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Abstract Oceanic transform faults and fracture zones (FZs) represent major bathymetric features that
keep the records of past and present strike‐slip motion along conservative plate boundaries. Although
they play an important role in ridge segmentation and evolution of the lithosphere, their structural
characteristics, and their variation in space and time, are poorly understood. To address some of the
unknowns, we conducted interdisciplinary geophysical studies in the equatorial Atlantic Ocean, the region
where some of the most prominent transform discontinuities have been developing. Here we present the
results of the data analysis in the vicinity of the Chain FZ, on the South American Plate. The crustal structure
across the Chain FZ, at the contact between ∼10 and 24 Ma oceanic lithosphere, is sampled along seismic
reflection and refraction profiles. We observe that the crustal thickness within and across the Chain FZ
ranges from ∼4.6–5.9 km, which compares with the observations reported for slow‐slipping transform
discontinuities globally. We attribute this presence of close to normal oceanic crustal thickness within FZs to
the mechanism of lateral dike propagation, previously considered to be valid only in fast‐slipping
environments. Furthermore, the combination of our results with other data sets enabled us to extend the
observations to morphotectonic characteristics on a regional scale. Our broader view suggests that the
formation of the transverse ridge is closely associated with a global plate reorientation that was also
responsible for the propagation and for shaping lower‐order Mid‐Atlantic Ridge segmentation around the
equator.

1. Introduction

An oceanic transform fault (TF) that separates ridge segments, also known as a first‐order tectonic disconti-
nuity, represents a conservative plate boundary along which two plates move past each other, that is, exhibit
strike‐slip motion (Kearey & Vine, 2002; Menard, 1967; Wilson, 1965). The traces of this transform boundary
can be followed in the older lithosphere for several thousands of kilometers, beyond the ridge‐transform
intersection (RTI), following arcs of small circles on the Earth's surface (Bonatti & Crane, 1982;
Morgan, 1968), and are identified as fracture zones (FZs). By definition, the FZ domains do not represent
a plate boundary per se but an intraplate juxtaposition of two lithospheric blocks of different ages belonging
to the same tectonic plate (DeLong et al., 1977; Menard & Atwater, 1969). The older of these lithospheric
blocks is highly deformed as it carries the record of its passage through the TF domain (DeLong et al., 1977;
Karson & Dewey, 1978); the younger lithospheric block is welded to the older and colder lithospheric block
beyond the RTI (Karson & Dick, 1983). However, the prevailing view that FZs represent inactive intraplate
contact has been questioned in the past (e.g., Batiza, 1981, 1982; Lowrie et al., 1986; Vogt, 1974). The discus-
sion has been revived recently as a number of earthquakes of nonnegligible magnitudes have been recorded
in FZs (e.g., Antolik et al., 2006; Bohnenstiehl et al., 2004; Lay, 2019), including the 2016 earthquake
(M ¼ 5.2), which took place ∼180 km east of the eastern RTI of the Chain TF (catalog of the U.S.
Geological Survey 2016). Regardless of the presence/absence of tectonic activity, an FZ domain, together
with its parent TF domain, can be referred to as a transform discontinuity system.
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Much of what we know about the nature of oceanic crust within transform discontinuity systems came
from a large number of active‐source seismic refraction (and some reflection) experiments conducted in
the 1980s in slow‐spreading (20–50 mm/yr) environments (e.g., Ambos & Hussong, 1986; Calvert &
Potts, 1985; Cormier et al., 1984; Detrick & Purdy, 1980; Detrick et al., 1982, 1993; Fox et al., 1976;
Minshull et al., 1991; Mutter et al., 1984; Potts, Calvert, et al, 1986; Potts, White, et al., 1986; Sinha &
Louden, 1983; White et al., 1990; Whitmarsh & Calvert, 1986). A global notion resulting from these studies
is that the subsurface within slow‐slipping transform discontinuity systems (including FZ domains) is
represented by thin, highly fractured and altered crust, often with partially or entirely absent gabbroic layer
(e.g., Cormier et al., 1984; Detrick et al., 1982, 1993; Detrick & Purdy, 1980; Whitmarsh & Calvert, 1986).
This common view of thinner crust within slow‐slipping transform discontinuity systems is reasonable
under the assumption that the accretion along slow‐spreading mid‐ocean ridge segments is controlled by
3‐D segment‐centered mantle upwelling (Bell & Buck, 1992; Lin et al., 1990), which was established by
previous studies (e.g., Detrick et al., 1995; Gregg et al., 2007, 2009; Kuo & Forsyth, 1988; Lin &
Phipps Morgan, 1992; Tolstoy et al., 1993).

Besides examining crustal properties within the transform discontinuity systems, researchers have also been
intrigued by the associated morphotectonic features (Maia, 2018, and references therein). One of the char-
acteristic features found foremost within the slow‐slipping transform discontinuity system environments
is a transverse ridge with a well‐developed uplifted morphology. Transverse ridges are represented by elon-
gated, narrow, and elevated ridge‐like structure running parallel to the walls of the transform discontinuity
systems (e.g., Bonatti, 1978). Most of them aremapped along the older side of the lithospheric block of the FZ
domain (e.g., Abrams et al., 1988; Bonatti, 1978; Kastens et al., 1998; Tucholke & Schouten, 1988). Although
their presence and characteristic seafloor morphology were identified and described in great detail in the
early stage of seafloor exploration, their origin was extensively debated (Abrams et al., 1988; Cannat
et al., 1991; Kastens et al., 1998). A number of hypotheses, from constructional volcanism, serpentinite dia-
pirism, and thermal, viscodynamic to kinematic forces, were proposed (e.g., Abrams et al., 1988;
Bonatti, 1978; Bonatti et al., 1994; Cannat et al., 1991; Kastens et al., 1998; Pockalny et al., 1996), but strong
consensus on the predominant mechanism was not attained.

Finally, between two large‐scale, first‐order tectonic discontinuities (i.e., TFs), the presence of another type
of lower‐order (i.e., second‐order) tectonic discontinuity was identified from its expression in bathymetry
(e.g., Carbotte et al., 2015; Macdonald et al., 1991). At slow‐spreading centers, this type of discontinuity is
termed as a nontransform offset or NTO (Carbotte et al., 2015; Macdonald et al., 1991; Sempéré et al., 1993;
Spencer et al., 1997; Thibaud et al., 1998). On the seafloor, the NTOs can be observed as (1) a step‐sided ridge
bounded by faults (with 15–30 km offset), (2) an oblique shear zone, and (3) an offset in the volcanic axis
(Sempéré et al., 1993). Furthermore, they can often be associated with prominent off‐axis traces that witness
their longevity of several millions of years (Macdonald et al., 1991). In some cases the off‐axis traces can be
represented by V‐shaped discordant zones, that is, pseudofaults (Carbotte et al., 2015), which result from the
propagation of the tip of the advancing ridge segment at the expense of the adjacent, dying segment (e.g.,
Hey et al., 1980; Hey & Vogt, 1977; Kleinrock & Hey, 1989). However, the subsurface characteristics of these
features are still largely unknown.

Conducting an interdisciplinary study in the region of the equatorial Atlantic Ocean offers a unique oppor-
tunity to inspect the characteristics of large transform discontinuity systems, St. Paul, Romanche, and
Chain, and examine their role in the morphotectonic evolution of the area. While the first two transform
discontinuity systems have been subjects of a number of interdisciplinary studies in the past (e.g.,
Bonatti, 1978; Bonatti et al., 1994, 2001; Bonatti, Ligi, Borsetti, et al., 1996; Bonatti, Ligi, Carrara, et al., 1996;
Ligi et al., 2002; Maia, 2018; Maia et al., 2016), little is known about the Chain transform discontinuity sys-
tem, which can be followed continuously to the continental margins of the African (Nubian) and South
American Plates (Figure 1a). Here, we focus on examining the crustal characteristics of the Chain FZ using
a combination of active‐source seismic reflection and refraction data sets as well as global and local bathy-
metry and gravity data sets. In particular, we investigate crustal thickness variations across the FZ and com-
pare our results with those obtained for other transform discontinuity systems (both fracture and transform
domains) within slow‐slipping environments. The crustal structure is also examined across a pseudofault
resulting from a ridge segment propagation at an NTO present south of the Chain TF. Furthermore, we
identify and describe morphotectonic features of the bounding ridge segments in the area centered
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around the Chain TF and associated NTOs and interpret them in the context of crustal accretion processes.
Finally, we investigate the possible mechanisms for the formation of a transverse ridge observed ∼120 km
west of the western RTI.

2. Study Area

The study area is centered around the Chain FZ; in the north‐south direction it extends from the south of the
Romanche TF to just north of the Charcot FZ (Figure 1b). Regionally, it belongs to the equatorial Atlantic
Zone, which started opening in the Early Cretaceous, ∼100–140 Ma (Bonatti, Ligi, Borsetti, et al., 1996;
Gasperini et al., 2001; Granot & Dyment, 2015; Larson & Ladd, 1979; Moulin et al., 2010) and developed
some of the most prominent transform discontinuity systems on our planet (Figure 1a). It was only recently
that a high‐resolution bathymetry and potential field (magnetic and gravity) data sets were obtained around

(a)

(b) (c)

Figure 1. Survey area. (a) Global tectonic setting of the equatorial Atlantic (red star in the globe inset). The double lines
in brown indicate the axial zone of the Mid‐Atlantic Ridge (MAR). The solid and dashed black lines outline the tracks of
transform faults and fracture zones, respectively. The plate boundary model (Bird, 2003) is for illustration purposes.
The black box indicates the location of the regional map of the survey area shown in panel. (b) The bathymetry map is
obtained by merging high‐resolution bathymetry grids collected during Pi‐LAB (Harmon et al., 2018), LITHOS
(Grevemeyer et al., 2019), and ILAB‐SPARC (Marjanović et al., 2019) experiments. This combined bathymetry grid is
superimposed on a global lower‐resolution grid (GEBCO Compilation Group), which is masked for better visibility of the
high‐resolution data. The main structural features are indicated on the map. The black dashed line shows the part
of the ocean bottom seismometer (OBS) and multichannel seismic (MCS) data collected during ILAB‐SPARC survey that
are included in this study. The white line shows the location of the MCS line collected in 2015 (Marjanović et al., 2015).
The arrows indicate a large‐scale segmentation of the MAR we identified (see text). (c) The portion of the OBS line
used in this study showing the locations of OBS instruments from 26 to 50 in white circles (only even numbers of the
OBSs are labeled). The red circle shows the location of OBS 34, the record of which is displayed in Figure 4. All the panels
are produced using GMT.
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the 300 km long Chain TF offset, which provided first‐order insights on its tectonic history (Harmon
et al., 2018). Within the TF domain, four positive flower structures and en échelon fault scarps were identi-
fied. However, the overall conclusion is that compressional and extensional features within the Chain TF are
less pronounced when compared to the Romanche and St. Paul TFs located directly to the north. The current
orientations and some of the tectonic characteristics of the St. Paul and Romanche transform discontinuity
systems (e.g., construction of islets within St. Paul: Maia et al., 2016) seem to be inherited from a 5° counter-
clockwise rotation that took place∼11Ma ago due to the plates readjustment (Bonatti et al., 2005). However,
by examiningmagnetic data, Harmon et al. (2018) suggested that the tectonic features in the Chain TF due to
this 11 Ma plate rotation event are more subdued. This observation led the authors to speculate that the
Chain TF could be at the southern limit of this deformational front. Finally, the newly collected magnetic
data (Harmon et al., 2018) helped improve reconstruction of crustal age for the last 15–20 Myr, inferring
asymmetric separation of the African and South American Plates during the last ∼3 Myr with the South
American Plate moving away slightly slower (15.7 mm/yr) than the African Plate (18.2 mm/yr) relative to
the ridge axis.

