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Abstract 

Background: Applying non-target analysis (NTA) in regulatory environmental monitoring remains challenging—
instead of having exploratory questions, regulators usually already have specific questions related to environmental 
protection aims. Additionally, data analysis can seem overwhelming because of the large data volumes and many 
steps required. This work aimed to establish an open in silico workflow to identify environmental chemical unknowns 
via retrospective NTA within the scope of a pre-existing Swiss environmental monitoring campaign focusing on 
industrial chemicals. The research question addressed immediate regulatory priorities: identify pollutants with 
industrial point sources occurring at the highest intensities over two time points. Samples from 22 wastewater treat-
ment plants obtained in 2018 and measured using liquid chromatography–high resolution mass spectrometry were 
retrospectively analysed by (i) performing peak-picking to identify masses of interest; (ii) prescreening and quality-
controlling spectra, and (iii) tentatively identifying priority “known unknown” pollutants by leveraging environmentally 
relevant chemical information provided by Swiss, Swedish, EU-wide, and American regulators. This regulator-supplied 
information was incorporated into MetFrag, an in silico identification tool replete with “post-relaunch” features used 
here. This study’s unique regulatory context posed challenges in data quality and volume that were directly addressed 
with the prescreening, quality control, and identification workflow developed.

Results: One confirmed and 21 tentative identifications were achieved, suggesting the presence of compounds 
as diverse as manufacturing reagents, adhesives, pesticides, and pharmaceuticals in the samples. More importantly, 
an in-depth interpretation of the results in the context of environmental regulation and actionable next steps are 
discussed. The prescreening and quality control workflow is openly accessible within the R package Shinyscreen, and 
adaptable to any (retrospective) analysis requiring automated quality control of mass spectra and non-target identifi-
cation, with potential applications in environmental and metabolomics analyses.

Conclusions: NTA in regulatory monitoring is critical for environmental protection, but bottlenecks in data analysis 
and results interpretation remain. The prescreening and quality control workflow, and interpretation work performed 
here are crucial steps towards scaling up NTA for environmental monitoring.
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Background
Organic pollutants are well-documented in aquatic 
environments [59]. Traditionally, target strategies that 
look for chemicals known in advance have been used 
to identify these compounds [27]. In contrast, non-
target analysis (NTA) helps discover previously unde-
tected, unexpected and/or unknown substances. NTA 
has been under intense development in recent years, 
aided by advances in instrumentation and computa-
tional approaches [17, 27]. Considering the vast chemi-
cal space of possible environmental pollutants [65], 
the need for NTA is becoming more pressing in order 
to tackle the growing challenge of identifying chemi-
cal unknowns in samples. Yet, data analysis in NTA 
remains a formidable challenge. To ease the “identi-
fication burden” in NTA, simplifying approaches like 
Suspect Screening, where chemicals on discrete lists 
suspected to be present in the sample are screened, are 
being taken in the interim [17].

Various successful examples of NTA [1, 4, 5, 19, 28, 
50, 53, 60] have inevitably encouraged interest in its 
potential role to monitor and manage chemical pollut-
ants in the environment [17]. As the field matures, there 
is some consensus that NTA is “Ready to Go”, with calls 
for it to be applied more widely within the regulatory 
frameworks of local, regional, and national authori-
ties [17, 18]. Data-mining routines like enviMass have 
contributed to such initiatives [34]; enviMass facilitates 
NTA by peak-picking and prioritising unknown fea-
tures of interest worthy of further identification efforts. 
It does so by connecting mass spectral features based 
on criteria such as having signals of sufficient inten-
sity, grouping together isotopologues and adducts of 
the same component, and detecting temporal trends, 
ultimately giving as output a list of m/z-retention time 
pairs, plus accompanying information for further iden-
tification efforts.

However, challenges for regulators to perform NTA 
persist, particularly with respect to high-throughput 
data analysis and identification following the mass pri-
oritisation and peak-picking steps described above. 
For example, regulators may lack specific NTA exper-
tise and/or resources to apply the potentially many and 
complicated computational workflows [15, 33] avail-
able for analysing the copious amounts of data. In addi-
tion to the time-consuming and complex nature of data 
interpretation, issues related to standardisation and 
reproducibility exist, as there is currently no ‘one size 

fits all’ approach to identifying compounds using NTA 
[16]. As a result, NTA is currently often considered 
by regulators as “too much effort for too little sound 
evidence”.

Another more systemic obstacle to applying NTA in 
a regulatory context relates to the divergent interests 
of scientists in academia, who are (currently) respon-
sible for driving most NTA developments, and scien-
tists in regulatory practice, who would implement these 
developments towards regulatory compliance and envi-
ronmental protection. While the former aim often to 
develop and publish novel work, the primary mandate of 
the latter is regulatory compliance towards environmen-
tal protection. One possible consequence of this reality 
is that academic research outcomes resulting from NTA 
may not be directly relevant or in a form that is readily 
usable for regulators. In other words, researchers’ ques-
tions may not be regulators’ questions—what is possibly 
scientifically interesting may not be of priority or directly 
useful to regulators.

Despite these aforementioned challenges, it is possible 
(and important) to navigate both research and regulatory 
needs in NTA. The present work is an example of aca-
demic research driven primarily by regulatory priorities. 
In this “top-down” approach, pre-existing data were used 
to generate results of direct environmental relevance 
and with immediate implications for environmental 
management.

Three practical challenges characteristic of applying 
NTA in a regulatory environmental monitoring context 
arose in this study: (i) the study was framed by superla-
tive questions that required a large volume of data to be 
analysed, i.e. identify unknown compounds occurring 
at the highest intensities and highest temporal frequency 
with point sources across all the samples of the sampling 
campaign; (ii) there was a strict and limited timeframe 
allowed for the study following project management pro-
cedures of the regulatory body, and (iii) the data origi-
nally collected had been repurposed for this NTA study 
as there was no capacity nor further resources available 
within the scope of the project to do additional meas-
urements. The latter point was all the more critical as 
preliminary manual inspection of the available data 
revealed that not all measurements were fully suitable 
for the intended non-target identification. These chal-
lenges called for a high-throughput approach capable of 
processing large volumes of data of variable quality in a 
fast and reproducible way that would be compatible with 
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identification approaches downstream. Additionally, 
unlike the seemingly increasing complexity of existing 
workflows [33], an uncomplicated and ‘minimal, bare-
bones’ but fully functional approach that is transpar-
ent and easily explainable is critical given the regulatory 
context.

MetFrag, used in this work to support identification 
efforts, is an example of an open in silico identification 
approach which satisfies the aforementioned criteria. 
Released in 2010 [68], it first retrieves potential candi-
dates with matching mass from compound databases 
such as PubChem [23] (111 million chemical structures, 
August 2020), ChemSpider [7, 48] (103 million chemical 
structures, February 2021), or smaller biological data-
bases like the Human Metabolome Database [67], 20) 
(114,304 metabolites, February 2021). These candidates 
are then scored according to how well the experimen-
tal spectrum matches the in silico fragments generated 
per candidate using a bond dissociation approach [68], 
and subsequently ranked according to this Fragment-
erScore (sometimes referred to as the Fragmentation 
Score or FragScore, or simply the MetFrag Score when 
it is the only component thereof ). For the identification 
of environmental “known unknowns”, using fragmenta-
tion information alone in this way can give mediocre 
results (e.g., ~ 22 and 6% of 473 environmentally relevant 
standards ranked first with ChemSpider and PubChem, 
respectively [51]). This outcome may have various causes: 
(i) the search databases used are too large and/or do 
not contain only environmentally relevant compounds, 
therefore resulting in too many candidates that are not 
meaningful, and/or (ii) there is simply not enough infor-
mation to distinguish candidates when considering their 
fragmentation alone.

