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Cedex ,France 

* Corresponding author : Nicolas Hubert, email address : nicolas.hubert@ird.fr  
 

Abstract :   
 
Biodiversity knowledge is widely heterogeneous across the Earth’s biomes. Some areas, due to their 
remoteness and difficult access, present large taxonomic knowledge gaps. Mostly located in the tropics, 
these areas have frequently experienced a fast development of anthropogenic activities during the last 
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decades and are therefore of high conservation concerns. The biodiversity hotspots of Southeast Asia 
exemplify the stakes faced by tropical countries. While the hotspots of Sundaland (Java, Sumatra, 
Borneo) and Wallacea (Sulawesi, Moluccas) have long attracted the attention of biologists and 
conservationists alike, extensive parts of the Sahul area, in particular the island of New Guinea, have 

been much less explored biologically. Here, we describe the results of a DNA‐based inventory of aquatic 

and terrestrial vertebrate communities, which was the objective of a multi‐disciplinary expedition to the 
Bird’s Head Peninsula (West Papua, Indonesia) conducted between October 17th and November 20th 
2014. This expedition resulted in the assembly of 1,005 vertebrate DNA barcodes. Based on the use of 

multiple species‐delimitation methods (GMYC, PTP, RESL, ABGD), 264 Molecular Operational 
Taxonomic Units (MOTUs) were delineated, among which 75 were unidentified and an additional 48 were 
considered cryptic. This study suggests that the diversity of vertebrates of the Bird’s Head is severely 
underestimated and considerations on the evolutionary origin and taxonomic knowledge of these biotas 
are discussed. 
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results of a DNA-based inventory of aquatic and terrestrial vertebrate communities, which was the 

objective of a multi-disciplinary expedition to the Bird’s Head Peninsula (West Papua, Indonesia) 

conducted between October 17th and November 20th 2014. This expedition resulted in the 

assembly of 1,005 vertebrate DNA barcodes. Based on the use of multiple species-delimitation 

methods (GMYC, PTP, RESL, ABGD), 264 Molecular Operational Taxonomic Units (MOTUs) 

were delineated, among which 75 were unidentified and an additional 48 were considered cryptic. 

This study suggests that the diversity of vertebrates of the Bird’s Head is severely underestimated 

and considerations on the evolutionary origin and taxonomic knowledge of these biotas are 

discussed.

Introduction

The Earth’s biosphere has been unevenly explored, with some geographic regions relatively well 

surveyed and others lacking taxonomic baselines and awaiting large-scale screening of their 

biotas. The resulting gaps in taxonomic knowledge impede conservation planning and 

management, a situation particularly evident in species-rich tropical areas experiencing extensive 

infrastructure development (e.g., roads, dams and agriculture) and deforestation over the past few 

decades. This is particularly dramatic for highly endemic biotas of tropical insular systems that 

have become increasingly accessible to human activity and biological invasions and, as a 

consequence, are mostly endangered (Hoffman et al., 2010; Myers, Mittermeier, Mittermeier, da 

Fonseca, & Kent, 2000; Schipper et al., 2008). Southeast Asia exemplifies the stakes associated 

with the conservation of species-rich biota in insular tropical systems. Of the four main 

biogeographic provinces in this area, three (Sundaland, Wallacea, and the Philippines) have been 

recognized as biodiversity hotspots because they harbor an exceptional number of endemic 

species, and intense anthropogenic pressures threaten their existence (Hoffman et al., 2010; Myers 

et al., 2000; Thiault et al., 2019). Both Sundaland (Java, Sumatra and Borneo) and Wallacea 

(Sulawesi, Moluccas) have long captured the attention of biologists and served as early model 

systems in biogeographic studies (Mayr, 1944; Wallace, 1859). In particular, vertebrate 

assemblages in both regions have been actively documented over the last two decades, resulting in 

the description of hundreds of new species (Hubert et al., 2015) and the assessment of associated 

phylogenetic and biogeographic patterns (de Bruyn et al., 2013; den Tex, Thorington, Maldonado, 

& Leonard, 2010; Esselstyn, Maharadatunkamsi, Achmadi, Siler, & Evans, 2013; Hutama et al., A
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2017; Lim et al., 2017; O’Connell et al., 2018; Pinheiro et al., 2017; Rowe et al., 2019; Wood Jr, 

Heinicke, Jackman, & Bauer, 2012). 

In contrast, the northern part of Sahul, i.e. the island of New Guinea, has received 

comparatively little attention, as a result of limited accessibility. Delimited from Wallacea to the 

west by the Lyddeker line, its component lineages show multiple affinities with the neighboring 

Wallacea or Australia, while also displaying high levels of endemism (Crayn, Costion, & 

Harrington, 2015; Rowe, Reno, Richmond, Adkins, & Steppan, 2008; Unmack, Allen, & Johnson, 

2013). The extent of this endemism is presumed to be vastly underestimated, because recent 

DNA-based species inventories purported large numbers of undescribed taxa (Kadarusman et al., 

2012; Riedel, Sagata, Suhardjono, Tänzler, & Balke, 2013). Unfortunately, the rapid acceleration 

of deforestation in New Guinea during the last decades (Austin, Schwantes, Gu, & Kasibhatla, 

2019; Filer, Keenan, Allen, & Mcalpine, 2009; Nelson et al., 2014; Shearman & Bryan, 2011), is 

putting many species and their habitats at risk, calling for comprehensive inventories of fauna and 

flora to facilitate conservation planning.

In the last 15 years, DNA barcoding, the use of the mitochondrial Cytochrome Oxidase I 

gene as an internal species tag (Hebert, Cywinska, Ball, & de Waard, 2003; Hebert, 

Ratnasingham, & deWaard, 2003), has been providing a major boost to documenting biodiversity. 

Initially designed to overcome limits of morphology-based species-level identification, it has 

increasingly been accepted as a tool to capture species boundaries and as a foundation for 

automated molecular species identification and detection (April, Mayden, Hanner, & Bernatchez, 

2011; Blagoev et al., 2015; Delrieu-Trottin et al., 2019; deWaard et al., 2019; Kerr et al., 2007).  

