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Abstract :   
 
Along most Mediterranean coasts, the endemic seagrass species Posidonia oceanica builds extensive 
meadows and complex peat-like bioconstruction known as ‘mattes’. These belowground deposits are 
recognized as a valuable long-term archive allowing the reconstruction and the study of palaeo-climatic 
and palaeo-ecological changes in the coastal environment over the Holocene period. One of the P. 
oceanica matte cores sampled during a coring survey along the eastern continental shelf of Corsica Island 
(France, NW Mediterranean) revealed the unprecedented finding of a dead bank of the scleractinian coral 
Cladocora caespitosa embedded in the matte. Measurement of the morphological and biometrical 
features of corallite fragments coupled to biogeosedimentological analysis and radiocarbon dating 
contributed to provide a basis for the reconstruction of the stratigraphic sequence since the mid-Holocene 
(last 4750 years). The study of the sediment core enabled identification of three major phases: (i) the 
settlement of the C. caespitosa colonies (∼4750-3930 cal yr BP), (ii) the coexistence of the C. caespitosa 

bank and the P. oceanica meadow (∼3930-1410 cal yr BP), followed by (iii) the death of the coral bank 

and the development of only the P. oceanica meadow (∼1410 cal yr BP-present). The sclerochronological 
analysis completed on the well-preserved corallite fragments revealed that the mean annual growth rate 
of the coral ranged between 1.9 and 3.1 mm yr−1 with a mean value estimated at 2.3 ± 0.8 mm yr−1. 
Trend analysis showed semi-millennial to millennial oscillations in annual growth rates which are probably 
related to environmental climatic changes since the Cold Phase of the Subatlantic period (2925-
2200 cal yr BP). During the Roman Warm Period (2200-1500 cal yr BP), the decline and the death of the 
bank (∼1410 cal yr BP) was probably due to the combined effect of a prolonged increase in summer 
temperatures and an increase in the competition with the P. oceanica meadow. 
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Graphical abstract 
 

 
 
 

Highlights 

► Finding of a C. caespitosa coral palaeo-bank embedded in the matte of P. oceanica. ► 
Palaeoenvironmental reconstruction of the sequence since the mid-Holocene. ► Sclerochronological 
analysis revealed a coral mean growth rate of 2.3 ± 0.8 mm yr−1. ► Growth pattern fluctuations shown to 
be related to abiotic and climatic conditions. ► Bank death was probably due to prolonged SSTs during 
the Roman Warm Period. 
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 48 

1. Introduction 49 

 50 

Palaeo-environmental reconstruction studies provide interesting local or regional 51 

broad-based information on natural fluctuations and ecosystem successions at millennial to 52 

centennial scales (Mateo et al., 2010). The reconstruction of long-term environmental 53 

changes requires adequate preservation of palaeo-records and proxies. In terrestrial 54 

ecosystems, peatlands and lacustrine sediments represent the best examples of palaeo-55 

archives (Clymo, 1992, Reille et al., 1999). With a few exceptions (i.e. coral reefs, algal reefs, 56 

coastal swamps and marine phanerogams; Reille, 1984; Laborel, 1961; Mateo et al., 2002; 57 

Peirano et al., 2004; Nalin et al., 2006; Basso et al., 2007; Montagna et al., 2007; Serrano et 58 

al., 2012; Currás et al., 2017; Bracchi et al., 2016), coastal and marine ecosystems rarely 59 

meet the appropriate conditions to ensure reliable palaeo-environmental reconstruction of 60 

the seabed due to high hydrodynamic energy and bioturbation at the marine-terrestrial 61 

interface (Mateo et al., 2002, 2010).  62 

In the Mediterranean Sea, the endemic seagrass Posidonia oceanica (Linnaeus) Delile 63 

forms extensive and highly productive meadows all along the coast in the infralittoral area 64 

(Boudouresque et al., 2012). The development of the meadows results in the formation of a 65 

complex peat-like bioconstruction known as ‘matte’ (Molinier and Picard, 1952). This 66 

deposit, mainly composed by biogenic debris from the belowground organs of the plant 67 

(sheaths, rhizomes and roots), shows has a very low decay rate owing to the highly 68 

refractory nature of seagrass remains (Kaal et al., 2016). The accumulation of large 69 

quantities of P. oceanica debris and allochthonous particles associated with the anoxic 70 

condition prevailing in the matte results in the formation of structures up to 14 m in 71 

thickness (Miković, 1977; Boudouresque et al., 1980; Lo Iacono et al., 2008; Serrano et al., 72 

2012). The high chronostratigraphic consistency and preservation of this organic-rich 73 

material accumulated over millennia constitutes an interesting biogeochemical sink and a 74 

unique palaeo-ecological archive for the study of the historical changes in the 75 

Mediterranean coastal environment during the Holocene. In the last decades, several 76 

palaeo-ecological applications have proven that P. oceanica matte is a valuable archive of 77 

environmental information for the reconstruction of vegetation and landscape dynamics, 78 

anthropogenic activities and changes in palaeo-climatic and meadow productivity over the 79 

last millennia (López-Saéz et al., 2009; Mateo et al., 2010; Serrano et al., 2011, 2012, 2013; 80 

López-Merino et al., 2015, 2017; El Zrilli et al., 2017; Leiva-Dueñas et al., 2018).  81 

 This archive is also recognized for the unusually good preservation conditions of 82 

abundant carbonate and siliceous fossil remains from marine organisms inhabiting the 83 
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microhabitats formed by the leaf canopy, the rhizome layer and the matte of P. oceanica 84 

(Harmelin et al., 1964; Russo et al., 1984, 1991a, 1991b; Scipione et al., 1996; Buia et al., 85 

2000). To our knowledge, Boudouresque et al. (1980), were the first to describe a fossil 86 

biogenic reef formation built by calcifying Rhodophyceae embedded in the matte of P. 87 

oceanica in the bay of Calvi (France). Although marine bioconstructors and biogenic 88 

structures are common in the Mediterranean Sea (Laborel, 1987; Relini, 2009 Ingrosso et al., 89 

2018), the discovery and description of the shift from biogenic reef formations from 90 

calcareous organisms to marine phanerogam soils are unprecedented and reflect significant 91 

environmental and climatic events. 92 

One of the most widespread bioengineers is the zooxanthellate and colonial 93 

scleractinian coral Cladocora caespitosa (Linnaeus, 1767) (Zibrowius, 1980; Peirano et al., 94 

2004). This coral can develop in the euphotic zone from a few meters below the sea surface 95 

down to 40 m depth on rocky and sandy substratum (Morri et al., 1994; Peirano et al., 1998). 96 

This species occurs in a wide range of environmental conditions but exhibits enhanced 97 

growth in turbid coastal environments characterized by low irradiance and high availability 98 

of nutrients particles as winter conditions (Laborel, 1961; Dodge et al., 1974; Zibrowius, 99 

1982; Schiller, 1993a; Peirano et al., 1999, 2005; Kružić and Benković 2008, Kersting and 100 

Linares 2012). The seasonal fluctuation of environmental parameters is extremely important 101 

to the success of C. caespitosa as evidenced by the fossils and living build-ups occurring in 102 

the Mediterranean (Peirano et al., 2004, 2005). Like tropical corals, C. caespitosa is sensitive 103 

to prolongated temperature increases and irradiance stresses which may cause coral tissue 104 

to atrophy extensive mortality events as those reported in the Mediterranean in the last 105 

decades (Rodolfo-Metalpa et al., 2000, 2005; Kružić and Požar-Domac, 2002). 106 

The C. caespitosa coral forms hemispherical and phaceloid colonies constituted by 107 

distinct tubular corallites growing in a continuous rectilinear way. The banding pattern of 108 

corallites studied by perfoming sclerochronological analysis, showed an annual growth rate 109 

ranging from 1.3 to 6.9 mm yr-1 (Peirano et al., 1999, 2005; Kružić and Požar-Domac, 2002). 110 

Several studies have reported that the variation in the skeletal growth and calcification 111 

processes is related to changes in environmental factors (i.e. temperature, turbidity and 112 

irradiance) which proved that C. caespitosa coral represents a valid proxy for past climate 113 

fluctuations and an ideal candidate for detailed palaeo-climatic and palaeo-environmental 114 

reconstructions (Morri et al., 2001; Ferrier-Pagès et al., 2003; Peirano et al., 2004; Silenzi et 115 

al., 2005; Montagna et al., 2007).  116 

The colonies of C. caespitosa live solitarily but can occur in three distinct formations 117 

known as (i) ‘beds’ (dense populations of several distinct colonies), (ii) ‘banks’ (formed of 118 

several large and connected colonies) rising up to 100 cm above the surrounding seafloor 119 

and covering several square meters, and (iii) free-living coral nodules or coralliths of less 10 120 

cm in diameter (Kersting et al., 2017, Ingrosso et al., 2018). The development of these 121 

morphotypes is related to hydrodynamics (exposure to waves and currents), type of 122 

substrata and seafloor morphology (Kružić and Benković 2008, Kersting and Linares 2012; 123 