To address these limitations, MetFrag was ‘relaunched’ 
in 2016 to incorporate further identification strategies 
beyond fragmentation, such as retention time informa-
tion, substructure in/exclusion, availability of literature 
and patent information, presence/absence in suspect lists, 
and user-defined scoring terms [51]. Over time, spectral 
similarity comparison with spectra from the MassBank 
of North America (MoNA) (Fiehn [12] with and with-
out a MetFusion approach [14] was also integrated into 
MetFrag. Since then, two further open-science/environ-
mental chemistry developments have contributed signifi-
cantly to MetFrag’s extended capabilities for identifying 
environmental unknowns. Firstly, the release and inte-
gration of the United States Environmental Protection 
Agency’s CompTox Chemicals Dashboard [66] (hereaf-
ter, “CompTox”) into MetFrag provides a search database 
of > 850,000 compounds of environmental and toxicologi-
cal relevance [54], while allowing users to leverage the 
“MS-Ready” concept [37] and various forms of chemical 

metadata availability in CompTox as user-defined scor-
ing terms. Secondly, critical information from interna-
tional regulatory bodies can now be exploited through 
MetFrag towards identifying environmental chemicals. 
Beyond (i) the US EPA’s Chemicals and Products data-
base (CPDat) ([62, [10] and other CompTox-related 
metadata terms that are already integrated via CompTox, 
MetFrag’s user-defined scoring terms can also be config-
ured to incorporate information such as (ii) hazard and 
exposure from the Swedish Chemicals Agency KEMI 
[13], (iii) European chemicals registration, i.e. REACH 
[2], and (iv) the NORMAN Network’s merged suspect 
list of chemicals of emerging concern known as SusDat 
(NORMAN [43] representing knowledge gathered from 
NORMAN members, which include > 70 regulatory and 
academic reference laboratories throughout the world, as 
well as external contributions. Used in this way, MetFrag 
connects disparate resources from various regulatory 
agencies and academic researchers towards identifying 
environmental unknowns, practically ‘helping research-
ers and regulators help each other’ by providing an 
interconnected information platform with identification 
functionality.

Since MetFrag’s relaunch in 2016, work on the identi-
fication of environmental unknowns has used MetFrag’s 
post-relaunch functionality to varying extents. Some 
research simply uses MetFrag purely for its in silico frag-
mentation capabilities, i.e. not paired with any compound 
database [9, 40, 49]. Many examples use only the Frag-
menterScore to rank candidates retrieved from Chem-
Spider alone [3, 31, 35], PubChem alone [29, 61, 64], or a 
combination of either or both with other databases [8, 25, 
45, 47] like KEGG [22], FOR-IDENT [30] and MassBank 
[36]. Several studies have begun to use one or more of 
MetFrag’s post-relaunch capabilities such as data source, 
patent, and/or reference counts for the respective com-
pound database used [4, 5, 11, 39, 41, 42, 63], spectral 
library similarity [4, 5, 11, 21, 63], and presence in sus-
pect lists [5, 28, 41]. Albergamo and colleagues [1] were 
amongst the first to use MetFrag’s post-relaunch capa-
bilities heavily, in particular those provided via CompTox 
and by international regulators and scientists.

The present work aimed to exploit “post-relaunch” 
MetFrag and Open Science developments towards ret-
rospectively identifying non-target environmental pol-
lutants in a regulatory context, as summarised in Fig. 1. 
Here, pollutants determined to be of regulatory concern 
by regulators originating from industrial activities found 
in Swiss wastewater treatment plant (WWTP) effluents 
were the main subjects of this study, which focused on 
developing the open in silico workflow to identify them. 
A prescreening and quality control workflow for high-
throughput automated data processing was developed 
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to analyse a provided list of unknown m/z prioritised 
by enviMass. The use of MetFrag in this work leverages 
the state-of-the-art open resources mentioned above, 
chief among them, regulatory information from multiple 
international sources, in addition to exploiting many of 
MetFrag’s post-relaunch capabilities. The identifications 
provided by MetFrag were analysed with respect to the 
specific environmental regulatory context of this study 
and communicated using an established system of confi-
dence levels, discussed in detail in the next section.

Methods
Daily water samples were collected from 25 sites based at 
22 WWTPs distributed across Switzerland within sam-
pling campaigns focusing on point sources of industrial 
chemicals. Of these 25 sampling sites, 19 correspond to 
WWTP effluents (i.e., 1 site per WWTP), while 6 con-
stitute paired influent and effluent sampling sites of 3 
WWTPs (i.e., 2 sites per WWTP) which employ ozona-
tion. The effluent from these 3 WWTPs employing ozo-
nation came from secondary clarifiers. Five sites were 
sampled twice each (in June and October 2018, respec-
tively), while 20 were sampled only once (June 2018), giv-
ing a total of 30 samples.

During each sampling campaign, 2 L of the 24-h flow-
proportional composite samples were collected daily at 
each sampling site over seven consecutive days. The sam-
ple was filled into two 1-L glass bottles and kept closed 
at 4 °C until the last day of the respective sampling cam-
paign. That day, all samples were transported cooled to 
an analytical laboratory and were filtered, flow-propor-
tionally mixed, and sent cooled for MS-analysis. The final 
samples used for measurement were flow-proportional 
7-day composites.

Sample measurement
Prior to analysis, samples were filtered through a glass 
fibre filter and isotopically labelled internal standards 
were added (26 for positive and 7 for negative ionisa-
tion mode, respectively). Samples were analysed without 
enrichment by direct injection of 100  μl into the chro-
matographic system. Chromatographic separation of 
the analytes was performed using a Waters Atlantis T3 
column (150 × 3  mm, 3  μm particle size) connected to 
a Thermo Scientific Accela liquid chromatography sys-
tem equipped with a 1250 pump, open autosampler, and 
Thermo Scientific Column Oven 300. The mobile phase 
eluent A consisted of ultrapure water (ELGA LabWater 
Purelab Ultra from Labtec Services AG, 5  mM ammo-
nium formate), while eluent B consisted of LC–MS grade 
methanol (Scharlau Chemie S.A, 5 mM ammonium for-
mate). The gradient programme started with 10% B, 
which was kept for 1  min before a linear ramp to 95% 
B for 12  min. This condition was kept for 5  min before 
returning to starting mobile phase conditions at 18.5 min. 
The column was re-equilibrated for 4.5 min giving a total 
run time of 23 min with a flow rate of 300 μl/min.

A full-scan single MS measurement was performed 
using a Thermo Scientific QExactive Orbitrap LC/MS 
system with resolving power of 70,000 (at m/z = 200) 
within 7  days of sample collection and preparation. A 
scan range of 100 to 1000 was used in both positive 
and negative electrospray ionisation modes. A heated 

Fig. 1 Visual project overview showing analytical and computational 
steps. Analytical “wet lab” steps are indicated in yellow, while “in silico” 
computational steps are indicated in green. The current study focuses 
on Retrospective Non-target Analysis, shown in dark green. Dotted 
arrows and boxes indicate possible future work based on the results 
of the current study, highlighted in blue to represent decisions to be 
made based on regulatory priorities
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electrospray ionisation (HESI) source with a vapouriser 
temperature of 350  °C, sheath gas flow of 35 arbitrary 
units (au), auxiliary gas flow of 10 au, spray voltage of 
3400  V (positive) and 3000  V (negative), S-lens level of 
50, and capillary temperature of 270  °C was used. The 
samples were then stored at 4 °C.

Following the prioritisation of non-target masses 
(described in Part 1 of the prescreening workflow of 
the next section), the resulting list of non-target masses 
formed the inclusion list for MS2 measurements of the 
same samples in data-dependent acquisition mode in 
February 2019. Normalised collision energy of 35 was 
used. The same measurement protocol as described 
above was applied with resolving power of 17,500 (at 
m/z = 200).

Computational methods
Part 1—enviMass prioritisation of masses of interest
enviMass (v.3.5, [34]) was used to prioritise non-target 
masses of interest based on the following criteria: high-
intensity MS1 peaks (used as a proxy for high concentra-
tion), presumed point source (occurring at one or only 
a few sampling sites), multiple temporal occurrences 
across the sampling campaign, i.e. high-frequency occur-
rences, and existing isotopologue and adduct linkages. 
Initially, a list of 300 non-target masses of interest was 
identified and used as an inclusion list for MS2 acquisi-
tion in the second round of measurements in February 
2019 using the same samples that had been stored at 4 °C 
as described above. Of these 300 masses, 125 masses 
with associated [M +  H]+ and [M-H]− information from 
enviMass (117 and 8, respectively) were considered for 
further processing in the next step and constituted “List 
A”. A further 60 masses with associated [M +  H]+ and 
[M-H]− information (28 and 32, respectively) were also 
considered for the next step (“List B”), but had not been 
measured as part of the inclusion list. The enviMass 
parameters used to derive Lists A and B are detailed in 

the SI. These lists were the starting point for the work-
flows described here.