The utility of DNA barcoding, however, always depends on the taxonomic coverage of the 

associated DNA barcode reference library which, in turn, requires solid taxonomic knowledge of 

the biotas under scrutiny (Hubert & Hanner, 2015). Several studies have emphasized the benefits 

of integrating a standardized DNA-based approach into the inventories of poorly known faunas 

(Dahruddin et al., 2017; de Araujo et al., 2018; Milá et al., 2012; Monaghan et al., 2009; Riedel et 

al., 2013; Sholihah et al., 2020; Smith, Fisher, & Hebert, 2005; Smith et al., 2008; Sonet et al., 

2018; Tänzler, Sagata, Surbakti, Balke, & Riedel, 2012; Vacher et al., 2020). Newly developed 

DNA-based species delimitation methods (Fujiwasa & Barraclough, 2013; Kekkonen, Mutanen, 

Kaila, Nieminen, & Hebert, 2015; Monaghan et al., 2009; Puillandre, Lambert, Brouillet, & 

Achaz, 2012; Ratnasingham & Hebert, 2013; Jiajie Zhang, Kapli, Pavlidis, & Stamatakis, 2013) A
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further speeded up the pace of species discovery by dramatically increasing the throughput and 

lowering analytical costs (Butcher, Smith, Sharkey, & Quicke, 2012; Riedel et al., 2013).

One of the more geologically intricate regions of the island of New Guinea is its northwest 

portion, known as the Bird’s Head Peninsula, particularly the Lengguru karstic massif, in the West 

Papua province. This massif originated from the subduction of the Australian and Pacific plates 

that resulted in the development of an accretion prism during the last 10 million years (Myr) (Hall, 

Cottam, & Wilson, 2011; Lohman et al., 2011). Previous DNA-based inventories of freshwater 

fishes in this area resulted in the discovery of multiple new taxa (Kadarusman et al., 2012; 

Nugraha et al., 2015). The co-occurrence of multiple lineages of distinct biogeographic origin, 

suggests that the Bird’s Head Peninsula has been colonized from several regions (Kadarusman et 

al., 2012; Unmack et al., 2013) and warrants a more thorough faunal inventory, in particular for 

freshwater fauna, for which freshwater-specific processes of isolation have led to extremely high 

levels of endemism, much higher than for other continental vertebrates (Leroy et al., 2019).

 Between October and November 2014, a large multi-disciplinary expedition to the Bird’s 

Head Peninsula sampled mammals, birds, reptiles, amphibians and fishes across a diverse array of 

ecosystems, from mangroves to the “cloud” forest habitats, from lakes and rivers to caves of the 

Lengguru karst system.  One of the main aims of the expedition was to conduct a DNA-based 

inventory of vertebrates in this relatively unchartered part of New Guinea and to extend the 

taxonomic coverage of the DNA barcode reference library. This survey resulted in 1,005 records 

for 264 vertebrate Molecular Operational Taxonomic Units (MOTUs) that are presented and 

discussed in this publication.

Material & methods

Sampling and collection management

The Lengguru expedition, conducted between the 17th of October and the 20th of November 2014, 

surveyed 35 sites in the Lengguru massif (http://www.lengguru.org/) and an additional set of 20 

sites in the Western part of the Bird’s Head Peninsula (Fig. 1). Freshwater fishes were sampled 

using electrofishing gear and cast nets. Bats and birds were trapped using mist nets. Amphibians 

and reptiles were hand collected or captured with glue traps. Rodents were captured using non-

lethal cage traps. Specimens were photographed, individually labeled and their provenance 

information recorded, including geocoordinates, collection date, and collectors. A muscle tissue or 

blood sample was taken from each captured specimen and fixed in 95% ethanol. Fish, amphibian A
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and reptile voucher specimens were fixed in 5% formalin solution and subsequently transferred 

into a 70% ethanol solution. Mammals were preserved in 80% ethanol and birds were prepared on 

site as dried study skins by the Indonesian Institute of Sciences (LIPI) personnel. Both tissue and 

voucher specimens were deposited in the national collections at the Research Center for Biology 

(RCB) from LIPI.

DNA Sequencing and international repositories

Genomic DNA was extracted from the muscle tissue samples using a Qiagen DNeasy 96 

tissue extraction kit following manufacturer's specifications. A 651-bp segment from the 5’ region 

of the cytochrome oxidase I gene (COI) was amplified using the M13 tailed primers cocktails 

C_FishF1t1/C_FishR1t1 for fishes, C_VF1LFt1/ C_VR1LRt1 for mammals and reptiles (Ivanova, 

Zemlak, Hanner, & Hébert, 2007), AmphF2_t1 

(TGTAAAACGACGGCCAGTTTCAACWAAYCAYAAAGAYATYGG)/AmphR3_t1 

(CAGGAAACAGCTATGACTADACTTCWGGRTGDCCRAARAATCA) for amphibians (Prosser, 

unpublished) and BirdF1_t1/ BirdR2_t1 for birds (Hebert, Stoeckle, Zemlak, & Francis, 2004). 

PCR amplifications were done on a Veriti 96-well Fast (ABI-AppliedBiosystems) thermocycler 

with a final volume of 10.0μl containing 5.0μl Buffer 2X, 3.3μl ultrapure water, 1.0μl each primer 

(10μM), 0.2μl enzyme Phire Hot Start II DNA polymerase (5U) and 0.5μl of DNA template (~50 

ng). Amplifications were conducted as follows: initial denaturation at 98°C for 5 min was 

followed by 30 cycles consisting of denaturation at 98°C for 5s, annealing at 56°C for 20s, and 

extension at 72°C for 30s, followed by a final extension step at 72°C for 5 min. The PCR products 

were purified with ExoSap-IT (USB Corporation, Cleveland, OH, USA) and sequenced in both 

directions. Sequencing reactions were performed at the Centre for Biodiversity Genomics, 

University of Guelph, Canada, using the “BigDye Terminator v3.1 Cycle Sequencing Ready 

Reaction” and sequencing was performed on an ABI 3730xl capillary sequencer (Applied 

Biosystems), following standard protocols described in Hebert et al. (2013). Sequences and 

collateral information were deposited on BOLD (Ratnasingham & Hebert, 2007) and are available 

as a public data set DS-LENG (dx.doi.org/10.5883/DS-LENG, Table S1).

Genetic distances and species delimitation

Kimura 2-parameter (K2P) (Kimura, 1980) pairwise genetic distances were calculated 

using the R package Ape 4.1 (Paradis,  Claude, Strimmer, 2004). Maximum intraspecific and A
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nearest-neighbor genetic distances were calculated using the matrix of pairwise K2P genetic 

distances and the R package Spider 1.5 (Brown et al., 2012). We checked for the presence of a 

barcode gap, i.e. the lack of overlap between the distributions of the maximum intraspecific and 

the nearest-neighbor genetic distances, by plotting both distances and examining their 

relationships on an individual basis, instead of comparing both distributions independently 

(Blagoev et al., 2015). A Neighbor-joining (NJ) tree was built based on K2P distances and used to 

visually inspect genetic distances and DNA barcode clusters (Fig. S1).