Kersting et al., 2017). In the Mediterranean, the largest living banks or beds have been 124 
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reported in the Adriatic Sea along the Croatian and Slovenian coasts (Schiller 1993a; Kružić 125 

and Požar-Domac, 2002, 2003; Kružić and Benković, 2008), along the coasts of Italy (Morri et 126 

al., 1994, 2000; Peirano et al., 2001, 2005; Rodolfo-Metalpa et al., 2008), Spain (Casado-127 

Amezúa et al., 2011; 2014; Kersting and Linares 2012; Kersting et al., 2013), France (Laborel 128 

and Laborel-Deguen, 1978; Casado-Amezúa et al., 2015), in the Levantine basin along the 129 

coasts of Greece (Laborel, 1961, 1987), Turkey (Öztürk, 2004; Özalp and Alparslan, 2011), 130 

Cyprus (Jiménez et al., 2014), and in Tunisia (Zibrowius, 1980). The existence of fossil 131 

deposits of C. caespitosa from the Holocene and Pleistocene have been mentioned from 132 

several localities (Fornós et al., 1996; Kühlmann, 1996; Bernasconi et al., 1997; Peirano et al., 133 

1998, 2009; Bracchi et al., 2016), but the oldest have been described in Spain (Aguirre and 134 

Jiménez, 1998). Throughout the Mediterranean, well-preserved ‘subfossil’ formations of C. 135 

caespitosa covered by thick sediment layers or calcareous algae have been also described 136 

(Peirano et al., 1998 and references therein). In Corsica, similar dead banks dated back to 137 

600-2400 years BP and reaching several meters diameter were reported by Laborel (1987). 138 

This paper focuses on the description of well-preserved corallite fragments of a C. 139 

caespitosa deposit found in a P. oceanica matte sequence on the eastern coast of Corsica. 140 

The analysis of the morphological features of coral fragments coupled to 141 

biogeosedimentological characterization and radiocarbon dating provided (i) a first 142 

evaluation of the past annual growth rate of C. caespitosa in this location, and (ii) the 143 

opportunity to describe a colonization event of the substrate by C. caespitosa followed by its 144 

gradual substitution by a P. oceanica meadow. 145 

 146 

2. Material and methods  147 

 148 

2.1. Study site 149 

 150 

The shelf of the eastern continental margin of Corsica island (France, NW 151 

Mediterranean) is characterized by a 5-25 km width range with a low gradient slope (~1-2°) 152 

(Gervais et al., 2006; Pluquet, 2006). The widest extension of this continental shelf is notably 153 

observed off the Golo fan system (Bellaiche et al., 1994; Mulder and Maneux, 1999; Gervais 154 

et al., 2004). The infralittoral zone of the underwater delta of the Golo river presents the 155 

largest P. oceanica meadow in Corsica (Pergent-Martini et al., 2015; Valette-Sansevin et al., 156 

2019; Fig. 1). The C. caespitosa deposits studied occurs near the upper bathymetric limit of 157 

the P. oceanica meadows established at 8 m depth. The marine currents on the east margin, 158 

represented by coastal drift mainly oriented towards the south (Millot et al., 1987 in 159 

Pluquet, 2006), are moderate to strong and have generated several landscape 160 

discontinuities (‘intermattes’; Abadie et al., 2015). The sea bottom is dominated by sand 161 

fractions with interspersed areas with larger grain sizes, from gravels to pebbles (Guennoc et 162 

al., 2001). Though the concentrations of suspended matter have been lowering over the last 163 

century due to the effects of anthropogenic activities on land (Mulder and Maneux, 1999), 164 

the Golo river discharges show a strong seasonal variability linked to the subtropical 165 
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Mediterannean climate in Corsica (Molliex et al., 2021). The high variability in precipitation 166 

result in a strong variability of the Golo river discharges (mean annual value: 14.8 m3 s−1, 167 

maximum value: 734 m3 s-1; Valpajola station 1969-2019; HYDRO French database, 168 

www.hydro.eaufrance.fr; Molliex et al., 2021). The sediment deposition by the Golo river has 169 

been strongly influenced by the Mediterranean climate, extreme events (e.g. flash floods, 170 

shelf storms, snow melt) and long-shore drift (Conchon, 1975; Orszag-Sperber and Pilot, 171 

1976; Conchon and Gauthier, 1985). The mean monthly sea surface temperature (SST) 172 

recorded between 2014 and 2019 ranges from 14.21 ± 0.22°C (February) to 26.85 ± 0.96°C 173 

(August) (buoy WMO #6100295; http://www.emodnet-physics.eu/map). 174 

 175 

 176 
 Figure 1. Location of the study site on the eastern continental shelf of Corsica. (2-column) 177 

 178 

2.2. Sampling of sediment  179 

 180 

Sediment sampling was performed with a Kullenberg gravity corer during the 181 

oceanographic research survey Carbonsink (August 2018) aboard the R/V L’Europe (Ifremer). 182 

The core barrel consists of a stainless-steel tube 5 m long with a PVC tube (internal diameter 183 

90 mm) inside it and surmounted by a lead weight of ~1 ton. The coring head is constituted 184 

of a sharp edge to cut the fibrous matte material and minimize the effects of compression 185 

during sediment sampling. Among the 12 cores taken in this sector, deposits of C. caespitosa 186 

fragments were only observed in one of them (BIG-10M-PO-A). The collection of this vertical 187 

core in the P. oceanica meadow was carried out at 10 m depth. The corers were cut open 188 
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longitudinally, the matte sliced at regular intervals (1 cm slice every 5 cm) and the 189 

subsamples stored in polypropylene vials at 5°C before processing.  190 

 191 

2.3. Laboratory analysis of sediment core 192 

 193 

Sediment bulk density and grain size were measured after drying of each sampled 194 

slice at 70°C until constant weight (Howard et al., 2014). The samples were sieved and 195 

weighed after drying and then separated into two fractions: the fine (<2 mm) and coarse 196 

fraction (>2 mm). The fine fraction is composed of the inorganic and organic matter of the 197 

sediment (SOM). The coarse fraction was sorted into different categories: (i) the coarse 198 

organic matter (COM, P. oceanica seagrass and macrophytes remains), (ii) the coarse mineral 199 

fraction (siliclastic gravel), and (iii) the coarse carbonate fraction (shells and coral remains). 200 

After sorting, the COM was integrated into the SOM, homogenized and ground (<0.063 mm). 201 

The total organic matter (TOM) and fine calcium carbonate (CaCO3 <2 mm) content were 202 

determined by following loss on ignition method (Heiri et al., 2001). TOM represents the 203 

total amount of SOM (<2 mm) and COM (>2 mm). The analyses performed on sediment 204 

samples provided a basis for defining 6 main biogeosedimentological sections along the core 205 

(Fig. 2). The mean organic matter, mineral and carbonate contents was calculated in each of 206 

the biogeosedimentological sections using the values found in the corresponding 1 cm 207 

sediment slices sampled every 5 cm (Table 1). The main identifiable molluscan shells in the 208 

coarse carbonate fraction (CaCO3 >2 mm) were identified and subsequently assigned to 209 

assemblages according to the Pérès and Picard (1964) and Pérès (1982) classification system. 210 

In this last fraction fragments of C. caespitosa were isolated from each subsample for further 211 

analysis. 212 

 213 

2.4. Measurements on corallites of C. caespitosa 214 

 215 

Samples of corallites were cleaned of epibionts and organic matter by immersion in 216 

30% hydrogen peroxide (H2O2) solution for 24 hours. Corallites were carefully washed in an 217 

ultrasonic bath filled with ultrapure MilliQ™ water for 5 minutes to remove fine sediment 218 

particles. After drying at 70°C, all corallites were weighed to determine the concentration of 219 

coral fragments for each sample. High-quality images were taken by stereomicroscopy for 220 

morphological measurements (Leica EZ4D stereomicroscope with integrated HD numerical 221 

camera) with the LAS EZ Leica Application Suite 3.3.0. (Leica Microsystems, Switzerland). In a 222 

first approach, the total length and the diameter of corallites were measured on 223 

stereomicroscopy images with the ImageJ software (http://imagej.nih.gov/ij/dowbload.html; 224 

