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Abstract 

The SI unit of temperature will soon be redefined in terms of a fixed value of the Boltzmann constant 
 derived from an ensemble of measurements worldwide. We report on a new determination of  

using acoustic thermometry of helium-4 gas in a 3 l volume quasi-spherical resonator. The method is 
based on the accurate determination of acoustic and microwave resonances to measure the speed of 
sound at different pressures. We find for the universal gas constant =8.3144614 (50) J·mol-1·K-1. Using 
the current best available value of the Avogadro constant, we obtain =1.38064878(83)×10-23 J·K-1 with 

( ) /  = 0.60x10-6, where the uncertainty  is one standard uncertainty corresponding to a 68 % 
confidence level. This value is consistent with our previous determinations and with that of the 2014 
CODATA adjustment of the fundamental constants (Mohr et al., Rev. Mod. Phys. 88, 035009 (2016)), 
within the standard uncertainties. We combined the present values of k and u(k) with earlier values 
that were measured at LNE. Assuming the maximum possible correlations between the 
measurements, (kpresent/〈k〉 − 1) = 0.07 × 10−6 and the combined ur(k) is reduced to 0.56 × 10−6. Assuming 
minimum correlations, (kpresent/〈k〉 − 1) = 0.10 × 10−6 and the combined ur(k) is reduced to 0.48 × 10−6. 

Keywords:  

Boltzmann constant, acoustic resonance, microwave resonance, quasi-sphere, triaxial ellipsoid, 
speed of sound, definition of the kelvin 
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1. Introduction 

Since 1968 the unit of thermodynamic temperature of the Système International d’unités (SI system) 
has been defined as 1/273.16 of the temperature of the triple-point of pure water  [1]. 
International comparisons of triple-point of water cells show a dispersion of a few parts in 107 due 
mainly to variations in the isotopic composition of Standard Mean Ocean Water [2].  

The need for ever increasing accuracy in temperature measurement has motivated the forthcoming 
new definition of the SI unit of temperature, the kelvin, based on a fixed value of the Boltzmann 
constant  [3]. Implementation is planned for 2018, concurrent with the re-definition of the SI base 
units, five of which, the metre, the ampere, the mole, the kilogram and the kelvin, will be based on 
fixed values of fundamental constants (respectively the speed of light in vacuo, the fundamental 
charge , the Avogadro constant , the Planck constant  and the Boltzmann constant ) [4].  

Work has been underway in our laboratory and several other groups worldwide to make the most 
accurate determination of  possible before its value is fixed. Measurement techniques such as 
acoustic gas thermometry (AGT)[5] and dielectric-constant gas thermometry(DCGT)[6] have delivered 
the most accurate determinations of , with relative uncertainties lower than 2 parts in 106. We have 
opted for acoustic thermometry, which, strictly, measures the molar gas constant . However, 
since the relative uncertainty in the Avogadro constant, around 1.2×10-8 [7], is over an order of 
magnitude smaller than that of the most accurate measurements of , the relative uncertainties in  
and  are nearly identical. 

We have already performed three determinations of  by acoustic gas thermometry in a 0.5 l 
resonator, one with argon [8] and two with helium-4 [9,10]. In this paper, we report on a new 
determination of  at the temperature of the triple point of water, using acoustic thermometry of 
helium-4 gas in a 3 l quasi-sphere. 

The principle of the experiment is as follows. A gas-filled quasi-spherical resonator (QSR) is maintained 
in a thermostat at a known temperature (here =273.16K or within a few millikelvin of it, with 
measurements corrected for the small difference by a temperature ratio, other terms being sufficiently 
constant at the required level of accuracy). Acoustic resonance measurements are performed at 
different pressures of helium gas while the radii of the QSR are measured using microwave resonance. 
Great care is taken to avoid impurities in the test gas: a gas purifying system supplies a continuous flow 
of pure helium to the resonator to remove outgassing impurities. The amount of the only impurity that 
cannot be removed by purification, 3He, is determined by mass spectrometry of samples from the same 
bottle as that used for the experiment.  
 
In the following sections, we describe acoustic and microwave frequency measurements along three 
separate isotherms, two with a sound absorption lining in the thermostat, a third with it removed. The 
ensemble of data from the three runs is used to provide a value for the Boltzmann constant. We obtain 

=8.3144614 (50) J·mol-1·K-1, yielding =1.38064878 (83) ×10-23J·K-1 that is, a relative uncertainty u( ) 

/  = 0.60x10-6, where the uncertainty is one standard uncertainty corresponding to a 68 % confidence 
level. The uncertainty budget for the present determination of  is reported in Table 1 where each line 
refers to a given section of the paper containing detailed information. 
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Table 1. Summarized uncertainty budget for the determination of the Boltzmann constant. Extensive details of 

how each component was obtained are given in the relevant sections. 