Part 2—prescreening and quality control workflow
Data files in .RAW  format were first converted to 
.mzML format using MSConvert from Proteowizard 
(v.3.0.19182-51f676fbe, [6]), with full settings available in 
the SI (Additional file 1: Figure S1). The data were prelim-
inarily inspected manually using XCalibur Qual Browser 
(v.4.2.28.14, Thermo Fisher Scientific, Waltham MA, 
USA). Then, a workflow to extract, prescreen, and quality 
control the spectra of the precursor masses in Lists A and 
B was developed and performed prior to further identifi-
cation efforts.

The prescreening workflow first extracts all MS1 and 
MS2 ion chromatograms of each m/z from each mzML 
file supplied to it as input. No post-processing of mass 
spectral features such as peak removal, filtering, or scal-
ing is performed whatsoever during the extraction of 
spectra. Extracted MS1 precursors whose retention 
times are within 2 min of the mean retention time given 
by enviMass were deemed as matching the original list 
entries, considering possible drifts caused by wastewater 
matrix effects and normal variations in the LC analytical 
set-up, unless specified otherwise.

A ‘case’ was defined as a measurement whose chro-
matograms and corresponding spectra have the same 
m/z, retention time, and file source (essentially, a single 
unique measurement). As part of the prescreening, each 
case was subject to quality control: the MS1 and MS2 ion 
chromatograms were checked automatically by an algo-
rithm within the workflow in a stepwise fashion as per 
checks and thresholds 1–5 listed in Table  1. Failure to 
meet any of the criteria in the checks caused the case to 
be rejected from further identification efforts.

Cases that passed quality control checks 1–6 were 
manually inspected for peak shape and width (check 7, 
Table 1). Only cases that passed all quality control checks 

Table 1 Quality control checks within the prescreening workflow applied to the MS1 and MS2 spectral data for each case

Thresholds apply to data measured using an Orbitrap instrument. Checks 1–5 are part of the automated prescreening workflow, while checks 6–7 were performed 
manually

Quality control 
check

Description Positive mode threshold Negative mode threshold

1 Availability of MS1 precursor Presence/absence

2 Minimum MS1 intensity 1 ×  105 1 ×  104

3 Maximum MS1 noise level 3x (average baseline intensity)

4 Availability of MS2 corresponding to MS1 precursor Presence/absence

5 MS1–MS2 alignment window 0.3 min (i.e. ± 0.15 min)

6 Deduplication of cases Highest MS1 intensity

7 Minimum peak width and overall shape (manual QC) 0.1 min
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1–7 were used as input for MetFrag identification in the 
next part of the workflow.

This prescreening workflow developed and used as part 
of this work has been embedded into the openly available 
R package Shinyscreen (v.0.1.1-paper, [24]).

Part 3—identification using MetFrag
Tentative identification was performed using MetFrag 
(command line v.2.4.5, [51, 68]). CompTox was used as 
the candidate database in the form of a local.csv file [54]. 
R scripts, building on the code bases of ReSOLUTION 
(v.0.1.8, [55]) and RChemMass (v.0.1.27, [56]), were writ-
ten to accomplish the following steps.

First, the neutral monoisotopic mass corresponding 
to the [M +  H]+ or [M −  H]− adducts indicated by envi-
Mass in positive and negative mode, respectively, was 
calculated. Then, candidates of matching mass with a rel-
ative deviation of 5 ppm (selected to reflect the analytical 
mass error, also known as “Search ppm”) were retrieved 
from CompTox. Subsequently, candidates were frag-
mented in silico using the following fragmentation set-
tings: Absolute Fragment Peak Match Deviation 0.001 Da 
(“Mzabs”), Relative Fragment Peak Match Deviation 
5  ppm (“Mzppm”), and Maximum Tree Depth 2. Then, 
candidates were ranked according to the MetFrag Score, 
calculated as the sum of ten weighted scoring terms sum-
marised in Table 2 and explained in detail below. These 
terms are either already built-in, or can easily be config-
ured within MetFrag since its relaunch [51]. Candidates 
with identical first block InChIKeys (i.e., stereoisomers, 
with the same structural skeleton) were grouped together.

Three scoring terms within the MetFrag Score reflect 
the contribution of the fragmentation spectra to the 
proposed identification: the FragmenterScore (in silico 
fragments explaining measured peaks, a function of 
peak count and bond dissociation energy), OfflineM-
etFusion (spectral similarity to entries in MassBank of 
North America (MoNA) using a MetFusion approach 
[14], and OfflineIndivMoNA (maximum spectral similar-
ity with MoNA entries having exact InChIKey match). 
Four scoring terms relate to the availability of the chemi-
cal’s metadata: CPDAT_COUNT [66] (number of entries 
within US EPA’s Chemicals and Products database), 
DATA_SOURCES [66] (number of data sources underly-
ing CompTox, which performs similarly to the reference 
count), KEMIMARKET_HAZ (v.S17.0.1.3, [13]) (scaled 
and normalised hazard score calculated by the Swed-
ish Chemicals Agency), and KEMIMARKET_EXPO 
(v.S17.0.1.3, [13]) (scaled and normalised exposure score 
calculated by the Swedish Chemicals Agency KEMI). The 
remaining three terms account for the candidate’s pres-
ence or absence in suspect lists, another form of meta-
data availability: INDACT (Industrial Activity chemicals 

known to be used near the sampling sites, supplied by 
the regulator), REACH2017 (v.S32.0.1.3, [2]) (chemicals 
registered under the European legislation framework 
REACH), and NORMANSUSDAT (vS0.0.2.0, NORMAN 
[43] (chemicals in the merged NORMAN Suspect List 
Exchange). All metadata scoring terms were weighted 1 
except for REACH2017 and NORMANSUSDAT, which 
were both weighted 0.5 due to the high redundancy 
across the two databases.

To calculate the maximum possible MetFrag Score, 
all the scoring terms except NORMANSUSDAT, 
REACH2017, INDACT, and OfflineIndivMoNA are first 
normalised to their respective largest values among the 
candidate set and scaled between 0–1. These normal-
ised and scaled values are then summed together with 
the presence/absence scores of NORMANSUSDAT, 
REACH2017, and INDACT (0.5, 0.5, 1.0 if present, 0, 0, 
0, if absent, respectively), and the similarity score from 
OfflineIndivMoNA (which is not scaled as it is already 
defined between 0 and 1).

Tentative identifications by MetFrag were communi-
cated using an established system of levels [57], reiterated 
here with study-specific context for clarity: as MetFrag 
is an in silico method, it generally gives identifications of 
Level 3 confidence based on evidence for possible chemi-
cal structure using MS1, MS2 and experimental data/
context. These identifications are tentative and require 
further validation before achieving higher confidence 
levels, as do Level 2a identifications of probable structure 

Table 2 MetFrag scoring terms and weights used in tentative 
identification

An asterisk (*) indicates these terms were given lower weights to avoid 
overweighting due to possible redundancy across the databases

MetFrag scoring terms Weights

Spectral terms

 FragmenterScore 1.0

 OfflineMetFusion 1.0

 OfflineIndivMoNA 1.0

 Total contribution to MetFrag Score: 3.0

Metadata terms

 CPDAT_COUNT 1.0

 DATA_SOURCES 1.0

 KEMIMARKET_EXPO 1.0

 KEMIMARKET_HAZ 1.0

 NORMANSUSDAT 0.5*

 REACH2017 0.5*

 INDACT 1.0

Total contribution to MetFrag Score: 6.0

Maximum MetFrag Score

Total 9.0
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based on a library spectrum match, corresponding to a 
high MoNA individual similarity score (> 0.9) in the pre-
sent work. Level 1 identifications require confirmation of 
the structure using a reference standard and includes tar-
get compounds.

