819 
Vertical grey line separates the methods using several covariates from the others. Please find 820 
further details on the criteria and methods codes in the text. The colour legend is represented in 821 
the barplot. 822 
Fig. 7: Second step of the spatial interpolator’s selection protocol applied to four case studies 823 
(2 bottom trawl, EVHOE and 2 acoustic pelagic, PELGAS). On the right side plots, the PCA 824 
shows where each interpolation method (represented with circles, orange-red coloured, 825 
according to the distance to the centre) failed according to the measures representing the three 826 
selection criteria (error-based in violet, spatial integrity in green and data integrity in blue). On 827 
the left panels, the inverse Euclidean distance to the centre of each method, provides the 828 
quantitative decision integrative measure. Please find the details of the code’s labels in the text. 829 
Fig. 8: Winning spatial interpolation method among the different approaches considered, for 830 
each case study (species-year distributions) according to the two step selection procedure (1st 831 
step using IQR VEcv identified with orange line and 2nd step, using the 3 criteria with 11 832 
measures, identified with blue line). Number of cases of each selected method by survey. 833 
Vertical grey line separates the methods using several covariates from the others. See further 834 
details of the species codes and methods on text. The colour legend is represented in the barplot. 835 
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Fig. 5: all VEcvs 852 
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Fig. 6: Best method according to each criteria (2nd step only). 856 
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Fig. 7: second step PCA examples 858 
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Fig. 8: Winning methods overall;  861 
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Supplement 1 867 
 868 
Location of the sampling stations from 2015 of the bottom trawl survey (EVHOE, left panel), 869 
of the pelagic acoustic survey (PELGAS) on the Gulf of Gascogne/Bay of Biscay in the North 870 
Atlantic coast of France (right panel). Number of hauls per year on EVHOE, from 2011 to 2015 871 
were respectively 220, 195, 208, 219 and 148. 872 

 873 
Species list names and abreviations 874 
EVHOE: Argentina sp. (ARGENTI), Arnoglossus sp. (ARNOGLO), Callionymus lyra 875 
(CALMLYR), Callionymus maculatus (CALMMAC), Capros aper (CAPOAPE), 876 
Chelidonichthys cuculus (CHELCUC), Conger conger (CONGCON), Eutrigla gurnardus 877 
(EUTRGUR), Gadiculus argenteus (GADIARG), Gadus morhua (GADUMOR), Helicolenus 878 
dactylopterus (HELIDAC), Lepidorhombus boscii (LEPIBOS), Lepidorhombus whiffiagonis 879 
(LEPIWHI), Leucoraja naevus (LEUCNAE), Lophius budegassa (LOPHBUD), Lophius 880 
piscatorius (LOPHPIS), Melanogrammus aeglefinus (MELAAEG), Merluccius merluccius 881 
(MERLMER), Merlangius merlangus (MERNMER), Microchirus variegatus (MICUVAR), 882 
Micromesistius poutassou (MICPOU), Microstomus kitt (MICKIT), Phycis blennoides 883 
(PHYIBLE), Scyliorhinus canicula (SCYOCAN), Solea solea (SOLESOL), Trisopterus 884 
esmarkii (TRISESM), Trisopterus luscus (TRISLUS), Trisopterus minutus (TRISMIN) and 885 
Zeus faber (ZEUSFAB) 886 
PELGAS: Engraulis encrasicolus (ENGRENC), Sardina pilchardus (SARDPIL), Scomber 887 
japonicas (SCOMJAP), Scomber scombrus (SCOMSCO), Sprattus sprattus (SPRASSPR) and 888 
Trachurus trachurus (TRACTRU) 889 
 890 
Details of the survey:  891 
The EVHOE survey has been carried out on the R/V Thalassa, a stern trawler of 73.7 m length 892 
by 14.9 m wide (tonnage of 3022 t). The fishing gear used is a GOV 36/47 without exocet Kite 893 
which is replaced by 6 additional floats and with a horizontal opening of 20 m and a vertical 894 
opening of 4 m. 895 

Supplement 2 896 
 897 
Description of terrain variables: 898 
Slope represent the terrain steepness (arrangement and magnitude of elevation 899 
differences)(slope) whereas terrain aspect (aspect) measures its orientation in degrees, relative 900 
to the north and it is particularly important to exposure to currents or water movement (Wilson 901 



et al., 2007). From aspect, northerness and easterness were derived (Wilson et al., 2007). Profile 902 
curvature defines convex/concave areas, represented by the rate of slope change along a profile, 903 
i.e. the surface of the steepest down-slope direction (surf.curv)(package ‘spatialEco’)(Evans JS, 904 
2017). Bathymetric Position Index is the difference between the value of a cell and the mean 905 
value of its surrounding cells and provides an indication of whether any particular pixel forms 906 
part of a positive (e.g., crest) or negative a (e.g., trough) feature of the surrounding terrain (TPI, 907 
marine version of the topographic position index). Terrain Ruggedness Index represents terrain 908 
variability whereas roughness represents the bathymetric amplitude of a cell and its 909 
surroundings (TRI). Surface flow confluence indicates the steepest downhill path (flowdir). 910 
Local Moran I was calculated as a measure of local spatial autocorrelation in the bathymetric 911 
neighborhood (moran)(Diesing et al., 2014; Li et al., 2016). Additionally, distance to the nearest 912 
coast was also estimated (dist.coast). 913 
 914 
Maps of the topographic variables used in the current work (bottom trawl area, EVHOE) 915 
After gridding all variables to EVHOE prediction grid (1117 pixels, 15 km). 916 

 917 

Supplement 3 918 
 919 
Table 1: Summary of the interpolation methods used in the current work. 920 

Interpolator Description R-package /Function Covar 
IMGeo    
LM1 1st-order trend surface gstat::gstat(vari ~ 1, degree=1) - 
LM2 2nd order trend surface  gstat::gstat(vari ~ 1, degree=2) - 
GAM Generalized Additive Model    



(Wood, 2006) 
GAM GAM in function of lat and long (in 

UTM) 
mgcv ::gam (lvari ~ s(lat ,long))  

GAMd GAM in function of lat and long (in 
UTM) and depth 

mgcv ::gam (lvari ~ s(lat 
,long)+s(Depth)) 

Depth 

IDW Inverse distance weight   
IDW Optimized using cross validation gstat::gstat(lvari~1, nmax=opt$par[1], 

set=list(idp=opt$par[2])) 
- 

VOR Voronoi thesselation  
(Fortin and Dale, 2005) 

dismo::voronoi(dat.s["lvari"])  

TPS Thin Plate Spline interpolation 
(Nychka, 2016) 

  

Kriging Methods using kriging  
(Bivand et al., 2013) 

  

MKr Ordinary kriging interpolation 
(manual fitting of variogram) 

gstat::krige(lvari ~ 1) - 

CSim Stochastic conditional simulation gstat::krige(lvari ~ 1, nsim = 1000, nmax 
= 20) 