 

Term Effect on k (Parts in 106) Section 

   

Temperature measurements 0.39 4 

Molar mass and gas purity 0.09 5 

Volume measurements 0.20 6 

Acoustic measurements 0.40 7 

   

   

Total  0.60 Square root of the sum of squares 

 

2 Principle of the experiment 

The aim of the experiment is to measure the value of the Universal gas constant . AGT is based on 
the measurement of the speed of sound in a gas of known composition and therefore molar mass M 
in a resonator of known dimensions [5,11]. In an ideal monatomic gas, the squared speed of sound is 
given by: 

 ,       (1a) 

where  is the thermodynamic temperature. In a real gas, collisions between molecules and the 
resonator wall, the non-zero molecular volume and intermolecular interactions lead to pressure-
dependent corrections to the squared speed of sound: 

 ,     (1b) 

where  is the pressure, and  and  the acoustic virial coefficients. The term is a semi-empirical 
coefficient. Higher-order corrections are possible but not considered here because, due to the limited 
pressure range of this experiment (  700kPa), the truncation error of the series expansion (1b) 
amounts to less than 0.01 parts in 106.  

The molar mass  of the gas must be accurately determined, implying that composition, impurity 
content and isotopic composition must be known. Among monoatomic gases, isotopic abundance 
considerations favour argon and helium-4. The former is composed of 99.6 % 40Ar while 4He samples 
contain only trace amounts ( 10-6 or less) of 3He.  

The experiment presented in this paper is performed with 4He, which has three advantages over argon. 
First, its thermophysical properties can be calculated ab initio with high accuracy. Secondly, provided 
impurities have been removed and there are no air leaks, the isotopic ratio is easier to determine and 
the relative amount of 3He far lower than that of 36Ar in natural argon. Thirdly, the resonance 
frequencies are higher by a factor (MAr/MHe)1/2     than for argon gas in the same resonator. This 
means the modes studied are less likely to excite shell vibrations that perturb acoustic measurements. 

The reader should bear in mind that, prior to starting the measurements with 4He presented in this 
paper, we performed measurements in argon with the same apparatus. However, no accurate 
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determination of  was ever achieved because the scatter of measurements was unacceptably high, 
i.e. 20 times greater than in the present work. We discovered only recently that the cause was metallic 
swarf in the inlet and outlet tubes (used for gas flow), produced by diamond turning of the copper 
hemispheres with the tubes attached. The swarf randomly changed the acoustic impedance of the 
system, the effect of which was to increase the dispersion of the acoustic measurements. The 
obstructed ducts were subsequently removed and replaced, after which accurate measurements with 
argon would have been possible. However, time limits constrained us to restrict the work to helium. 

In the case of helium, it is possible to make ab initio calculations of the coefficients  (i= 1, 2) to a level 
of accuracy comparable with or better than that available by experiment [12,13]. In our analysis, we 
use these ab initio values and set the term  equal to   
being the 2014 CODATA value of the universal gas constant R [7]. This leads to a first approximation of 
the expected square speed of sound 

.   (1c)  

In our previous experiments, fits were made to squares of experimental sound velocities  as a 
function of , and the pressure-independent part  extracted. Given the now excellent reliability of 
ab initio calculations of the coefficients  and , we fit the difference     

     (2)  

where  and . To simplify the model we assume A2
 ≈ A2,ab 

initio. While the maximum value of the term 2
2 corresponds, at 273.16 K, to less than 4 × 10-6 of the 

squared speed of sound, the use of this approximation introduces an additional uncertainty 
contribution quantified in Table 6 (uncertainty of ab initio speed of sound). The frequencies needed to 
calculate  before fitting with equation (2) are first corrected to take into account several perturbing 
effects, including shell motion, microphone effects and any unsuspected perturbations. We fit 
experimental speeds of sound to this model to determine the values of   ,  and .  

Practical measurements involve either acoustic velocity determinations at several different pressures 
to extract the pressure-independent term  [5,10] or else measurement at a fixed pressure and 
correction for its effect [14,15]. In our work, we use the former approach.  