3. Data and Methods

The data were collected as a result of a community effort to investigate properties of the oceanic lithosphere
spanning a wide range of lithospheric ages. The frame for working in the area was set up by an active‐source
seismic reflection survey employing an ultralong streamer, TransAtlantic Imaging Lithosphere
Asthenosphere Boundary (ILAB), which was conducted in spring 2015 (Audhkhasi & Singh, 2019;
Marjanović et al., 2015; Singh, 2015). This active‐source seismic survey was followed by a passive seismic
experiment Pi‐LAB (Harmon et al., 2018) recording the earthquake activity within the region focused
around and north of the Chain TF for the period of 1 yr (2016–2017). In addition, two active‐source seismic
refraction surveys were conducted: LITHOS in 2017 (Grevemeyer et al., 2019; Growe et al., 2019; Vaddineni
et al., 2019) and ILAB‐St. Paul Romanche and Chain (ILAB‐SPARC) in 2018 (Gregory et al., 2020;
Marjanović et al., 2019). During each of these experiments, interdisciplinary data sets were collected.
Below we describe the data sets that are used in this study.

3.1. Bathymetry and Gravity Data

Bathymetry data, shown in Figure 1b, represent a compilation of the high‐resolution grids collected during
Pi‐LAB (Harmon et al., 2018) and high‐resolution grids/swaths collected during ILAB‐SPARC 2018 (e.g.,
Marjanović et al., 2019) and LITHOS 2017 (Grevemeyer et al., 2019) expeditions. The total width of the com-
bined swaths is 10–25 km, with a maximum overlap of 5 km (Figure 1c). The data were processed to remove
outlier data points and gridded at 50 × 50 m. The bathymetry profile collocated with the seismic line is
shown in Figure 2. The detailed characteristics of the bathymetry data collected during the Pi‐LAB survey
are provided in Harmon et al. (2018) and are not described any further here. To put the bathymetry data into
regional context and interpret some of the newly identified features, we use Global Bathymetric Chart of the
Ocean (GEBCO) bathymetry data gridded at 15 arc sec (GEBCO Compilation Group, 2019).

The gravity data we use in this study were collected using a Bondenseewerk KSS31 gravimeter during the
ILAB‐SPARC experiment and are collocated with the seismic lines, both reflection and refraction
(Figures 1c and 2). The following corrections were applied to the recorded signal: (1) instrument drift (grav-
ity ties were obtained at the base station located in the port of Mindelo, Cape Verde), (2) latitude correction,
and (3) Eötvös correction. To obtain the free‐air anomaly (FAA), we subtracted the reference gravity along
the GRS80 ellipsoid from the corrected measured signal. We then used the spectral method presented by
Parker (1972) to calculate the gravity response for a model that assumes a constant thickness, 6 km thick
crust, and the following densities: water 1,035 kg/m3, sediments 1,900 kg/m3 (where present), crust
2,700 kg/m3, and upper mantle 3,300 kg/m3. The calculated signal was subtracted from the FAA to obtain
the Mantle Bouguer Anomaly (MBA). The resulting MBA displays the presence of artifacts that are asso-
ciated with 3‐D effect (Figure 2). To eliminate these undesired short‐wavelength variations, we calculate a
polynomial fit to the MBA profile.
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3.2. Multichannel Seismic Data

The multichannel seismic (MCS) data were collected during the TransAtlantic ILAB survey in 2015
(Audhkhasi & Singh, 2019; Marjanović et al., 2015; Singh, 2015) and ILAB‐SPARC in 2018 (Gregory
et al., 2020; Marjanović et al., 2019). During these two surveys, different equipment and acquisition geometry
were used for collecting MCS data and are presented separately.
3.2.1. TransAtlantic ILAB MCS Data Set
In spring 2015, high‐quality MCS data were collected aboard M/VWestern Trident that at the time was oper-
ated byWesternGeco (Schlumberger). A 12 km long IsoMetrix technology streamer with pressure and three‐
component accelerometer sensors was used, resulting in 3,840 channels for each component spaced at
3.125 m. The streamer was deployed at 30 m below the sea surface. An airgun array composed of six subar-
rays (deployed at 15 m below sea surface to enhance low frequencies) with eight airguns along each array
resulted in a large source volume of 10,170 in3. The shooting interval for the data presented in this work
was 62.5 m with record length of 25 s (with 2 ms sampling interval).

A total of 2,775 km of ultra‐deep reflection data was acquired along a stair‐like 2‐D profile (Audhkhasi &
Singh, 2019; Mehouachi & Singh, 2018). Here, we focus our analysis and present results for one part of
the data (∼250 km) collected along the line with a 347° azimuth sampling the region between the
Romanche TF and ∼Charcot FZ, crossing the Chain FZ and propagator (Figure 1c). The initial processing
of the data was done onboard and is outlined in Mehouachi and Singh (2018). An example of a shot gather
is shown in Figure 3a. In the postcruise processing steps, we focused on imaging the presence of potential
events in the crust and upper mantle. We further conduct data denoising by applying dip filter and boosting
low frequencies. The presence of the sediments and igneous basement is shown in Figure 2b. To image the
Layer 2A/2B boundary, we explore a range of stacking velocities and source‐receiver offsets (e.g., Marjanović
et al., 2018). We obtain the best results using 1,900 m/s stacking velocity for source‐receiver offsets ranging
between 3,000 and 5,500 m (Figure 3c). The analyses of a deeper portion of the MCS data, including the ima-
ging of theMohorovičić (Moho) discontinuity, are the subject of an ongoing study and will be presented else-
where. The imaged Layer 2A/2B event is picked and depth converted. For the depth conversion we use a
constant velocity of 4,000 m/s (Audhkhasi & Singh, 2019).

Figure 2. Gravity profile. Panel (a) shows a 2‐D bathymetry profile along the line that crosses the Chain and St. Paul FZs,
the Romanche TF, and propagator (locations are shown in vertical dotted lines; note that for the St. Paul, we indicate the
location of the northern and southern limit of the FZ). In panel (b), we show gravity data collected during the
ILAB‐SPARC expedition: Free‐air anomaly is shown in solid blue line, and calculated Mantle Bouguer Anomaly
assuming 6 km thick crust is shown in red with a polynomial fit shown in dashed green line.
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3.2.2. ILAB‐SPARC MCS Data
The main focus of the ILAB‐SPARC survey, conducted in fall 2018 aboard N/O Pourquoi Pas?, was to collect
ocean bottom seismometer (OBS) data collocated with theMCS lines acquired in 2015. To assure ideal cover-
age of the subsurface in OBS data (described in section 3.4), the profile with 347° azimuth was extended both
at its northern and southern ends. To sample these regions, during the shooting phase of the ILAB‐SPARC
survey, a 6 km long streamer with a receiver spacing of 6.25 m was used. The source geometry, volume
(4,990 in3), and shot interval (300 m), were designed to fit the OBS data acquisition requirements. The large
shot spacing was far from ideal for MCS data collection, but nevertheless, the data are of sufficient quality.
An example of a shot gather is shown in Figure 3d. The onboard brute stacks were poststack time migrated
using water velocity. These seismic sections were used to pick the seafloor and basement horizons, which
were then employed in constraining the velocity profile.

However, to potentially image the Layer 2A/2B boundary, these data needed to be reprocessed. The large
shot interval resulted in a low nominal common midpoint (CMP) fold of 10 traces, which is insufficient
for Layer 2A/2B imaging. Thus, the first step was to interpolate the data and increase the fold. We interpolate
traces in shot domain so that the shot interval is reduced to 75 m, and fold is increased to 40. We also filter
the data to include frequencies up to 25 Hz. To further increase the fold to 80, we interpolate traces within

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. Imaging Layer 2A/2B boundary in seismic data. (top) Processed multichannel seismic (MCS) data collected
during TransAtlantic ILAB experiment in 2015: (a) processed shot gather showing ∼12 km source‐receiver offset; the
main upper‐crustal events are indicated: seafloor reflection in yellow and Layer 2A/2B refraction branch in blue.
(b) Constant water velocity near (<1,500 m) source‐receiver offset stack. Note that in this stack, only the presence of
sediment pockets (in brown) and the top of the igneous basement (in white) are possible to identify. (c) Constant velocity
(1,900 m/s) mid‐offset (3,000–5,500 m) stack to show the presence of the Layer 2A/2B boundary indicated in blue
arrows. (bottom) Processed MCS data collected during ILAB‐SPARC experiment in 2018 (the same color code is used as
for the top panels): (d) processed shot gather with ∼6 km source‐receiver offset. Note that only a small portion of the
Layer 2A/2B prograde refraction branch is captured within this data set. (e) Interpolated constant velocity stack for
near source‐receiver offset stack using the same stacking parameters as in panel (b). (f ) An interpolated constant
velocity mid‐offset stack using the same parameters as for panel (c). Note that the Layer 2A/2B boundary (marked in blue
arrows) is present intermittently. In all of the presented stacks, the black‐white line indicates the location of the extracted
shot gathers shown on the left.
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each CMP gather. To produce a stack that favors imaging the Layer 2A/2B boundary, we use the same
stacking velocity as for the MCS data collected in 2015 (section 3.2.1). However, due to the greater depth
of a ∼24 Macrust imaged by our seismic line, the optimal source‐receiver offset range was from 4,500–
5,000 m. For depth conversion of the event picked in two‐way travel time (TWTT), we use the same
velocity as for the MCS section sampling the region north of the Chain FZ. The final seismic stacks are
shown in Figures 3e and 3f.