Schneider et al., 2012). Annual growth rates of C. caespitosa were also computed by 225 

measuring, on the outer wall of unbored corallites, the distance between two adjacent thick 226 

lines indicating where the high-density bands (HD) start (Kružić and Požar-Domac, 2002) 227 

during the winter season (low temperature and low light intensity; Peirano et al., 1999, 228 

2005; Silenzi et al., 2005). The mean annual growth rates were calculated for each sediment 229 

Jo
urn

al 
Pre-

pro
of

http://imagej.nih.gov/ij/dowbload.html


sample by compiling all measures. For each corallites fragments, the total number of well-230 

preserved calices and lateral budding branches growing parallely to the parent corallite were 231 

recorded (Peirano et al., 1998; Kružić and Požar-Domac, 2002). Statistical analyses were 232 

performed using the statistics software package XLSTAT (Addinsoft, 2019). Normality of 233 

parameter values was checked using a Shapiro-Wilk test. Inter-relationships between the 234 

biometrical and morphological parameters of coral fragments and biogeosedimentological 235 

parameters analyzed in the core were investigated by performing Pearson’s correlation test. 236 

The correlation coefficient was calculated together with p-values to determine the 237 

significance and strength of each relationship. Differences between mean growth rates were 238 

analyzed through one-way ANOVA and post-hoc Tukey’s HSD tests. 239 

 240 

2.5. Radiocarbon dating 241 

 242 

The chronostratigraphic reconstruction of the soil was performed from radiocarbon 243 

(14C) measurements by Accelerator Mass Spectrometry at the DirectAMS laboratory (Accium 244 

BioSciences, Seattle, WA). Samples of P. oceanica (n = 2) and C. caespitosa debris (n = 3) 245 

were collected at ~1 m intervals along the core. Before 14C measurements, seagrass remains 246 

were first rinsed and placed in an ultrasonic bath of ultrapure MilliQ™ water for 5 minutes to 247 

remove sediment particles. Finally, seagrass samples were inspected under a 248 

stereomicroscope for any attached materials and placed successively in baths of 249 

hydrochloric acid (HCl 1M, 80°C for 30 minutes) and sodium hydroxyde (NaOH 0.2M, 80°C 250 

for 30 minutes) to eliminate the carbonates, the fulvic and humic acids and the atmospheric 251 

carbon dioxide, respectively (Brock et al., 2010). Fragments of C. caespitosa were 252 

mechanically cleaned in HCl solution to remove the superficial carbonate layer, reducing the 253 

mass by ~25-35%. The material was rinsed three times in ultrapure MilliQ™ water and dried 254 

at 60°C prior to crushing and further treatment before dating.  255 

Radiocarbon data, expressed as years before present (yr BP), were subsequently 256 

calibrated for the local marine reservoir effect (ΔR = 46 years, error ΔR = 40 years; Siani et 257 

al., 2000) using the CALIB 7.1.0 software (Stuiver and Reimer, 1993) in conjunction with the 258 

Marine 13.14C calibration curve (Reimer et al., 2013). After corrections, the calibrated ages 259 

before present (cal. yr BP) were used to produce age-depth models using the clam package 260 

in R software (Blaauw, 2010). The best-fitted chronostratigraphic model was obtained with 261 

the smooth spline model (default smoothing parameter 0.3; 262 

http://chrono.qub.ac.uk/blaauw/; Blaauw, 2010). Ages were calculated every 1 cm from the 263 

shallowest (0 cm) to the deepest (320 cm) dated depth of the core. The age-depth model has 264 

permitted to approximate every 1 cm the respective sediment accumulation rate (SAR; cm 265 

yr-1) and resolution time (yr cm-1) (Blaauw, 2010; Serrano et al., 2012). The SAR 266 

corresponded to the thickness of sediment accumulated over a defined period of time (per 267 

year; a high SAR value reflects significant sediment deposition). Inversely, the resolution 268 

time corresponded to the years of sedimentary accumulation over a defined thickness (every 269 

1 cm; a high resolution time value reflects low sediment deposition) (Blaauw, 2010). The 270 
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mean SAR and resolution time in a core section was calculated using all the values in the 271 

depth interval. 272 

 273 

Results 274 

 275 

3.1. General stratigraphy of the sequence 276 

  277 

Based on the biogeosedimentological analyses performed on the sediment samples, 6 main 278 

units and 2 sub-units (Table 1; Fig. 2) were identified along the core and are described as 279 

follows: 280 

 281 

U1 (365-330 cm, before 4750 cal. yr BP) is mainly composed of pebbles with a 282 

medium to coarse grey sand matrix. On average, the sediment in this unit is poor in total 283 

carbonate (4.9 ± 2.7%) and organic content (2.2 ± 2.5%). Macro- and micro-fauna are rare 284 

but badly preserved and eroded. C. caespitosa fragments were identified together with 285 

several shell remains of marine molluscs (e.g. Bittium reticulatum, Cerithium vulgatum).  286 

U2 (330-310 cm, 4750-4610 cal. yr BP) consists of coarse sand to gravel grey 287 

sediment with the sporadic occurrence of pebbles. The mean TOM and calcium carbonate 288 

are higher than in the U1 section, 5.5 ± 1.1% and 25.5 ± 7.7%, respectively. The marine 289 

mollusc assemblage is very well-preserved and largely composed of B. reticulatum, Jujubinus 290 

exasperatus, Tricolia speciosa and Venus verrucosa, associated with C. caespitosa debris, 291 

that represent 6.0 ± 5.2% of the coarse calcium carbonate content.  292 

U3 (310-285 cm, 4610-4210 cal. yr BP) is characterized by sandy sediment with fine 293 

pebbles (~4 cm) and some debris of P. oceanica. This unit exhibits a higher content of 294 

corallite fragments of C. caespitosa which increase continuously from the bottom to the top 295 

of the unit, from 11.4% to 41.4% (coarse calcium carbonate content). The mean TOM (5.6 ± 296 

0.8%) and calcium carbonate (30.4 ± 3.7%) are similar that of the previous unit. In this case, 297 

the faunal assemblage was dominated by Glans trapezia, Arca noae and individuals of 298 

Alvania sp.  299 

U4 (285-270 cm, 4210-3930 cal. yr BP) is mainly constituted by a sandy-muddy matrix 300 

(52.4 ± 2.2%) with a low content in coarse mineral fraction (8.6 ± 3.6%) corresponding to 301 

gravel. The presence of C. caespitosa debris in the coarse calcium carbonate fraction was 302 

lower than in section U3 (9.0 ± 5.0%) and mainly ascribed to a mollusc assemblage strongly 303 

similar to the U2-U3 sections. Furthermore, the sequence exhibits a constant content in 304 

TOM (5.3 ± 1.0%).  305 

U5 (270-170 cm, 3930-1410 cal. yr BP) is composed by a brown to grey muddy 306 

sediment with intact rhizomes and root debris characteristic of the matte of P. oceanica. This 307 

deposit shows a high constant organic and mineral content (10.0 ± 2.1% and 61.1 ± 6.5%, 308 

respectively) associated with a significant accumulation of well-preserved C. caespitosa 309 

corallites in living position. These fragments represent an average 34.1 % of the coarse 310 

calcium carbonate content and increase continuously from the bottom (15.8%) to the top 311 
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(100.0%) of the unit. The faunal assemblage of these two sub-units is overall similar that of 312 

the previous unit but differ by the occurrence of several individuals of Haliotis tuberculata 313 

and Loripes lacteus. The sequence is characterized notably by two sub-units:  314 

Sub-unit U5a (270-225 cm, 3930-2830 cal. yr BP) is characterized by a 13.5 ± 9.4% 315 

content in C. caespitosa in the coarse calcium carbonate fraction and by a total carbonate 316 

content of 26.9 ± 8.5%. The mean mineral fraction (63.8 ± 6.8%) slowly decreased from the 317 

bottom to the top of the sub-unit (60.5 to 51.5%) whereas the organic content (9.3 ± 2.5%) 318 

doubled (from 4.2 to 8.5%). 319 

Sub-unit U5b (225-170 cm, 2830-1410 cal. yr BP) recorded the highest content in C. 320 

caespitosa in the coarse calcium carbonate fraction (51.7 ± 28.1%) and the highest content 321 

in total carbonate (30.4 ± 6.3%). In comparison with the previous sub-unit, similar content in 322 

mineral and organic fraction was observed with 59.1 ± 5.7% and 10.6 ± 1.6%, respectively.  323 