- 

OKri  automap::autoKrige(lvari~1, model = 
c("Sph", "Exp")))(gstat) 

- 

17-22.  
Kr3 
Kr5  
Kr7  
Kr10  
Kr20  
Kr30 

OK with various neighborhood automap::autoKrige(lvari~1, model = 
c("Sph", "Exp"), nmax=jj) (gstat) 

- 

UKr Universal kriging, with depth as 
covariate 

automap::autoKrige(lvari~Depth, model 
= c("Sph", "Exp")) (gstat) 

Depth 

GLM Multiple regression  dat.s, 
lvari~Depth+slope+aspect+eastness+no
rthness+surf.curv+TPI+TRI+rough+dis
t.coast+flowdir 

Depth+slope
+aspect+east
ness+northne
ss+surf.curv
+TPI+TRI+r
ough+dist.co
ast+flowdir 

RTre Regression tree rpart:: rpart ( 
  dat.s, vari ~ 
Depth+slope+aspect+eastness+northnes
s+surf.curv+TPI+TRI+rough+dist.coast
+flowdir) 

Depth+slope
+aspect+east
ness+northne
ss+surf.curv
+TPI+TRI+r
ough+dist.co
ast+flowdir 

RFor Random forest  randomForest: randomForest( 
  dat.s, vari ~ 
Depth+slope+aspect+eastness+northnes
s+surf.curv+TPI+TRI+rough+dist.coast
+flowdir) 

Depth+slope
+aspect+east
ness+northne
ss+surf.curv
+TPI+TRI+r
ough+dist.co
ast+flowdir+
moran 

 921 
Details on the spatial interpolation methods considered  922 



 923 
Methods using just geographic coordinates or depth (IMGeo) 924 
1st and 2nd order trend surfaces (LM1 and LM2, respectively).  925 
In these interpolation methods, a first or second order trend surface is fitted to the raw data, 926 
respectively. It is a simplistic approach that was included in the current work as a worst case 927 
scenario that should be slightly better than a simple overall mean. 928 
Inverse distance weighting (IDW) 929 
Inverse distance weighting (IDW) is an advanced nearest neighbor approach that allows 930 
including more observations than only the nearest points. The value at a certain grid cell is 931 
obtained from a linear combination of the surrounding locations and the weight of each 932 
observation is determined by the distance. IDW is an exact interpolator. The method is fast, 933 
easy to implement and easily “tailored” for specific needs, but ancillary data cannot be 934 
incorporated. The method tends to generate “bull’s eye patterns” (Sluiter, 2009).  935 
Voronoi tessellation (VorT)  936 
The nearest neighbors method predicts the value of an attribute at an unsampled point based on 937 
the value of the nearest sample by drawing perpendicular bisectors between sampled points, 938 
forming such as Voronoi polygons (or Dirichlet/ Thiessen). This produces one polygon per 939 
sample and the sample is located in the center of the polygon, such that in each polygon all 940 
points are nearer to its enclosed sample point than to any other sample points (Legendre and 941 
Legendre, 1998; Li and Heap, 2008; Webster and Oliver, 2007). This technique is generally 942 
used with point data or categorical variables, but can also be used with densities/biomasses 943 
(Baddeley et al., 2006; Dauvin et al., 2004; Morfin et al., 2016; Thorson et al., 2015; Zuur et 944 
al., 2007).  945 
Thin Plate Splines (TPS) 946 
Thin plate smoothing splines (TPS), formally known as “laplacian smoothing splines”. Similar 947 
to the previous method, splines are fitted to the sampled data, but in this method, the smoothing 948 
parameter is calculated by minimizing the generalized cross validation function (GCV). This 949 



method is relatively robust because the minimization of GCV directly addresses the predictive 950 
accuracy and is less dependent on the veracity of the underlying statistical model (Hutchinson, 951 
1995) (Li and Heap, 2008). We applied this method using package::fields. 952 
Generalized Additive Models (GAM) 953 
 Generalized additive models (GAM) are a semiparametric extension of generalized linear 954 
models (GLM), but allow nonlinear relationships between the response and explanatory 955 
variables (Wood, 2006), are very commonly used in biological studies (Guisan et al., 2002). 956 
GAMs have been often used as a method to produced spatial predictions (i.e. interpolation) by 957 
considering the geographic coordinates and its interaction as covariates (Augustin et al., 2013). 958 
In the current work we used a GAM applied with the geographic coordinates as covariates 959 
(s(x,y, bs="ts"))(GAM), a model where besides geographic coordinates, depth was also 960 
considered as covariate (GAMd). GAMs were applied using the r package::mgcv (Wood, 961 
2006). 962 
Kriging 963 
From an interpolation point of view, kriging is equivalent to a thin-plate spline and is one 964 
species among the many in the genus of weighted inverse distance methods, albeit with 965 
attractive properties. However, from a statistical point of view, kriging produces the “best linear 966 
unbiased prediction” for an unknown location. It is linear since the estimated values are 967 
weighted linear combinations of the available data, unbiased because the mean of the error is 968 
0, and it aims to minimize the variance of the errors (Cressie 1990). Several variations of kriging 969 
methods were selected following previous works, all applied in the log transformed data. A 970 
sequence of interpolation approaches was considered, starting with ordinary kriging with global 971 
mean (Okr using automatic modelling and Mkr using manual variogram fitting), ordinary 972 
kriging with local neighbourhood estimation (considering 3, 5, 7, 10, 20 and 30 neighbours. 973 
Kriging neighborhood is a defined area, in terms of shape and size. Only samples from this area 974 
are used in the computation of the local estimates using the kriging technique.  975 
Kriging with external trend, also called universal kriging using depth as covariate (Ukr). It is 976 
an extension of OK by incorporating the local trend within the neighbourhood search widow as 977 
a smoothly varying function of the coordinates. UK estimates the trend components within each 978 
search neighbourhood window and then performs SK on the corresponding residuals.  979 
Stochastic conditional simulations (CSim)  980 
These techniques are used more and more, commonly to generate a series of spatial data that 981 
have a given degree of spatial dependence, in order to evaluate whether or not observed sample 982 
data show significant spatial patterns (Fortin and Dale, 2005). In this method, the parameters 983 
of the variogram model (defined previously for ordinary kriging) derived from the experimental 984 
variogram were used to generate 1000 stochastic simulations, with the same degree of spatial 985 
variance as the observed data (Fortin and Dale, 2005). These methods are known to generate 986 
maps having more spatial variability than the kriged ones and hence looking more realistic in 987 
comparison to the observed map (Fortin and Dale, 2005).  988 
Methods using topographic covariates (IMCov) 989 
In a mixed method approach to interpolation, the final predictions result of a combination of 990 
methods. The main trends are modelled in function of a group of selected covariates in first step 991 
(for example General Linear Model (GLM) or machine learning). In a second step, the residuals 992 
of this model are then analyzed using kriging, and then incorporated into the predictions (Hengl 993 
et al., 2007, 2004; Li et al., 2016). These methods require the availability of covariates. In the 994 
current work we used the marine topographic variables derived from GEBCO bathymetric 995 
maps, therefore widely available at a worldwide scale. Three mixed models were considered, 996 
one using general linear model and two using machine learning algorithms, regression trees and 997 
random forest.  998 
Multiple regression (GLM)  999 