3.3. OBS Data

The datawere collected using four‐componentMicrOBS instruments (Auffret et al., 2004), recording data at a
sampling frequency of 250 Hz. Prior to converting the OBS record to SEGY format, the correction for the
internal clock drift was done. Along the profile, 50 instruments were deployed recording seismic source sig-
nal produced at every 300 m using a 4,990 in3 tuned air gun array, towed at 10 m below sea surface. Here, we
analyze the data recorded on 25 OBSs (from Numbers 26 to 50, as shown in Figure 1c) located south of the
Romanche TF at an approximately equidistant interval of 14.2 km. The exception is the distance between
Instruments 39 and 40 within the Chain FZ: These two instruments were deployed slightly farther apart to
assure good coupling with the seafloor within the FZ. The OBSs were relocated (Creager & Dorman, 1982)

(a)

(b)

(c)

(d)

Figure 4. Ocean bottom seismometer (OBS) record. (a) Processed OBS gather recorded on OBS 34 hydrophone
component (Figure 1c) displaying 100 km source‐receiver offset south and north of the OBS location. The black box
encompasses the enlarged region shown in panel (c). The crustal turning ray arrival (Pg) is shown in red, upper mantle
turning ray arrival (Pn) is shown in magenta, and wide‐angle reflection off the Mohorovičić discontinuity—Moho (PmP)
is shown in yellow. The data shown in the panel were normalized using equal maximum amplitude scaling.
(b) Bathymetry profile of the seafloor for the source‐receiver range shown in panel (a). The reverse yellow triangle
indicates the location of the OBS instrument. In panel (c), we show a wiggle plot of the OBS record within the enlarged
region. The markers and color code are the same as in panel (a). (d) The same plot as in panel (c) with a decreased
amplitude scale for better visibility of the picked arrivals. The squares show the locations of the actual picks using the
same color code as in panel (a).
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using the least squares method: The search was conducted within 500m horizontal and 300m vertical radius
based on minimization of the misfit between the observed and calculated direct water wave picks within
10 km source‐receiver offset. The water velocity function was defined using the combination of water‐
column sound speed from onboard expendable bathythermograph (XBT) measurements and legacy World
Ocean Circulation Experiment (WOCE) conductivity‐temperature‐depth (CTD) data.

For analyzing the arrivals, we use the data recorded on the hydrophone component, to which we apply a
minimum‐phase band‐pass filter with the frequency range of 3–24 Hz (Figure 4a and supporting informa-
tion Figures S1, S2a, and S3a). A predictive deconvolution was applied to the data for plotting purposes only.
We identify turning rays in the crust (Pg), turning rays in the upper mantle (Pn), and wide‐angle reflection
off Moho (PmP). The Pg arrivals are identified within source‐receiver offsets up to∼30 km (Figures 4, S2, and
S3). The total number of manually picked Pg arrivals for our 25 OBSs is 3,843. The Pn arrivals are normally
identified within offsets ranging between ∼30 and ∼60 km with a total number of picks of 2,760. The PmP
arrivals are identified in all of the OBS records included in this study, with a total number of picks of 2,159.
For each set of the picks, we define picking error based on the clarity of the signal. Most of Pg arrivals were
clear with the picking error varying between 30 and 50 ms. The reflection signal from Moho in some
instances was overprinted by a bubble pulse and/or noise, which resulted in higher picking error. Overall
the picking error for PmP arrivals varied from 30 to 80 ms. Due to lower signal‐to‐noise (S/N) ratio at farther
source‐receiver offsets, the picking error for Pn arrivals varied widely from 30 up to 150 ms. Although we
could follow the first arrivals up to 700 km source‐receiver offset in a number of OBS records (e.g.,
Marjanović et al., 2019), here, we limit the analysis of the arrivals to source‐receiver offsets <100 km as
we focus mainly on the crustal characteristics. The arrivals identified at larger source‐receiver offsets will
be addressed elsewhere.

3.4. Ray‐Based Travel Time Tomography

We base our analyses on the joint inversion of all the observed arrivals, that is, Pg, PmP, and Pn using the
method developed by Van Avendonk et al. (1998, 2004). Within this approach, the ray‐tracing algorithm,
which solves the forward problem, uses the shortest‐path modeling to obtain a global minimum of predicted
travel times and trace the rays between sources and receiver for a given velocity model. In addition to

(a)

(b)

Figure 5. Velocity models. (a) Two‐dimensional starting velocity model obtained by extrapolating 1‐D velocity function
from White et al. (1992). The inverted yellow triangles indicate the location of OBS instruments, which are
numbered. (b) Two‐dimensional final velocity model obtained using ray‐based travel time tomography (Van Avendonk
et al., 1998, 2004) to invert for crustal and mantle turning ray arrivals (Pg and Pn, respectively) and Moho reflection
(PmP). In white line, we indicate the presence of seismically inferred Moho. The three colored boxes outline the regions
around the pseudofault (yellow), the Chain FZ (green), and the zone extending north of the Chain FZ (purple). These
three regions are shown in Figure 9. The white transparent zone in panel (b) marks the region outside of the ray
coverage.

10.1029/2020JB020275Journal of Geophysical Research: Solid Earth

MARJANOVIĆ ET AL. 8 of 30



modeling refraction arrivals, the algorithm is designed to model reflection arrivals by forcing raypaths to
reflect from a predefined interface point, in our case points along a crust‐mantle boundary or Moho. As a
starting velocity model, we use a simplified 1‐D velocity function, which is based on White et al. (1992)
and Grevemeyer et al. (2018), and extend it to 2‐D (Figure 5a). The modification is reflected in the velocity
of the sediments that we obtain as an average velocity from conducted semblance velocity analyses of the
MCS data in the given region, which is 1.86 km/s. In the starting velocity model, we assume that the
Moho is represented by a smooth surface at ∼6 km below the igneous basement. Thus, our initial crustal
thickness was roughly 1 km thinner when compared to the Atlantic crust as defined by White et al. (1992),
using an average crustal thickness as defined by Chen (1992). Our inversion procedure focused therefore on
defining deviations of crustal structure from normal oceanic crust. The grid spacing of the starting model is
200 m horizontally and 50 m vertically. We extend the length of the original shooting line by 6 km on each
side to avoid potential edge effects.

The inversion algorithm uses a least squares approach to minimize the difference between the calculated tra-
vel times obtained as a solution of the forward problem and the travel times of the manually picked arrivals
(details behind the algorithm itself are provided by Van Avendonk et al., 2004). The perturbation model at
each iteration is defined on a grid with 400 m horizontal and 100 m vertical grid spacing. At each iteration,
we apply a set of smoothing parameters that control the lateral smoothing of the velocity grid, velocity
jumps, and smoothness of the Moho interface. In the first step, we invert Pg arrivals only. Once we obtain
a satisfactory velocity model of the crust, we invert Pg and PmP, which, in addition to the velocity model,
provides the constraints on the Moho depth. Finally, using the resulting model, we invert for all of the exam-
ined arrivals, that is, Pg, PmP, and Pn (Figure 5b), in order to determine the upper mantle velocity just below
the Moho.

As a way to quantify the data fit, we use a standard χ2 value (e.g., Van Avendonk et al., 1998). At each itera-
tion, we set a target value for χ2; the χ2 values follow an exponential trend, that is, decrease rapidly for the
first several iterations to reach the targeted value χ2 ¼ 2 at the final iteration. Together with the χ2, we also
adjusted parameters that control magnitude of the velocity model update, smoothness of the model, and flat-
ness of the Moho reflector. Typically, greater smoothing/flatness constraints were applied during the first
iterations to keep the inversion stable. They are also higher in the first step of the inversion when inverting
only for crustal turning ray arrivals (i.e., Pg). Examples of raypaths through the final velocity model and tra-
vel time residuals are given in Figures S4 and S5. The resolution power of the model is examined using deri-
vative weight sum (DWS) (Toomey & Foulger, 1989) and checkerboard test (Figures S6 and S7, respectively).
Themodel has good ray coverage between 50 and 350 km distance range along the profile, and checkerboard
test results can resolve 5% magnitude anomalies of a minimum size of ∼20 km. In addition, we examine
uncertainty in the velocity model and depth of Moho (Figures S8 and S9). The former test results show that
throughout most of the model, the uncertainty in the resolved velocity is <0.1 km/s (Figure S8). The highest
uncertainty is observed at ∼350 km along profile distance, where we have low ray coverage (Figure S6). For
examining uncertainties in the Moho depth, we follow the approach of Canales et al. (2003) and introduce
sinusoidal perturbations to the Moho surface (Figure S9). The test shows that we can detect variations in the
Moho depth ≥700 m.

4. Results
4.1. Observations in Bathymetry and Gravity Data

We describe the observations from recently collected gravity and high‐resolution bathymetry data and put
them into a regional context using global bathymetry (GEBCO) and gravity data sets and results from pre-
vious studies (Bonatti et al., 1991, 1994, 2001; Bonatti, Ligi, Carrara, et al., 1996; Harmon et al., 2018).
4.1.1. Ridge Segment Between the Chain and Romanche TFs
A first‐order tectonic segment of the MAR that is delimited by the Chain and Romanche TFs displays a com-
plex ridge axis morphology (Figure 1b). The bathymetry characteristics of its southern portion were mapped
in detail during the Pi‐LAB experiment (Harmon et al., 2018). The results suggest that the region directly
north of the Chain TF is characterized by a magmatically starved segment end. However, past this relatively
narrow zone, to about the center of the segment, the ridge axis extends almost linearly with well‐developed
abyssal hills suggesting a more magmatically robust part of the segment. Although we do not have high‐
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resolution bathymetry available for the northern half of this segment,
we can identify from the global bathymetry data grid (Figure 1b) a
change in ridge axis character at ∼00°43.5′S. At this point, the axial
valley narrows and shallows. Another change in the axial valley,
similar in nature, is observed at ∼00°20′S. Following the nomencla-
ture introduced by Macdonald et al. (1988), these two locations could
be defined as NTO discontinuities that delimit an ∼40 km long sec-
ond‐order ridge segment. Further to the north of this segment, the
ridge axis bends toward the Romanche TF (e.g., Bonatti, Ligi,
Carrara, et al., 1996; Bonatti et al., 2001). This obliquely trending
ridge section is also characterized by several higher‐order tectonic
segments (at least six) that are 25–30 km long. The exact locations
of these discontinuities are not possible to identify as for this region
we only have a compilation of low‐resolution bathymetry data sets
available.

Along the bathymetry swath, which follows the OBS line and samples
∼7–10 Ma old lithosphere, we can identify two distinct zones
(Figure 1c), a southern zone and a northern zone. From the Chain
FZ to about the middle part of the segment (∼OBS 33; Figure 1c),
we observe two well‐developed linear seafloor features (40–50 km
long and separated by 5 km) with ridge‐parallel orientation.We inter-
pret them as sediment‐buried abyssal hills that were formed during a
more magmatically robust phase of the southern portion of the MAR
segment ∼10 Ma ago. Their spatial extent corresponds to the more
magmatically robust, southern part of the present‐day ridge axis
(Figure 1b). North of this region, the seafloor in the bathymetry data
swath is characterized by rough bathymetry and an absence of ocea-
nic spreading fabric.
4.1.2. Ridge Segment Between the Chain and Charcot TFs
A first‐order tectonic segment between the Chain and Charcot TFs
extends for ∼240 km (Figure 6). It is interrupted by a zone of three
second‐order, step‐sided tectonic discontinuities, that is, NTOs (e.g.,
Carbotte et al., 2015; Sempéré et al., 1993). We define this highly
segmented portion of the ridge axis as an NTO discontinuity region,

centered at 02°10′S (hereinafter, the 02°10′S NTO Zone). In fact, the contemporary morphology of the
02°10′S NTO Zone is rather complex. It is represented by a ∼50 km along‐axis zone extending between
02°03′S and 02°20′S, encompassing three right‐lateral discontinuities (Figure 6): the northern at
∼02°03′S offsetting the ridge axis by ∼30 km, the central at 02°16′S with 25 km offset, and the southern
one at 02°20′S with ∼15 km offset. The ridge segment delimited by the northern and central discontinuity
within the 02°10′S NTO Zone is ∼35 km long.