As for the previous section of the stratigraphic sequence, U6 (170-0 cm, 1410 cal. yr 324 

BP-present) is constituted by the matte of P. oceanica in which the TOM content increases 325 

from the bottom (12.4%) to the top (58.3%). The mineral fraction is almost entirely 326 

composed of the finer fraction and represents on average 81.4 ± 11.1% of the sediment. The 327 

total carbonate fraction decreases from the bottom (13.6%) to the top (4.8%). This lower 328 

content is notably due to the absence of C. caespitosa fragments. The faunal assemblage is 329 

rather well-preserved and is mainly characterized by the presence of B. reticulatum, J. 330 

exasperatus, T. speciosa, G. trapezia and Alvania spp.  331 

 332 
Table 1. Mean (± S.D.) content in organic matter, mineral and calcium carbonate in the total fraction of each 333 
biogeosedimentological units identified in the core. N: number of sediment slices analyzed per core section. 334 
Total mineral: mineral fractions <2 mm and >2 mm; Total CaCO3: CaCO3 fractions <2 mm and >2 mm. The 335 
values are expressed as percentage (%). 336 

Core section N SOM COM TOM Mineral  
<2 mm 

Mineral 
>2 mm 

Total 
mineral 

CaCO3 <2 
mm 

CaCO3  
>2 mm 

Total  
CaCO3 

U6 (0-170 cm) 34 7.1 ± 3.1 4.1 ± 9.9 11.2 ± 8.5 81.4 ± 11.1 0.1 ± 0.2 81.5 ± 11.1 7.1 ± 3.0 0.3 ± 0.4 7.4 ± 3.3 

U5b (170-225 cm) 12 9.0 ± 1.3 1.6 ± 1.0 10.6 ± 1.6 58.1 ± 6.2 1.0 ± 0.7 59.1 ± 5.7 18.3 ± 2.3 12.1 ± 5.2 30.4 ± 6.3 

U5a (225-270 cm) 9 8.6 ± 2.3 0.7 ± 0.6 9.3 ± 2.5 59.0 ± 6.3 4.8 ± 1.6 63.8 ± 6.8 20.6 ± 5.1 6.2 ± 4.3 26.9 ± 8.5 

U4 (270-285 cm) 3 5.0 ± 0.7 0.4 ± 0.4 5.3 ± 1.0 52.4 ± 2.2 8.6 ± 3.6 61.0 ± 4.0 22.1 ± 3.4 11.5 ± 6.6 33.6 ± 5.0 

U3 (285-310 cm) 5 5.4 ± 0.7 0.2 ± 0.2 5.6 ± 0.8 44.6 ± 6.1 19.4 ± 8.4 64.0 ± 4.0 21.8 ± 2.0 8.6 ± 3.5 30.4 ± 3.7 

U2 (310-330 cm) 4 4.3 ± 1.3 1.2 ± 0.7 5.5 ± 1.1 47.0 ± 5.5 22.0 ± 13.3 69.0 ± 7.8 16.5 ± 3.4 9.1 ± 4.5 25.5 ± 7.7 

U1 (330-365 cm) 7 2.0 ± 2.2 0.2 ± 0.4 2.2 ± 2.5 22.1 ± 9.9 70.8 ± 14.2 92.9 ± 4.5 4.2 ± 2.2 0.7 ± 0.5 4.9 ± 2.7 

 337 
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 338 

Figure 2. Lithology, calibrated radiocarbon dates, content in organic matter, mineral and calcium carbonate in 339 
the total fraction, content in Cladocora caespitosa in the coarse calcium carbonate fraction and 340 
biogeosedimentological units identified in the core. (2-column) 341 
 342 

3.2. Age-depth model and accumulation rates  343 

 344 

The radiocarbon dating performed along the core showed that the stratigraphic 345 

sequence encompassed the 4750 cal. yr BP (Table 2). The ages corrected for the marine 346 

reservoir effect (excluding one inconsistent dating; Table 2), coupled to one hypothetical 347 

date at the top of the sequence (present; i.e. AD 2018), were used to construct the age-348 

depth model of the core (Fig. 3a). According to this model, the accumulation rates ranging 349 

from 0.4 to 4.0 mm yr-1 (mean: 1.2 ± 1.1 mm yr-1; Fig. 3b; Table 3) decreased linearly from 350 

the top to the bottom of the core (4.0 to 0.6 mm yr-1; r = -0.808; p<0.05).  351 

The vertical trends showed that the resolution ranged from 2.5 to 27.5 yr cm-1 (mean: 352 

15.1 ± 8.5 yr cm-1; Fig. 3b; Table 3) and followed an inverse pattern increasing from the 353 

Jo
urn

al 
Pre-

pro
of



bottom to the top of the core (r = 0.774; p<0.05). The 0-170 cm section (~1400 cal. yr BP-354 

present) showed higher mean accumulation rates (1.8 ± 1.1 mm yr−1) than the 170-270 cm 355 

section (~2100-1400 cal. yr BP) with a mean SAR of 0.4 ± 1.1 mm yr−1 and the 270-320 cm 356 

section (~4600-2100 cal. yr BP) was defined by a mean accumulation rate of 0.6 ± 0.1 mm 357 

yr−1. 358 

 359 
Table 2. Radiocarbon dating of the Posidonia oceanica debris and Cladocora caespitosa fragments collected 360 
along the core. *Sample not considered for the age-depth model. 361 

Lab ID Material 
Depth 

(cm) 

Radiocarbon 

age (yr BP) 

Calibrated age 

(cal. yr BP - 2σ) 

Mean calibrated age 

(cal. yr BP - 2σ) 

D-AMS 030654 P. oceanica 151 1476 ± 33 876-1126 1001 ± 125 

D-AMS 037834 C. caespitosa 170 1894 ± 22 1295-1507 1401 ± 106 

D-AMS 030655 P. oceanica 263 3917 ± 35 3673-3986 3860 ± 157 

D-AMS 037835 C. caespitosa 265 2460 ± 25 1904-2187 2046 ± 142* 

D-AMS 037836 C. caespitosa 320 4599 ± 27 4593-4860 4727 ± 134 

  362 
Table 3. Sediment accumulation rates (SAR) and resolution values calculated for the different 363 
biogeosedimentological sections of the core. No available data for U1 section (330-365 cm; age depth-model 364 
performed between 0 and 320 cm). 365 

 
Accumulation rate (mm yr-1) Resolution (yr cm-1) 

Mean ± S.D. Minimum Maximum Mean ± S.D. Minimum Maximum 

Core section U6 (0-170 cm) 1.8 ± 1.1 0.5 4.0 8.3 ± 5.3 2.5 20.1 

  U5b (170-225 cm) 0.4 ± 0.0  0.4 0.5  25.4 ± 2.2 20.4 27.5 

 U5a (225-270 cm) 0.4 ± 0.0  0.4 0.5 24.6 ± 2.2 20.3 27.3 

 U4 (270-285 cm) 0.5 ± 0.0  0.5 0.6 18.7 ± 0.8 17.5 20.1 

 U3 (285-310 cm) 0.6 ± 0.0  0.6 0.7 15.9 ± 0.7 15.0 17.3 

 U2 (310-320 cm) 0.7 ± 0.0  0.7 0.7 14.8 ± 0.1 14.7 14.9 

Total section U2-U6 (0-320 cm) 1.2 ± 1.1 0.4 4.0 15.1 ± 8.5 2.5 27.5 

  366 

 367 

Figure 3. (A) Age-depth model (smooth spline) for the studied sedimentary core. Four radiocarbon dates were 368 
calibrated using the marine13.14C calibration curve and corrected for a local marine reservoir effect (ΔR = 46 ± 369 
40). The blue and black lines represent radiocarbon dates and the “best” model based on the mean age for 370 
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each depth, respectively. The grey areas include 2σ confidence range (95% CI) of calibrated dates. (B) SAR and 371 
resolution curves. (2-column) 372 
 373 

3.3. Morphology and biometrical values of corallites  374 

 375 

A total of 390 coral fragments were found in the coarse carbonate fraction of the 376 

sediment samples. These coral fragments were constituted exclusively of C. caespitosa 377 

corallites and were collected in all sediment samples of the core between 169 cm and 325 378 

cm (Fig. 4a) except for the 174-175 cm, 239-240 cm and 254-255 cm samples (Fig. 5a). The 379 

well-preserved and abundant layer of fragments (Fig. 4c; Fig. 4d) was found in the upper part 380 

of section U5a (224-230 cm) and in the whole of section U5b (170-225 cm), both 381 

characterized by the presence of P. oceanica matte (Fig. 2). Inversely, a lower content in C. 382 

caespitosa and the most degraded fragments were observed in the lower part of the core 383 