Several methods have been proposed for delineating species based on DNA sequences 

(Kapli et al., 2017; Pons et al., 2006; Puillandre et al., 2012; Ratnasingham & Hebert, 2013). Each 

of these methods has different properties, particularly when dealing with singletons (i.e. delimited 

lineages represented by a single sequence) or heterogeneous speciation rates among lineages (Luo, 

Ling, Ho, & Zhu, 2018). A combination of different approaches is increasingly used to overcome 

potential pitfalls arising from uneven sampling (Kekkonen & Hebert, 2014; Kekkonen et al., 2015; 

Limmon et al., 2020; Shen et al., 2019; Sholihah et al., 2020). We used six different sequence-

based methods of species delimitation to identify Molecular Operational Taxonomic Units 

(MOTU): (1) Refined Single Linkage (RESL) as implemented in BOLD and used to generate 

Barcode Index Numbers (BIN) (Ratnasingham & Hebert, 2013), (2) Automatic Barcode Gap 

Discovery (ABGD) (Puillandre et al., 2012), (3) Poisson Tree Process (PTP) in its single (sPTP) 

and multiple rates version (mPTP) as implemented in the stand-alone software mptp_0.2.3 (Kapli 

et al., 2017; Zhang, Kapli, Pavlidis, & Stamatakis, 2013), and (4) General Mixed Yule-Coalescent 

(GMYC) in its simple (sGMYC) and multiple rate version (mGMYC) as implemented in the R 

package Splits 1.0-19 (Fujisawa & Barraclough, 2013). A final delimitation scheme was 

established based on a majority-rule consensus among the six delimitation analyses performed.

Both RESL and ABGD use DNA alignments as input files while a maximum likelihood 

(ML) tree was used for PTP and an ultrametric tree was used for GMYC. The ML tree was 

reconstructed using RAxML (Stamatakis, 2014) based on a GTR+I+Γ substitution model. The 

ultrametric tree was reconstructed using the Bayesian approach implemented in BEAST 2.4.8 

(Bouckaert et al., 2014) based on a strict-clock model using a genetic distance of 1.2% per million 

year (Bermingham, McCafferty, & Martin, 1997). A preliminary analysis indicated that 50 million 

steps was a sufficient length for the Markov chains to reach ESS>200 for all estimated parameters. 

Thus, two Markov chains of 50 million steps each were run independently on the entire vertebrate 

dataset using the Yule pure birth model tree prior and a GTR+I+Γ substitution model. Both runs A
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were merged using LogCombiner 2.4.8 (Bouckaert et al., 2014) and sGMYC and mGMYC 

analyses were conducted on 10 chronograms sampled along the merged runs using the complete 

DNA sequences dataset following Hubert et al. (2019). The final delimitation scheme for sGMYC 

and mGMYC was established based on a majority-rule consensus of all 10 replicates. Further 

Bayesian chronograms for visual inspection of the topologies and inferred divergence times were 

built independently for fishes, mammals, birds, amphibians and reptiles using the same 

parameters. Both runs were combined independently for each group using LogCombiner 2.4.8 and 

the maximum credibility tree was constructed using TreeAnnotator 2.4.7 (Bouckaert et al., 2014). 

Sampling coverage at the MOTU level was examined for the five vertebrate groups through 

accumulation curves generated with BOLD (Smith, Fernandez-Triana, Roughley & Hebert, 2009).

Results

Sequencing yielded a total of 1,005 COI sequences out of 1140 samples. The product lengths for 

the various primer combinations were as follows: 652bp for C_FishF1t1/C_FishR1t1, 658 bp for 

AmphF2_t1/AmphR3_t1, 657bp for C_VF1LFt1/C_VR1LRt1, and 694bp for 

BirdF1_t1/COIbirdR2_t1. Amplification failures were randomly distributed among species, and at 

least one individual of each species was successfully sequenced. Average sequence length for all 

DNA barcodes was 649bp, and no stop codons were detected suggesting that these sequences 

correspond to functional coding regions. A total of 21 orders representing 61 families and 136 

genera were sequenced, including nine orders representing 17 families and 29 genera of fishes, 

one order with six families and 13 genera of amphibians, five orders comprising 18 families and 

37 genera of birds, five orders with12 families and 27 genera of mammals, and one order 

representing eight families and 26 genera of reptiles (Table 1). The number of specimens 

identified to the species level largely varied among classes: 70% of the 343 fish specimens, 70% 

of the 167 amphibian specimens, 100% of the 155 bird specimens, 85% of the 173 mammal 

specimens and 53% of the reptile specimens. Intraspecific, interspecific within genus and 

interspecific within family genetic distances largely vary among classes (Table 2).

The MOTU delimitation analyses yielded varying numbers of MOTUs depending on the 

algorithm used for all classes (Figs. 2 & 3, Table S1). Numbers of delimited MOTUs were 54 for 

RESL, 66 for ABGD, 44 for sPTP, 38 for mPTP, 51 for sGMYC and 65 for mGMYC for fishes; 

45 for RESL, 46 for ABGD, 43 for sPTP, 33 for mPTP, 44 for sGMYC and 49 for mGMYC for 

birds; 51 for RESL, 67 for ABGD, 51 for sPTP, 27 for mPTP, 52 for sGMYC and 69 for mGMYC A
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for mammals; 43 for RESL, 47 for ABGD, 37 for sPTP, 31 for mPTP, 38 for sGMYC and 47 for 

mGMYC for amphibians; and 63 for RESL, 70 for ABGD, 59 for sPTP, 40 for mPTP, 59 for 

sGMYC and 67 for mGMYC for reptiles (Table S1).  The final consensus consisted of 59 MOTUs 

for fishes, 46 MOTUs for birds, 53 MOTUs for mammals, 43 MOTUs for amphibians and 63 

MOTUs for reptiles. Thus, a total of 264 MOTUs was added to the DNA barcode reference 

library. Distributions of both maximum intraspecific distance and distance to the nearest neighbor 

for MOTUs overlapped in a few cases for all classes (Figs. 4a, 4b, 4g, 4h); however, a DNA 

barcoding gap was observed in most cases with only a few exceptions for fishes (Fig. 4i). The 

proportion of MOTUs that could be assigned to species varied among classes with 71% for fishes, 

100% for birds, 77% for mammals, 65% for amphibians and 48% for reptiles (Table S1). The 

unidentified MOTUs displayed varying trends of divergence to the nearest neighbor ranging from 

0.6% to 22.5% for fishes, 3.5% to 20% for mammals, 1.2% to 23.5% for amphibians and 1.9% to 

37% for reptiles (Table 3). Several cases of morphologically unrecognized MOTUs assigned to 

the same species were detected in all groups (Table 4). As observed for unidentified MOTUs, 

patterns of genetic distances displayed varying trends, with distances to the nearest neighbor 

ranging from 1.9% to 10.8% for fishes, 1.9% to 7.5% for amphibians, 1.5% to 2.1% for birds, 

2.7% to 8.7% for mammals and 2.7% to 12% for reptiles (Table 4).