The northern second‐order segment, extending between the Chain TF and 02°10′S NTO Zone (∼120 km
long), is represented by relatively linear abyssal hills, which may suggest a magmatically more robust
segment. Its northernmost part, about the first 30 km south of the Chain TF, displays deep topography
and the presence of core complex structures on the western flank (Harmon et al., 2018), which argues
for the presence of a magmatically starved segment end. Along its extent, using the available bathyme-
try data, we could identify a couple of higher‐order discontinuities (Macdonald et al., 1991) at 01°40′25″
S and 01°51′S.

The ridge segment extending between the 02°10′S NTO Zone and Charcot TF display two distinct parts
(Figure 6), the northern part with a relatively shallow ridge axis (the shallowest point is ∼3,100 m) and
the southern part represented by a relatively deep axial valley (>3,800 m on average). The change in depth
between these two parts is identified at 02°40′45″S with an abrupt step of∼880 m. This significant difference
in depth of the ridge axis could suggest that these two segments are in two different phases of ridge spread-
ing, northern, in magmatic, and southern, in tectonic ridge spreading phase.

Figure 6. Bathymetry map of the first‐order tectonic segment extending south of
the Chain TF. The background is represented by GEBCO data on which high‐
resolution bathymetry data collected during the LITHOS experiment
(Grevemeyer et al., 2019) are superimposed. The arrows indicate higher‐order
(second‐ and potentially third‐order) discontinuities we identified in the seafloor.
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4.1.3. Pseudofault
A pair of obliquely trending linear structures, which we identify as pseudofaults (Hey et al., 1980; Kleinrock
& Hey, 1989), is evident in the global gravity (Figure 7; Sandwell et al., 2014) and global bathymetry data
(Figure 8). We suggest that this typical “V”‐shape feature is a result of a southward propagation of a sec-
ond‐order MAR segment located south of the Chain TF.

On the west flank of theMAR axis, we observe the onset of the pseudofault at the intersection with the Chain
FZ within ∼46 Ma old lithosphere, which coincides with an important change in relative plate motion
between the South American and African Plates (Müller et al., 1999) that also dominated the deformation

Figure 7. Global free‐air anomaly map (Sandwell et al., 2014) for the equatorial Atlantic region with the interpretation of
the main tectonic features indicated. The black line shows the location of the OBS line collected during the ILAB‐SPARC
cruise. The map is made using GeoMapApp (Ryan et al., 2009).

Figure 8. Global bathymetry map of the equatorial Atlantic region. The main morphotectonic features represented by
the Mid‐Atlantic Ridge and transform discontinuities (transform fault and fracture zone domains) are marked. The
white line indicates the location of the seismic refraction profile. Blue dotted line indicates the general trend of the Chain
Fracture Zone on the western flank to emphasize the change in plate kinematics that happened between 46 and 38 Ma.
In blue dotted lines we mark the general trend of the Romanche and Charcot FZs, which also display the prominent
change of 8°. Black dashed line outlines the pseudofault on the west flank of the ridge axis and its transition to the off‐
axis track of the NTO 02°10′S. The lithospheric ages (Müller et al., 2008), as well as the background bathymetry map,
are from GeoMapApp (Ryan et al., 2009). In the inset, following Bonatti (1978), we indicate the possible change in near‐
field stresses that could potentially explain the formation of the transverse ridge we observe on the southern wall of the
Chain FZ.
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history of the St. Paul transform discontinuity system (Maia, 2018). From the intersection with the Chain FZ,
the pseudofault extends continuously farther to the south in a∼95° azimuth. At∼17Ma, it intersects with an
almost ridge‐perpendicular off‐axis trace of the 02°10′S NTO Zone. This intersection indicates the cessation
of the southward propagation of the ridge tip at the NTO discontinuity. On the east flank of the MAR axis,
the trace of the propagator's tip is more subdued and fragmented (Figure 7). Our profiles, both OBS and
MCS, cross only the pseudofault on the west flank ∼80 km south of the Chain FZ (Figure 1b). In the MCS
data, it is identified as a ∼8–10 km wide trough (∼400 m difference in depth), filled with 500 m of sediments
(Figure 3f).

It is interesting to note that the portion of the MAR extending between the right‐lateral Chain TF and left‐
lateral Ascension TF is characterized by several discontinuities that offset the ridge axis by less than 50 km
(Figure 8). One of these smaller‐offset discontinuities is the long‐lived Charcot FZ, the trace of which for the
past 10–14 Myr exhibits significant complexities.
4.1.4. Transverse Ridge
Along the southern wall of the Chain FZ, representing the older lithospheric block, we observe a prominent
feature that we identify as a transverse ridge. The feature extends continuously for about 320 km starting
from 120 kmwest from the western RTI (Figure 1b). Its signature is also prominent in the global gravity data
(Figure 7). Along most of the strike of the transverse ridge, the seafloor depth varies from 2,000 to 3,000 m.
However, the westernmost tip of the transverse ridge deepens almost abruptly to 4,000 m as it approaches
the intersection between the Chain FZ and the pseudofault.
4.1.5. Gravity Data
Along most of the length of the sampled 2‐D gravity profile, the FAA signal mimics the seafloor bathymetry
(Figure 2). The exception to the above is the region north of the St. Paul FZ, where the gravity anomaly is
stronger, although no evident change in bathymetry is present across this FZ. South of the Romanche TF,
the biggest changes in the FAA are observed across the Chain FZ and the pseudofault, of 80 and 48 mGal,
respectively. Across the Chain FZ, the region north of the fracture has, on average, ∼30 mGal higher
FAA. In addition, for this region, we also see a decrease of 15 mGal in calculated (average) MBA (assuming
6 km thick crust).

4.2. Layer 2A

The Layer 2A/2B boundary is imaged along ∼38% of the OBS line (Figure 3). However, as we use constraints
from twoMCS data sets of different quality (section 3.2), we will present separately the results obtained using
each data set.

Along the portion of the line that samples the region between the Chain FZ and Romanche TF using the
long‐streamer 2015 MCS data, we can clearly distinguish two zones (Figure 3c). The first zone extends north
of the Chain FZ to about midway of this first‐order tectonic segment (between 200 and 305 km along the pro-
file distance [apd]). It is characterized by an intermittent but high‐amplitude signal of the Layer 2A/2B
boundary imaged at an average 550 ± 35 ms TWTT beneath the igneous basement (or ∼1,100 m thickness).
The brightest and most continuous portion of this topmost crustal boundary is imaged immediately north of
the Chain FZ, from 220 to 260 km apd. In its southern part, it deepens from ∼390 m below the seafloor peak
(at ∼230 km apd) to ∼2,000 m as it approaches the northern wall of the Chain FZ, where it disappears. We
need to mention that the latter depth estimate may be associated with a larger picking error as the northern
wall of the FZ exhibits topographic short‐wavelength variations, which increase the uncertainty in our picks
of the seafloor as well as the Layer 2A/2B boundary. North of this region, right beneath the dome‐shaped
feature observed in the bathymetry (between 260 and 285 km apd), we cannot identify the presence of signals
originating from the Layer 2A/2B boundary. The seafloor within this region is relatively flat and partially
covered by a thin layer of sediments, which can be characterized as almost ideal conditions for imaging
the base of Layer 2A, if present. The reason why we do not observe the signal from the Layer 2A/2B bound-
ary is most probably geological. North of this subregion, we identify an ∼25 km wide basin filled up with
sediments. Beneath this basin, the signal from Layer 2A/2B boundary is present but very complex, with a
gap in its middle part. The presence of the gap becomes much clearer in the velocity model (Figure 5b). In
contrast, the portion of the profile extending between the segment center (at∼305 km apd) and the southern
wall of the Romanche TF is characterized by rough seafloor topography and the absence of the Layer 2A/2B
boundary.
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Although the ILAB‐SPARC MCS data that sample the region south of the Chain FZ (including the pseudo-
fault) have a lower resolution, we can observe the Layer 2A/2B boundary intermittently along ∼40% of the
profile extent (Figure 3f). It needs to be mentioned that for the parts of the profile with considerable seafloor
depth (>5 km), as is the case for the region between 90 and 120 km apd, the Layer 2A/2B boundary may not
be observed not only due to geology but also due to our inability to capture the signal with the 6 km long
streamer. The shot gather in Figure 3d shows that for the shallower parts (∼4 km), the Layer 2A/2B signal
is observed at offsets greater than 4.5 km. For the portions of the profile that display the presence of the event
that we interpret as a Layer 2A/2B boundary, we find that the thickness of Layer 2A varies between 720 and
3,040 m, with an average value of ∼1,880 m. However, due to both the interpolation we applied to compen-
sate for the large shot intervals and the possible picking error (varying between ±50 and ±75 ms), the above
values should not be regarded as absolute thicknesses of the topmost crustal layer within the area but rather
as approximate values.