The remainder of the paper addresses the details of the measurement and is structured as follows. In 
section 3 we describe the principle of the experiment and the thermostat. Thereafter, in section 4, we 
outline the thermometry and pressure measurements. The issue of molar mass is presented in section 
5 and the determination of the sphere radius in section 6. The acoustic measurements are described 
in section 7 and the overall uncertainty budget in section 8. Section 9 contains a summary and 
conclusions. Appendix A gives fitted parameters pertaining to three different methods of analysis of 
the acoustic data. Appendix B deals with correlated uncertainties between the four determinations of 
the Boltzmann constant at LNE. 

3 Apparatus 
The apparatus is adapted from that used in our previous measurement with helium [10]. The main 
difference is the use of a larger resonator. The 3 l QSR and the associated isentropic thermostat have 
been described briefly elsewhere [16]. We recall here that the resonator is a tri-axial ellipsoid made of 
high conductivity copper (CUA1). It is composed of two assembled hemispheres having a total mass of 
14 kg. (For brevity, we use the term ’hemisphere’ to refer to ’quasi-hemisphere’). The inner surfaces 
of the upper and lower hemispheres are diamond turned. The radii of the axes of the ellipsoid, 
determined prior to assembly using a coordinate measuring machine (CMM), are 90.074 mm, 
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90.134 mm and 90.174 mm. Loop antennae are used thereafter for real-time dimensional 
measurements via microwave measurements. Two acoustic transducers flush with the inner surface 
are used for emission and detection. The thermostat has a time constant of 6 h. The temperature of 
the heat shield is controlled to within ±10μK and the set point is chosen such that there is no need to 
heat either the pressure vessel or the resonator. The only heat sources are thermometers generating 
around 100μW by their self-heating, and microwave absorption in the copper, adding another 200μW.  
 
 

4. Thermometry, gas handling and pressure measurements 

4.1 Thermometry 

The temperature of the resonator is measured using four Capsule-type Standard Platinum Resistance 
Thermometers (CSPRTs) (Tinsley9 229073 and 203288, Hart Scientific9 HS135, Leeds & Northrup9 
1825277), two on each hemisphere. As in our previous work [8], we have used CSPRTs from three 
different manufacturers, all calibrated at the triple point of water using the same bridge, cables and 
standard resistance as those used in the determination of the Boltzmann constant.  

CSPRTs provide the traceability to the temperature of the water triple point. The temperature of the 
resonator  is never centred exactly on 273.16 K, since this would lengthen the time of the 
experiment several-fold, which is unacceptable. The typical temperature deviations Δ  lie within 
±10mK from  and are evaluated from the average of the temperature measurements performed 
with the CSPRTs. They can be easily corrected in the data analysis, to yield speed of sound values at 
the temperature = – Δ . Since the sensitivity of each thermometer is accurately determined 
from its calibration, the uncertainty introduced by the offset correction never exceeds 10 μK. 

We determined the homogeneity of the temperature across the resonator in the course of some of 
the experimental runs described in section 7.3. In particular, we measured the temperature 
homogeneity during run 1 at a pressure of 0.1 MPa, with a deviation from the water triple point 
temperature of ΔTres, 0.15MPa = 6.04 mK. Then we performed a second measurement during run 2 at 
0.42MPa, with ΔTres,0.42MPa = 9.01 mK. Finally, we measured the homogeneity during run 3 at 0.65 MPa, 
with ΔTres, 0.65MPa = 0.15 mK. CSPRTs n 229073, 203288 and HS135 provided temperature 
measurements reproducible within 0.06 mK, comparable with their calibration uncertainties. On the 
other hand, the reproducibility of CSPRT n1825277 was 0.68 mK, seven times larger than its calibration 
uncertainty. We considered this thermometer to be unstable and so did not use its measurements to 
determine the thermal homogeneity of the resonator, nor to measure its temperature. Figure 1 shows 
the results of temperature homogeneity measurements performed with the three stable 
thermometers. 

We attribute an uncertainty related to the homogeneity of 0.31 parts in 106. Note that acoustic 
thermometry averages the thermal inhomogeneity [17]. Combined with the CSPRT calibration 
uncertainty, this yields an overall temperature uncertainty of 0.39 parts in 106 (see table 2). 

 
9 In order to describe materials and procedures adequately, it is occasionally necessary to identify commercial products by 
manufacturers’ name or label. In no instance does such identification imply endorsement by LCM-LNE, INRiM, or NIST, nor 
does it imply that the particular product or equipment is necessarily the best available for the purpose. 
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Figure 1. Temperature of the resonator measured using three different capsule-type standard platinum 
resistance thermometers, during three different runs at three different gas pressures. Values are expressed as 
differences with respect to TTPW, both in millikelvin and in parts in 106. The dotted lines represent the uncertainty 
interval related to the dispersion of thermometer readings.  