(230-325 cm) defined by a higher content in coarse mineral fraction (Fig. 2; Table 1; Table 4). 384 

Indeed, the coral fragments collected from the lower part of U5a to U2 section were 385 

characterized by traces of boring activity, often associated with coral dwellers, and by a high 386 

erosion of their external walls (Fig. 4b; Fig. 4e; Fig. 4f). The number of corallite fragments 387 

and their content in the sediment revealed to be significantly related to 388 

biogeosedimentological parameters as COM (r = 0.442; p-value<0.05 and r = 0.531; p-389 

value<0.01; Table 3). Inversely, significant negative correlations were evidenced between 390 

the number and content of corallite fragments with coarse mineral content (r = -0.424; p-391 

value<0.05 and r = -0.500; p-value<0.01; Table 3). 392 

 393 

 394 

Figure 4. (A) Cladocora caespitosa fragments visible after the core opening, (B) well-preserved (up) and bored 395 
coral fragments (down), (C) calice showing septal arrangement and columella, (D) coral fragments with 396 
branches, (E, F) eroded corallite fragments characterized by traces of growth pattern on the external wall. Scale 397 
bars: 5 mm. (2-column) 398 
 399 

The individual length of coral fragments ranged between 1.0 and 55.0 mm (mean ± 400 

S.D., 11.4 ± 8.1 mm; n = 390; Fig. 5b). The lowest and highest mean values were recorded at 401 

314-315 cm (2.5 ± 0.7 mm) and at 184-185 cm (15.5 ± 7.7 mm), respectively. The length of 402 

coral fragments was two-fold more important in the 170-230 cm section (12.8 ± 8.5 mm) 403 
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than in the 230-325 cm section (6.7 ± 4.0 mm; Fig. 5b). The minimum and maximum 404 

individual diameter of C. caespitosa debris ranged between 1.0 and 6.0 mm with a mean 405 

value of 3.0 ± 0.8 mm (± S.D.; n = 390; Fig. 5c). The lowest average value was recorded at 406 

314-315 cm (2.5 ± 0.7 mm) and the highest at 244-245 cm (4.0 ± 0.5 mm) and 259-260 cm 407 

(4.0 ± 0.4 mm; Fig. 5c). As the number of corallites fragments and their content in the 408 

sediment, the length of coral fragments decreased significantly with higher coarse mineral 409 

content (r = -0.557; p-value<0.01; Table 3). Nevertheless, the fragments length increased 410 

with COM (r = 0.410; p-value<0.05) and SOM contents (r = 0.437; p-value<0.05; Table 3). 411 

 412 

 413 
Figure 5. (A) Number of Cladocora caespitosa fragments, box plots representing (B) the length and (C) the 414 
diameter of coral fragments collected along the core. (1.5-column) 415 

 416 

The colonies of C. caespitosa are generally phaceloid but in some cases the corallites 417 

build irregular coral branches. The total number of additional ramifications observed with 418 

the main corallites found was 104 branches. The highest cumulated number of branches was 419 

recorded at 189-190 cm (n = 16 branches) and the highest number of branches for a coral 420 

fragment was recorded at 224-225 cm (n = 3 branches on a coral fragment). The mean 421 

cumulated number of branches decreased from the top to the bottom of the core with ~6.3 422 

± 1.2 branches per sample (170-230 cm section) to 1.2 ± 0.2 branches per sample (230-325 423 

cm section). Considering the accumulated number of branches and the number of coral 424 
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fragments found in each sample, the highest branching rate was detected at 314-315 cm (1.0 425 

± 1.0 branches per fragment), with a mean value estimated at 0.3 ± 0.1 branches per coral 426 

fragment (Fig. 6a).  427 

A total of 36 calices were found among the 390 coral fragments of C. caespitosa. The 428 

highest accumulated number of calices was measured at 219-220 cm (n = 8) where the 429 

highest number of calices for a coral fragment was recorded (n = 2 calices on a coral 430 

fragment; Fig. 4d; Fig. 4e). Similarly to the branching pattern, the mean accumulated number 431 

of calices decreased from the top to the bottom of the core with ~2.2 ± 0.8 to 0.4 ± 0.2 (at 432 

169-230 and 230-325 cm, respectively). Considering the accumulated number of calices and 433 

the number of coral fragments found in each sample, the highest number of calices per 434 

fragment and sample were recorded at 219-220 cm (0.3 ± 0.1) and 299-300 cm (0.3 ± 0.2), 435 

with a mean value estimated at 0.1 ± 0.0 (Fig. 6b). Contrary to the number and the content 436 

in coral fragments, the mean diameter, the number of branches and calices per fragment 437 

showed no correlation with biogeosedimentological parameters (Table 3).  438 

 439 

Table 4. Pearson’s correlation matrix between the morphological and biometrical parameters measured on 440 
Cladocora caespitosa fragments and biogeosedimentological parameters analyzed in the core. Fragments: 441 
number of fragments; Content: C. caespitosa content measured in dry weight percentage of total sample dry 442 
weight (%); Length: mean length (mm); Diameter: mean diameter (mm); Branches: number of branches per 443 
fragment; Calices: number of calices per fragment; Depth: depth in soil; Min.>2 and Min.<2: mineral fraction >2 444 
mm and <2 mm; CaCO3>2 and CaCO3<2: CaCO3 fraction >2 mm and <2 mm. Level of significance: *P≤0.05, 445 
**P≤0.01, ***P≤0.001; NS, P≥0.05. Significant correlations in bold (r value).  446 

Variables Fragments Content Length Diameter Branches Calices Depth COM SOM Min.>2 Min.<2 CaCO3>2 CaCO3<2 

Fragments  0.929 0.677 -0.386 -0.101 0.193 -0.697 0.442 0.338 -0.424 0.101 0.456 -0.203 

Content ***  0.756 -0.398 -0.029 0.117 -0.665 0.531 0.294 -0.500 0.166 0.531 -0.259 

Length *** ***  0.033 0.005 0.089 -0.698 0.410 0.437 -0.557 0.299 0.297 -0.170 

Diameter * * NS  -0.204 0.279 0.012 -0.265 0.246 -0.023 0.051 -0.371 0.326 

Branches NS NS NS NS  -0.016 0.144 -0.050 -0.154 0.104 -0.131 0.108 0.014 

Calices NS NS NS NS NS  0.005 -0.213 0.060 0.064 -0.124 -0.007 0.132 

Depth *** *** *** NS NS NS  -0.455 -0.744 0.785 -0.592 -0.154 0.296 

COM * ** * NS NS NS *  0.416 -0.413 0.222 0.307 -0.453 

SOM NS NS * NS NS NS *** *  -0.681 0.702 -0.238 -0.392 

Min.>2 * ** ** NS NS NS *** * ***  -0.732 -0.177 0.099 

Min.<2 NS NS NS NS NS NS *** NS *** ***  -0.411 -0.428 

CaCO3>2 * ** NS NS NS NS NS NS NS NS *  0.004 

CaCO3<2 NS NS NS NS NS NS NS * * NS * NS  
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 447 

Figure 6. Mean values (± S.D.) observed along the core of (A) branches per coral fragment and (B) calices per 448 
coral fragment of Cladocora caespitosa. (1.5-column) 449 
 450 

3.4. Growth rates of C. caespitosa  451 

 452 

The annual growth rates were determined by measuring the distance between two 453 

adjacent thick lines which occur on the outer wall of corallites (Fig. 4a; Fig. 4e). However, 454 

these thick lines deposited annually were not always clearly noticeable on external walls of 455 

coral fragments due to high bio-erosion and boring features associated with organisms 456 

inhabiting the coral (Fig. 4a; Fig. 4e). Consequently, a high number of corallites had to be 457 

discarded for coral growth rate measurements. Thus, the image analysis for growth patterns 458 

was performed on the corallite fragments occurring between 169 and 230 cm depth (Fig. 7). 459 

In total, 427 measurements were made on 83 coral skeleton images representing ~4.6 ± 1.2 460 

measurements per corallite and 38.8 ± 12.0 measurements per sediment sample. The 461 

number of measurements ranged between 6 and 114 (at samples 214-215 and 204-205 cm, 462 

respectively).  463 

The minimum and maximum growth rates recorded on a corallite were 0.67 and 5.02 464 

mm yr-1, respectively. The average growth rate calculated on corallites was 2.32 ± 0.79 mm 465 

yr-1 (Fig. 8). The lowest and highest mean annual growth rates were 1.85 ± 0.78 and 3.09 ± 466 