Stepwise multiple regression with all topography-depth covariates was carried out for each 1000 
distribution (lvari ~ Depth + slope + rough + moran + TRI + TPI + dist.coast + flowdir + aspect 1001 
+ eastness + northness). The regression model considered assumes that the residuals are 1002 
generated from a normally distributed, second-order stationarity random process—i.e. a random 1003 
process that has a constant mean and variance.  1004 
Regression trees (RTre)  1005 
The regression tree approach (also known as binary decision trees) uses binary recursive 1006 
partitioning whereby the data of the primary variable are successively split along the gradient 1007 
of the explanatory variables into two descendent subsets or nodes. These splits occur so that at 1008 
any node the split is selected to maximize the difference between two split groups or branches. 1009 
The mean value of the primary variable in each terminal node can then be used to map the 1010 
variable across the region of interest (Li and Heap, 2008). Regression tree (CART) algorithm 1011 
was fitted to the data to produce a tree with optimal tree size.  1012 
Random forest (RFor)  1013 
A random forest model of each species distribution in function of all marine topographic 1014 
covariates was produced (Hengl et al., 2015; Li et al., 2016, 2013, 2011)(vari ~ Depth + slope 1015 
+ aspect + eastness + northness + surf.curv + TPI + TRI + rough + moran + dist.coast + flowdir).  1016 
 1017 
 1018 
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 1020 
Correlation plot between the indicators 1021 
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 1024 
 1025 
# title: "Example script for the selection of interpolation method" 1026 
# author: "Marta M Rufino^[EMH, IFREMER]" 1027 
 1028 
# The aim of this script is to provide an example of the selection of an interpolation method. 1029 
This is an accompanying work of the paper.  1030 



 1031 
# We will need to have theese packages intalled: 1032 
require(ggplot2); require(RColorBrewer); require(gridExtra) # ploting  1033 
require(dplyr); require(tidyr);#data manipulation 1034 
require(raster); require(rasterVis); #plot and spatial data manipulation 1035 
require(sp); # spatial data  1036 
require(gstat); #kriging and idw 1037 
require(fields) #tps 1038 
require(mgcv); #gam 1039 
require(RGeostats) #spatial indicators. Pkg can be download from here 1040 
http://rgeostats.free.fr/download.php and install manually 1041 
require(ineq) #Gini index (spatial indicators) 1042 
require(ggrepel) # PCA plot 1043 
 1044 
# Get an example running with MEUSE dataset: 1045 
library(sp); library(gstat) 1046 
data(meuse) 1047 
data(meuse.grid) 1048 
gridded(meuse.grid) = ~x+y 1049 
# m <- vgm(.59, "Sph", 874, .04) 1050 
 1051 
dat = meuse %>%  1052 
  dplyr::select(x,y,zinc, dist) %>%  1053 
  dplyr::rename("vari" = "zinc", 1054 
                "Depth" = "dist") 1055 
dat.grid <- meuse.grid["dist"]   1056 
names(dat.grid) = "Depth" 1057 
 1058 
# 1. Interpolate the data (function interp.dat_CV) 1059 
 1060 
# First we make the different spatial interpolation models. For each model, we will do cross 1061 
validation. We will only consider the models without covariates to facilitate the process. 1062 
 1063 
## This chunk runs a function to interpolate the data of each species distribution 1064 
(interp.dat_CV) and estimate respective CV 1065 
 1066 
## DataDir should the the directory where you have your functions file 1067 
('interp.dat_CV_script.r') 1068 
 1069 
# Please run the required functions which are in the end of the script 1070 
 1071 
# Run the function 1072 
kk <- interp.dat_CV(nam="zinc", dat=dat, dat.grid=dat.grid, CV=TRUE, plotit=FALSE, 1073 
                    replicate.cv = 10) 1074 
# note we only used 10 replicates of the cv instead of 100 to make a quicker test 1075 
 1076 
# see the results: 1077 
head(kk) 1078 
# the result of this function is a list with three items: 1079 
# 1. res is the raster stack with all predictions from each method; 1080 



# 2. cv.results is the cross-validation summary results 1081 
# 3. model.params is some of the models parameters stored 1082 
 1083 
# Extract the raster stack with all interpolator predictions and store it as a new object 1084 
pred = kk$res 1085 
names(pred) 1086 
 1087 
# Plot the interpolations 1088 
coli <- function (region = rev(brewer.pal(n = 10, 'Spectral')), ...) 1089 
{theme <- rasterTheme(region = region, ...); theme} 1090 
levelplot(pred, par.settings = coli) 1091 
 1092 
# Reshape the table to fit nicely in the results 1093 
cv.res <- left_join( 1094 
  data.frame(kk$cv.results) %>%  1095 
    dplyr::select(Index, median, method) %>%  1096 
    tidyr::spread(Index, median), 1097 
  data.frame(kk$cv.results) %>%  1098 
    dplyr::filter(Index=="VEcv") %>%  1099 
    dplyr::select(VEcv.Q1, VEcv.Q3, method) ) 1100 
 1101 
# Reorder factor levels 1102 
cv.res$method <- factor(cv.res$method,  1103 
                        levels=c("tre2","GAMp","IDWo", 1104 
                                 "TPSp", "MKri","UKri"))  1105 
 1106 
# Round  1107 
cv.res[,-c(1)] <- round(cv.res[,-c(1)],2) 1108 
 1109 
# Make the log of the measures 1110 
cv.res$lMAE <- log1p(cv.res$MAE) 1111 
cv.res$lRMSE <- log1p(cv.res$RMSE) 1112 
 1113 
# Classify VEcv 1114 
cv.res$VEcv.class <- cv.res$VEcv 1115 
cv.res$VEcv.class <- cut(cv.res$VEcv.class, c(-2,0,10, 30, 50, 80, 100)) 1116 
levels(cv.res$VEcv.class) <-  1117 
  c("0. worst_then_mean", 1118 
    "1.very_poor", 1119 
    "2.poor", 1120 
    "3.average", 1121 
    "4.good", 1122 
    "5.excellent") 1123 
 1124 
# Inverted VEcv, i.e. the bigger the worst: 1125 
cv.res$VEcv.inv <- abs(cv.res$VEcv/100-1)*100 1126 
 1127 
# Estimate spatial indicators 1128 
 1129 