Results
Prescreening and quality control
Preliminary manual inspection of the data using XCali-
bur Qual Browser (v.4.2.28.14, Thermo Fisher Scientific, 
Waltham MA, USA) indicated that not all measurements 
of each individual m/z were suitable for non-target iden-
tification because, e.g., MS1 precursors were often at low 
intensity, some MS2 spectra were absent, and spikes and/
or noise were observed in the MS1 extracted ion chro-
matogram instead of actual peaks. Therefore, the pre-
screening workflow consisting of 7 quality control checks 
(Table 1) was implemented to isolate measurements that 
were suitable for non-target identification. Figure 2 pro-
vides examples of measurements visualised using Shiny-
screen which passed all quality control checks (Panel A) 
and failed either one or more checks (Panels B-E), respec-
tively. The latter were automatically eliminated from fur-
ther consideration by the workflow because they were 
deemed unsuitable for use in non-target identification.

For identification, a total of 185 non-target m/z from 
both List A and List B were prescreened in each of the 
30 mzML files, resulting in 5,550 cases possible for iden-
tification. For List A containing 117  m/z measured in 
positive mode, the prescreening workflow runtime was 
approximately 8 h on a laptop machine with 8 GB RAM 
and 2 physical cores over all 30 mzML files. Runtime 
was estimated based on timestamps from results file 
generation.

Of the 5,550 cases, 899 cases satisfied checks 1–5 
listed in Table  1. Duplicate cases by m/z (e.g., if it was 
detected at more than one site) were eliminated by pri-
oritising those with the highest MS1 intensity (check 6), 
leaving 157 cases (approximately 0.03% of total cases) 
to be manually inspected for peak width and shape 
(check 7, Fig.  2e). Of these 157 cases, only 22 passed 
manual inspection and qualified for further identifica-
tion efforts using MetFrag (listed in full in Additional 
file 1: Table S2). Figure 3 summarises this data reduction 

outcome as a result of quality control within the pre-
screening workflow.

Tentative identification using MetFrag
Tentative identifications for the 22  m/z that passed 
quality control checks were obtained using MetFrag. 
Candidates for each m/z were proposed as ranked lists 
according to their respective MetFrag Scores comprising 
the ten scoring terms described in Table 2 (full MetFrag 
results with lists of ranked candidates available in Mas-
sIVE). Figure 4 shows the distribution of MetFrag Scores 
classified into tertiles for the top-ranked candidate for 
each of the 22 m/z.

Interpretation of MetFrag results
Given the background and context of this work (i.e. 
NTA in environmental monitoring to identify high-pri-
ority unknowns), the MetFrag results described above 
do not represent a satisfactory end-point/end-product 
of this study. In other words, it does not suffice to pre-
sent MetFrag’s outputs (lists of ranked candidates, one 
list per m/z) alone, as these results alone do not provide 
sufficient direction for the next regulatory steps. Rather, 
it is crucial that these scientific outcomes are translated 
into transparent and actionable information for regula-
tory scientists to aid their future decision-making with 
respect to the following questions:

1. What does the distribution of MetFrag Scores mean 
and what are the implications?

2. How can this information guide evidence-based deci-
sion-making regarding further identification efforts? 
(e.g., by adding candidates to suspect lists for future 
Suspect Screenings, purchasing reference standards 
for confirmation, etc.)

The following section addresses these two questions 
through in-depth interpretation of MetFrag’s results 
at two levels: at a global level across all 22 m/z studied, 
and at a candidate level per m/z, respectively. The aim of 
these interpretations is to deliver information based on 
scientific premises that is actionable from a regulatory 
point of view and in doing so, present ‘complex’ MetFrag 
results in an interpretable way using Scenario Analysis.

Fig. 2 Examples of cases which pass and fail quality control within the prescreening workflow. Quality control helped isolate measurements which 
were suitable for non-target identification and discarded those which are not. Panel A shows Shinyscreen’s graphical user interface and an example 
of a case whose MS1–MS2 measurement is suitable for non-target identification—its extracted ion chromatogram shows a MS1 peak of sufficiently 
high intensity, a corresponding MS2 event that is temporally well-aligned, and its MS2 spectrum. The remaining panels show examples of cases that 
were eliminated from further identification efforts by the workflow as they were deemed unsuitable due to an excessively noisy MS1 spectrum (B; 
check 3 in Table 1), the absence of an MS2 event, (C; check 4) misaligned MS1 and MS2 events (D; check 5), and poor MS1 peak shape and width (E; 
check 7)

(See figure on next page.)
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Regarding the MetFrag Scores of the top candidates 
for each m/z (Fig.  4), this distribution arises as a result 
of four possible combinations of Spectral and Metadata 
Score components contributing toward the final Met-
Frag Score (Table 3). The distribution is split into tertiles 
based on the range of MetFrag Scores possible (0–9), 
and each tertile is assigned an associated scenario, as 
explained below.

Scenario 1 features both strong spectral and meta-
data evidence supporting a given candidate, resulting in 
a High MetFrag Score. Moderate MetFrag Scores result 
when one of these two scoring components, Spectral or 
Metadata, is low and the other is high, leading to Scenar-
ios 2 and 3. Finally, Scenario 4 describes situations where 
both Spectral and Metadata scores are low, resulting in 
Low MetFrag Scores. Table 4 shows the breakdown of the 
MetFrag Score into its component Spectral and Metadata 
terms for four illustrative examples, one for each sce-
nario. These representative examples were selected from 

the distribution (Fig. 4) and are the respective top-ranked 
candidates for 4 m/z. 

The implications of this distribution (Fig. 4) can guide 
future actions depending on whether depth or breadth 
of the NTA study is more important. For example, if the 
ultimate goal is to fully identify one or two high-priority 
non-target unknowns to Level 1 confidence, pursuing 
candidates with High MetFrag Scores  (3rd tertile, dark red 
region in Fig. 4, Scenario 1 in Table 3) is recommended. 
Alternatively, if gaining a wide survey of the possibly 
relevant but as yet unknown environmental pollutants 
throughout the sampling campaign is preferred (akin to 
a ‘first-approximation’ of the situation), then even candi-
dates with moderate and/or low scores can also be con-
sidered further depending on the relevance of the scoring 
terms to the context. Additionally, further decisions on 
future actions can be made based on possible limitations 
of the study which may be known from the outset (see 
Discussion).

Table 3 Four different scenarios corresponding to the four possible combinations of Spectral and Metadata scores

Spectral and Metadata scores are components of the final MetFrag Score (Table 2). Scores falling into the different tertiles of the MetFrag Score distribution are 
classified as low, moderate, and high, respectively, as indicated in Fig. 4

High Metadata score Low Metadata score

High Spectral score Scenario 1: high MetFrag Score (> 6) Scenario 3: moderate MetFrag Score (3–6)

Low Spectral score Scenario 2: moderate MetFrag Score (3–6) Scenario 4: low MetFrag Score (< 3)

Table 4 MetFrag Score breakdown for the top candidates of four m/z 

Each MetFrag Score here represents one of the four scenarios in Table 3

MetFrag Score (weighted)

7.00 4.63 2.95 2.50

MetFrag Score distribution 
classification

High
(> 6)

Moderate
(3–6)

Moderate
(~ 3–6; borderline)

Low (< 3)

Scenario Scenario 1—high Spectral and 
Metadata scores

2—low Spectral and High 
Metadata scores

3—high Spectral and Low 
Metadata scores

4—low Spectral 
and Metadata 
scores

m/z 278.1062 187.0938 152.0198 199.1050

MetFrag Score breakdown (top candidate only)

 Spectral terms (raw scores)

 FragmenterScore 95.30 7.88 217.84 19.48

 OfflineMetFusion 4.64 0.88 2.06 2.81

 OfflineIndivMoNA 1.00 0 0 0

Metadata terms (raw scores)

 CPDAT_COUNT 0 0 0 0

 DATA_SOURCES 47 42 1 1

 KEMIMARKET_EXPO 16 11 0 0

 KEMIMARKET_HAZ 9 2 0 0

 NORMANSUSDAT 1 1 0 0

 REACH2017 1 1 0 0

 INDACT 0 0 0 0
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Close inspection of the MetFrag Score, namely its com-
ponent spectral and metadata scoring terms, enables 
results interpretation on the individual candidate level 
for each m/z. Irrespective of whether a breadth or depth 
strategy is chosen, the lists of ranked candidates should 
always be scrutinised for plausibility because although 
each identification has a top candidate ranked first by 
MetFrag, the top candidate may not be the only candi-
date worth considering (if at all) given the context of the 
study. Below, an in-depth analysis and results interpreta-
tion of the top 4 candidates for selected m/z is presented 
in the following tables as examples of each of the scenar-
ios (Table  3). Distributed Structure-Searchable Toxicity 
Substance Identifiers from CompTox, known as DTX-
SIDs are given as identifiers. The choice to use DTXSID 
as candidate identifiers and not their compound names is 
addressed in the Discussion.

m/z 278.1062
Scenario 1: high Spectral and Metadata scores (high 
MetFrag Score; > 6)
Thirty-three compounds with matching mass were 
retrieved from CompTox and scored by MetFrag using 
the ten scoring terms (Table  2). The top-ranked candi-
date, DTXSID4058156, has the highest total MetFrag 
Score out of all the candidates proposed (Table  5). In 
terms of spectral information, it has the highest Frag-
menterScore and OfflineMetFusion score of all the candi-
dates, as well as a MoNA library match of 0.998, while all 
other candidates had a MoNA library match of 0.