 

Table 2. Uncertainty budget for the thermometry measurements for the determination of the Boltzmann 
constant at the triple point of water TPW. The dominant contribution arises from the dispersion of 
thermometer readings at different locations.   

 

Term 
 

Uncertainty in k 
(Parts in 106) 

Note 

   
Repeatability 
and self-heating 

0.08 Evaluated with measurements performed on 
the resonator 
 

Standard resistor 
stability 

0.05 Temperature stability and time-drift of the 
standard resistor 
 

Resistance 
bridge 

0.04 Bridge linearity and bandwidth 
 
 

Dispersion of 
thermometer 
readings 

0.31 Standard deviation of the temperatures 
measured on the resonator (scaled to TTPW), 
includes the contribution of the correction ∆Tres  
 

TPW calibration 0.21 Calibration at the TPW, including TPW 
repeatability, isotopic effect, purity, 
hydrostatic head effect and heat fluxes 

TOTAL 0.3 Square root of the sum of squares 
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4.2 Gas handling 

The gas handling system is similar to that described in our previous measurement of the Boltzmann 
constant with helium ([10], figure 7). The main difference is that in this work only a single liquid-helium-
cooled cold trap was used; it was maintained at 4.3K, and its volume was 4 cm3. (In previous work [10], 
another cold trap containing active charcoal was also employed). Ideally, the only impurity present 
after the cold trap should be trace amounts of 3He, all other gases being condensed.  

As stated in section 2, the gas handling system and apparatus had previously been filled with argon 
which, for work with helium, had to be flushed out. Thus, a possible systematic error - related to 
residual amounts of argon remaining in the system downstream from the cold trap – might be 
suspected. Preliminary measurements of the speed of sound in helium were performed repeatedly for 
one month after the change of gas until a stable value was obtained. This was interpreted as indicating 
there was no more argon. One might suspect that if there were any argon in unseen cracks in the 
sphere surface, the amount of it would vary with the helium flow rate. Now the flow rate changes by 
more than a factor of three between the lowest (0.15 MPa) and highest pressure (0.7 MPa) yet no 
modification of the speed of sound was observed at the level of experimental resolution. It is assumed 
therefore that the appropriate molar mass for the determination of the Boltzmann constant is that of 
the gas supplied by the bottle. This was determined by mass spectrometry discussed below in 
section 5. 

 

4.3 Pressure measurements 

In the gas handling system, which has the same arrangement as that of our previous measurement 
with helium in the 0.5 l QSR [10], the pressure of the helium is both controlled and measured at the 
inlet of the QSR. The control is performed by a servo loop using a Paroscientific Inc. Digiquartz model 
745 High Accuracy Pressure Standard9 gauge. The measurement is performed using an absolute 
pressure piston gauge. To minimise pressure corrections due to flowing gas, a line with a large 
impedance is installed between the inlet of the QSR and the control pressure gauge, while the 
impedance is about 62 times smaller between the QSR inlet and the piston balance. Aside from its 
accuracy, the piston gauge has the advantage that its calibration uncertainty is of the form a + b·p. This 
implies that, in the extrapolation of the square speed of sound versus pressure, the linear component 
of the calibration uncertainty has no effect. In fact, the linear calibration term b·p affects the fitted 
semi-empirical coefficient 1’, but has no impact on the measured value of , since the latter is 
obtained from the coefficient 0’. 

The piston gauge used in this work (Ruska 2465-7279, piston-cylinder serial number C662) was 
calibrated by the Mass and Derived Quantities group at LNE. It delivered an uncertainty in pressure 
measurements up= +7.0×10-6× , yielding 5.1 Pa at the maximum pressure of 0.7 MPa used in 
this experiment. Such an uncertainty affects our determination of  by 0.05 parts in 106. 

Note that the piston gauge was unavailable for the four measurements performed in run 3. In that 
case, data from the control gauge were used to measure pressure. The control gauge was calibrated 
with an uncertainty of 7.5 Pa, but showed a hysteresis of 11.2 Pa. To be conservative, we decided to 
take this last value as the maximum estimate of our pressure uncertainty, which yielded a relative 
uncertainty in R of 0.1 parts in 106 (table 6). 
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5. Molar mass 

The possibility of a more accurate estimate of the molar mass is one of the major advantages of helium 
as the acoustic gas. In our experiment, we used ultra-pure helium at 99.9999% (Air Liquide 
Alphagaz 29). Using a cold trap at 4.3K, all gases except 4He and trace amounts of 3He were removed. 
The trace amounts of 3He present in the 4He were determined at the Centre de Recherches 
pétrographiques et Géochimiques (CRPG). In addition, we performed experiments to assess the 
absence of any other significant gaseous impurity inside the resonator. Table 3 summarizes the 
uncertainties related to the determination of the molar mass of helium. Details are given in sections 
5.1 and 5.2. 