# In this chunk we will estimate the spatial indicators using the sampled data and the 1130 
interpolated data (prediction rasters). 1131 
 1132 
# For this we will use the pre-packed functions in the packages 'Rgeostats' and 'ineq', although 1133 
the indexes are relatively simple to calculate. 1134 
 1135 
# Further, the function will also estimate the 'data limits integrity indicators'. 1136 
 1137 
# This chunk estimates the difference in the spatial indicators between the raw data and 1138 
interpolated surfaces and the data limits integrity indicators 1139 
 1140 
# Note we require RGeostats and ineq for this chunk. 1141 
 1142 
# Test the function in one case 1143 
fun.inter2(ii="tre2", dat=dat, pred=pred) 1144 
 1145 
# Apply to all interpolation methods: 1146 
ind.res <- lapply(as.list(levels(cv.res$method)), fun.inter2, dat=dat, pred=pred) 1147 
ind.res <- do.call("bind_rows", ind.res)  1148 
 1149 
# Merge the results with cv results: 1150 
tot.res <- full_join(cv.res, ind.res, by=c("method")) 1151 
 1152 
# Now, all the indicators were estimated for each interpolation method. We shall then proceed 1153 
to make the first step of the selection method. 1154 
 1155 
# First selection step: VEcv interquantile range 1156 
 1157 
# Reorder factor levels: 1158 
tot.res$method <- factor(tot.res$method,  1159 
                         levels=c("tre2","GAMp","IDWo", 1160 
                                  "TPSp", "MKri","UKri"))  1161 
tot.res$short.method <- ordered(tot.res$method, 1162 
labels=c("LM2","GAM","IDW","TPS","MKr","UKr")) 1163 
 1164 
 1165 
# Which methods have the VEcv higher than the lower Q3 1166 
tot.res <- tot.res %>%  1167 
  dplyr::select(-MAE, -R2, -RMSE) %>% 1168 
  # valid methods, i.e. within range of inter-quartile: 1169 
  dplyr::mutate( 1170 
    VEcv.criteria = c(VEcv.Q3 >= max(VEcv.Q1))) 1171 
 1172 
# Plot the VEcv, Q1 and Q3 and respective criteria 1173 
tot.res %>%  1174 
  ggplot(aes(x=method, y=VEcv))+ 1175 
  geom_point(aes(col=VEcv.criteria))+ 1176 
  geom_crossbar(aes(ymin=VEcv.Q1, ymax=VEcv.Q3,y=VEcv, col=VEcv.criteria), alpha=.5, 1177 
width=.5)+ 1178 
  ggtitle("First step of interpolators selection") 1179 



 1180 
 1181 
# Second selection step: indicators 1182 
 1183 
# select the data for the PCA of indicators 1184 
row.names(tot.res) = tot.res$short.method 1185 
sec.res <- tot.res %>%  1186 
  dplyr::filter(VEcv.criteria==TRUE) %>%  1187 
  dplyr::select(VEcv.inv, lMAE, lRMSE,  1188 
                CGdist, a.linertia, a.iso, a.Gini,  1189 
                a.pix_under, a.pix_over, a.mean_perc, a.over_perc) 1190 
 1191 
# Use the function to plot the results and estimate the best method of the selection 1192 
PCbiplot(datpc=sec.res, x="PC1", y="PC2") 1193 
 1194 
 1195 
 1196 
####################### 1197 
## Functions required 1198 
####################### 1199 
 1200 
 1201 
 1202 
interp.dat_CV <- function(nam, dat, dat.grid,  1203 
                          CV=TRUE, plotit=TRUE,  1204 
                          replicate.cv = 10){ 1205 
  require(ggplot2); require(RColorBrewer);  # ploting  1206 
  require(dplyr); require(tidyr);#ploting and manover 1207 
  require(raster); require(rasterVis); #plot and manipulation 1208 
  require(sp); # spatial data  1209 
  require(gstat); #kriging and idw 1210 
  require(fields) #tps 1211 
  require(mgcv); #gam 1212 
  #require(scales) #modeling 1213 
  theme_set(theme_bw(base_size = 9)); 1214 
   1215 
  # Arguments:  1216 
  # nam is the label code 1217 
  # dat data frame with x, y, vari (variable of interest) and Depth 1218 
  # dat.grid # predictions grid that we want to estimate. class SpatialPixels - sp 1219 
  # plotit: produce plots for each interpolation. 1220 
   1221 
  # Start the function 1222 
   1223 
  # make a raster stack to fill with interpolation predictions of the different models: 1224 
  dat.pred <- raster(dat.grid)  1225 
  dat.pred[] <- NA 1226 
  dat.pred <- stack(dat.pred) 1227 
  # make a dataframe to fit in the parameters 1228 
  model.params <- data.frame(code=as.character(nam)) 1229 



   1230 
  ## make the spatial object 1231 
  dat.s <- dat 1232 
  coordinates(dat.s) <- ~x+y 1233 
  # the warning is due to the recent change to PROJ6 1234 
  proj4string(dat.s) <- CRS("+init=epsg:28992") 1235 
  proj4string(dat.grid) <- CRS("+init=epsg:28992") 1236 
  #dat.border <- spTransform(dat.border, utm30) 1237 
  #dat.pred <- stack(raster(dat.grid)) # obj to save the data 1238 
   1239 
  # for plotting 1240 
  coli <- function (region = rev(brewer.pal(n = 10, 'Spectral')), ...) 1241 
  {theme <- rasterTheme(region = region, ...); theme} 1242 
   1243 
  # function to make individual plots 1244 
  fun.plot <- function(ii, dat.s){ 1245 
    print(levelplot(dat.pred[[ii]]+.1, main=paste(ii, nam, round(max(dat$vari))),  1246 
                    zscaleLog=FALSE, 1247 
                    par.settings = coli))} 1248 
   1249 
  # Function to estimate error measures  1250 
  fun.eval <- function(observed, predicted){ 1251 
    resi <- c(observed- predicted) 1252 
    # rmse(sim=predicted, obs=observed) 1253 
    (RMSE <- sqrt(mean(resi^2)))  1254 
    #mae(sim=predicted, obs=observed) 1255 
    (MAE <- mean(abs(resi))) 1256 
    #(RMAE = MAE/mean(observed)) 1257 
    #RMAE2 = mean(abs((kk$predicted-kk$observed)/mean(kk$observed)))*100  1258 
    #(RRMSE = RMSE/mean(observed)) 1259 
    #RRMSE2 = sqrt(mean((kk$predicted-kk$observed)/mean(kk$observed)^2))*100 1260 
    # R2 should be 1-sum((kk$observed-kk$predicted)^2)/sum((kk$observed-1261 
mean(kk$observed))^2) 1262 
    (R2 <- 1-(sum((resi)^2)/sum((observed-mean(observed))^2))) 1263 
    #1-(RMSE/sqrt(mean((kk$observed-mean(kk$observed))^2)))) 1264 
    #(R3 <- 1-var(resi)/var(kk$observed)) #HENGL 1265 
    (VEcv <- (1 - sum((resi)^2)/ 1266 
                sum((observed-mean(observed))^2))*100) 1267 
    res.error <- data.frame(RMSE=round(RMSE,2),  1268 
                            MAE=round(MAE,2),  1269 
                            #RMAE=round(RMAE,2), RRMSE=round(RRMSE,2), 1270 
                            R2=round(R2,2), 1271 
                            VEcv=round(VEcv,2)) 1272 
    return(res.error) 1273 
  } 1274 
   1275 
  # Function to make the cross validation and estimate error measures 1276 
  cvfun.replicate <- function(xx, FUN, ii=ii, nam=nam, replicate.cv=replicate.cv){ 1277 
    # xx is the data frame with x,y and biom..., FUN is the fun model of each method; 1278 
    # xx=dat.s; FUN=cv1.fun.cv; replicate.cv=10 1279 