In terms of metadata and presence in suspect lists, 
DTXSID4058156 has abundant metadata, is present on 
many suspect lists compiled by the NORMAN Network 
(REACH2017, SusDat and KEMIMARKET), and has 
47 underlying data sources in CompTox. Based on this 
aforementioned evidence, this identification has confi-
dence level 2a.

Overall, both the spectral and metadata evidence 
strongly support Candidate 1 over the others, as seen 
in the large difference between the candidates’ MetFrag 
Scores.

Candidate recommendation: Candidate 1 should be 
strongly considered for further identification efforts.

A reference standard of DTXSID4058156 (metazach-
lor) provided a retention time match within 0.03  min, 
thereby confirming the identification of this unknown as 
metazachlor with Level 1 confidence.

m/z 187.0938
Scenario 2: low Spectral but high Metadata scores 
(moderate MetFrag Score; 3–6)
For m/z 187.0938, identified as a [M +  H]+ adduct by 
enviMass, the top candidate scored poorly in the Spectral 
terms compared to subsequent candidates. However, its 
strong scoring in the metadata terms ultimately drove its 
high MetFrag Score (Table 6).

The distribution of MetFrag Scores in Table  6 indi-
cates that the top 3 (or even 4) candidates have relatively 
similar scores. Although the spectral data rather support 
Candidates 2 or 3 as better matching the experimental 

Table 5 MetFrag Score breakdown by scoring term for the top 4 candidates for m/z 278.1062 (ultimately identified as metazachlor 
with Level 1 confidence)

Raw scores are given for interpretability; the maximum raw score over all candidates (used to normalise for the ranking) is indicated in bold. The final MetFrag Score 
is a sum of the normalised and weighted scoring terms as described in the Methods. Here, Candidate 1 has the highest overall MetFrag Score, supported by both 
spectral and metadata scoring terms. Full details on the candidates are available in MassIVE

MetFrag Scoring terms Candidate 1
DTXSID4058156

Candidate 2
DTXSID90916646

Candidate 3
DTXSID40736053

Candidate 4
DTXSID30150421

Spectral terms (raw scores)

 FragmenterScore 95.30 18.00 61.52 47.52

 OfflineMetFusion 4.64 3.65 3.25 2.99

 OfflineIndivMoNA 1.00 0 0 0

Metadata terms (raw scores)

 CPDAT_COUNT 0 0 0 0
 DATA_SOURCES 47 2 1 7

 KEMIMARKET_EXPO 16 0 0 0

 KEMIMARKET_HAZ 9 0 0 0

 NORMANSUSDAT 1 0 0 0

 REACH2017 1 1 0 0

 INDACT 0 0 0 0
MetFrag Score (weighted)

 Total 7.00 1.52 1.37 1.29
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data, the high KEMIMARKET_EXPO score for Can-
didate 1 indicates that it may be of greater concern in a 
regulatory context due to the potentially large exposure 
volumes, and could be considered for further confirma-
tion efforts to eliminate this from consideration in future 
campaigns.

Candidate recommendation: All top four candidates 
should be considered for further identification efforts due 
to high exposure and hazard scores.

m/z 249.0728
Additional example for Scenario 2: low Spectral but high 
Metadata scores (moderate MetFrag Score; 3–6)
The information provided by high Metadata scores can 
serve as the discriminating factor between candidates 
when their Spectral scores yield little/poor information 
which in turn gives little indication of how to rank the 
candidates if only spectral evidence had been considered. 
In this sense, Metadata scoring terms contribute an extra 
layer of information beyond spectral evidence towards 
identifying potentially relevant unknowns.

For example, the top four candidates of m/z 249.0728 
(Table 7) have comparably poor Spectral scores meaning 
there is overall little spectral evidence supporting these 
identifications. However, Candidate 1 distinguishes itself 
significantly from the other candidates because of its 
relatively high Metadata scores, in particular its KEMI-
MARKET_EXPO, KEMIMARKET_HAZ, and presence 
in REACH2017. Therefore, it has higher environmental 
relevance than subsequent candidates, which explains its 
top ranking.

Candidate recommendation: Candidate 1 should be 
considered for further identification efforts given the 
moderate KEMI exposure and hazard scores, indicating 
potential environmental relevance in Europe.

m/z 142.0975
Additional example for Scenario 2: low Spectral but high 
Metadata scores (moderate MetFrag Score; 3–6)
Similar to the previous example, candidates for have m/z 
142.0975 have comparable performance in the Spectral 
scores and would be practically indistinguishable from 
each other if not for the large difference in their Metadata 
scores (Table 8). Candidate 1 differs strongly from subse-
quent candidates because of its relatively high KEMIMA-
RKET_EXPO, KEMIMARKET_HAZ and REACH2017 
scores that support its top ranking.

Candidate Recommendation: Candidate 1 should be 
considered for further identification efforts given high 
Europe-relevant Metadata scores.

m/z 152.0198
Scenario 3: high Spectral scores but low Metadata scores 
(moderate MetFrag Score; 3–6)
For the top candidates of m/z 152.0198, practically no 
metadata exists except for DATA_SOURCES—each can-
didate has 1, indicating that these are not particularly 
well-known chemicals (or, potentially newly discovered 
and not well documented in public databases yet). How-
ever, the FragmenterScores of the candidates differed suf-
ficiently to discriminate between them and indicate that 
Candidate 1 may be the best match in this case (Table 9).

Table 6 MetFrag Score breakdown by scoring term for the top 4 candidates for m/z 187.0938

Raw scores are given for interpretability; the maximum raw score over all candidates (used to normalise for the ranking) is indicated in bold. The final MetFrag Score is 
a sum of the normalised and weighted scoring terms as described in the Methods. Here, Candidate 1 has the highest overall MetFrag Score despite low Spectral term 
scores due to its high scoring Metadata. Full details on the candidates are available in MassIVE

MetFrag Scoring terms Candidate 1
DTXSID5020526

Candidate 2
DTXSID70198185

Candidate 3
DTXSID10185791

Candidate 4
DTXSID70382365

Spectral terms (raw scores)

 FragmenterScore 7.88 65.03 50.21 40.46

 OfflineMetFusion 0.88 1.04 1.01 0.86

 OfflineIndivMoNA 0 0 0 0

Metadata terms (raw scores)

 CPDAT_COUNT 0 0 0 0

 DATA_SOURCES 42 7 5 7

 KEMIMARKET_EXPO 11 2 2 6

 KEMIMARKET_HAZ 2 3 3 3
 NORMANSUSDAT 1 1 1 1
 REACH2017 1 1 1 0

 INDACT 0 0 0 0

MetFrag Score (weighted)

 Total 4.63 4.34 4.03 3.65
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Candidate recommendation: Candidate 1 may be con-
sidered for further identification efforts, but candidates for 
other masses are more promising in the regulatory context 
(Table 10).

m/z 199.1050
Scenario 4: low Spectral scores, low Metadata scores (low 
MetFrag Score; < 3)
Candidates proposed for m/z 199.1050 had neither 
particularly strong spectral nor metadata information, 
resulting in low overall MetFrag Scores. In this case, 
there is no strong evidence that any of the candidates 
available in CompTox are of particular interest in the 
context of the investigation.