 

Table 5.1 Uncertainty budget for molar mass determination. The relative change in the molar mass gives an 
identical relative change of the Boltzmann constant k.  

 

Term Effect on k  
 (Parts in 106) 

Note 

3He/4He ratio 0.01 Uncertainty estimate from CRPG-CNRS (section 5.1) 

Impurity 0.02 Change of two bottles (section 5.2) 

Estimated outgassing 0.08 Effect of gas flow change (section 5.3) 

Single cold trap effectiveness 
 

Difference of two cold traps 
 

0.03 
 

0.03 

Supplementary study using Ar seeded He gas. 
(section 5.4) 
With or without charcoal [10] 

Total 0.09 Square root of the sum of squares 

 

The following sub-sections explain how the uncertainties in Table 3 were determined. 

 

5.1 Determination of 3He content in 4He 

Gas samples were collected from the inlet tube of the resonator in two different conditions, namely 
with or without the liquid helium cold trap. The reason for this was to see whether the presence of 
impurities would have any effect on the measured 3He/4He ratio. The samples were then sent to CRPG 
for the analysis of their 3He content. Details of the experimental set-up available at CRPG are given in 
Mabry et al. 2013 [18] and 2015 [19]. The system uses a Thermo Scientific Helix Split Flight Tube Noble 
gas mass spectrometer9. The instrument, specifically designed for helium isotope analysis, 
incorporates a split flight tube that physically separates the beams of 3He and 4He ions. The 
spectrometer has a resolving power (M/ M) of 700, large enough to separate the 3He peak from those 
of its isobars tritium (3T) and hydrogen deuteride (HD). The ions are detected using a Faraday cup of 
resolution 425. Stray ions are removed by an electrostatic filter located before the multiplier. Helium 
mass spectra are obtained at a trap current of 400μA with an accelerating voltage of 4.5kV. Under 
these conditions, the helium sensitivity is 2.35×10-4 A·torr-1. To minimize perturbations due to HD, an 
SAES getter9 is installed on the mass spectrometer to absorb all molecular isotopes of hydrogen. The 
background of argon and other heavier isotopes is kept low with the help of a liquid-helium-cooled 
trap maintained at around 25 K with a temperature stability of ±50 μK. 
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The measurements on our gas samples were carried out in two steps: purification, then mass 
spectrometry. To perform the purification, the gas was handled in a high-vacuum line (the pressure 
being in the range 10-6Pa). An aliquot of the gas of interest was purified and equilibrated in a trap 
containing charcoal held at liquid nitrogen temperature ( 77 K) for 20 min, to remove all species but 
neon, helium and hydrogen. The remaining gas was then expanded in another part of the line where 
it was sequentially trapped for 10 min in each of a suite of two getters held at 400 °C and room 
temperature, respectively, and another charcoal trap at liquid nitrogen temperature.  

After purification, helium and neon were trapped in a cold head containing a few grains of charcoal 
held at 10 K. The temperature was then raised to 45 K to release helium, which was then analyzed 
isotopically. After analysis of the helium, the cold head temperature was raised at 105 K to release 
neon, which was then analyzed for its abundance in the same mass spectrometer. The instrument was 
calibrated daily with aliquots of a standard gas containing atmospheric helium and neon [19]. For 
atmospheric air, the helium-to-neon ratio should lie close to 0.3 whereas it should be infinite for a 
bottle of pure helium. The ratio is thus an indicator of any air contamination. We found a value 
4He/Ne>2000, strongly suggesting there was no air leak in the system.  

From the analysis of the two gas samples sent to CRPG, we find ratios 3He/4He of 4.42x 10-8 (with no 
cold trap) and 3.55 x10-8 (with a cold trap). Though smaller than in [15,20], these ratios are compatible 
with the isotopic ratio 3He/4He of natural gases, from which industrial helium is extracted. Such a ratio 
varies generally over two orders of magnitude, from 10-8 for the pure radiogenic end-members to 10-6 
for gases having incorporated a significant mantle-derived component [21]. Thus, each gas reservoir 
has its characteristic He isotope signature, depending on its tectonic context. 

The presence of helium-3 at a level of a few parts in 108 reduces the value of the Boltzmann constant 
by 0.01 parts in 106 with respect to a gas of pure helium-4.  