    cv2.fun.fold <-function(xx, FUN){ 1280 
      set.seed(seed <- as.integer(runif(1)*2e9)) 1281 
      print(seed) 1282 
      kf <- sample(rep(seq_len(10), length.out=nrow(dat))) 1283 
      # Apply fun for the 10 folds  1284 
      kk <- lapply(as.list(sort(unique(kf))), 1285 
                   FUN = FUN, xx=xx, kf=kf) %>%  1286 
        dplyr::bind_rows() 1287 
      kk$seed=seed 1288 
      ## if we want to export predicted/observed 1289 
      #write.table(kk, append=TRUE,  1290 
      #            file = paste0(paste("pred.obs_cv1000", nam, ii, sep="_"), ".xls"), 1291 
      #            sep="\t", row.names=FALSE, col.names=FALSE) 1292 
      assign("last.warning", NULL, envir = baseenv()) 1293 
       1294 
      kk <- kk %>%  1295 
        dplyr::group_by(fold) %>%  1296 
        do(fun.eval(observed=.$observed, predicted=.$predicted)) %>%  1297 
        dplyr::filter(is.finite(VEcv)) %>%  1298 
        ungroup() %>%  1299 
        dplyr::summarise_all(funs(mean)) %>%  1300 
        dplyr::select(RMSE:VEcv) %>%  1301 
        data.frame() 1302 
      return(kk) 1303 
      rm(kf, kk, seed) 1304 
    } 1305 
     1306 
    # to test cv2.fun.fold(FUN = cv1.fun.cv, xx=dat) 1307 
    # replicate CV 100 times 1308 
    xx1 <- replicate(replicate.cv, cv2.fun.fold(FUN = FUN, xx=xx), simplify = FALSE) %>% 1309 
      bind_rows %>%  1310 
      mutate(sp=nam, method=ii)  1311 
    xx1[mapply(is.infinite, xx1)] <- NA 1312 
    xx1 <- na.exclude(xx1) 1313 
    ## plot the distribution 1314 
    #print(xx1 %>%  tidyr::gather(Index, value, RMSE:VEcv) %>% 1315 
    #        ggplot(aes(x=value, group=Index, col=Index))+geom_density()+facet_wrap(~Index, 1316 
scales="free")) 1317 
    ## if we want to export the results: 1318 
    # write.table(xx1, file = paste("indices_cv1000", nam, ii, ".xls", sep="_"), sep="\t", 1319 
row.names=FALSE)     1320 
     1321 
    # Get stats 1322 
    kk1 <- xx1 %>% tidyr::gather(Index, value, RMSE:VEcv) %>% 1323 
      dplyr::group_by(Index) %>%  1324 
      dplyr::summarize(VEcv.Q1=quantile (value, probs=0.25),  1325 
                       VEcv.Q3=quantile(value, probs=0.75), 1326 
                       mean=mean(value, na.rm=TRUE), N=n(), 1327 
                       median=median(value, na.rm=TRUE), N=n(), 1328 
                       max=max(value, na.rm=TRUE),  1329 



                       min=min(value, na.rm=TRUE)) %>%  1330 
      dplyr::mutate(sp=nam, method=ii) 1331 
    return(kk1); rm(xx) 1332 
  } 1333 
   1334 
   1335 
  ################################## 1336 
  # 2nd order trend surface 1337 
  ################################## 1338 
  ii <- "tre2" 1339 
  dat.trend2 <- gstat(formula=vari ~ 1, data=dat.s, degree=2) 1340 
  dat.trend2 <- predict(dat.trend2, newdata=dat.grid) 1341 
  #spplot(dat.trend2[1], contour=TRUE,main="2nd order trend surface interpolation") 1342 
  dat.pred[[ii]] <- raster(dat.trend2[1]) 1343 
   1344 
  # Cross validation replicate 1345 
  if(CV==TRUE){ 1346 
    # function to do CV on each fold 1347 
    cv1.fun.cv = function(xx, k, kf){ 1348 
      # Function to reproduce the interpolator  1349 
      # for a part of the data and predict with the other part 1350 
      # the output MUST be a dataframe with:  1351 
      # fold/observed/predicted 1352 
      kk <- gstat(formula=vari ~ 1, data=xx[kf != k,], degree=2) 1353 
      kk1 <- predict(kk, newdata=xx[kf == k,]) 1354 
      return(data.frame(fold = k, observed = xx[kf == k,]$vari,  1355 
                        predicted = kk1$var1.pred)) 1356 
      rm(kk, kk1, k) 1357 
    } 1358 
    kk <- cvfun.replicate(xx=dat.s, FUN=cv1.fun.cv, ii=ii, nam=nam, replicate.cv=replicate.cv) 1359 
    cv.results <- kk; 1360 
  } 1361 
   1362 
   1363 
  # ################################## 1364 
  # # GAM model 1365 
  # ################################## 1366 
  require(mgcv) 1367 
  ii="GAMp" 1368 
  dat.mod <- gam(vari~s(x,y, bs="ts"), data=dat) 1369 
  kk <- data.frame(coordinates(dat.grid));  1370 
  names(kk)= c("x","y") 1371 
  dat.mod2 <- predict(dat.mod, newdata=kk) 1372 
  kk <- cbind(kk, dat.mod2) 1373 
  dat.pred[[ii]] <- rasterFromXYZ(kk) 1374 
  # store parameters 1375 
  model.params$R2.GAMp <- summary(dat.mod)$r.sq 1376 
   1377 
  # Cross validation replicate 1378 
  if(CV==TRUE){ 1379 