Table 7 MetFrag Score breakdown by scoring term for the top 4 candidates for m/z 249.0728

Raw scores are given for interpretability; the maximum raw score over all candidates (used to normalise for the ranking) is indicated in bold. The final MetFrag Score is 
a sum of the normalised and weighted scoring terms as described in the Methods. Here, differences in candidates’ Metadata scores allowed them to be differentiated 
from each other despite equally poor Spectral scores. Full details on the candidates are available in MassIVE

MetFrag scoring terms Candidate 1
DTXSID50885566

Candidate 2
DTXSID60154230

Candidate 3
DTXSID70233803

Candidate 4
DTXSID80278866

Spectral terms (raw scores)

 FragmenterScore 0 0 0 0

 OfflineMetFusion 0.67 0.64 0.63 0.70

 OfflineIndivMoNA 0 0 0 0

Metadata terms (raw scores)

 CPDAT_COUNT 0 0 0 0

 DATA_SOURCES 6 3 3 2

 KEMIMARKET_EXPO 2 0 0 0

 KEMIMARKET_HAZ 3 0 0 0

 NORMANSUSDAT 0 0 0 0

 REACH2017 1 0 0 0

 INDACT 0 0 0 0

MetFrag Score (weighted)

 Total 4.43 1.39 1.38 1.30

Table 8 MetFrag Score breakdown by scoring term for the top 4 candidates for m/z 142.0975

Raw scores are given for interpretability; the maximum raw score over all candidates (used to normalise for the ranking) is indicated in bold. The final MetFrag Score is 
a sum of the normalised and weighted scoring terms as described in the Methods. Here, differences in candidates’ Metadata scores allowed them to be differentiated 
from each other despite equally good Spectral scores. Full details on the candidates are available in MassIVE

MetFrag Scoring terms Candidate 1
DTXSID40200921

Candidate 2
DTXSID50863460

Candidate 3
DTXSID40233077

Candidate 4
DTXSID90380247

Spectral terms (raw scores)

 FragmenterScore 200.29 156.23 143.16 229.32

 OfflineMetFusion 3.44 3.64 3.96 3.52

 OfflineIndivMoNA 0 0.01 0 0

Metadata terms (raw scores)

 CPDAT_COUNT 0 0 0 0

 DATA_SOURCES 6 11 7 2

 KEMIMARKET_EXPO 2 0 0 0

 KEMIMARKET_HAZ 3 0 0 0

 NORMANSUSDAT 1 1 0 0

 REACH2017 1 0 0 0

 INDACT 0 0 0 0

MetFrag Score (weighted)

 Total 5.29 3.11 2.26 2.07
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Candidate recommendation: Candidate 1 may be 
considered for further identification efforts, but candi-
dates for other masses are more promising.

Information for regulatory decision‑making on further 
identification efforts/next steps
Table  11 summarises the candidate recommenda-
tions presented above, where 7–9 candidates are 

recommended for further identification efforts for the 
6 m/z presented here. 

The top four candidates for each of the remaining 
16 m/z were analysed in the same way as discussed above, 
and candidates were evaluated based on the same criteria 
as described: prioritisation according to tertile, scenario, 
and Spectral and Metadata scores, including potential 
exposure and hazards (Additional file 1: Tables S3–S18). 
For these 16  m/z, a total of 25–49 candidates (out of 

Table 9 MetFrag Score breakdown by scoring term for the top 4 candidates for m/z 152.0198

Raw scores are given for interpretability; the maximum raw score over all candidates (used to normalise for the ranking) is indicated in bold. The final MetFrag Score 
is a sum of the normalised and weighted scoring terms as described in the Methods. Here, the Spectral scores provided the means for MetFrag to differentiate the 
candidates despite their equally poor Metadata scores. Full details on the candidates are available in MassIVE

MetFrag Scoring terms Candidate 1
DTXSID30534106

Candidate 2
DTXSID30540904

Candidate 3
DTXSID90610112

Candidate 4
DTXSID40849677

Spectral terms (raw scores)

 FragmenterScore 217.84 158.82 144.54 142.75

 OfflineMetFusion 2.06 2.08 2.17 2.02

 OfflineIndivMoNA 0 0 0 0

Metadata terms (raw scores)

 CPDAT_COUNT 0 0 0 0

 DATA_SOURCES 1 1 1 1

 KEMIMARKET_EXPO 0 0 0 0

 KEMIMARKET_HAZ 0 0 0 0

 NORMANSUSDAT 0 0 0 0

 REACH2017 0 0 0 0

 INDACT 0 0 0 0

MetFrag Score (weighted)

 Total 2.95 2.69 2.66 2.60

Table 10 MetFrag Score breakdown by scoring term for the top 4 candidates for m/z 199.1050

Raw scores are given for interpretability; the maximum raw score over all candidates (used to normalise for the ranking) is indicated in bold. The final MetFrag Score is 
a sum of the normalised and weighted scoring terms as described in the Methods. Full details on the candidates are available in MassIVE

MetFrag Scoring terms Candidate 1
DTXSID40514171

Candidate 2
DTXSID00556299

Candidate 3
DTXSID20776997

Candidate 4
DTXSID50511555

Spectral terms (raw scores)

 FragmenterScore 19.48 2.43 8.12 6.00

 OfflineMetFusion 2.808 2.809 2.800 2.810
 OfflineIndivMoNA 0 0 0 0

Metadata terms (raw scores)

 CPDAT_COUNT 0 0 0 0

 DATA_SOURCES 1 2 1 1

 KEMIMARKET_EXPO 0 0 0 0

 KEMIMARKET_HAZ 0 0 0 0

 NORMANSUSDAT 0 0 0 0

 REACH2017 0 0 0 0

 INDACT 0 0 0 0

MetFrag Score (weighted)

 Total 2.50 2.12 1.91 1.81
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possible 16 times 4 = 64) are recommended for further 
identification efforts (Additional file 1: Table S19). Thus, 
for all the 22  m/z which underwent MetFrag identifica-
tion in this study, an overall total of 32–58 candidates 
(out of possible 22 times 4 = 88) are recommended for 
further identification efforts. These candidate numbers 
are provided as ranges to allow for flexibility in project 
management and future steps, which may depend on 
available resources (see Discussion).

Discussion
In this study, non-target analysis was performed ret-
rospectively on samples from Swiss WWTP effluents 
that had been collected as part of an existing regula-
tory environmental monitoring campaign. Instead of an 
exploratory approach that is still common amongst NTA 
studies, the research questions that directed this study 
were derived from regulatory priorities, thereby ensuring 
outcomes of direct and immediate relevance for environ-
mental monitoring and protection.

Unknowns of regulatory interest were defined as those 
with the highest intensities and highest temporal fre-
quency with point sources across all the samples of the 
sampling campaign. These criteria had been predefined 
by the regulatory coauthors of this study, and resulted 
in a list of m/z of interest that were manually selected 
after filtering and sorting the masses using enviMass. In 
the current work, the mass spectra of the m/z of interest 
from the given list were subjected to pre-screening and 
quality control (Fig. 2) to ensure their suitability for use in 
non-target identification. Quality control isolated meas-
urements worthy of further identification efforts and 
eliminated those of poor standard, effectively resulting in 

data reduction (Fig.  3). The prescreening workflow was 
written in R and is now openly available within the pack-
age Shinyscreen [24].

Then, MetFrag [51, 68] was employed to provide ten-
tative identifications for these unknowns, leveraging its 
extensive metadata capabilities “post-relaunch”, as well 
as several open resources/information sources, including 
chemical information from regulators around the world. 
MetFrag analysis was performed via the command line 
using scripts based on ReSOLUTION [55] and RChem-
Mass [56].

Tentative identifications for 22 m/z were obtained using 
MetFrag (21 at Level 3, 1 at Level 2a, whose identity was 
eventually confirmed to Level 1). These identifications 
were evaluated in terms of (i) a score distribution for the 
top candidates (Fig. 4) and (ii) Scenario Analysis (Table 3) 
according to the regulatory context and research ques-
tions underlying this work. Final candidate recommen-
dations were given based on MetFrag Score breakdowns, 
thereby providing in-depth and transparent analyses of 
the spectral and metadata evidence for proposed candi-
dates. For the 22  m/z analysed, 32–58 candidates were 
recommended for further identification efforts.