4.3. Crustal and Upper Mantle Properties From the Velocity Model

The preferred velocity model (Figure 5b), obtained using the wide‐angle seismic refraction data, spans
∼350 km of oceanic lithosphere and shows that overall crustal velocities are higher than proposed in the
initial model. The average igneous crustal thickness is 5.4 km, which is lower than the reference crustal
thickness of 6–6.2 km as defined by the passive upwelling model (Forsyth, 1993) and a global compilation
(Chen, 1992; Christeson et al., 2019) and much less thinner than the thickness of 7.1 km reported by
White et al. (1992) for the crust formed at theMAR. As the profile crosses two distinct features frommorpho-
tectonic point of view, the Chain FZ and the pseudofault (Figure 5b), we divide the profile into three regions
and present the results for each region separately.
Region 1—Pseudofault
Along the profile, we define the pseudofault to extend between ∼90 and 140 km distance along the profile
(Figures 5b and 9a), based on the bathymetric expression (Figure 10a). Within this∼50 kmwide pseudofault
zone, we observe prominent changes in the thickness of the igneous crust from (1) its southern portion,
which shows ∼5.7 km thick igneous crust, to (2) 0.7 km thinner crust within the central part, followed by
(3) gradually thickening of the crust toward the north where the maximum thickness of ∼6.2 km is observed
(Figure 10b). Furthermore, upper‐crustal to midcrustal velocity values (first 3 km of the crust) display almost
the opposite pattern: While lower velocity (∼5–5.2 km/s) is observed in the southernmost part, higher velo-
city (∼5.5–5.7 km/s) is present over the central and northern parts of the pseudofault (Figure 10c). Note that
this part of the crust, termed here upper crust to midcrust, represents the zone that is densely sampled by the
crustal Pg arrivals (Figure S6). Although the velocity values obtained from the lower portion of the crust are
not well constrained by the propagated rays, the average velocity function, calculated within a 2 km wide
horizontal band above the Moho, does not mimic the crustal thickness variation pattern observed within
the pseudofault. This observation suggests that the resulting thickness variations are real and do not repre-
sent a trade‐off of crustal velocity variation and crustal thickness. For the younger and older crust side, jux-
taposed north and south to the pseudofault, respectively, we observe a similar crustal thickness, ∼5.4 km on
average. It is interesting to note that from south to north (younger‐to‐older crust) across the pseudofault, the
lower crustal velocities sharply decrease, whereas upper‐crustal velocities increase (Figure 9a).
Region 2—The Chain FZ
We define the Chain FZ region to extend between the bathymetric peak of the southern wall (top of the
transverse ridge) and about the middle of the gently steeping northern wall, that is, between ∼190 and
215 km apd (Figures 5b and 9b). The latter boundary is coincident with the limit of the Layer 2A/2B bound-
ary observations. Within this region, we observe on average∼5.4 km thick crust (Figure 9b). However, a very
localized thin crust (∼4.6 km) is observed directly beneath the narrow (∼10 km wide) sedimentary basin,
which forms the welded contact between the older (southern) and younger (northern) lithosphere on both
sides of the FZ. The thickest crust is observed right below the transverse ridge, ∼6.3 km. Within the 30 km
wide zones of older and younger crust to the south and north of the FZ, respectively, we observe different
thicknesses:∼5.9 km to the south (or 5.7 kmwhen we exclude the region directly below the transverse ridge)
and ∼5.2 km to the north. In terms of upper‐crustal velocity, if we exclude the region directly beneath the
transverse ridge, velocities beneath the FZ valley and beneath the older crust side are similar, that is,
∼5.2 km/s. However, on the younger crust side within the 30 km wide zone north of the Chain FZ, we do
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observe a gradual velocity increase of ∼0.4 km/s. The lower crustal velocities, although not well constrained
by our model, are relatively uniform at ∼7 km/s but with large standard deviations (Figure 10d).
Region 3—North of the Chain FZ
This part of the model extends between 240 and 360 km apd, and samples 7–10 Ma old crust (Müller
et al., 2008) formed along a first‐order tectonic MAR segment (Figures 5b and 9c). We limit the extent of
the northern end of the examined zone to eliminate any possible effect of the Romanche TF (Gregory
et al., 2020). Within this region, based on the crustal thickness and velocity characteristics, we can clearly
identify two subregions: the southern one extending from the Chain FZ to about the middle of the segment
(i.e., between 240 and ∼290 km apd) and the northern one that extends between the middle of the segment

(a)

(b)

(c)

Figure 9. Close‐up velocity models for (a) Region 1—the pseudofault, (b) Region 2—the Chain Fracture Zone, and
(c) Region 3—the zone north of the Chain FZ. The location of each of the regions is shown in the 2‐D profile in
Figure 5b. Within each panel we identify zones from which we extract 1‐D velocity functions spaced at 800 m for
comparison. The extracted 1‐D velocity functions are shown in the right of the corresponding region. The remaining
elements are the same as in Figure 5.

10.1029/2020JB020275Journal of Geophysical Research: Solid Earth

MARJANOVIĆ ET AL. 14 of 30



and south of the Romanche TF (i.e., between 290 and 360 km apd). The southern part displays thinner
oceanic crust, on average ∼5.1 km. Velocities within the upper igneous crust (<3 km) are relatively
uniform, with the exception of the region beneath the dome‐shaped structure where an increase in velocity
function is observed. This is also the zone in which we do not observe the presence of Layer 2A/2B
boundary in the seismic section (section 4.3). The lower part of the crust does not display any complexities
and is almost constant throughout this subzone. In contrast to the southern subzone, the northern subzone
shows important variability, both in terms of crustal thickness and the velocities. A wide range of
thicknesses is observed: from 6.3 km, between 310 and 320 km along profile distance, to 4.4 km as we
approach the Romanche TF. In addition to the large variation in crustal thickness, the upper‐crustal to
midcrustal velocity also varies significantly (Figure 9c), with a minimum value of 5.2 km/s identified at the
transition from very thick crust in the south to thin crust in the north (∼320 km apd). Interestingly, the
lowest velocity within the upper 3 km of the crust (5 km/s) coincides with the highest lower crustal
velocity 7.6 km/s. As upper‐crustal velocities are constrained by Pg arrivals and the lower crustal velocities
from PmP, these differences are most probably real. However, we need to mention that the crustal

(a)

(b)

(c)

(d)

Figure 10. Parameters depicting crustal structure along the examined 2‐D line: (a) seafloor depth; (b) igneous crustal
thickness; (c) average velocity for the upper 3 km of the oceanic crust; and (d) average 1‐D velocity profile (thin
purple line) for 2 km of the lower oceanic crust above the Moho. The shaded purple region represents the limits of
standard deviation.
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thickness/velocities for the northern subzonemay not be as well constrained as for the southern subzone, and
the results should be taken rather as a relative variation with respect to the initial velocity model.

5. Discussion
5.1. Crustal Thickness Across the FZs and NTOs

During the 1980–1990s a number of active refraction studies were conducted examining transform disconti-
nuities offsetting the MAR: Kane (Cormier et al., 1984; Detrick & Purdy, 1980), Vema (Detrick et al., 1982;
Potts, White, et al., 1986), Blake Spur (Minshull et al., 1991; Mutter et al., 1984; White et al., 1990),
Oceanographer (Ambos & Hussong, 1986; Fox et al., 1976; Sinha & Louden, 1983), Charlie Gibbs
(Whitmarsh & Calvert, 1986), and Tydeman (Calvert & Potts, 1985; Potts, Calvert, et al., 1986). A large
majority of these studies used the active sources and a limited number of ocean bottom hydrophones
(OBHs) and/or OBSs. The exceptions are the studies conducted at the Vema FZ (Ludwig &
Rabinowitz, 1980) where sonobuoys were used and at the Blake Spur FZ (Minshull et al., 1991; Mutter
et al., 1984) where the results were based on the interpretations of MCS and expanding spread profiles
(ESP) data sets. In addition to the studies at the MAR, using eight OBH instruments, Muller et al. (2000)
examined crustal structure across TFs at 57°E and 66°E offsetting the slow‐spreading Southwest Indian
Ridge. More recently, a modern OBS survey using 54 instruments along a 225 km long seismic line was car-
ried out across the Marathon FZ and three NTOs (NTO‐1, NTO‐2, and NTO‐3) over a ∼65 Ma central
Atlantic lithosphere (Davy et al., 2020). This recent results for the Marathon FZ are falling within the crustal
thickness range from 5.2 to 7 km reported by Peirce et al. (2019) for the same FZ examined closer to the ridge
axis (∼1Ma crust). In addition, Peirce et al. (2019) also examined the crustal structure beneath theMercurius
FZ where∼5 km thick crust is inferred. The resulting range of crustal thicknesses and compressional seismic
velocities obtained by the earlier studies conducted along the MAR was quite wide, varying from as thin as
1 km to as thick as the average crustal thickness value of >6 km observed at slow‐spreading ridge segments.

By examining the results of these earlier active‐source seismic studies focused on transform discontinuities,
we realized that one of the reasons for the observed wide‐range variations in crustal thicknesses and/or crus-
tal velocities is due to a nonunique terminology. In most of the seismic studies during the 1980s, the whole
transform discontinuity system was collectively termed as “fracture zone”, that is, there was no clear

Figure 11. A summary plot of crustal thicknesses derived from seismic data across a number of fracture zones (orange
square), transform faults (blue diamond), and nontransform offsets (yellow star) versus discontinuity offset length
(see text for the references). For the cases where the range of crustal thickness was reported, the range is indicated by
error bars and the average crustal thickness is indicated in the corresponding symbol. The vertical dashed line indicates
interruption in horizontal axis to show the crustal thickness for the St. Paul FZ (Growe et al., 2019) displaying a
cumulative offset of 630 km (e.g., Maia et al., 2016). The IFP and OFP stand for inner and outer pseudofaults,
respectively, from Dannowski et al. (2018). The color shaded zones are used only as eye guides.
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distinction between the TF and FZ domains. Based on the location of the seismic profiles presented in the
literature, we made a compilation separating the results obtained for the FZ and TF domains. In
Figure 11, we show the resulting crustal thicknesses mapped at different TFs and FZs (including this study,
i.e., the Chain FZ, and the preliminary result for the St. Paul FZ reported by Growe et al., 2019) offsetting
slow‐spreading centers. Also, we add crustal thickness detected at a number of NTOs (Canales et al., 2000;
Dannowski et al., 2018; Davy et al., 2020; Detrick et al., 1993; Dunn et al., 2017; Hooft et al., 2000; Kahle
et al., 2016) to enable potential comparison with the crustal thickness obtained across the pseudofault
formed by the ridge propagation. For completeness, we include estimates from fast‐spreading centers, where
results are only available for the TF domains (e.g., Roland et al., 2012; Tréhu & Purdy, 1984; Van Avendonk
et al., 1998).

Overall, our compilation, representing the variations in crustal thickness (for slow‐slipping transforms) as a
function of transform offset length, outlines two distinct regions (Figure 11). The first cluster is observed for
lower crustal thicknesses (<4 km; blue zone in Figure 11) and includes predominantly crustal thickness
values obtained for different TF domains at slow‐spreading centers (i.e., Oceanographer, Charlie Gibbs,
and Atlantis II). Note that the crustal thickness mapped within the TFs at fast‐spreading centers
(Clipperton, Orozco, Quebrada, and Gofar) is >2 km higher. The second cluster, which spans offset lengths
larger than 50 km (orange zone in Figure 11), displays crustal thicknesses greater than 4 km and encom-
passes the results obtained from seismic studies on FZs of different transform discontinuity systems at
slow‐spreading centers. The crustal thickness we detect across the Chain FZ falls well within the latter clus-
ter, confirming the pattern. Exceptions to this trend are the Kane and Blake Spur FZs, which display signifi-
cantly thinner crust (Cormier et al., 1984; Detrick & Purdy, 1980; Minshull et al., 1991; Mutter et al., 1984). In
the latter case, ∼140 Ma crust is sampled, which may not be representative and comparable to the crustal
characteristics across FZs at younger crustal ages. In addition, this FZ has been explored using MCS and
ESP seismic data, whereas the other FZs were examined using wide‐angle OBS data. In the literature, there
are examples of the apparent discrepancy in estimating absolute crustal thickness using reflection versus seis-
mic refraction techniques (e.g., at the East Pacific Rise 9°N: Aghaei et al., 2014; Barth&Mutter, 1996; Canales
et al., 2003). Finally, the Blake Spur FZ results were obtained at a transform with a relatively small offset
(20 km). If we follow the ridge segmentation nomenclature for slow‐spreading mid‐ocean ridges proposed
by Sempéré et al. (1993), wemay classify it as an NTO, rather than a TF, whichwould then fit within the wide
range of crustal thickness observations across several NTOs (Figure 11). In contrast, the thin crust observed
for the Kane FZ is puzzling. In fact, the results of Detrick and Purdy (1980) were confirmed by Cormier
et al. (1984) after a subsequent, independent survey and data analysis carried out over a 0–25Ma oceanic crust
in the same region. Both studies show the presence of a 2 km thick crust across the FZ, for which we do not
have an obvious explanation, except being an indication for a rather magmatically starved segment end.