    # function to do CV on each fold 1380 
    cv1.fun.cv = function(xx, k, kf){ 1381 
      kk <- gam(vari ~ s(x,y, bs="ts", k=50), data=xx[kf != k,]) 1382 
      kk1 <- predict(kk, newdata=xx[kf == k,]) 1383 
      return(data.frame(fold=k, observed=xx[kf == k,]$vari, 1384 
                        predicted=kk1)) 1385 
      # kk <- gam(vari ~ s(x, y, bs="ts", k=50), data=xx[kf != k,]) 1386 
      # #print(summary(kk)); print(plot(kk)) 1387 
      # kk1 <- predict(kk, newdata=xx[kf == k,]) 1388 
      # return(data.frame(fold=k, observed=xx[kf == k,]$vari, predicted=kk1)) 1389 
      rm(kk, kk1, k) 1390 
    } 1391 
    # test: cv1.fun.cv(xx=dat, k=1, kf=kf) 1392 
    kk <- cvfun.replicate(xx=dat, FUN=cv1.fun.cv, ii=ii, nam=nam, replicate.cv=replicate.cv) 1393 
    print(head(kk)) 1394 
    cv.results <- bind_rows(cv.results, kk); 1395 
    rm(kk) 1396 
  } 1397 
   1398 
  rm(dat.mod, dat.mod2, ii) 1399 
   1400 
   1401 
  # ################################## 1402 
  # # Inverse distance weighting interpolation OPTIMIZED 1403 
  # ################################## 1404 
  ii="IDWo" 1405 
  RMSE <- function(observed, predicted) { 1406 
    sqrt(mean((predicted - observed)^2, na.rm=TRUE))} 1407 
   1408 
  f1 <- function(x, test, train) { 1409 
    nmx <- x[1] 1410 
    idp <- x[2] 1411 
    if (nmx < 1) return(Inf) 1412 
    if (idp < .001) return(Inf) 1413 
    m <- gstat(formula=vari~1, locations=train, nmax=nmx, set=list(idp=idp)) 1414 
    p <- predict(m, newdata=test, debug.level=0)$var1.pred 1415 
    RMSE(test$vari, p) 1416 
  } 1417 
  # set.seed(20150518) 1418 
  i <- sample(nrow(dat.s), 0.2 * nrow(dat.s)) 1419 
  tst <- dat.s[i,] 1420 
  trn <- dat.s[-i,] 1421 
  opt <- optim(c(8, .5), f1, test=tst, train=trn) 1422 
   1423 
  dat.idwopt <- gstat(formula=vari~1, locations=dat.s, nmax=opt$par[1], 1424 
set=list(idp=opt$par[2])) 1425 
  dat.idwopt <- raster::interpolate(raster(dat.grid), dat.idwopt) 1426 
  ## [inverse distance weighted interpolation] 1427 
  dat.idwopt <- mask(dat.idwopt, dat.grid) 1428 
  dat.pred[[ii]] <- dat.idwopt 1429 



   1430 
  # Cross validation replicate 1431 
  if(CV==TRUE){ 1432 
    # function to do CV on each fold 1433 
    cv1.fun.cv = function(xx, k, kf){ 1434 
      kk <- gstat(formula=vari~1, locations=xx[kf != k,], nmax=opt$par[1], 1435 
set=list(idp=opt$par[2])) 1436 
      kk1 <- predict(kk, newdata=xx[kf == k,]) 1437 
      return(data.frame(fold=k, observed=xx[kf == k,]$vari, 1438 
                        predicted=kk1$var1.pred)) 1439 
      rm(kk, kk1, k) 1440 
    } 1441 
    # test: cv1.fun.cv(xx=dat.s, k=1, kf=kf) 1442 
    kk <- cvfun.replicate(xx=dat.s, FUN=cv1.fun.cv, ii=ii, nam=nam, replicate.cv=replicate.cv) 1443 
    print(head(kk)) 1444 
    cv.results <- bind_rows(cv.results, kk); rm(kk) 1445 
  } 1446 
  rm(i,tst, trn, opt,f1) 1447 
   1448 
   1449 
  ################################## 1450 
  # TPS 1451 
  ################################## 1452 
  print(ii <- "TPSp") 1453 
  kk <- Tps(coordinates(dat.s), dat.s$vari) 1454 
  dat.tps <- raster::interpolate(raster(dat.grid), kk) 1455 
  dat.tps <- mask(dat.tps, dat.grid) 1456 
  dat.pred[[ii]] <- dat.tps 1457 
   1458 
  # Cross validation replicate 1459 
  if(CV==TRUE){ 1460 
    # function to do CV on each fold 1461 
    cv1.fun.cv = function(xx, k, kf){ 1462 
      kk <- Tps(coordinates(xx[kf != k,]), xx[kf != k,]$vari) 1463 
      kk1 <- predict(kk, coordinates(xx[kf == k,])) 1464 
      return(data.frame(fold=k, observed=xx[kf == k,]$vari, 1465 
                        predicted=c(kk1))) 1466 
      rm(kk, kk1, k) 1467 
    } 1468 
    # test: cv1.fun.cv(xx=dat.s, k=1, kf=kf) 1469 
    kk <- cvfun.replicate(xx=dat.s, FUN=cv1.fun.cv, ii=ii, nam=nam, replicate.cv=replicate.cv) 1470 
    print(head(kk)) 1471 
    cv.results <- bind_rows(cv.results, kk); rm(kk) 1472 
  } 1473 
   1474 
   1475 
  ################################## 1476 
  # Manual kriging 1477 
  ################################## 1478 
  print(ii <- "MKri") 1479 



  dat.vgm <- variogram(vari~1, dat.s) 1480 
   1481 
  kk = vgm(psill = max(dat.vgm$gamma), model="Sph", range=max(dat.vgm$dist)/2, 1482 
nugget=min(dat.vgm$gamma)) 1483 
  dat.fit <- fit.variogram(dat.vgm, model = kk) 1484 
  ## plot variogram with respective model 1485 
  #plot(dat.vgm, dat.fit) 1486 
   1487 
  dat.krige <- krige(vari ~ 1, dat.s, dat.grid, model = dat.fit) 1488 
  #spplot(dat.krige[1]) 1489 
  dat.pred[[ii]] <- raster(dat.krige[1]) 1490 
  model.params <- cbind(model.params, "MKri"=data.frame(nug=dat.fit[1,2], sill=dat.fit[2,2], 1491 
range=dat.fit[2,3])) 1492 
   1493 
  # Cross validation replicate 1494 
  if(CV==TRUE){ 1495 
    # function to do CV on each fold 1496 
    cv1.fun.cv = function(xx, k, kf){ 1497 
      kk <- krige(vari ~ 1, xx[kf != k,], xx[kf == k,], model = dat.fit) 1498 
      return(data.frame(fold=k, observed=xx[kf == k,]$vari, 1499 
                        predicted=kk$var1.pred)) 1500 
      rm(kk, kk1, k) 1501 
    } 1502 
    # test: cv1.fun.cv(xx=dat.s, k=1, kf=kf) 1503 
    kk <- cvfun.replicate(xx=dat.s, FUN=cv1.fun.cv, ii=ii, nam=nam, replicate.cv=replicate.cv) 1504 
    print(head(kk)) 1505 
    cv.results <- bind_rows(cv.results, kk); 1506 
    rm(kk) 1507 
  } 1508 
   1509 
   1510 
  ################################## 1511 
  # Universal kriging 1512 
  ################################## 1513 
  print(ii <- "UKri") 1514 
  dat.vgm <- variogram(vari~Depth, dat.s) 1515 
   1516 
  kk = vgm(psill = max(dat.vgm$gamma), model="Sph", range=max(dat.vgm$dist)/2, 1517 
nugget=min(dat.vgm$gamma)) 1518 
  dat.fit <- fit.variogram(dat.vgm, model = kk) 1519 
  #plot(dat.vgm, dat.fit) 1520 
   1521 
  dat.krige <- krige(vari ~ 1, dat.s, dat.grid, model = dat.fit) 1522 
  #spplot(dat.krige[1]) 1523 
  dat.pred[[ii]] <- raster(dat.krige[1]) 1524 
  model.params <- cbind(model.params, "UKri"=data.frame(nug=dat.fit[1,2], sill=dat.fit[2,2], 1525 
range=dat.fit[2,3])) 1526 
   1527 
  # Cross validation replicate 1528 
  if(CV==TRUE){ 1529 