MOTU accumulation curves (Fig. 5) indicate that the sampling is nearly representative for 

fishes and amphibians, with a plateau being almost reached; however, curves are far from reaching 

a plateau for birds and mammals, suggesting that the number of MOTUs recovered in this study 

underestimates the true vertebrate diversity in the Lengguru massif. The phylogeographic patterns 

were mostly congruent across groups in terms of spatial distribution and divergence (Figs. 6 & 7). 

Multiple cases of closely related lineages that originated during the Pleistocene and occurring in 

sympatry or at neighboring sites are detected for Fishes (Fig. 6), reptiles (Fig. 7a-7c) and 

amphibians (Fig. 7d-7f), suggesting a contribution of in situ diversification to the diversity build-

up in the area. For reptiles and amphibians, however, several cases of deep divergence, tracing 

back to the Miocene, between unidentified or cryptic MOTUs were detected (Fig. 7a-5f).

Discussion

Ever since the seminal publications on DNA barcoding (Hebert, Cywinska, et al., 2003; Hebert & 

Gregory, 2005), numerous studies showed how DNA barcoding accelerated the development of 

molecular diagnostic tools for automated species identification in well-known faunas (April et al., A
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2011; Blagoev et al., 2015; Kerr et al., 2007; Knebelsberger, Dunz, Neumann, & Geiger, 2014; 

Shen et al., 2019). It also significantly helped in speeding up inventories and species discovery 

(Butcher et al., 2012; Hebert, Penton, Burns, Janzen, & Hallwachs, 2004; Monaghan et al., 2009; 

Riedel et al., 2013; Smith et al., 2005, 2008; Smith, Wood, Janzen, Hallwachs, & Hebert, 2007; 

Tänzler et al., 2012). Our study confirms the benefits of integrating DNA barcoding into the 

taxonomic workflow of a biodiversity inventory in species-rich, yet poorly documented, biotas. 

This study contributed 1,005 new DNA barcode records to the reference library for the Bird’s 

Head Peninsula, including 264 MOTUs whose delimitation was corroborated by most DNA-based 

delimitation methods applied (Figs. 2 & 3). The distances to the nearest-neighbor are usually 

exceeding maximum intra-MOTU distances by an order of magnitude of 12 (Table 2); and a 

barcode gap is generally observed (Fig. 4). A single case of DNA barcode sharing is observed in 

mammals, when a specimen of Sus scrofa was nested within S. verrucosus. This was expected, 

considering the reported introgression among wild Sus species, as well as between domesticated 

and wild lineages (Scandura, Iacolina, & Apollonio, 2011). Along the same line, species 

delimitation analyses failed to separate a single species pair, including Rattus praetor and R. 

tanezumi (mammals, MOTU199).

Several cases of MOTUs displaying small genetic distances among them were detected 

among fishes, amphibians and reptiles (Fig. 5) including some newly discovered MOTUs and/or 

multiple MOTUs within one species entity delineated based on morphology. Several cases of large 

conflicts between PTP and other algorithms were associated to cases of multiple MOTUs 

displaying small genetic distances among them. In particular, none of the Melanotaenia goldiei 

and M. mairasi MOTUs were found by the sPTP and mPTP algorithms, resulting in the lowest 

estimate of numbers of MOTUs for all methods (Table S1). MOTUs of these two Melanotaenia 

groups displayed much lower K2P genetic distance to their nearest neighbors than in other fish 

lineages. Similar discrepancies between PTP and other methods such as GMYC were previously 

described (Luo et al., 2018; Shen et al., 2019), with PTP being less effective when large number of 

species and varying divergence levels were involved. Several similar cases were also observed for 

amphibians (e.g. Asterophrys pullifer MOTUs, Hylophorbus spp.), reptiles (e.g. Cyrtodactylus 

irianjayensis MOTUs, Emoia spp.) and mammals (e.g. Hipposideros spp.). Along the same line, 

GMYC is known to produce excessive splitting if based on maximum credibility trees without 

collapsing sequences into haplotypes. Here, applying GMYC algorithms to sampled trees along 

the merged Markov chain, using the complete DNA barcode dataset, yielded numbers of MOTUs A
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that compared favorably to other methods, with mGMYC providing generally a better match to the 

final consensus. These results confirm the benefits of combining several species delimitation 

methods and using a consensus instead of a single method when it comes to avoiding artefacts 

(Blair & Bryson, 2017; Delrieu‐Trottin et al., 2020; Kekkonen & Hebert, 2014; Kekkonen et al., 

2015; Shen et al., 2019). Aside from these particular cases, methods were largely congruent and 

resulted in the delimitation of MOTUs with homogeneous maximum intraspecific K2P distance 

distribution across classes (Fig. 4).

The proportion of MOTUs that were only identified to the genus level is high for fishes, 

amphibians and reptiles with a total of 75 MOTUs not identified to the species level (Table 3). 

This trend is markedly different from previous molecular studies of vertebrates in the neighboring 

biogeographical provinces of Sundaland and Wallacea, where identification to the species level is 

much more common (Arida, 2017; Bernstein et al., 2020; Conte-Grand et al., 2017; Dahruddin et 

al., 2017; Connell et al., 2018; Kyle Connell, Hamidy, Kurniawan, Smith, & Fujita, 2018; 

Sholihah et al., 2020). Along the same line, the number of cryptic MOTUs is substantial with 48 

MOTUs delimited within 19 species across the five classes (Table 4), the number of cryptic 

lineages within species ranging from 2 in most cases to 5 in Cyrtodactylus irianjayensis (reptiles). 

This trend was expected for some genera such as Melanotaenia for which DNA-based methods 

already helped to discover multiple new species in the Western parts of the island of New Guinea 

(Kadarusman et al., 2012; Nugraha et al., 2015). We found seven new MOTUs of Melanotaenia, 

which are now awaiting description (Table 3). Multiple cases of high and formally undescribed 

diversity were also detected here such as for the amphibian genera Hylophorbus (5 MOTUs) and 

Oreophryne (4 MOTUs), the reptile genera Emoia (12 MOTUs) and Sphenomorphus (12 MOTUs) 

and the bat genus Hipposideros (3 MOTUs). The result for amphibians was expected as previous 

similar efforts in tropical species-rich and poorly explored areas, e.g. the Amazon, yielded similar 

results (Fouquet et al., 2007; Vacher et al., 2020). This study highlights that diversity of the 

continental vertebrate biotas of the Bird’s Head Peninsula is probably largely underestimated. 