0.81 mm yr-1 (at 224-225 and 184-185 cm, respectively). Significant differences were found 467 

between growth rates in investigated sediments samples of the 169-230 cm core section 468 

(ANOVA p<0.001). Tukey HSD post hoc test contributed to identify three groups with high (A; 469 

3.09 mm yr-1), intermediate (AB; 2.26 to 2.62 mm yr-1) and low growth rate (B; 1.85 to 2.15 470 
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mm yr-1; Fig. 7). Over the 169-230 cm section, the mean annual growth rate followed a cyclic 471 

pattern and exhibited two distinct semi-millennial to millennial oscillation (Fig. 7; Fig. 8). The 472 

first oscillation ranged between the minimum growth rates observed at 224-225 cm (2830 473 

cal. yr BP) and at 194-195 cm (2010 cal. yr BP) with a maximum at 204-205 cm (2280 cal. yr 474 

BP). The second oscillation occurred between 194-195 cm (2010 cal. yr BP) and 169-170 cm 475 

(1410 cal. yr BP) with a peak at 184-185 cm (1750 cal. yr BP). 476 

Overall, the mean annual growth rate between the 169-170 cm and 229-230 cm 477 

samples appeared to decrease with depth in the soil (Fig. 7; Fig. 8) but no significant 478 

correlation was found (r = -0.386; p>0.05; Table 4). Similarly, although the mean annual 479 

growth rate of corallites and the SAR followed the same pattern with depth in the soil (Fig. 480 

8), no significant correlation was highlighted between these two parameters (r = 0.055; 481 

p>0.05; Table 4). For the same core section, the mean annual growth was higher than the 482 

mean accumulation rate of the sediment (0.39 ± 0.03 mm yr-1; Fig. 8) highlighting no burial 483 

of coral colonies at this period.  484 

 485 

 486 

Figure 7. Box plot of growth rates measured on well-preserved Cladocora caespitosa corallites from the core. 487 
Dissimilar letters (A, AB, B) denote significant differences between groups (p<0.05). For major climatic periods, 488 
see Fig. 2. (1-column) 489 
 490 
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 491 

Figure 8. Relationship between the mean growth rate measured on C. caespitosa corallites and SAR from the 492 
core. (1-column)  493 
 494 

4. Discussion 495 

 496 

The sedimentary sequence collected on the north-eastern continental margin of 497 

Corsica enabled us to provide a first palaeo-environmental reconstruction of the area over 498 

the last 5000 years. The biogeosedimentological and the chronostratigraphic analyses have 499 

shown that the sequence was characterized by a succession of marine ecosystems since 500 

~4750 cal. yr BP. Cladocora caespitosa corallites revealed that the mean annual growth rate 501 

is similar to other values recorded in the Mediterranean. The occurrence of this coral deposit 502 

and its growth pattern appeared to be closely related to the environmental conditions and 503 

climatic periods since the mid-Holocene. 504 

 505 

4.1. The settlement phase: establishment of the C. caespitosa colonies following a major 506 

sediment alluvial input (~4750-3930 cal. yr BP) 507 

 508 

The lower part of the core from U1 (365-330 cm, up to 4750 cal. yr BP) to U4 sections 509 

(285-270 cm, 3930 cal. yr BP) was defined by a graded bedding of sedimentary layers which 510 

evidenced the variation in the marine depositional environment during the End of the 511 

Holocene Climate Optimum (~5000-4500 cal. yr BP) and the 4.2 kyr climatic event (~4500-512 

3900 cal. yr BP). The analysis of the mollusc assemblages performed at the base of the core 513 

(U1 section) revealed the presence of macro- and micro-shell debris assigned to the marine 514 

environment (mainly B. reticulatum, J. exasperatus and T. speciosa; Pérès and Picard, 1964; 515 

Pérès, 1982). However, these shell fragments may not have been produced locally but may 516 
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have been imported from adjacent marine areas by hydrodynamic forces during high energy 517 

events as evidenced by their state of conservation (i.e. calcareous fragments). Additionally, 518 

the coarse sedimentary deposit found at the bottom end of the core and characterized by 519 

well-rounded pebbles embedded in a sandy grey matrix may have resulted from littoral drift, 520 

shelf storms or high alluvial sediment input after major river floods (Orszag-Sperber and 521 

Pilot, 1976; Gauthier, 1981; Conchon and Gauthier, 1985; Gervais et al., 2004). In the east 522 

coast of Corsica, the Golo river is the largest drainage basin and has developed both a wide 523 

underwater delta (Ottman, 1958) and a large deltaic plain (Marana Plain; Fig. 1). This deltaic 524 

plain was mainly constituted of recent alluvial terraces with grey soil (Fy3; Orofino et al., 525 

2010) exhibiting similar geological properties than the sedimentary layer observed at the 526 

base of the studied core. The high sediment input identified here may perhaps be linked to 527 

the maximum of precipitation observed during the mid-Holocene period in the western parts 528 

of the Mediterranean (Roberts et al., 2011a, 2011b; Peyron et al., 2013). Thus, the exact 529 

origin of this pebble layer is difficult to determine but could be related to (i) massive alluvial 530 

deposits from the Golo river (Conchon and Gauthier, 1985; Mulder and Maneux, 1999) 531 

associated with (ii) a redistribution of sediments on the shelf by littoral drift generally 532 

oriented from south to north (Gauthier, 1981; Gaillot and Chavarot, 2001).  533 

The setting up of pebble beds in this sector has most likely favored the formation of 534 

coral colonies of C. caespitosa. Similar fossil build ups settled on basal conglomerate with 535 

pebbles or boulders have been already found by D’Alessandro and Bromley (1994) and 536 

Schiller (1993a). This coral species preferentially grows on rocky substrates (Peirano et al., 537 

1998; Kersting et al., 2012) even if it can also be found free on sedimentary or organic 538 

substrates (Laborel, 1987; Kružić and Benković, 2008). Though some coral debris of C. 539 

caespitosa was found in the 344-345 cm sample (Fig. 2), the most probable settlement of the 540 

C. caespitosa colonies at this site was situated at the basal part of the U2 section (320 cm) 541 

and dated back to ~4750 cal. yr BP. Cladocora caespitosa can colonize areas with a wide 542 

range of marine currents and turbid conditions (Laborel, 1961; Zibrowius, 1980; Peirano et 543 

al., 1998). In the Mediterranean, the occurrence of the widest C. caespitosa banks were 544 

recorded in the vicinity of river mouths exposed to abundant sedimentary and alluvial inputs 545 

(Fornós et al., 1996; Aguirre, 1998, Drinia et al., 2010; Tremblay et al., 2011). Such a turbid 546 

environment is consistent with the observation of coral fragments in this study. 547 

Nevertheless, the development of this coral species in shallow waters remains strongly 548 

influenced by other parameters such as temperature, food supply and irradiance (Schiller, 549 

1993a, 1993b; Peirano et al., 1998, 2005; Kružić and Benković, 2008; Chefaoui et al., 2017). 550 

Considering the reconstruction of the Relative Sea Level (RSL) changes in Corsica performed 551 

by Vacchi et al. (2017), the RSL at this period was placed ~2.7 m below the present mean sea 552 

level (MSL), allowing us to estimate the beginning of the C. caespitosa colonization at around 553 

7.3 m below the MSL. At this depth, the light intensity was enough for the symbiotic 554 

zooxanthellae to perform photosynthesis efficiently, hence allowing coral calcification even 555 

if the growth process is linked to a combination of autotrophy and heterotrophy (Schiller, 556 

1993b; Peirano et al., 1999; Rodolfo-Metalpa et al., 2008). This capability gives C. caespitosa 557 
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an advantage for undertaking the colonization of deeper areas or locations with higher 558 

sedimentation rates (Peirano et al., 1998; Morri et al., 2001). The particulate organic matter 559 

from turbid waters have proved to play directly or indirectly a role in coral metabolism 560 

(Schiller and Herndl, 1989; Rodolfo-Metalpa et al., 2008) to build large coral beds or banks 561 

(Laborel, 1961; Tur and Pere Godall, 1982; Peirano et al., 1998; Kružić and Benković 2008). 562 

Here, the increase in the TOM content, and notably SOM content (Table 1), between U2 to 563 