 

5.2 Gas Impurity estimation by change of gas bottle 

To evaluate the effect of the residual impurities in the gas, we performed three experiments. The first 
was a change of the gas cylinder supplying helium to our apparatus, with another bottle of the same 
nominal purity. The objective was to check the effectiveness of our purification system, composed of 
a getter and a liquid-helium cold-trap [10]. The effect of changing the bottle was investigated using the 
acoustic resonance frequencies. The difference in results obtained using one or other of the bottles 
(0.03 parts in 106 in the value of ) was indistinguishable at the noise level of the experiment even 
after eight times the recycling time needed to refresh all the volume in the sphere. This compares with 
our previous measurement with helium [10] where the change was +0.5 parts in 106. In retrospect, we 
suspect there was problem with the cold trap used at the time, i.e. too low a level of liquid helium in 
the Dewar. The test of cold trap efficiency described below has boosted our confidence in that 
assertion. 
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Figure 2. Effects of changing helium bottles and flow rate. The vertical axis displays double the relative frequency 
variation 2 f/f for the mode (0,3). For the first 18 hours, the original bottle was used, after which it was changed. 
Any change in the resonance frequency is imperceptible. After 50 hours, the gas flow was throttled down to the 
minimum rate. The effect of outgassing of the resonator is manifest, producing the negative slope. 

 

5.3 Estimation of outgassing  

The second test for the evaluation of impurity effect was a gas flow change at a pressure of 0.65MPa. 
The gas flow was lowered by a factor around 100 to make visible the effects of the impurities 
outgassing from the resonator bulk. (It was not shut off completely so we could still control the 
pressure by a servo loop. A shut valve and closed volume would have led to pressure fluctuations 
related to those of the ambient temperature). Initially we recorded the frequency of the acoustic mode 
(0,3) at a constant flow rate of 100sccm 110; thereafter we reduced the flow rate to a mere 0.5 sccm 10 
and measured the progressive negative drift of the frequency over the next 70 hours (Figure 2). A linear 
fit to the data gives an estimate of = -0.0054 ppm h−1. Assuming this variation is caused by outgassing 
of water from the inner surface of the resonator, we calculate the corresponding outgassing rate of 
8×10−12mol m−2 s−1, which is compatible with typical rates for metal surfaces after prolonged 
evacuation. As in [14], we use this estimate to calculate the maximum possible concentration of water 

                                                           
10sccm = standard cubic centimetres per minute, corresponding to 1.6667×10−8 m3 · s−1 in the International 
System of Units (SI). We define the volumetric flow 1 sccm as the flow of 1 cubic centimetre per minute of 
argon at a pressure of 103 kPa and temperature of 20 °C. 
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vapour in the working gas under normal experimental conditions, i.e. with helium flowing at 100 sccm, 
with the result = 0.008 parts in 106 and a possible corresponding effect on our estimate of  of 
−0.03 parts in 106. If our assumption that the observed drift of the mode (0,3) frequency being due to 
outgassing of water vapour were wrong, and the cause was instead a virtual leak of argon from a small 
volume communicating with the resonator with a large impedance to flow, then the concentration of 
argon in our working gas would be = 0.008 parts in 106 and the possible corresponding effect on 
our estimate of  of −0.07 parts in 106. All things considered, we ascribe an uncertainty to our estimate 
of impurity for  of 0.08 parts in 106 (Table 3).  

 

Figure 3. Gas handling in a complementary study to demonstrate the effectiveness of a liquid helium cooled trap 
in removing argon gas.  Left: A small volume was filled with natural argon and attached to the end of a long thin 
tube (3mm diameter, length 1m) via a valve (V5). The tube is pumped out to a few pascals. Middle: Valve V5 is 
opened and becomes filled with argon. Right: Valve V2 is opened to mix the argon and helium gases in the long 
tube; argon diffuses into the helium flow bound for the acoustic resonator. 

 

Figure 4. Measurement of the effectiveness of a liquid-helium-cooled trap to remove argon gas. The square of 
the speed of sound is proportional to the square of the frequency of a give acoustic mode. Here we use the mode 
(0,3) at 0.625MPa. Left (blue): Normal conditions, flowing helium-4 purified by the cold trap. Middle (red): cold 
trap by-passed with diffusion of argon as described in Figure 3. The frequency shift of 85parts in 106 is manifest. 
Right (grey): re-introduction of the cold trap.  
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5.4 Cold trap effectiveness 

Following the present campaign of measurements, a third, supplementary experiment was performed 
to demonstrate the effectiveness of the cold trap (Figures 3 and 4). To simulate the effect of 
contamination in the bottle, we prepared a mixture in an evacuated one metre long tube into which a 
small amount of argon gas was introduced before the rest was filled with pure helium ahead. Due to 
the diffusion, the molar concentration of natural argon rose gradually to 9.5 parts in 106, following an 
error function shape in accordance with the theory of diffusion. In a first instance, acoustic 
measurements with no cold trap showed an 85 parts in 106 decrease of the speed of sound squared 
compared with pure helium. 