Species accumulation curves are still far from reaching a plateau, especially for birds, mammals 

and reptiles. This vast diversity is confined to very restricted areas. Our inferences indicate that 

some of the MOTUs (Melanotaenia golidiei group, Melanotaenia mairasi group, Asterophrys 

pullifer, Hylophorbus spp., Sphenomorphus spp. and Emoia spp.) may have diversified during the 

Pleistocene and are distributed in the periphery of the Lengguru massif (Figs. 6 & 7). These 

particular cases, also pointed out by conflicting PTP and GMYC species delimitation results, A
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suggest a recent in situ origin through allopatric speciation on small spatial scales. This trend was 

expected considering the complex geological history of the Lengguru massif that experienced an 

intense orogenic activity over the past 5 Million years (Bailly, Pubellier, Ringenbach, de Sigoyer, 

& Sapin, 2009; Villeneuve et al., 2010). In addition, karsts are highly fragmented landscapes that 

foster geographic isolation and promote endemism (Clements, Sodhi, Schilthuizen, & Ng, 2006; 

Polhemus & Allen, 2006). The present study further suggests that the build-up of species diversity 

in the Lengguru massif likely originated through a combination of immigration and in situ 

diversification over the course of its geological history as previously reported, for example, for the 

genus Melanotaenia (Kadarusman et al., 2012; Unmack et al., 2013). This calls for an increased 

effort to document further New Guinea’s biota and to develop rapidly a critical mass of biological 

expertise in Indonesia Papua, particularly in times of ongoing deforestation and habitat loss 

(Austin et al., 2019; Filer et al., 2009; Nelson et al., 2014; Novotny & Molem, 2020; Shearman & 

Bryan, 2011).

Conclusions

The present study highlights major biodiversity knowledge gaps in the Bird’s Head Peninsula, and 

confirms the utility of standardized DNA-based species delimitation methods in aiding 

biodiversity inventories. Applied to poorly surveyed faunas, such as those of the island of New 

Guinea, they facilitate the discovery of previously unknown biodiversity and highlight priorities 

for further taxonomic study. Here, a total of 123 MOTUs, corresponding 75 unidentified and 48 

unrecognized MOTUs based on an initial screening of their morphology, are waiting a re-

examination of their morphological characters and potentially a formal description. This number 

of potential new species is high and still underestimated for several groups such as reptiles, a trend 

that further points to the need to improve our knowledge of this biodiversity-rich island. Our study 

clearly shows how much we still do not know about the non-marine vertebrate diversity of the 

Bird’s Head Peninsula. Given that many species are still awaiting discovery and that we are 

looking at an accelerated loss of forest and other suitable habitat in West Papua, the need for 

priority conservation is paramount.
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Figures and Tables captions

Figure 1. Distribution of the 35 collection sites in the Lengguru massif (West Papua, Indonesia) 

and the 20 collection sites in the western part of the Bird’s head peninsula for the 1046 samples 

analyzed for this study. Map from https://maps-for-free.com/.

Figure 2. Bayesian Chronograms based on a 1.2% of genetic divergence per million years 

including DNA-based species delimitation derived from sGMYC, mGMYC, sPTP, mPTP, ABGD, 

RESL and final delimitation schemes based on majority rule consensus among the six methods for 

fishes (blue), and amphibians and reptiles (green). The black outlined boxes correspond to 

MOTUs derived from specimens identified to the species level. Regular boxes indicate MOTUs 

derived from specimens identified to the genus level.

Figure 3. Bayesian Chronograms based on a 1.2% of genetic divergence per Million years A
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including DNA-based species delimitation derived from sGMYC, mGMYC, sPTP, mPTP, ABGD, 

RESL and final delimitation schemes based on majority rule consensus among the six methods for 

mammals (yellow) and birds (purple). The black outlined boxes correspond to MOTUs derived 

from specimens identified to the species level. Regular boxes indicates MOTUs derived from 

specimens identified to the genus level.

Figure 4. Distribution of genetic distances below and above MOTU boundaries for amphibians (a, 

b, c), birds (d, e, f), fishes (g, h, i), mammals (j, k, l) and reptiles (m, n, o). (a, d, g, j, m) 

Distribution of maximum intra-MOTU distances (K2P). (b, e, h, k, n) Distribution of nearest 

neighbor distances (K2P). (c, f, i, l, o) Relationship between maximum intra-MOTU and nearest 

neighbor distances. Points above the diagonal line indicate species with a barcode gap. MOTUs 

boundaries correspond to the final delimitation scheme derived from the majority rule consensus 

among the six delimitation methods.

Figure 5. MOTU accumulation curves for fishes, birds, mammals, amphibians and reptiles. The x-

axis varies among classes.

Figure 6. Phylogeographic patterns among selected groups of fishes. MOTUs are represented 

according to the final delimitation schemes based on majority rule consensus among the six 

methods. The black outlined boxes correspond to MOTUs derived from specimens identified to 

the species level. Regular boxes indicate MOTUs derived from specimens identified to the genus 

level. (a) Melanotaenia mairasi group including M. mairasi (blue), M. goldiei (orange), 

MOTU008 (green), MOTU007 (yellow), MOTU006 (red), MOTU003 (pink). (b) Melanotaenia 

ammeri group including M. ammeri (green), M. arguni (orange), M. veoliae (red), MOTU002 

(blue), MOTU004 (yellow) and MOTU005 (pink).

Figure 7. Phylogeographic patterns among selected groups of reptiles (a, b, c) and amphibians (d, 

e, f) displaying high diversity of closely related MOTUs occurring on restricted spatial scales. 

MOTUs are represented according to the final delimitation schemes based on majority rule 

consensus among the six methods. The black outlined boxes correspond to MOTUs derived from 

specimens identified to the species level. Regular boxes indicate MOTUs derived from specimens 

identified to the genus level. (a) Cyrtodactylus spp. including Cyrtodactylus irianjayaensis A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

MOTU212 (yellow), MOTU213 (dark green), MOTU214 (orange), MOTU215 (blue), MOTU216 

(light green), Cyrtodactylus marmoratus (red) and Cyrtodactylus sermowaiensis MOTU218 

(purple) and MOTU219 (pink). (b) Sphenomorphus spp. including MOTU255 (blue), MOTU249 

(dark green), MOTU257 (light green), MOTU248 (yellow), MOTU259 (orange), MOTU256 (red) 

and MOTU258 (pink). (c) Emoia/Sphenormorphus spp. including Emoia jakati (light blue,) 

MOTU236 (dark blue), MOTU232 (dark green), MOTU235 (yellow), MOTU237 (orange), 

MOTU233 (brown), MOTU234 (red), MOTU230 (pink), MOTU238 (light purple), MOTU240 

(purple) and MOTU239 (dark purple). (d) Cornufer spp. including Cornufer bimaculatus 

MOTU063 (blue), MOTU065 (dark green), MOTU064 (light green) and MOTU063 (yellow), 

Cornufer papuensis MOTU061 (orange), MOTU062 (red) and MOTU060 (pink). (e) Asterophrys 

pullifer including MOTU089 (green), MOTU088 (yellow) and MOTU090 (red). (f) Hylophorbus 

spp. including MOTU079 (green), MOTU083 (yellow), MOTU080 (orange), MOTU081 (red) and 

MOTU082 (pink).