The difference in crustal thickness within the TF domains observed at slow‐ versus fast‐spreading rates,
which we also observe in Figure 11, has been a subject of several studies in the past (e.g., Bai &
Montési, 2015; Gregg et al., 2007, 2009; Lin et al., 1990). The presence of thicker crust at fast‐spreading cen-
ters was commonly attributed to the difference in the available amount of melt, the geometry of the melt
region, and the efficiency of melt extraction (Gregg et al., 2007, 2009; Maia, 2018). Our analysis shows that
there is a similar order of magnitude of difference in crustal thickness beneath TFs and FZs within
slow‐spreading environments, which requires further explanations.

The first and almost immediate interpretation one could invoke for this difference is the presence of an
increased thickness of the extrusive layer resulting from the pooling of lavas in bathymetry lows toward seg-
ment ends within the FZs. Although some accumulation of lavas can be expected around segment ends (e.g.,
Begnaud et al., 1997; Carbotte & Solomon, 2000; Detrick et al., 1995; Hooft et al., 1997; Marjanović
et al., 2018), it is not likely that they can explain >1 km of crustal thickening within the FZ domains.
Moreover, in our seismic sections within the Chain FZ, we do not observe the presence of Layer 2A,
predominantly built of basalts (Figure 3c). Thus, we consider this explanation unlikely, or at least not as a
dominant contributor to the observed differences.

The presence of intense shearing and fracturing along the TFs could be another geological explanation for
thinner crust within the TF domains. It is reasonable to expect that at first‐order tectonic discontinuities
crust thins owing to a combination of factors: shearing, fracturing, and alteration due to hydrothermal
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circulation. Once we pass the RTI and transit from transform to FZ domains, these dominant tectonic defor-
mation processes are expected to diminish or completely disappear (Karson & Dick, 1983). However, along
TFs within fast‐spreading environments, significant thinning of the crust in the TF domain is not observed
(Gregg et al., 2007, 2009), even though the zone is characterized by extensive shearing and fracturing, and
associated alteration. Although some components of the difference in tectonic activity between the TF
and FZ domains may contribute to the observed differences in crustal thickness, we do not consider them
as major contributors.

Modeling results presented by Behn et al. (2007) predict cooler thermal structure beneath FZ domains (and
warmer beneath TF domains). Therefore, although less extensive shearing and cracking of the oceanic crust
are expected within FZ domains, one could speculate that the thermal regime operating beneath FZs could
potentially favor serpentinization at greater depths (temperatures <500–550°C that are considered as the
upper limit for crystallization of serpentine; e.g., Prigent et al., 2020) and result in an apparently thicker crust.
As the velocities of gabbros and serpentinized peridotite are similar (e.g., Christensen, 1966, 1972) based on
P‐wave velocity models alone, it would be difficult to distinguish between a scenario in which there would be
the presence of serpentinized upper mantle peridotite (with thinner gabbroic crust) and another scenario in
which there would be a real excess of gabbroic crust. However, it is well known that the density of these two
rock types is different. For instance, peridotite with 25–30% of serpentine would exhibit up to 150 kg/m3

higher density than gabbro (about the same density difference is valid for serpentinized and unaltered peri-
dotite; e.g., McClymont&Clowes, 2005). A number of earlier studies using 3‐Dgravity datamodeling showed
that the TF domains in slow‐spreading environments are characterized by positive residual MBA (RMBA)
signal (e.g., Blackman & Forsyth, 1991; Detrick et al., 1995; Gregg et al., 2007; Lin et al., 1990). By examining
the results from these studies, we notice that most FZ domains are, in contrast, represented by consistently
lower RMBAs (e.g., Atlantis transform discontinuity in Gregg et al., 2007). One possible explanation for this
observed RMBA pattern could be an excess of gabbroic crust in the FZ domain, which agrees with the results
obtained from P‐wave velocity models. Alternatively, the presence of lower density anomaly beneath FZ
domains and higher density anomaly beneath TF domains would be required to explain the same RMBA pat-
tern. The presence of lower density anomaly beneath the FZ domains can be envisaged by replacing perido-
tite in the upper mantle (density ∼3,300 kg/m3) by serpentinized peridotite (∼3,150 kg/m3). On the other
hand, to obtain higher RMBA anomaly beneath the TF domains, one would need to replace a portion of
the lower gabbroic crust (density ∼2,900–3,000 kg/m3) by serpentinized mantle material. Thus, even by
assuming more extensive serpentinization on the FZ side of the RTI, to account for the reported gravity
anomalies, we would still need a substantial amount of crustal thickening beneath FZ domains.

To explain the presence of thicker crust within FZs an additional amount of melt would be required. The
seafloor fabric, gravity, velocity structure, and presence of extrusives along our profile, together with the
ridge axis characteristics reported by Harmon et al. (2018), strongly suggest that the segment north of the
Chain transform is magmatically robust (we address this more in detail in section 5.2). One way to extract
melt below this ridge segment and to channel it southward to the FZ domain would be through the mechan-
ism of lateral dike propagation: horizontal migration of magma along laterally propagating fractures in the
direction parallel to the ridge axis. This mechanism was invoked to explain the observed rapidly migrating
earthquake swarms witnessed within different environments associated with volcanism (e.g., Krafla
[Iceland]: Brandsdóttir & Einarsson, 1979; Einarsson & Brandsdóttir, 1980; Juan de Fuca Ridge:
Bohnenstiehl et al., 2004; Dziak et al., 1995; Fox et al., 1995; offshore Greenland: Callot & Geoffroy, 2004;
Afar: Grandin et al., 2012; Keir et al., 2009; Mid‐Atlantic Ridge: Giusti et al., 2018). Furthermore, this
mechanism was examined by numerical algorithms considering thermal and fluid‐mechanical aspects of
simulating the flow of magma in an infinite channel and was suggested as a plausible explanation for the
crustal thickness variation along slow‐spreading ridge segments (Fialko & Rubin, 1998). Finally, there is evi-
dence of lateral dike intrusion at the RTI of a transform system identified in the Cyprus Ophiolite complex
(Murton & Gass, 1986). In bathymetry, lateral dike propagation into the older and colder lithosphere across
an FZ is observed in the form of so‐called overshooting ridge tips forming J‐shaped structures, bending
toward the transform valley.

J‐shaped structures are commonly reported for fast‐ to intermediate‐spreading segments on the FZ side (e.g.,
Fornari et al., 1989; Gallo et al., 1986; Gregg et al., 2007; Karson et al., 2002; Lonsdale, 1989) and are asso-
ciated with increased magmatism (Lonsdale, 1994) and crustal thickening (Barth et al., 1994). They have
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also been observed at the equatorial Mid‐Atlantic Ridge (Lagabrielle et al., 1992; Ligi et al., 2002; Skolotnev
et al., 2020). In the vicinity of the western RTI of the Chain TF in the high‐resolution bathymetry data
(Harmon et al., 2018), we can identify at least four generations of the J‐shaped features (Figure 12),
similar to the ones present around the RTIs of some of the fast‐spreading transform discontinuities.
However, unlike for the J‐shape structures within fast‐spreading environments where the spacing
between two adjacent structures is <5 km, at the Chain RTI, the spacing is almost double. We explain this
by the smaller amount of magma available at the slow‐spreading MAR segment and longer episodes of
tectonic versus magmatically dominated spreading at slow‐spreading centers. In global bathymetry data,
an arc‐like feature comparable to J‐shaped structure can be observed on the FZ side of the eastern Chain
RTI (Figure 6).

It is interesting to note that dike propagation seems to occur exclusively on the outer corner side of an RTI.
Fornari et al. (1989) explained this global observation by the presence of stronger, less fractured lithosphere
underlying the outside corner of the RTI. Across the RTI, we do observe that the seafloor within the FZ is

Figure 12. High‐resolution bathymetry map (Harmon et al., 2018) focused on the morphotectonic features in the vicinity
of the intersection between the Mid‐Atlantic Ridge and Chain transform discontinuity. The red line follows the trend of
the transform discontinuity: Solid part of the line indicates the transform fault domain, whereas the dashed part
of the line indicates the fracture zone domain. Along the same line we extract a bathymetry profile shown in the top.
Note the presence of J‐shaped structures (labeled “overshooting ridges”) on the fracture zone side of the discontinuity.
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shallower by >1 km than in the TF domain (Figure 12), potentially providing support for the presence of the
weaker crust within the inside corner side. In Figure 13, we provide a schematic view of our preferred model.

In contrast to clear crustal thickness differences between TF and FZ domains, crustal thickness variability
associated with the NTOs presented in our compilation (Figure 11) does not show any clear pattern.
Mapped crustal thicknesses vary from 2 to 7.2 km (Canales et al., 2000; Dannowski et al., 2018; Davy
et al., 2020; Detrick et al., 1993; Dunn et al., 2017; Kahle et al., 2016), including the results from this study.
Although the pseudofault crossed by our profile could be considered related to an NTO, we need to empha-
size that the crustal thickness variations that are observed across the pseudofaults may not be directly com-
parable to the global signature of the off‐axis trace of an NTO. Pseudofaults may exhibit complexities in
crustal thickness as they encompass the zone of transferred, highly deformed older side of the lithospheric
block (e.g., Kleinrock & Hey, 1989). A study examining several generations of pseudofaults at the intermedi-
ate‐spreading Juan de Fuca Ridge (Marjanović et al., 2011) indicated that the crustal structure within the
pseudofaults could display reduced crustal thickness due to reducedmelt supply at the tip of the propagating
segment (Hey et al., 1992; Kruse et al., 2000) and increased shearing and fracturing of the consumed older
crust by advancing the propagator's tip (Hooft et al., 1995; Kleinrock & Hey, 1989). The same observation
was reported for different spreading rates (Kruse et al., 2000; West et al., 1999). In contrast, it was argued that
the younger crust side of the propagator shows an increase in crustal thickness on the scale of several hun-
dred meters to over a kilometer (e.g., Canales et al., 2003; Marjanović et al., 2011), which is interpreted to be
due to the higher melt concentration at the base of the crust as a direct consequence of the ridge propagation
mechanism (Calvert et al., 1990; Hasselgren et al., 1992; Nedimović et al., 2005). A similar order of thicken-
ing is observed for the pseudofault region crossed by our profile, where the crust is ∼1.2 km thicker within
the 20 km wide region of the younger crust side when compared to the zone delimited by the pseudofault.
Given that the region is shaped by interleaved processes of ridge propagation, transform faulting, and build-
ing up of the transverse ridge (Figure 8) it is not possible to provide further inferences about the presence of
thermal/melt anomalies within the upper mantle. In addition, we need to acknowledge that in our model,
the crustal thickness/velocity trade‐off may be present in our model and that to some extent it may affect
our observations.