Regarding the analytical method, direct injection with-
out enrichment was used here, as non-target compounds 
of high intensity were of primary interest and enrichment 
was not considered necessary. Additionally, Mechelke 
et al. recently found that direct injection is comparatively 
better suited to capturing a broader range of compounds, 
including highly polar compounds that would otherwise 
experience poor recovery during enrichment [38]. The 
spectral data were recorded using data-dependent acqui-
sition mode with an inclusion list in this study. While 

Table 11 Candidates for six m/z meriting further identification efforts based on individual evaluations

Candidates were evaluated on an individual level for 6 m/z (selected out of 22 m/z as representative examples). Full details on further candidates are available in 
MassIVE

m/z MetFrag results scenario Candidates 
for further 
consideration

Justification for candidate recommendation

278.1062 Scenario 1 1 High MetFrag Score overall (high Spectral and Metadata scores); subsequent candidates very 
poor in comparison

187.0938 Scenario 2 4 Moderate MetFrag Score overall (low Spectral but high Metadata scores); MetFrag Scores very 
similar across candidates, therefore all worth consideration

249.0728 Scenario 2
(additional example)

1 Moderate MetFrag Score overall (low Spectral but high Metadata Scores); non-zero KEMI-
MARKET_EXPO and KEMIMARKET_HAZ, and presence in REACH2017 suspect list unlike 
subsequent candidates

142.0975 Scenario 2
(additional example)

1 Moderate MetFrag Score overall (low Spectral but high Metadata Scores); non-zero KEMI-
MARKET_EXPO and KEMIMARKET_HAZ, and presence in REACH2017 suspect list unlike 
subsequent candidates

152.0198 Scenario 3 0–1 Moderate MetFrag Score overall (high Spectral but low Metadata scores); borderline low 
MetFrag Score, only worth (weakly) considering Candidate 1

199.1050 Scenario 4 0–1 Low MetFrag Score overall (low Spectral and Metadata scores); only worth (weakly) consider-
ing Candidate 1
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future NTA work could explore the use of data-independ-
ent acquisition (DIA), omitting the necessity for an inclu-
sion list, this adds other complexities, as lower intensity 
precursors may not yield fragments of sufficient intensity 
and data interpretation inevitably becomes more compli-
cated, especially if complex matrices like wastewater with 
many co-eluting compounds are being studied.

Quality control was a critical element in the prescreen-
ing workflow, as preliminary manual inspection of the 
data using XCalibur revealed variable data quality. In 
fact, most data (> 80% cases) were not fully suitable for 
the intended non-target identification. R scripts (now 
embedded within Shinyscreen package) were written to 
automate most of the quality control checks (Table  1, 
checks 1–5). Automated quality control allowed for 
quick and reproducible processing of the large quantity 
of data needed to answer the superlative research ques-
tions guiding this work. The variable quality of the data 
had several likely causes: (i) List B masses were not in 
the inclusion list; (ii) MS2 were not measured immedi-
ately after MS1, therefore sample degradation over long 
storage time between MS1 and MS2 measurements 
could have occurred, and (iii) possibly over-restrictive 
enviMass prioritisation criteria. Thus, the small num-
ber of cases (~ 0.03% of total) passing all quality control 
checks and qualifying for MetFrag identification was not 
unexpected.

MetFrag was configured to comprise both Spectral and 
Metadata scoring terms, including chemical suspect lists 
and scoring terms from international regulators within 
the latter such as KEMIMARKET_EXPO, KEMIMA-
RKET_HAZ, REACH2017, NORMANSUSDAT, and 
CPDAT_COUNT. Paired with CompTox as its candi-
date database, MetFrag was thus specifically customised 
to perform non-target identification of environmental 
unknowns in WWTP samples within a regulatory context 
in this work. Beyond using fragmentation information 
alone, using metadata to inform MetFrag’s identifications 
proved to be especially important in certain situations, 
e.g., when Spectral scores based on fragmentation were 
not informative enough to distinguish candidates from 
each other (Tables  7 and 8). Crucially, the information 
provided by metadata can serve as guidance for future 
regulatory actions in the context of the environmental 
protection aims of this study. For example, although cer-
tain candidate(s) may not be top-ranked or have strong 
spectral evidence (Table  6), potentially concerning haz-
ard and exposure scores may qualify a certain candidate 
for serious consideration in future work in the spirit of 
applying the Precautionary Principle.

Regarding the components of the MetFrag Score, a 
total of ten scoring terms, three Spectral and seven Meta-
data, were used to score candidates. Compared to most 

previous studies which used MetFrag as mentioned in 
the Introduction, this number may seem large. However, 
adding extra scoring terms does not appear to compro-
mise MetFrag’s identification capabilities. In fact, the 
additional scoring terms were beneficial because further 
bases for differentiating between candidates became 
available. In other words, using more scoring terms can 
provide more granularity when distinguishing candi-
dates, which is important for candidate evaluation and 
recommendation. Further scoring terms based on physi-
cal–chemical properties could be integrated in the future 
such as correlation of the partitioning coefficient  logKow 
(or log P) with retention time as already available in Met-
Frag [51]. While such scoring criteria would help filter 
out any unrealistic candidates based on objective criteria 
like ionisability and polarity, insufficient information was 
available to perform retention time correlation via Met-
Frag in this study.

With respect to the individual terms, CPDAT_COUNT, 
INDACT, and OfflineIndividualMoNA proved to be rela-
tively uninformative in this particular study, evidenced by 
their frequent zero-value scores. As a database contain-
ing consumer chemical products ranging from those used 
in home maintenance (paints, sealants, lubricants, clean-
ers, etc.) to personal care products (hair gel, nail polish, 
face cream, makeup, etc.), CPDAT’s limited applicability 
in wastewater studies such as the present one is unsur-
prising, and it instead may be more suitable for exposom-
ics studies involving, e.g., household dust. INDACT, the 
list of industrial activity chemicals known to be used in 
the vicinity of the WWTPs as disclosed to the regulator, 
had the strongest potential to improve the identification 
results. However, not a single candidate across all the 
MetFrag results was present on this suspect list, which 
could suggest that the chemical disclosures made by the 
industries were either incomplete, unsuitable for identi-
fication purposes (e.g., parent compounds were disclosed 
but possibly only transformation products are present in 
the environment/are detectable, UVCBs with unspecific 
chemical identities, etc.), and/or inherently do not end 
up in wastewater if the compounds themselves are used 
in closed circuits, are recycled, or partition into sludge 
if they are very non-polar. Lastly, while mass spectral 
libraries are inherently incomplete [44], a low OfflineIn-
dividualMoNA score does not necessarily indicate poor 
spectral library matches. Rather, low OfflineIndividual-
MoNA scores could also signify that the candidate is not 
present within MoNA to begin with, or result from noisy 
experimental spectra even if the match would otherwise 
be good. Therefore, evaluating candidates on this scoring 
term alone must be done with these factors in mind, and 
improvements to its design to avoid possible faulty inter-
pretations could constitute future work. Other future 
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work on MetFrag itself could involve the addition of new 
Spectral scoring terms which do not require scaling via 
normalisation of the maximum value, as this maximum 
value is highly dependent on the candidate database cho-
sen. For instance, a simple spectral similarity metric such 
as cosine similarity would evaluate how well the in silico 
and experimental fragmentation spectra align, independ-
ent of those of other candidates.

CompTox, the candidate database chosen here, remains 
one of the most environmentally-focused open data-
bases of chemical compounds as it exclusively contains 
chemicals of environmental and toxicological relevance. 
Compared to other open databases like PubChem (111 
million chemical structures, August 2020), CompTox is 
also smaller in size (883,000 chemicals, February 2021). 
Therefore, MetFrag paired with CompTox is likely to sug-
gest smaller lists of candidates which are de facto envi-
ronmentally-meaningful, making workflow runtimes 
shorter and candidate evaluation relatively easier. How-
ever, using CompTox has drawbacks, principally stem-
ming from its lack of comprehensiveness when compared 
to PubChem. In some cases, there may be a lack of can-
didates matching the identification criteria when using 
CompTox with MetFrag simply because they may not 
exist within CompTox itself to begin with due to its lim-
ited size and scope. PubChemLite [55, 56, 58] represents 
one complementary alternative to these issues, as it is by 
design essentially a subset of environmentally relevant 
compounds based on compound classifications. Overall, 
the ability to subset databases based on usage and clas-
sification information of chemicals can be beneficial, as 
different regulatory bodies may have different mandates, 
and studies can be designed to align with those mandates 
accordingly, e.g., focus only on chemicals with (i) known 
usage in industrial manufacturing, or (ii) agricultural 
chemicals, or (iii) pharmaceuticals, etc.