Table 1. Summary statistics of the number of DNA barcode records assembled per class, family 

and genus.

Table 2. Summary statistics of genetic distances including minimum, maximum and average K2P 

distances within-MOTU, among MOTUs within genus and among MOTUs within family for 

fishes, birds, mammals, amphibians and reptiles.

Table 3. List of the unidentified MOTUs including their genus assignment, consensus MOTU and 

BIN numbers, maximum within-MOTU K2P distance and K2P distance to the nearest neighbor.

Table 4. List of MOTUs assigned to the same species based on morphological characters, 

including MOTU and BIN numbers, maximum within-MOTU K2P distance (percent) and K2P 

distance to the nearest neighbor (percent).

Supplementary material.

Figure S1. Neighbor-joining tree of the 1005 DNA barcode records.

Table S1. List of all specimens barcoded in this study and corresponding results of the MOTU A
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delimitation analyses for sGMYC, mGMYC, sPTP, mPTP, ABGD and RESL.
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Table 1. Summary statistics of the number of DNA barcode records assembled per class, family and genus.

Systematics N specimens

Actinopterygii 343

Atheriniformes 225

Atherinidae 12

Craterocephalus 12

Melanotaeniidae 213

Melanotaenia 213

Clupeiformes 5

Clupeidae 5

Nematalosa 5

Cypriniformes 2

Cyprinidae 2

Barbodes 2

Gobiiformes 51

Butidae 10

Butis 8

Ophiocara 1

Oxyeleotris 1

Eleotridae 20

Eleotris 6

Giuris 2

Mogurnda 12

Oxudercidae 21

Awaous 2

Lentipes 1

Redigobius 3

Sicyopterus 2

Stenogobius 2

Stiphodon 11

Kurtiformes 1

Apogonidae 1

Glossamia 1

Ovalentaria 2

Rhyacichthyidae 2

Rhyacichthys 2

Perciformes 29

Kuhliidae 4

Kuhlia 4

Leiognathidae 2

Leiognathus 2

Lutjanidae 2

Lutjanus 2

Terapontidae 6

Mesopristes 1

Pingalla 5

Toxotidae 15

Toxotes 15

Siluriformes 20

Ariidae 12

Neoarius 12



 

Plotosidae 8

Neosilurus 3

Porochilus 5

Syngnathiformes 8

Syngnathidae 8

Hippichthys 2

Microphis 6

Amphibia 167

Anura 167

Ceratobatrachidae 38

Cornufer 38

Hylidae 1

Nyctimystes 1

Limnodynastidae 1

Lechriodus 1

Microhylidae 99

Asterophrys 16

Austrochaperina 11

Callulops 10

Cophixalus 12

Hylophorbus 17

Oreophryne 16

Sphenophryne 7

Xenorhina 10

Pelodryadidae 14

Litoria 14

Ranidae 14

Papurana 14

Aves 155

Accipitriformes 4

Accipitridae 4

Accipiter 4

Columbiformes 9

Columbidae 9

Chalcophaps 8

Ptilinopus 1

Coraciiformes 25

Alcedinidae 25

Ceyx 16

Dacelo 2

Syma 1

Tanysiptera 6

Passeriformes 112

Acanthizidae 18

Aethomyias 2

Gerygone 3

Origma 7

Sericornis 6

Artamidae 4

Melloria 4

Maluridae 1

Chenorhamphus 1



 

Melanocharitidae 24

Melanocharis 7

Toxorhamphus 17

Meliphagidae 18

Melilestes 5

Meliphaga 10

Myzomela 2

Xanthotis 1

Monarchidae 4

Arses 1

Symposiachrus 3

Oriolidae 4

Pitohui 4

Pachycephalidae 16

Colluricincla 6

Pachycephala 5

Pseudorectes 5

Paradisaeidae 2

Cicinnurus 1

Diphyllodes 1

Petroicidae 10

Heteromyias 1

Peneothello 2

Poecilodryas 1

Tregellasia 6

Phylloscopidae 2

Phylloscopus 2

Pomatostomidae 1

Garritornis 1

Psophodidae 3

Cinclosoma 3

Rhipiduridae 5

Rhipidura 5

Psittaciformes 5

Psittaculidae 5

Alisterus 2

Micropsitta 3

Mammalia 173

Artiodactyla 9

Cervidae 1

Rusa 1

Suidae 8

Sus 8

Chiroptera 135

Emballonuridae 13

Emballonura 12

Mosia 1

Hipposideridae 44



 

Aselliscus 2

Coelops 1

Hipposideros 41

Pteropodidae 55

Dobsonia 12

Macroglossus 5

Nyctimene 9

Paranyctimene 2

Pteropus 4

Rousettus 11

Syconycteris 12

Rhinolophidae 7

Rhinolophus 7

Vespertilionidae 16

Miniopterus 10

Myotis 3

Pipistrellus 3

Diprotodontia 6

Macropodidae 2

Dorcopsis 2

Petauridae 2

Dactylopsila 1

Petaurus 1

Phalangeridae 2

Phalanger 2

Peramelemorphia 7

Peramelidae 7

Echymipera 7

Rodentia 16

Muridae 16

Melomys 1

Paramelomys 4

Rattus 10

Uromys 1

Reptilia 167

Squamata 167

Agamidae 2

Hypsilurus 2

Boidae 2

Candoia 2

Colubridae 10

Boiga 1

Dendrelaphis 1

Rhabdophis 1

Stegonotus 5

Tropidonophis 2

Elapidae 2

Aspidomorphus 1

Micropechis 1



 

  