5.2. Magmatic Versus Tectonic Accretion and Second‐Order Segmentation

Bathymetry observations and analyses of the active and passive seismic data indicate that at least five (pos-
sibly more) well‐defined lower‐order segments (delimited either by one first‐, and second‐order discontinu-
ity or two second‐order discontinuities) are present between the Romanche TF and Charcot TF (Figures 1b,
6, and 12). Morphology of these segments suggests that they are in different phases of a volcanotectonic cycle
of the seafloor accretion (e.g., Crane & Ballard, 1981; Ito & Behn, 2008; Karson et al., 1987; Stakes et al., 1984;
Thibaud et al., 1998). For the two ridge segments offset by the Chain TF (extending directly north and south

Figure 13. Schematic diagram that depicts lateral dike propagation as our preferred mechanism behind the presence of
thicker crust within the fracture zone domain when compared with the transform fault domain.
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of the transform), we suggest that the crust has been forming predominantly by magmatic extension. In con-
trast, for the segment south of the Romanche TF, a complex tectonic extension phase is dominating the crus-
tal accretion. Finally, the ridge segment south of the 02°10′S NTO Zone seems to represent a transition from
predominantly magmatic to tectonic accretion of the crust (going from south to north) with an abrupt
change in accretion style at 02°40′45″S. However, for this segment, only a narrow swath of high‐resolution
bathymetry data is available, and we will not investigate this zone any further.

The second‐order segment extending between the Chain TF and ∼00°43.5′S (Figures 1b and 12) displays all
the characteristics of a magmatically more robust portion of the MAR (Harmon et al., 2018). For most of this
segment, bathymetry data show linear volcanic constructions extending almost along the entire length of the
segment that, on the western flank (i.e., FZ domain), can be followed southward up to and even over the
Chain FZ in the form of overshooting ridges (see section 5.1); it is only within a narrow region extending
∼30 km right north of the Chain TF domain that bathymetry suggests a magma‐starved zone (Harmon
et al., 2018). Based on abyssal hills and imaging of the Layer 2A boundary along our profile, we suggest that
the magmatic phase of crustal accretion style has been predominant along this segment for at least the last
∼10Myr. The absence of significant variation in lower crustal velocity (∼6.5 km/s; Figure 10) and the absence
of variation in crustal thickness may suggest that magmawas supplied uniformly from a single upper mantle
reservoir along the whole length of this segment. However, it is interesting to note that the observed crustal
thickness, 5–6 km, is much thinner when compared to other magmatically robust ridges segments along the
MAR, often producing 7–9 km thick crust (e.g., Canales et al., 2000; Dannowski et al., 2011; Hooft
et al., 2000).

The ridge segment south of the Chain TF, extending up to the 02°10′NNTO Zone, also shows the presence of
well‐developed, linear volcanic constructions in the along‐axis high‐resolution bathymetry data (Figure 6).
Along our profile, which runs over∼24Ma oceanic crust, the segment is shorter due to the ridge propagation
that was active at that time (section 4.1; Figure 8). In bathymetry data, remnants of abyssal hills can be par-
tially observed on the younger crust side of the pseudofault (Figure 1c). Within the same region, the base of
the Layer 2A/2B boundary can also be identified intermittently (Figure 3f). Although spatially limited, these
observations suggest that this segmentmost probably has beenmagmatically more robust at least for the past
24 Myr and possibly from the very onset of the propagation.

When we compare these twomagmatically more robust segments along our profile, we see differences in the
FAA signal and in the seafloor depth (Figure 2). The younger lithospheric block (north of the Chain FZ) is
characterized by a ∼40 mGal higher gravity signal and ∼700 m shallower seafloor (3,710 ± 100 and
4,380 ± 190 m, north and south of the Chain FZ, respectively; Figure 2). To assess whether this difference
in the seafloor depth/gravity could be explained by the age‐dependent subsidence rate of the juxtaposed litho-
spheric blocks of different ages, 10Ma in the north versus 24Ma in the south (Müller et al., 2008), we use one
of the linear relationships between the depth to the seafloor and age, available in the literature (e.g., DeLong
et al., 1977):

D ¼ 0:336
ffiffi

t
p þ C;

where D is the depth to the seafloor, t is the age of the examined lithosphere, and C is a constant that
represents the depth of the ridge axis, normally the shallowest point of the ridge axis (DeLong et al., 1977).
For the region north of the Chain FZ, where we assume the presence of 10 Ma old lithosphere (Müller et
al., 2008) and 2,650 ± 50 m as an average minimum depth of the ridge axis, the predicted range of seafloor
depth is 3,660–3,760 m. Similarly, for the region south of the Chain FZ, assuming the same average depth
of the ridge axis and 24 Ma old lithosphere (Müller et al., 2008), we obtain the predicted depth range to be
4,250–4,350 m. The results of this simplified age‐seafloor depth relationship indicate that, within the accu-
racy of the assumed variables and standard deviation of seafloor depth, we can explain the observed dif-
ference in seafloor depth. This further suggests that these two segments may be underlain by a
relatively similar thermal/magmatic regime in the lithosphere. However, the standard deviation of sea-
floor depth south of the Chain FZ is relatively high, and this may reflect the presence of some small‐scale
heterogeneities in mantle composition.

An earlier geochemical study conducted on basaltic glasses from the axial region, including analyses of
major elements, REE and isotopes, evidenced a continuous and gradual geochemical enrichment from the
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Charcot to Romanche TFs (Schilling et al., 1994, 1995). The presence of this gradual trend was interpreted as
a mixing zone, that is, transition‐type mid‐ocean ridge basalts (T‐type MORB) between the region of normal‐
type (N‐type) MORB south of the Charcot TF and enriched‐type (E‐type) MORB north of the St. Paul TF.
Within these three, large‐scale chemically distinct zones, local heterogeneities are nested. Along the transi-
tion zone, which matches the extent of the zone we examine in this study, clustering in geochemical signa-
tures that corresponds to the extent of the second‐order tectonic discontinuities seems to be evident. For
instance, the magmatically robust segment extending directly north of the Chain TF, as well as the ridge seg-
ments extending between the Chain TF and the 02°10′S NTO, shows a large variability in major elements,
Na2O and K2O, in La/Sm and Nd‐Pb‐Sr isotope ratios (Schilling et al., 1994). The same hold true for the seg-
ments extending between the Chain TF and 02°10′S NTO Zone. This spatial correlation leads us to propose
that the presence of the enriched relatively small bodies within depleted asthenosphere responsible for the
observed geochemical pattern (Schilling et al., 1994) may govern the second‐order tectonic segmentation
within the equatorial Atlantic region, which agrees with the view proposed by Macdonald et al. (1988).

It is important to mention that by carefully reexamining the available geochemical profiles (Le Voyer
et al., 2015; Schilling et al., 1994, 1995), we find that the abrupt change between the N‐ and T‐type
MORBs seems to be collocated with the 02°10′S NTO Zone, not the Charcot TF. In fact, more abrupt changes
in isotopes, REE, and most of volatile contents (except S and CO2) are observed at the 02°10′S NTO Zone,
rather than at the Chain or Charcot TFs. Although this observation does not change the global view on
the geochemical complexity of the equatorial Atlantic mantle, it may have an important implication on
our understanding of the role of NTOs in the lithosphere/asthenosphere magmamixing and thermal proper-
ties. Even though the NTOs represent second‐order ridge discontinuities they may be deeply rooted, and
their effect should not be neglected in numerical models.

In contrast to these two magmatically more robust segments, the segment extending between the Romanche
TF and 00°43.5′S seems to be magmatically starved. Seafloor bathymetry displays an obliquely trending
(Figure 1b), en échelon segmented ridge axis without a well‐developed axial valley (Bonatti et al., 2001).
Along our profile that samples an approximately 7 Ma lithosphere (Müller et al., 2008), this segment is char-
acterized by a deeper seafloor when compared to the segment just to the south (Figure 2), indicating the pre-
sence of a colder lithospheric regime (Bonatti et al., 1994; Dalton et al., 2014). Moreover, in the seismic
reflection data, we do not observe the presence of the Layer 2A/2B event (Figure 3c), suggesting a tectoni-
cally dominated spreading. Along the 2‐D velocity profile, the lower crustal velocities north of 00°43.5′S
are significantly higher than that for the southern magmatically more robust segment (Figure 9c). In fact,
the lower crustal velocities we observe for the northern segment are comparable to upper mantle velocities,
that is, exhumed peridotite velocities (>7.5 km/s). The predominant presence of exposed peridotites and gab-
bros is revealed in the samples dredged from the seafloor for about the same stretch of the segment, ∼50 km
south of the Romanche TF (Bonatti et al. 2001; Bonatti, Ligi, Carrara, et al., 1996). In addition, the examined
peridotite samples are represented by an atypically low degree of melting, which was interpreted as the evi-
dence for the existence of the cold spot in the equatorial Atlantic region (Bonatti et al., 1994, 2001; Dalton
et al., 2014). We need to mention that for this region we observe relatively higher average crustal thickness
(>6 km), when compared to the magmatically robust southern segment (5.1 km; Figures 9 and 10). This is in
contrast to the common notion of a thicker crust along magmatically robust portion of a ridge axis. Besides
complex tectonic processes, and extensive serpentinization (Bonatti et al., 2001) that may be present and
result in apparent crustal thickening, we need to acknowledge the fact that the crustal thickness/velocity
trade‐off may be partially responsible for these observations. A separate study focused on the Romanche
TF is being conducted (Gregory et al., 2020), and the results will be presented elsewhere.

5.3. The Origin of the Transverse Ridge

Transverse ridges associated with transform discontinuities are commonly observed features across spread-
ing rates, running parallel to TFs and/or along the older lithospheric block of an FZ domain (Abrams
et al., 1988; Bonatti, 1978; Bonatti & Honnorez, 1976; Bonatti et al., 2005; Cannat et al., 1991; Detrick &
Purdy, 1980; Dick et al., 1991; Kastens et al., 1998; Maia, 2018; Potts, Calvert, et al., 1986; Tucholke &
Schouten, 1988; Whitmarsh & Calvert, 1986). Themost prominent transverse ridges are associated with slow
slip environments along the MAR, such as the one we observe on the older crust side of the Chain FZ.
Although they represent major bathymetric features, the mechanism behind their formation is not clear.
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A number of hypotheses have been proposed to explain their nature (e.g., Abrams et al., 1988; Kastens
et al., 1998). Even in the early stages of geophysical and petrological exploration of conservative plate bound-
aries, it was clear that transverse ridges are not the result of constructive volcanism (e.g., Abrams et al., 1988;
Bonatti, 1978), as an asymmetry in shape and highly tectonized crust were reported for themajority of exam-
ined cases. Instead, the existence of vertical movement of lithospheric fragments was proposed as the most
plausible mechanism. However, the governing processes that lead to this vertical uplift are still debated (e.g.,
Bonatti et al., 2005; Pockalny et al., 1997; Tucholke & Schouten, 1988).