Using scenarios as a framework to interpret MetFrag’s 
results was critical considering the specific regulatory 
aims of this work: tentatively identify pollutants of high 
priority (with minimum Level 3 confidence) to guide fur-
ther monitoring and identification efforts.

Scenario Analysis revealed in detail whether Spec-
tral, Metadata, or both contributed to a given MetFrag 
Score and in turn provided the rationale behind pro-
posed candidates. As our evaluation has shown, multiple 
candidates are worth considering especially if they have 
very similar scores (e.g., Table 6), or have more compel-
ling evidence represented by individual scoring terms as 
described above. In this way, Scenario Analysis as used 
here is highly suitable for transparently communicating 
scientific results in a regulatory context. On a larger scale, 
such analyses address a key weakness common to NTA 
studies: the current lack of ability to perform detailed 

data interpretation – especially in a high-throughput, 
automatable and reproducible manner.

Furthermore, Scenario Analysis as used here can 
inform decision-making regarding the next steps. Besides 
addressing study priorities based on “depth vs. breadth” 
as discussed in the Results, the scenarios can be used 
to devise a prioritisation scheme for future work. For 
example, if authentic standards can only be purchased/
analysed for 10 compounds due to resource limitations, 
those compounds should be the recommended candi-
dates with MetFrag Scores from Scenario 1 > Scenarios 
2/3 >  >  > Scenario 4. Alternatively, if it is known from the 
outset that spectral data may be poor quality, Scenario 
2 candidates may take precedence over Scenario 3 can-
didates, as the former rely on high Metadata scores and 
not high Spectral scores for their high MetFrag Scores. 
Additionally, applying the precautionary principle may 
motivate prioritising identity confirmations of candidates 
with concerning metadata like high toxicity and/or expo-
sure (corresponding to KEMIMARKET_HAZ and KEM-
IMARKET_EXPO scores), even if those candidates are 
not necessarily ranked highly by MetFrag.

Practically speaking, next steps in environmental 
monitoring based on the results here (besides identity 
confirmation using authentic standards) could include 
expanding suspect lists using the recommended can-
didates to improve future suspect screening activities. 
These new suspects could in turn be added to the inclu-
sion lists of future measurements, thereby already gain-
ing an analytical ‘upper-hand’ for future NTA studies. 
Expanding suspect and inclusion lists in this way, pos-
sibly in combination with using a rarity score [26] that 
prioritises high intensity, infrequently occurring peaks, 
represents an evidence-based approach towards more 
meaningful environmental monitoring in the long-run, 
as these candidate compounds were tentatively ‘observed’ 
and are therefore site-specific. Otherwise, suspect lists are 
typically expanded based on information from national 
or international chemical registration lists, whose appli-
cability may be limited depending on the actual usage/
exposure in the region of concern. Therefore, an addi-
tional outcome of this study is a means to bridge target 
and non-target analysis by supplying meaningful candi-
dates for suspect screening.

This work is one contribution to a much larger discus-
sion surrounding (i) how NTA can support regulatory 
environmental monitoring, and (ii) the practical feasibil-
ity of applying NTA in routine environmental monitor-
ing. (For an example of current discourse, see Germany’s 
guidelines for non-target screening in water analysis 
[52].) Regarding the former, this work demonstrates that 
NTA can be used to address the concerns of regulators 
by translating research questions arising from regulatory 
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priorities into peak-picking/mass prioritisation criteria: 
in this case, high concentration unknown pollutants with 
point sources that occurred persistently were taken to be 
high-intensity precursors found at one or few sampling 
sites at both sampling time points. Without the ability 
to perform quantification, the assumption that high ion 
intensity represents high concentration could be vali-
dated by using different chromatographic solvent systems 
as a test of ionisation efficiency in future work, or imple-
menting ionisation efficiency models [32, 46].

On the feasibility of performing NTA as part of rou-
tine regulatory environmental monitoring, the over-
all method described here offers a highly automated 
approach via (i) feature prioritisation via enviMass, (ii) 
prescreening and quality control (plus a manual step), 
and (iii) in silico identification, of which (ii) and (iii) 
were developed in this work. The results interpretation 
and candidate recommendation processes performed 
manually in this work form the basis of future efforts 
towards automated reporting based on Scenario Analy-
sis, MetFrag Score distributions, and evaluation of criti-
cal parameters like thresholds for potential toxicities 
and exposure levels. Such automated reporting would 
not only allow scalability of future regulatory NTA stud-
ies, but could also eliminate potential biases in unknown 
identification—analysts would not be able to ‘cherry-
pick’ candidates based on their familiarity with certain 
compounds because undescriptive identifiers, e.g., DTX-
SIDs would be used up until the final results are delivered 
at the end of the entire method. Furthermore, while the 
prescreening, quality control, and identification workflow 
was applied retrospectively, the improvements to work-
flow automation detailed here could allow for quicker 
data analysis turnaround in the future, which would 
help guide future sampling and measurements planned 
in the short–medium term and prevent the long delays 
between remeasurements still commonly observed in 
NTA investigations—effectively, moving towards ‘real-
time’ instead of retrospective NTA approaches. Two 
concrete follow-up initiatives are foreseen: (i) build an 
interface connecting Shinyscreen and MetFrag, includ-
ing automated reporting features as previously described, 
and (ii) develop a set of ‘default’ scoring terms and set-
tings tailored for NTA of wastewater samples. Further 
collaborations involving non-target wastewater studies 
and database hosts will help augment expert knowledge 
on more use cases, which would be leveraged to develop 
this approach further.

On a community level, standardisation would play a 
role in increasing the feasibility of NTA as part of rou-
tine regulatory environmental monitoring. As previ-
ously mentioned, there exist considerable, albeit nascent, 
efforts towards standardising analytical protocols for 

non-target screening on a national level in, e.g., Germany 
in the form of guidelines [52]. Such activities suggest that 
standardisation is certainly of priority to the community 
and may be achievable over time. However, NTA may not 
be widely adopted by regulators in the short- to medium-
term until analytical protocols are successfully standard-
ised. In turn, it continues to be challenging from a data 
analysis perspective to implement standardised work-
flows if the analytical parameters used for measuring data 
are not themselves standardised. Thus, the status quo 
demands that current data processing methods remain 
flexible to accommodate the variety of analytical param-
eters used, as is the case with the method presented here.

Conclusions
A prescreening and identification workflow for ana-
lysing non-target compounds was developed in this 
study to retrospectively identify unknowns detected in 
WWTP sites in the context of directly supporting regu-
latory decision-making for environmental monitoring. 
Using Open data and Open tools including the US EPA 
CompTox Chemicals Dashboard, NORMAN Network 
resources such as SusDat and the Suspect List Exchange, 
and MetFrag, tentative identifications for 21 unknown 
compounds were provided at Level 3 confidence, and 1 
compound’s identity was confirmed using a reference 
standard giving a Level 1 identification. These results 
were achieved despite limited data quality.

This study heavily emphasised results interpreta-
tion on two levels: on a global level across the chemical 
unknowns investigated, and on an individual candidate 
level. Through these analyses, specific candidates were 
recommended for further identification efforts, and 
transparent justifications were provided based on the 
MetFrag score breakdown (i.e., spectral vs. metadata evi-
dence). These recommendations, and not just MetFrag’s 
outputs, represent the final results in the regulatory and 
environmental monitoring context of this study, and may 
serve as a template to drive future developments in NTA.

The prescreening and quality control workflow devel-
oped here is embedded in the open R package Shiny-
screen [24], which is freely available online, as is code 
from ReSOLUTION [55] and RChemMass [56] used for 
performing command-line MetFrag identification. The 
CompTox database version with the metadata terms used 
here is likewise also publicly available [54].
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