Gekkonidae 32

Cyrtodactylus 22

Gehyra 2

Gekko 4

Hemidactylus 2

Lepidodactylus 1

Nactus 1

Pythonidae 3

Apodora 1

Leiopython 1

Simalia 1

Scincidae 115

Carlia 6

Emoia 47

Eremiascincus 2

Lygisaurus 14

Sphenomorphus 39

Tiliqua 3

Tribolonotus 4

Typhlopidae 1

Ramphotyphlops 1

Total 1005



 

  

Level Taxa n N taxa Comparisons Min Dist(%) Mean Dist(%) Max Dist(%) SE Dist(%)

Within Species Fishes 229 27 2215 0.00 0.37 11.14 0.00

Birds 140 30 426 0.00 0.43 2.48 0.00

Mammals 140 28 457 0.00 0.64 17.52 0.00

Amphibians 115 14 580 0.00 1.78 10.87 0.00

Reptiles 79 14 308 0.00 1.98 17.40 0.01

Within Genus Fishes 172 5 8541 0.65 9.75 18.02 0.00

Birds 38 5 81 0.00 8.77 12.87 0.04

Mammals 82 7 434 0.00 18.66 24.94 0.01

Amphibians 47 3 191 15.23 21.56 25.99 0.02

Reptiles 45 4 178 2.81 15.16 24.52 0.05

Within Family Fishes 57 4 279 11.39 17.79 24.99 0.01

Birds 131 10 625 6.14 14.24 19.85 0.01

Mammals 123 6 1254 12.51 20.42 26.95 0.00

Amphibians 88 2 1339 20.65 25.58 50.00 0.00

Reptiles 86 5 915 13.67 24.81 36.34 0.00

Table 2. Summary statistics of genetic distances including minimum, maximum and average K2P distances within-MOTU, among 

MOTUs within genus and among MOTUs within family for fishes, birds, mammals, amphibians and reptiles.



 

  

Table 3. List of the unidentified MOTUs including their genus assignment, consensus MOTU and BIN numbers, maximum within-MOTU K2P distance and K2P distance to the nearest neighbor.

Taxa Genus MOTU BIN Distance max. (%) Distance NN (%)

Amphibians Austrochaperina MOTU073 BOLD:ADN9008 0 11.6

Amphibians Austrochaperina MOTU074 BOLD:ADN9009 0.3 11.6

Amphibians Hylophorbus MOTU078 BOLD:ADN1146 - 14.8

Amphibians Hylophorbus MOTU080 BOLD:ADN4756 0.5 3.5

Amphibians Hylophorbus MOTU081 BOLD:ADO0048 0.2 1.2

Amphibians Hylophorbus MOTU082 BOLD:ADO3938 0.8 1.2

Amphibians Hylophorbus MOTU083 BOLD:ADO4150 0 14.8

Amphibians Lechriodus MOTU070 BOLD:ADO3037 - 22.8

Amphibians Oreophryne MOTU071 BOLD:ADN0004 0 19.7

Amphibians Oreophryne MOTU083 BOLD:ADO4150 0 17.3

Amphibians Oreophryne MOTU084 BOLD:AED5052 - 23.5

Amphibians Oreophryne MOTU085 BOLD:AED5053 0.2 17.3

Amphibians Oreophryne MOTU087 BOLD:ADO1683 1.3 19.7

Amphibians Xenorhina MOTU075 BOLD:ADN1930 - 18.8

Amphibians Xenorhina MOTU094 BOLD:ADO4474 1.5 13.7

Fishes Glossamia MOTU042 BOLD:ADM0638 - 21.8

Fishes Hippichthys MOTU057 BOLD:ADN0840 0.4 22.5

Fishes Melanotaenia MOTU002 BOLD:AAY9627 0 5.4

Fishes Melanotaenia MOTU003 BOLD:ABY7305 0 1.9

Fishes Melanotaenia MOTU004 BOLD:ABY8664 1.9 0.6

Fishes Melanotaenia MOTU006 BOLD:ACE4002 0 1.5

Fishes Melanotaenia MOTU007 BOLD:ADL9884 0 1.5

Fishes Melanotaenia MOTU008 BOLD:ADM3156 0.4 9.1

Fishes Melanotaenia MOTU009 BOLD:ADM8161 0.2 3.6

Fishes Microphis MOTU058 BOLD:ADN5559 1.5 16.7

Fishes Microphis MOTU059 BOLD:ADO3837 0.4 16.7

Fishes Neoarius MOTU051 BOLD:AAJ9962 1.5 7.7

Fishes Neoarius MOTU052 BOLD:ADL9301 0 3.8

Fishes Neoarius MOTU053 BOLD:ADM1229 0 2.3

Fishes Neoarius MOTU054 BOLD:ADM1230 0 2.3

Fishes Neosilurus MOTU055 BOLD:ADM9105 0 17.8

Mammals Coelops MOTU157 BOLD:ADJ4695 - 15.7

Mammals Echymipera MOTU191 BOLD:ADJ2534 - 3.5

Mammals Echymipera MOTU192 BOLD:ADJ2965 - 3.5

Mammals Hipposideros MOTU158 BOLD:ADI7709 - 14.5

Mammals Hipposideros MOTU159 BOLD:ADI7931 - 16.5

Mammals Hipposideros MOTU160 BOLD:ADJ0463 0 3.6

Mammals Melomys MOTU195 BOLD:ADI9381 - 14.7

Mammals Miniopterus MOTU179 BOLD:ADJ2078 1.6 15.4

Mammals Nyctimene MOTU170 BOLD:ABV8204 0.5 15.9

Mammals Pipistrellus MOTU183 BOLD:ADJ5548 - 20

Mammals Pipistrellus MOTU184 BOLD:ADJ5623 0 20

Reptilia Boiga MOTU205 BOLD:ADN8334 - 18.2

Reptilia Emoia MOTU239 BOLD:ADN9150 - 17.7

Reptilia Emoia MOTU240 BOLD:ADO3330 0.2 10.7



 

  