The cold trap was then re-installed and, as expected, the shift diminished exponentially as the argon 
was removed (Figure 4). The amount of argon diminished following the exponential law (1-exp (-t/ )) 
with  = 6.8h. After 115h the relative frequency shift was 0.03parts in 106. Note that for the 
measurement of the Boltzmann constant, the cold trap is in place for typically 400 hours. After 48 
hours, no shift was discernable at a level of 0.03 parts in 106. We ascribed this value as an uncertainty 
component in  related to the effectiveness of the cold trap.  

Because of time constraints, we did not introduce neon into the helium for the present demonstration 
(Fig. 4) of the effectiveness of the cold trap. However, in a previous publication [10], we compared the 
present cold trap (a simple cylinder of volume 4 cm3 directly in contact with the liquid helium at 4 K) 
to a second cold trap, of volume 10 cm3 and filled with charcoal that had a much larger surface at 4 K. 
Averaged over several hours, the square of the speed of sound in the helium gas delivered by the two 
cold traps differed by no more than 0.03 parts in 106, demonstrating the equivalence of the two cold 
traps.  Others have shown [22] that charcoal-filled cold traps reduced the neon concentration in helium 
to 2 10 9, even when the traps were at much higher temperature, near 35 K.  Finally, we note that 
Gavioso et al. [14] had three samples of commercially purified helium analyzed for neon; the largest 
mole fraction that they reported was xneon = (0.07 ± 0.02) μmol mol 1. 

 

6.Resonator dimensions  

As briefly recalled in section 3, the acoustic resonator is a tri-axial ellipsoid composed of two diamond-
turned hemispheres bolted together at the equator. Before the resonator was assembled, the radii of 
the three axes were measured using a CMM. After assembly, the radii were measured by microwave 
resonance measurements following the method described in many articles e.g. [8, 23]. The main idea 
is to measure the triplets of the TM1n and TE1n modes (n= 1, 2, 3 etc.), apply the corrections to account 
for holes and antennae [24], then calculate the second-order shape correction to deduce the radius 
[25,26]. Without the latter correction, it would not have been possible to obtain the very low 
uncertainty in earlier work [8-10,23] and here.  

For the determination of , the radii were determined constantly in situ by microwave measurement 
with both TE and TM modes (the latter being sensitive to surface quality). To provide redundancy, 
microwave frequency scans were performed over 10 different modes, TE11 to TE15 and TM11 to 
TM15, to provide redundancy. The central frequencies yield the radii while the measured half-widths 
of the resonance are a measure of the quality factor of the system, itself a function of the surface 
conductivity. Since microwave scans are interspersed with acoustic frequency measurements, the gas 
pressure in the resonator can change from one microwave measurement to another. Microwave 
measurements are therefore corrected for the refractive index of helium, including the polarisability 
[27] and the second dielectric virial [28]. 
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Results for measurements of mode frequencies and corresponding radii are shown in Figure5. As in 
[10], the radius a corresponds to the geometric mean of ,  and , i.e. ( × × )1/3 while  is 
the average of this mean over all ten modes shown.  A relative difference of 1×10-7 between the radius 

 derived from mode TM11 and the others was also observed in earlier work, a fact not too surprising 
since it is the mode most sensitive to surface effects such as imperfections caused by the insertion of 
acoustic transducers.  

 

Figure 5. Measurements of mean spherical radius a corresponding to the modes TM11, TE11, TM12, TE12, TM13, 
TE13, TM14, TE14, TM15andTE15 in order of ascending frequency. The solid line corresponds to the average 
radius  and the dotted lines the standard deviation. Values are referred to conditions of zero pressure and a 
thermodynamic temperature of 273.16 K. The triangles correspond to the values obtained by the very first 
measurements for which diamond-turned plugs flush with the inner surface were used instead of microphones. 
The circles give the values measured with the microphones in place.   