U4 sections could have been advantageous for the growth of C. caespitosa. Overall, the 564 

increase of coral fragment content observed from U2 to U4 sections probably could be 565 

related to a development of C. caespitosa colonies which probably benefited from favorable 566 

environmental conditions (i.e. high hydrodynamic conditions and high turbidity of coastal 567 

waters associated to high sediment alluvial inputs). 568 

 569 

4.2. The transitional phase: coexistence between the C. caespitosa colonies and the P. 570 

oceanica meadow (~3930-1410 cal. yr BP) 571 

 572 

At the end of the 4.2 kyr event (4500-3900 cal. yr BP), a major environmental change 573 

occurred with the settlement of the P. oceanica meadow, as suggested by a major increase 574 

in the SOM content (~5% to 10%) and also by the presence of COM remains from the 575 

seagrass species (root and rhizome debris). The colonization of the studied site was probably 576 

related to the progressive RSL rise rate of ~2 mm yr-1, observed during the End of the 577 

Holocene Climate Optimum and the 4.2 kyr event (~5450-3950 cal. yr BP; Vacchi et al., 578 

2017). According to Vacchi et al. (2016, 2017), the MSL has increased from ~7.3 m (4750 cal. 579 

yr BP) to ~8.5 m (3930 cal. yr BP) between the C. caespitosa settlement and the P. oceanica 580 

meadow colonization. Thus, the progression of the upper limit of the P. oceanica meadow 581 

towards the coast could be related to the MSL rise and coincides with the 4.2 kyr event (Fig. 582 

2) characterized by a global climatic shift and major drought through the Mediterranean 583 

region (Desprat et al., 2003; Roberts et al., 2011b; Magny et al., 2013). Furthermore, the 584 

occurrence of C. caespitosa may have also influenced the settlement of the P. oceanica in 585 

this area. As the topography of sea bottom which has proved to play a major role in the 586 

establishment patterns of seagrass meadows, the substratum type can strongly influence in 587 

the root anchoring and consequently the seedling survival. Consequently, the presence of 588 

consolidated substrate with higher roughness, like C. caespitosa colonies studied here, may 589 

have strongly favored the anchorage to the bottom of young plants of P. oceanica in shallow 590 

waters experiencing hydrodynamic exposure (Alagna et al., 2015, 2019; Balestri et al., 2015; 591 

Montefalcone et al., 2016; Zenone et al., 2020). 592 

Sub-section U5a, ranging between the 269-270 cm (3930 cal. yr BP) and 224-225 cm 593 

samples (2830 cal. yr BP), is notably defined by a transitional phase characterized by the 594 

coexistence of P. oceanica meadow and the coral colonies of C. caespitosa. During this 595 

phase, a decrease in the coral fragments content (Fig. 2) and in the accumulation rate (Table 596 

3) was observed. The radiocarbon dating performed on P. oceanica remains and C. 597 

caespitosa fragments at the basal part of sub-section U5a has contributed to highlighting a 598 
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significant disruption in the SAR. The anomalous age of C. caespitosa of 2046 cal. yr BP found 599 

beneath the 3860 cal. yr BP date measured on the P. oceanica remains could be related to 600 

the collection and the processing of the sedimentary sequence with the Kullenberg corer. 601 

Contrary to P. oceanica fragments which have been directly collected after core splitting in 602 

the inner part of the core in order to avoid any contamination, the coral fragments to date 603 

were selected after sieving process. The coral fragment selected for radiocarbon dating 604 

could have been displaced during the sampling of the core in the lower part of the core.  The 605 

occurrence of such reworked material has been also identified during the chrono-606 

stratigraphic reconstruction of a P. oceanica matte sequence obtained by performing 607 

successive coring operations (Serrano et al., 2012).  608 

In the subsequent core sub-section U5b, delimited between the 224-225 cm (2830 609 

cal. yr BP) and the 164-165 cm (1300 cal. yr BP) samples, the P. oceanica meadow is already 610 

well-established and the matte is very dense. During this period, an increase in the C. 611 

caespitosa content was observed and appeared to be significantly and positively correlated 612 

with the content in organic matter (r = 0.531; p<0.01; Table 4). Similarly, the length of coral 613 

fragments was revealed to be negatively correlated to depth in the soil (r = -0.698; p<0.001; 614 

Table 4). The occurrence of lengthier corallites fragments in the upper part of the sequence 615 

(Fig. 2; Fig. 5b) could suggest a good coexistence of coral colonies with the seagrass 616 

meadows and reflect enhanced preservation of coral fragments within the P. oceanica 617 

matte. These results confirm that the formation of such recalcitrant organic deposits favor 618 

the preservation of carbonate fossil over millennia and constitute valuable palaeo-619 

environmental archive in the Mediterranean (Romero et al., 1994; Mateo et al., 1997, 2002; 620 

Serrano et al., 2012). Though, the actual preservation of corallites debris within the matte 621 

appears to be enhanced, caution must be taken during biogeosedimentological 622 

interpretation. The current abundance of corallites does not necessarily reflect the palaeo-623 

abundance of the coral in the past and can be affected by a major environmental events 624 

(e.g. major flooding, shelf storms).  625 

In this sub-section, the mean annual growth rate measurements were determined by 626 

performing direct measurements on the external walls of corallites and were highly 627 

dependent on the coral fragments. This method was efficiently and easily implemented with 628 

minimal manipulation of the corallite fragments. However, further analyses should be 629 

performed by combining different methods (X-ray method, Alizarin method; Table A.1.) in 630 

order to assess the accuracy of the measurements, and also to estimate the annual growth 631 

rate on eroded or bored corallite fragments (Peirano et al., 1999, 2004). The mean annual 632 

growth rates obtained for C. caespitosa in this study are within the 1.3 to 6.9 mm yr-1 range 633 

obtained by different authors using either Alizarin staining or X-ray analysis on living or fossil 634 

colonies (Table A.1.).  635 

 The analysis of the mean annual growth rate in the U5b sub-section highlighted a 636 

steady increase and the occurrence of oscillations (Fig. 7; Fig. 8). Considering the 637 

chronostratigraphic model and the SAR curve (Fig. 3a; Fig. 3b), the wide oscillations on the 638 

growth pattern of C. caespitosa corallites can be related to major climatic periods (Fig. 7). 639 
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While decadal growth rate oscillation has been already described in the Late Pleistocene 640 

bank of Santa Teresiola by Peirano et al., (2009), in this study, the growth pattern appears to 641 

follow semi-millennial to millennial oscillations.  642 

The first oscillation coincides with the Cold Phase of the Subatlantic period (2925-643 

2200 cal. yr BP) and the beginning of the Roman Warm Period - RWP (2200-1500 cal. yr BP; 644 

Desprat et al., 2003; Klimenko and Klimanov, 2003). Over the first oscillation, the annual 645 

mean growth rate was 2.2 ± 0.3 mm yr-1 and was characterized by intermediate and low 646 

mean growth rate (Fig. 7). Peirano et al. (1999) suggests that the coral growth rate of 647 

corallites cannot be interpreted just as SSTs effect alone, but also as a result of the light 648 

intensity that affects the photosynthetic efficiency of zooxanthellae. Kružić and Benković 649 

(2008) propose that the biometrical values are affected by sea currents, temperature and 650 

sedimentation. According to Vella et al. (2016), from 2650-2450 cal. yr BP, the mouth of the 651 

Golo river was located 1-2 km northwards of its modern position (Tanghiccia mouth; Fig. 1). 652 

Consequently, the influence of the alluvial inputs of fine sediments was probably higher due 653 

to the shift in the location of the mouth of the Golo river coupled to the Cold Phase of the 654 

Subatlantic period contributing to low light intensity and SSTs. The stratigraphic sequence 655 

mainly constituted by the matte of P. oceanica exhibited a lower SAR (0.4 ± 0.0 mm yr-1) 656 

than other meadows in the Mediterranean (Serrano et al., 2012 and references therein). A 657 

decline in irradiance has been shown to have a significant impact on the physiology, 658 

morphology and structure of the meadow and also on its productivity (Serrano et al., 2011; 659 

Leiva-Dueñas et al., 2018). However, Peirano et al. (2005) showed that C. caespitosa exhibits 660 

enhanced growth in low light intensities and turbid waters during the winter when the 661 

energy and nutrient supply is high. Thus, low irradiance could have led both to a decrease in 662 

the productivity of the P. oceanica meadow and in its regression helping indirectly the 663 

growth of C. caespitosa. Similar phenomena have been observed along the Ligurian coast 664 

after heavy anthropogenic siltation causing the regression of the P. oceanica meadows 665 