Reptilia Emoia MOTU232 BOLD:ADM9606 0 10.9

Reptilia Emoia MOTU233 BOLD:ADM9607 - 10.9

Reptilia Emoia MOTU234 BOLD:ADN0860 0.5 12.9

Reptilia Emoia MOTU235 BOLD:ADN0861 1.6 16.5

Reptilia Emoia MOTU236 BOLD:ADN5383 0.8 16.4

Reptilia Emoia MOTU237 BOLD:ADN9148 - 16

Reptilia Emoia MOTU238 BOLD:ADN9149 - 12.9

Reptilia Emoia MOTU239 BOLD:ADN9150 0 2.2

Reptilia Emoia MOTU240 BOLD:ADO3330 0.6 1.9

Reptilia Emoia MOTU241 BOLD:ADO4309 0.2 1.9

Reptilia Eremiascincus MOTU244 BOLD:ADO2936 - 9.8

Reptilia Eremiascincus MOTU245 BOLD:ADO2937 - 9.8

Reptilia Gehyra MOTU221 BOLD:ADO7212 0.2 24

Reptilia Hypsilurus MOTU202 BOLD:ADN7192 0 37

Reptilia Lepidodactylus MOTU224 BOLD:ADE2841 - 23

Reptilia Nactus MOTU225 BOLD:ADO5284 - 24

Reptilia Ramphotyphlops MOTU264 BOLD:ADN5549 - 31

Reptilia Rhabdophis MOTU207 BOLD:ADN7031 - 10

Reptilia Sphenomorphus MOTU258 BOLD:ADO0519 - 8.7

Reptilia Sphenomorphus MOTU259 BOLD:ADO0520 0.9 16.5

Reptilia Sphenomorphus MOTU260 BOLD:ADO0521 - 21.2

Reptilia Sphenomorphus MOTU252 BOLD:ADN1408 0.2 8.5

Reptilia Sphenomorphus MOTU253 BOLD:ADN1409 0.6 17.5

Reptilia Sphenomorphus MOTU254 BOLD:ADN5384 - 8.5

Reptilia Sphenomorphus MOTU255 BOLD:ADN5577 - 19.7

Reptilia Sphenomorphus MOTU256 BOLD:ADO0517 - 15.8

Reptilia Sphenomorphus MOTU257 BOLD:ADO0518 - 4.3

Reptilia Sphenomorphus MOTU258 BOLD:ADO0519 0.9 10.5

Reptilia Sphenomorphus MOTU259 BOLD:ADO0520 1.1 4.3

Reptilia Sphenomorphus MOTU260 BOLD:ADO0521 - 8.7



 

Taxa Genus MOTU BIN Distance max. Distance NN

Amphibia Cornufer papuensis MOTU060 BOLD:ADN5223 0.8 1.4

Amphibia Cornufer papuensis MOTU061 BOLD:ADN6050 - 6.5

Amphibia Cornufer papuensis MOTU062 BOLD:ADN9748 0.3 1.4

Amphibia Cornufer bimaculatus MOTU063 BOLD:ADO0083 0 7.5

Amphibia Cornufer bimaculatus MOTU064 BOLD:ADO0084 - 7.5

Amphibia Cornufer bimaculatus MOTU065 BOLD:ADO0085 - 3.9

Amphibia Cornufer bimaculatus MOTU066 BOLD:ADO0272 - 3.9

Amphibia Cornufer punctatus MOTU067 BOLD:ADN3984 0.6 4.3

Amphibia Cornufer punctatus MOTU068 BOLD:ADN5222 0.2 4.3

Amphibia Asterophrys pullifer MOTU088 BOLD:ADO1683 0.2 2.1

Amphibia Asterophrys pullifer MOTU089 BOLD:ADO2921 0 3.7

Amphibia Asterophrys pullifer MOTU090 BOLD:ADO2922 0.2 2.1

Amphibia Sphenophryne cornuta MOTU091 BOLD:ADN1659 - 2.4

Amphibia Sphenophryne cornuta MOTU092 BOLD:ADO0053 0 1.9

Amphibia Sphenophryne cornuta MOTU093 BOLD:ADO0994 0 1.9

Amphibia Litoria infrafrenata MOTU098 BOLD:AAN2556 0.3 2

Amphibia Litoria infrafrenata MOTU099 BOLD:ADN6283 0.3 2

Aves Melilestes megarhynchus MOTU121 BOLD:AAF2363 0 1.5

Aves Melilestes megarhynchus MOTU122 BOLD:AAF2363 0.3 1.5

Fishes Giuris margaritaceus MOTU028 BOLD:AAK3399 - 10.8

Fishes Giuris margaritaceus MOTU029 BOLD:ADM7171 - 10.8

Fishes Mogurnda mogurnda MOTU030 BOLD:AAD3229 0 2.1

Fishes Mogurnda mogurnda MOTU031 BOLD:AAD3229 1 2.1

Fishes Mogurnda mogurnda MOTU032 BOLD:AAD3229 0 2.5

Fishes Toxotes oligolepis MOTU049 BOLD:ADM9057 0.4 1.9

Fishes Toxotes oligolepis MOTU050 BOLD:ADM9058 0.2 1.9

Mammals Sus scrofa MOTU150 BOLD:AAA3445 2.4 2.7

Mammals Sus scrofa MOTU151 BOLD:AAA3445 - 2.7

Mammals Nyctimene albiventer MOTU171 BOLD:ABV8022 0.3 4.3

Mammals Nyctimene albiventer MOTU172 BOLD:ADI7768 2 4.3

Mammals Syconycteris australis MOTU176 BOLD:ABV9982 - 2.7

Mammals Syconycteris australis MOTU177 BOLD:ABV9982 1.7 2.7

Mammals Dorcopsis muelleri MOTU185 BOLD:ADI7672 - 5.7

Mammals Dorcopsis muelleri MOTU186 BOLD:ADI9488 - 5.7

Mammals Echymipera kalubu MOTU193 BOLD:ADI7714 0.2 2.5

Mammals Echymipera kalubu MOTU194 BOLD:ADJ1796 - 2.5

Mammals Paramelomys platyops MOTU197 BOLD:ADI8691 0 8.7

Mammals Paramelomys platyops MOTU198 BOLD:ADJ4724 - 8.7

Reptiles Cyrtodactylus irianjayaensis MOTU213 BOLD:AED5725 - 10.5

Reptiles Cyrtodactylus irianjayaensis MOTU214 BOLD:AED5297 - 12

Reptiles Cyrtodactylus irianjayaensis MOTU215 BOLD:ADN4791 0 10.7

Reptiles Cyrtodactylus irianjayaensis MOTU216 BOLD:ADN4792 - 12

Reptiles Cyrtodactylus irianjayaensis MOTU217 BOLD:ADN9189 - 10.5

Reptiles Cyrtodactylus sermowaiensis MOTU219 BOLD:ADO1322 0.5 2.7

Reptiles Cyrtodactylus sermowaiensis MOTU220 BOLD:ADO1323 0.2 2.7

Reptiles Lygisaurus novaeguineae MOTU246 BOLD:ADN7325 0.3 3.6

Reptiles Lygisaurus novaeguineae MOTU247 BOLD:ADN8226 2 3.6

Reptiles Lygisaurus novaeguineae MOTU248 BOLD:ADO2052 - 6.1

Table 4. List of MOTUs assigned to the same species based on morphological characters, including MOTU and BIN 

numbers, maximum within-MOTU K2P distance (percent) and K2P distance to the nearest neighbor (percent).