    # function to do CV on each fold 1530 
    cv1.fun.cv = function(xx, k, kf){ 1531 
      kk <- krige(vari ~ Depth, xx[kf != k,], xx[kf == k,], model = dat.fit) 1532 
      return(data.frame(fold=k, observed=xx[kf == k,]$vari, 1533 
                        predicted=kk$var1.pred)) 1534 
      rm(kk, kk1, k) 1535 
    } 1536 
    # test: cv1.fun.cv(xx=dat.s, k=1, kf=kf) 1537 
    kk <- cvfun.replicate(xx=dat.s, FUN=cv1.fun.cv, ii=ii, nam=nam, replicate.cv=replicate.cv) 1538 
    print(head(kk)) 1539 
    cv.results <- bind_rows(cv.results, kk); 1540 
    rm(kk) 1541 
  } 1542 
   1543 
   1544 
  ############################### 1545 
  ## FINAL PLOTS 1546 
  ############################### 1547 
   1548 
  ## exclude Depth layer and project if wanted 1549 
  # res <- projectRaster(dat.pred, crs=myCRS) 1550 
  res = stack(dat.pred[[-1]]) 1551 
   1552 
  if(plotit == TRUE){  1553 
    par(ask=TRUE) 1554 
    #samples 1555 
    p1<- qplot(data=dat, x=x, y=y, size=vari, col=vari, alpha=.0)+ 1556 
      ggtitle(paste(nam, 1557 
                    "max:", round(max(dat$vari)), 1558 
                    "mean:", round(mean(dat$vari)))) 1559 
     1560 
    # maps 1561 
    p2 <- levelplot(res,  1562 
                    main=paste(nam, round(max(dat$vari))),  1563 
                    zscaleLog=FALSE,layout=c(6, 1), 1564 
                    par.settings = coli) 1565 
     1566 
    # log maps  1567 
    p3 <- levelplot(res+.1, main="Log", zscaleLog=TRUE, 1568 
                    layout=c(6, 1),par.settings = coli) 1569 
    # scaled maps 1570 
    p4 <- levelplot(scale(res), main=paste('Scaled', nam),   1571 
                    layout=c(6, 1),par.settings = coli) 1572 
     1573 
    # histogram 1574 
    p5 <- histogram(res,  1575 
                    xlim=c(0,max(dat$vari))) 1576 
    # density 1577 
    p6 <- densityplot(res,   1578 
                      xlim=c(0,max(dat$vari))) 1579 



     1580 
    # boxplot 1581 
    p7 <- bwplot(res) 1582 
     1583 
    grid.draw(grid.arrange(p2,p3,p4, 1584 
                           layout_matrix = rbind(c(1,1,1),c(2,2,2),c(3,3,3)))) 1585 
    grid.draw(grid.arrange(p5,p1,p6,p7, 1586 
                           layout_matrix = rbind(c(1,1,1),c(2,3,4)))) 1587 
    par(ask=FALSE) 1588 
  } 1589 
   1590 
  return(list(res = res,  1591 
              cv.results = cv.results,  1592 
              model.params = model.params)) 1593 
   1594 
  assign("last.warning", NULL, envir = baseenv()) 1595 
  # res <- tidyr::gather(data.frame(res), method, pred, -x,-y) 1596 
} 1597 
 1598 
# to test 1599 
# kk <- interp.dat_CV(nam="zinc", dat=dat, dat.grid=dat.grid, CV=TRUE, plotit=TRUE) 1600 
 1601 
 1602 
# Function to estimate the spatial indicators: 1603 
fun.indicators <- function(dat) { 1604 
  ## function to be used in this chunk: 1605 
  require(RGeostats);require(ineq) # For Gini index  1606 
  dat <- data.frame(dat) 1607 
  names(dat) <- c("x","y","pred") 1608 
   1609 
  if(max(dat$pred, na.rm=TRUE)!=0){ 1610 
    dat$pred[dat$pred<0] = 0 #to avoid issues with center of gravity 1611 
    kk <- db.create(x1=dat$x, x2=dat$y, z1=dat$pred) 1612 
    kk2 <- SI.cgi(kk) # for the centre of gravity, inertia and isotropy- 1613 
    kk5 <- ineq(dat$pred, type="Gini")# gini index 1614 
    return(data.frame(t(unlist(kk2)[c(1,3,4,5)]), Gini=kk5)) 1615 
  }} 1616 
 1617 
# To test the function  1618 
# fun.indicators(dat = rasterToPoints(pred[[1]])) 1619 
 1620 
 1621 
# Function to apply the indicators function, estimate the difference between sampled and 1622 
interpolated and estimate the data limits intergrity measures: 1623 
fun.inter2 = function(ii, dat=dat, pred=pred){ 1624 
   1625 
  predi = rasterToPoints(pred[[ii]]) 1626 
   1627 
  # Estimate the indicators of interpolated 1628 
  res2 <- fun.indicators(predi) 1629 