(Bianchi and Peirano, 1990) which could have enhanced the development of the C. 666 

caespitosa bank (Peirano et al., 1998).  667 

The second oscillation coincides with the climatic RWP in Corsica (Desprat et al., 668 

2003; Currás et al., 2017) and the Dark Ages Cold Period - DACP (1500-1000 cal. yr BP; 669 

Ljungqvist, 2010). This oscillation is characterized by a slightly higher mean growth rate of 670 

corallites and SAR than during the first oscillation, with 2.4 ± 0.4 mm yr-1 and 0.4 ± 0.0 mm 671 

yr-1, respectively. Similarly, the content and the mean total length of coral fragments were 672 

the highest recorded in the core (Fig. 2; Fig. 5a; Fig. 5b). The warmer and dryer climatic 673 

epoch of the RWP was probably advantageous for the development of C. caespitosa colonies 674 

and the P. oceanica meadow. Although studies confirmed the good adaptation of this 675 

temperate coral to cold and turbid environmental conditions (Peirano et al., 2005, 2009; 676 

Kružić and Benković, 2008), the largest bank of C. caespitosa occurred in coastal 677 

environments characterized by alluvial inputs and warmer temperatures. Several analyses of 678 

growth patterns of corallites showed a sinusoidal trend in accordance with the air 679 

temperature (Peirano et al., 1999, 2004, 2005) and the SSTs (Morri et al., 2001; Kružić and 680 
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Požar-Domac, 2002; Silenzi et al., 2005; Peirano et al., 2005). However, after the mean 681 

annual growth rate of 3.1 ± 0.4 mm yr-1 peaked at 184-185 cm, the growth pattern steadily 682 

decreased down to the 169-170 cm sample where the C. caespitosa colonies abruptly 683 

disappeared (Fig. 2; Fig. 7).  684 

 685 

4.3. The decline phase: death of the C. caespitosa colonies and development of the P. 686 

oceanica meadow (~1410 cal. yr BP-present) 687 

 688 

The disappearance of the C. caespitosa colonies seems to be linked to a major event. 689 

The analysis of the biogeosedimentological features of this period has revealed no major 690 

environmental phenomena. Nevertheless, another possible cause of the death of the 691 

colonies was linked to the high sensitivity of C. caespitosa to elevated and prolonged SSTs 692 

(Peirano et al., 2005). While warmer climate has proved to enhance corallite growth (Peirano 693 

et al., 2004, 2009), the increase of SSTs up to 26-28°C during more than one month coupled 694 

to high irradiance may have caused extensive mortality events, as observed in the Ligurian 695 

Sea by Rodolfo-Metalpa et al. (2000, 2005, 2006) and in the Adriatic Sea by Kružić and Požar-696 

Domac (2002). The death of these colonies would probably be linked to thermal and 697 

irradiance stresses causing a major mortality event during the RWP (1750 cal. yr BP). This 698 

hypothesis seems to be confirmed by the estimations of decadal mean temperature 699 

variations over the two last millennia in the northern Hemisphere (Ljungqvist, 2010).  700 

Nevertheless, the presence of C. caespitosa and the continuous decrease in the 701 

growth pattern between 1700-1410 cal. yr BP suggest rather a progressive decline of the C. 702 

caespitosa colonies resulting from the combination of phenomena. Firstly, the dryer and 703 

warmer climate observed during the RWP could have resulted in enhanced development 704 

and productivity of the P. oceanica meadow. Peirano et al. (1998) suggest that the 705 

distribution, occurrence, and abundance of the C. caespitosa in the La Spezia region is mainly 706 

controlled by competition with soft and frondose algae. Here, the presence of a well-707 

developed seagrass meadow could have competed with C. caespitosa already weakened by 708 

the mortality events. Secondly, an increase in meadow coverage and leaf canopy could have 709 

favored a trapping of silt and mud deposition, and also an increase in bioclastic sediments 710 

linked to epiphyte and invertebrate production (De Falco et al., 2000). Although C. 711 

caespitosa polyps are well-adapted to high sedimentation, this excessive siltation could have 712 

contributed to definitively limited the development of C. caespitosa colonies as reported by 713 

Tins (1978).  714 

 715 

5. Conclusion 716 

 717 

The analysis of a stratigraphic sequence has revealed the presence of a massive C. caespitosa 718 

coral deposit surrounded by the matte of the P. oceanica meadow. The well-preserved 719 

corallite fragments found in the matte added on the known role of this bioconstruction as 720 

paleoarchive in the Mediterranean coastal areas. The sedimentological analysis coupled to 721 

Jo
urn

al 
Pre-

pro
of



the biological measurements performed on the C. caespitosa corallites provided the 722 

opportunity to perform a paleoenvironmental reconstruction of the conditions of the site 723 

during the last 4750 years. Given the results, the features of this C. caespitosa build up meet 724 

all the requirements to be recognized as a fossil bank. The presence and the abundance of 725 

the colonial coral C. caespitosa but also the fluctuations observed in its growth pattern 726 

showed to be likely related to the abiotic parameters (i.e. marine currents, sedimentation, 727 

competition) and to past climate conditions (major events and climatic periods) since the 728 

Mid-Holocene. The progressive decline of this coral bank appeared to be related to a mass 729 

mortality events resulting from prolongated increase in SSTs during RWP associated with 730 

higher intraspecific competition with P. oceanica meadow. The study of the skeletal growth 731 

pattern confirms that C. caespitosa coral represents a valid proxy for past climate 732 

fluctuations and an ideal candidate for detailed palaeo-climatic and palaeo-environmental 733 

reconstructions in the Mediterranean Sea. 734 
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Appendix 754 

 755 
Table A.1. Annual mean growth rates of living or fossil Cladocora caespitosa and their standard deviations 756 
obtained in this study and as reported in the literature. Table modified from Kersting and Linares (2012). 757 

Site Annual growth rate (mm yr
-1

) Method Authors 

Mallorca (NW Med., Aquarium) 5 Direct measurement Oliver Valls (1989) 

Bay of Piran (Adriatic) 4.4 ± 0.6 Alizarin Schiller (1993a) 

La Spezia (NW Med.) 1.3 ± 0.6 – 4.3 ± 1.4 X-ray Peirano et al. (1999) 

La Spezia (NW Med.) 4.8 ± 1.7 Alizarin Rodolfo-Metalpa et al. (1999) 

Mljet (Adriatic) 4.7 ± 0.6 / 4.7 ± 0.6 Alizarin / X-ray Kružić and Požar-Domac (2002) 

Tuscany 6.3 ± 3.0 X-ray Peirano et al. (2004) 
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Calabria 2.6 ± 0.8 X-ray Peirano et al. (2004) 

Sardinia 2.1 ± 0.7 – 4.1 ± 1.3 X-ray Peirano et al. (2004) 

Apulia 2.1 ± 0.9 – 6.9 ± 2.1 X-ray Peirano et al. (2004) 

La Spezia (NW Med.) 3.01 X-ray Peirano et al. (2005) 

Prvić (Adriatic) 3.2 ± 0.1 X-ray Kružić and Benković (2008) 

Pag (Adriatic) 3.1 ± 0.1 X-ray Kružić and Benković (2008) 

Mljet (Adriatic) 3.7 ± 1.3 X-ray Kružić and Benković (2008) 

N to S Adriatic 2.6 ± 0.2 – 4.1 ± 0.6 X-ray Peirano et al. (2009) 

Ligurian Sea 3.7 ± 0.5 – 3.3 ± 0.4 X-ray Peirano et al. (2009) 

South Italy 3.1 ± 0.3 – 3.2 ± 0.3 X-ray Peirano et al. (2009) 

Tunisia 2.3 ± 0.2 X-ray Peirano et al. (2009) 

Illa Grossa (NW Med.) 2.5 ± 0.8 / 2.5 ± 0.8 Alizarin / X-ray Kersting and Linares (2012) 

Corsica (NW Med.) 1.9 ± 0.8 – 3.1 ± 0.8 Direct measurement This study 
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 Finding of a C. caespitosa coral palaeo-bank embedded in the matte of P. oceanica  

 Palaeoenvironmental reconstruction of the sequence since the mid-Holocene   

 Sclerochronological analysis revealed a coral mean growth rate of 2.3 ± 0.8 mm yr-1 

 Growth pattern fluctuations shown to be related to abiotic and climatic conditions  

 Bank death was probably due to prolonged SSTs during the Roman Warm Period  
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