Differential subsidence (Parmentier & Haxby, 1986; Sandwell, 1984; Sandwell & Schubert, 1982) has been
invoked to explain the origin of the uplifted features along transform discontinuities. One group of thermo-
mechanical models (Sandwell, 1984; Sandwell & Schubert, 1982) suggested that differential subsidence
results in stresses that are expressed in flexing of the lithosphere and development of uplift on the younger
side of the transform. However, our observations at the Chain FZ (Figure 1b) and the observations coming
from other transform discontinuities along the MAR show that the transverse ridges are not observed on the
younger lithospheric block side (e.g., Abrams et al., 1988; Bonatti, 1978; Gasperini et al., 2017; Tucholke &
Schouten, 1988). In contrast, Parmentier and Haxby (1986) presented theoretical models that involve ther-
mal bending moments governed by the lithosphere thickness and age, which cause the older side to flex
and create a topographic high. If this mechanism was predominant, we would expect similar uplift to occur
on both flanks. However, in most cases, we see uplift only on one of the flanks.

Horizontal thermal conduction from the younger to the older lithospheric block across transform/FZ
domains (Forsyth & Wilson, 1984; Langseth & Hobart, 1976; Louden & Forsyth, 1976) is another
mechanism that has been used to explain systematic changes in thermotectonic structure, as well as var-
iations in depth of the seafloor in the vicinity of FZs (Morgan & Forsyth, 1988). Chen (1988) evaluated
the extent of the uplift assuming two thermal contributions: lateral heat conduction across the transform
and anomaly due to shear heating. According to this model, assuming 15–20 Ma age difference (compar-
able to what we observe for the Chain FZ), the expected uplift along the older lithospheric block would
be ∼600 m. This prediction is in contrast with the seafloor observations, which show that transverse
ridges raise to a couple of thousands of meters above the surrounding seafloor, as for the transverse ridge
we observe along the Chain FZ (Figures 1b and 2). In addition, the question of why the transverse ridges
are often observed only on one of the flanks, here on the southern flank, cannot be addressed by this
hypothesis either.

As transform discontinuities represent regions of intense fracturing, it is reasonable to envisage the presence
of serpentinization resulting from the alteration of upper mantle peridotite in contact with seawater. The
serpentinite would form diapirs due to its lower density and would rise upwards intruding the overlying
crust, that is, serpentine diapirism (e.g., Bonatti & Honnorez, 1976; Bonatti, 1978; Francis, 1981), causing
the uplift. Although samples of a serpentinized mantle have been dredged along different transform
domains (e.g., Bonatti, 1978; Bonatti et al., 2001; Cannat et al., 1991) we do not observe any indication for
intense serpentinization across the transverse ridge in our velocity profile (Figure 9b). In fact, beneath the
transverse ridge, the crustal thickness, as well as the lower crustal velocity, is comparable to the values
reported for a typical oceanic crust formed within the slow‐spreading environment (e.g., Grevemeyer
et al., 2018). The velocity contours suggest that the northern wall could be represented predominantly by
exposed dikes and/or gabbros. Similar observations in seismic velocities were reported by earlier seismic
refraction studies (e.g., Potts, White, et al., 1986; Whitmarsh & Calvert, 1986). To explain the lack of a ser-
pentinization signal in velocity models, the argument that serpentinite might show compressional velocity
and density similar to fractured metagabbros that constitute lower oceanic crust has been used (Cannat
et al., 1991; Carlson & Miller, 1997). However, in the presence of significant serpentinization, upper mantle
velocities should be at least ∼200 m/s lower than typical values (e.g., McClymont & Clowes, 2005), which is
the opposite of what we observe here. The region beneath the transverse ridge displays rather high velocities
in the upper crust, ∼5.8 km/s (Figure 10), and has been densely sampled by Pg arrivals (Figure S6).
Moreover, Minshull et al. (1991) determined that even if we assume isostatically compensated crust with
3 km thick serpentinized peridotite, the resulting uplift would be only on the order of 200–300 m. Even
though some amount of serpentinization may exist in the form of thin veins that fill in cracks and fissures,
which we cannot image in our tomography model, it does not seem to represent an important factor in the
formation of the transverse ridge.
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In addition to the thermomechanical hypotheses to explain the formation of transverse ridges, a number of
mechanisms involving viscodynamic forces as a major factor have also been proposed. For instance, the
mechanism suggested by Collette (1986) argues that transverse ridges result from asthenosphere upwelling
beneath the transform valley, causing bending of the transform walls. Another hypothesis proposed that
asthenosphere upwelling beneath the ridge axis induces drag forces and bending of the old lithosphere in
the vicinity of the transform (Sleep & Biehler, 1970). The former hypothesis poses the same problems as
the thermomechanical models we discussed earlier (e.g., why would a transverse ridge develop on only
one side of the transform valley and at some distance from the RTI?). However, the latter hypothesis could
be viable in the case of transform boundaries that offset segments with different magmatic budgets (e.g.,
more magmatically robust in the north and more magmatically starved in the south and vice versa). In
the case of the Chain TF, both the north and ridge segments, offset by the Chain TF, seem to display all
the characteristics of more magmatically robust segments (section 5.2), and therefore, it is hard to envisage
the scenario in which the development of the transverse ridge would be possible only on the western flank.
However, to completely rule out this possibility, additional studies regarding asthenospheric flow beneath
FZ domains need to be conducted.

We finally consider a combination of compressional and extensional forces due to changes in relative plate
motion that has been proposed as the dominant mechanism to explain the formation of the observed trans-
verse ridges (Bonatti, 1978; Bonatti et al., 1994; Mauduit & Dauteuil, 1996; Menard & Atwater, 1969;
Pockalny, 1997). Following the FZ geometry and location of the transverse ridge, this mechanism provides
the most plausible explanation for the formation of the transverse ridge along the Chain FZ (Figure 8). At
∼46–38 Ma, a significant reorganization of plates took place and resulted in a change of the FZ orientation
of ∼8°. Following Bonatti (1978), we suggest that this change in plate orientation introduced significant
compressional forces on the FZ domain west of the Chain TF's western RTI and extensional forces on the
northern wall of the Chain transform domain (Figure 8). Moreover, it was probably this prominent change
in plate orientation that ceased the lengthening of the ridge segment north of the Chain TF (from 130 km at
70 Ma to 200 km at ∼46 Ma) and triggered the southward propagation of the ridge segment south of the
Chain TF. This propagation could have also influenced local field stresses and contributed to a more promi-
nent uplift of the transverse ridge in its westernmost portion (Figure 8). It is also interesting to note that the
spreading rate between 30 and 20 Ma increased to ∼26 mm/yr, which roughly coincides with the activity of
the propagator.

Bonatti et al. (2005) performed numerical modeling to show that the transverse ridge formed along the Vema
transform discontinuity is a result of lithospheric flexure due to extension within the transform coinciding
with the shift in the orientation of the MAR by 5–10° ∼11–12 Ma. A similar scenario was proposed for the
Clipperton TF (Pockalny et al., 1997). However, for the transverse ridge along the Kane FZ, while thermal
heating of the lithosphere is proposed to govern the uplift, the primary trigger mechanism was the episodes
of large plate kinematic changes, notably between 92 and 59 Ma (Tucholke & Schouten, 1988). At the Chain
FZ, from the coincident formation of the transverse ridge and initiation of ridge propagation (Figure 8), we
suggest that the change in plate motion was the governing process. A combination of other processes, includ-
ing the ones we have discussed such as the lithospheric flexure, and/or thermal heating, could have acted
simultaneously and contributed to the uplift. However, which of these additional processes and to what
extent they have participated in shaping the transverse ridge are not possible to define with the given
data sets.

6. Conclusions

Our data analyses focused on the Chain transform system, together with a handful of data available in the
literature sampling this zone (Harmon et al., 2018; Le Voyer et al., 2015; Schilling et al., 1994, 1995), provide
us with insights on the morphotectonic characteristics of the area. Based on the bathymetry and seismic
reflection data, we corroborate the presence of a long‐lived (at least for the past 10 Ma) magmatically more
robust ridge segment extending north of the Chain TF to ∼00°43.5′S. Also, we suggest that an equally mag-
matically robust ridge segment is extending south of the Chain TF to the NTO 02°10′S. We identify and
describe crustal properties and seafloor expressions of the morphotectonic features: the Chain FZ, transverse
ridge, and pseudofault formed by southward propagation of the segment south of the Chain TF. In addition
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to reporting on the local geological setting, our newly acquired information, in combination with the exist-
ing studies, helps us to better understand FZs globally.

1. The compilation of the crustal thicknesses across slow‐slipping transform discontinuity systems show
that the crust within FZ domains in a slow‐spreading ridge environment on a global level, including
the Chain FZ, does not show evidence for significant crustal thinning, which characterizes most of the
TFs. To explain the presence of “close to normal” thickness of oceanic crustal thickness (∼5 km on aver-
age) within FZs, we propose lateral dike propagation as the dominant mechanism. This interpretation is
supported by the observations of well‐developed J‐shaped structures in the bathymetry data, indicating
that the crustal accretion process at RTIs may not be spreading rate dependent as suggested by Gregg
et al. (2007).

2. The off‐axis wakes formed behind the NTOs (second‐order tectonic discontinuities) do not show any con-
sistent pattern in terms of their crustal thicknesses. A wide range of the observed thicknesses suggests
that other processes may have an important impact on shaping the crust formed at the NTOs, such as
ridge propagation.

3. Based on our results, together with the compilation of geochemical studies (Le Voyer et al., 2015;
Schilling et al., 1994, 1995), we suggest that NTOs as second‐order discontinuities may have an important
role in the tectonomagmatic segmentation of the lithosphere. They can be considered as vertical litho-
spheric barriers that are rooted deeper, potentially at the base of the lithosphere and possibly controlled
by deep‐seated asthenospheric magma anomalies. Our findings suggest that the effect of the NTOs
should not be neglected in numerical modeling.

4. Based on the location and the onset of the transverse ridge observed on the older lithospheric block of the
Chain FZ, and in combination with the findings from earlier studies, we suggest that a major reorganiza-
tion in plate motion represents the primary triggering mechanism for building up transverse ridges.
Besides the dominant factor of plate reorientation, other additional factors may contribute to the uplift,
such as lithospheric flexure and thermal heating.

Data Availability Statement

The MCS data sets are processed using Paradigm software package. The data presented in the paper are
archived at Pangea (https://doi.pangaea.de/10.1594/PANGAEA.922331).
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