   1630 
  # Estimate the indicators for raw data 1631 
  res1 <- fun.indicators(dat[, c("x","y","vari")]) # 0.35 sec 1632 
   1633 
  # Absulute difference between sampled and interpolated 1634 
  res <- abs(res1-res2) 1635 
  names(res)[c(1,2,5)] = paste0("a.",names(res)[c(1,2,5)]) 1636 
  res$method <- ii  1637 
   1638 
  # Diff of center of gravity 1639 
  res$CGdist <- spDistsN1(as.matrix(res1[,c("center1","center2")]), 1640 
as.matrix(res2[,c("center1","center2")])) 1641 
   1642 
  # Rescale inertia 1643 
  res$a.linertia = log1p(res$a.inertia) 1644 
   1645 
  # Get number of pixels values over max biom pred 1646 
  ll <- dim(predi)[1] # number of pixels 1647 
  mx <- max(dat$vari, na.rm=TRUE) 1648 
  mm <- mean(dat$vari, na.rm=TRUE) 1649 
   1650 
  res$a.pix_under <-  1651 
    abs(ifelse(is.null(dim(predi[predi[,3]<0,])[1]),0, 1652 
               round(dim(predi[predi[,3]<0,])[1]/ll*100,2))) 1653 
   1654 
  res$a.pix_over <-  1655 
    abs(ifelse(is.null(dim(predi[predi[,3]> mx,])[1]),0, 1656 
               round((dim(predi[predi[,3] > mx,])[1]/ll)*100,2))) 1657 
   1658 
  res$a.mean_perc <- abs(round(c(mean(predi[,3], na.rm=TRUE)- mm)/mm * 100, 2)) 1659 
   1660 
  res$a.over_perc <- abs(round((max(predi[,3], na.rm=TRUE)-mx)/mx*100,2)) 1661 
   1662 
  res <- res[,c("method", "CGdist","a.linertia","a.iso","a.Gini", 1663 
                "a.pix_under","a.pix_over","a.mean_perc","a.over_perc")] 1664 
  return(res) 1665 
} 1666 
 1667 
# Function to make the PCA and estimate the best method according to the indicators 1668 
PCbiplot <- function(datpc=sec.res,  1669 
                     x="PC1", y="PC2") { 1670 
  require(ggrepel) 1671 
   1672 
  # exclude indicators with zero only 1673 
  datpc = datpc[,colSums(datpc)!=0] 1674 
   1675 
  # PCA 1676 
  PC <- prcomp(datpc, scale=TRUE, center=FALSE) 1677 
  #biplot(PC) 1678 
  data <- data.frame(winner2=row.names(PC$x),PC$x) 1679 



  datapc <- data.frame(varnames=rownames(PC$rotation), PC$rotation) 1680 
   1681 
  mult <- min((max(data[,"PC2"]) -  min(data[,"PC2"])/(max(datapc[,"PC2"])-1682 
min(datapc[,"PC2"]))),(max(data[,"PC1"]) - min(data[,"PC1"])/(max(datapc[,"PC1"])-1683 
min(datapc[,"PC1"])))) 1684 
  datapc <- transform(datapc, v1 = .7 * mult * (get("PC1")),v2 = .7 * mult * (get("PC2"))) 1685 
  dev <- paste0(c(round(((PC$sdev)^2 / sum(PC$sdev^2) )*100))[1:2],"%") 1686 
   1687 
  # Get distance to center of each point: 1688 
  data$dist <- apply(data[,c("PC1","PC2")], 1, 1689 
                     function(x) { 1690 
                       (sqrt((x[1] - 0)^2+(x[2]-0)^2))}) 1691 
   1692 
  # Reverse weights, as the closer to zero the better: 1693 
  data$dist2 <- 1/data$dist  1694 
   1695 
  # Classification and col of criteria 1696 
  col.ind <- data.frame(nam=row.names(datapc), class=1) 1697 
  col.ind[col.ind$nam %in% c("lMAE","lRMSE","VEcv.inv"),2]<-"Error";  1698 
  col.ind[col.ind$nam %in% c("CGdist","a.linertia","a.iso","a.Gini"),2]<- "Spatial";  1699 
  col.ind[col.ind$nam %in% c("a.pix_under","a.mean_perc","a.over_perc","a.pix_over"),2]<-1700 
"Integrity" 1701 
  col.ind$nam=factor(col.ind$nam) 1702 
  col.ind$col=c("#5E4FA2","#3288BD","#66C2A5")[factor(col.ind$class)] 1703 
  #rev(brewer.pal(11, "Spectral")) 1704 
   1705 
  plot1 <-  1706 
    ggplot(data, aes(x=PC1, y=PC2)) +  1707 
    geom_point(aes(col=dist2), size = 1, shape=16)+ 1708 
    geom_text_repel(aes(label = winner2, size=dist2, color=dist2)) +  1709 
    scale_colour_gradient(high = "#9E0142", low = "#FDAE61")+ 1710 
    geom_hline(aes(yintercept=0), size=.2, color=8, linetype=2) +  1711 
    geom_vline(aes(xintercept=0), size=.2, color=8, linetype=2)+ 1712 
    xlim(extendrange(c(data$PC1,datapc$PC1))[1],0.01)+ 1713 
    ylim((extendrange(c(data$PC2,datapc$PC2))))+  1714 
    # plot criteria: 1715 
    geom_text_repel(data=datapc, aes(x=v1, y=v2, label=varnames),size = 3, 1716 
segment.alpha=.5, 1717 
                    color=col.ind$col)+ 1718 
    geom_segment(data=datapc, aes(x=0, y=0, xend=v1, yend=v2), 1719 
arrow=arrow(length=unit(0.2,"cm")), color=col.ind$col)+ 1720 
    xlab(paste0("PC1 (",dev[1],")"))+ 1721 
    ylab(paste0("PC2 (",dev[2],")"))+ 1722 
    ggtitle("PCA of indicators")+ 1723 
    theme(line = element_blank(), 1724 
          axis.text=element_blank(), 1725 
          axis.ticks=element_blank())+ 1726 
    scale_size(range = c(3, 5))+ 1727 
    guides(size=FALSE, fill=FALSE, col=FALSE) 1728 
  plot2 <-  1729 



    ggplot(data, aes(x=reorder(winner2,dist2), y=dist2)) +  1730 
    geom_bar(stat="identity", aes(fill=dist2),col="White", alpha=.8)+ 1731 
    scale_fill_gradient(high = "#9E0142", low = "#FDAE61")+ 1732 
    theme(line = element_blank(), 1733 
          axis.text.y=element_blank(), 1734 
          axis.ticks.y=element_blank(), 1735 
          axis.text.x=  1736 
            element_text(angle=90,hjust=1))+ 1737 
    xlab("Interpolation methods")+ 1738 
    ylab("Inv. dist. to center")+ 1739 
    ggtitle(" ")+ 1740 
    guides(size=FALSE, fill=FALSE, col=FALSE) 1741 
   1742 
  grid.draw(arrangeGrob(plot1, plot2, ncol=2, widths = c(3/4,1/4))) 1743 
   1744 
  # Result's table  1745 
  kk <- data %>%  1746 
    dplyr::rename("method" ="winner2") %>%  1747 
    dplyr::mutate(dist2 = round(dist2,2)) %>%  1748 
    dplyr::select(method, dist2) %>%  1749 
    dplyr::arrange(dist2) 1750 
  return(kk) 1751 
} 1752 
 1753 

 1754 
 1755 