We found good agreement between the ellipticities 1 and 2 [8] determined in situ and, less 
accurately, by the CMM (from the CMM 1 = 0.1315 × 10–2 2 =0.705 × 10–3 [29] and by microwave 
resonance 1 = (0.13140 ± 0.0001) × 10–2 2 = (0.7021 ± 0.001) × 10–3 [25,26]).  We also measured the 
radius as a function of the helium pressure (for all modes above) and thereby determined the 
compressibility of the copper used to make the resonator (Figure 6): the elastic compliance of the shell 

 with the result  = -(7.580± 0.026) × 10–12 Pa−1. The thermal expansion of this 
resonator was obtained from the same microwave measurement. During the different measurements, 
all the data were taken at temperatures in the range of ±20 mK around 273.16 K. This temperature 
dispersion was used to estimate the thermal expansion of the sphere via the radii obtained by 
microwave resonance. This gave a value for the linear coefficient of thermal expansion  of the 
cavity of (1.584 ± 0.006) × 10−5K−1. Using the same method as previously [8], from the half-width of the 
TE11z mode, we obtained a value for the electrical resistivity of 1.59 ×10−8 Ω m at 273.16 K. Once again 
[8], using this value, we computed the half-widths of the other modes (Figure 7). We use the difference 
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of this estimated value and that measured over all the modes as a measure of the uncertainty for the 
electrical conductivity.   

 

Figure 6 Left: Cavity radius  as a function of pressure  at 273.16 K. Right: Residuals from a linear fit. The line 
refers to data and residuals from the arithmetic mean of all modes. Microwave estimates of the resonator radius 
at zero pressure are obtained by extrapolating to zero pressure microwave data measured at different pressures 
along the isotherm. The two measurements at 0.7and 0.37 MPa were made with a thermal stability drift of 
around 1mK·h-1; for the other data, the drift was less than 0.1mK·h-1. Note that the amplitude of the residuals 
corresponds to less than 10-8 of the radius, which is remarkable. Thanks to the use of piston balance, the relative 
uncertainty in the pressure was less than 7 parts in 106. 

 

Figure 7 Relative excesses half-widths g/f determined using the electrical resistivity deduced from the half-
width of the microwave mode TE11z resonance.  

The uncertainty budget for the microwave measurements is given in Table 4.  The fitting uncertainty 
of microwave resonances is governed by the signal-to-noise ratio (SNR) (104) and quality factor 
(250000). The hertz-level resolution is roughly the linewidth of the resonance divided by the SNR. The 
microwave oscillator frequency, referenced to a rubidium clock, has an uncertainty that affects  
below the level of 10-10. The scatter between the ensemble of modes studied, shown in Figure5, 
contributes a relative uncertainty of 0.08 10-6. Temperature measurements affect the value of the 
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radii deduced via the thermal expansion coefficient of copper. The effect of temperature uncertainty 
on the value of the refractive index is negligible. The temperature uncertainty, discussed above in 
section 4, includes the calibration uncertainty of the thermometers and the temperature spread over 
the volume of the QSR. Each of these affects the value of , via the dimensional measurement, at a 
level of 0.009 10-6. Due to the finite surface conductivity of copper, dimensional measurement must 
be corrected for skin depth. Moreover, the spread in the values of this conductivity between modes 
leads to a relative uncertainty in  of 0.08 10-6. Deviations from a perfect tri-axial ellipsoid are caused 
by the insertion of acoustic transducers and microwave antennae. These are referred to in Table 6.1 
as the “microphone perturbations” (relative uncertainty in  of 0.023  10-6) and “waveguide 
corrections” (relative uncertainty in   of 0.05 10-6). The effect of transducers was estimated from the 
difference between the radius obtained with the TM11 mode during initial measurements (with no 
transducer) and later ones with transducer (figure 5). The effect of antennae shape was quantified as 
the difference in values of radii measured with either straight or loop antennae. Although the copper 
resonator was maintained under vacuum or inert gas, an inevitable oxide layer formed on its surface 
prior to this. The effect of this dielectric layer leads to a relative uncertainty in the value of  of 
0.067  10-6. Assuming all these contributions to be independent, we obtain from the square root of 
their quadratic sum, a relative uncertainty in  of 0.16 10-6. 

Table 4 Uncertainty budget for microwave determination of resonator dimensions. For detailed explanations of 
the components see Pitre et al. [8] which uses the same technique applied to a resonator of volume 0.5 l.  

Uncertainty component Effect on k in parts in 106 Note 

   

Resonance fit 

Extrapolation to zero pressure 

0.008 

0.008 

Fitting uncertainty 

Uncertainty intercept of extrapolation 

Scatter among microwave radii 

(includes uncertainty of shape 

perturbation) 

0.08 Agreement between the TE and TM modes  

Frequency reference 0.0 < 1 part in 1010 

Temperature calibration 0.009 See Section 4 thermometry 

Temperature gradient 0.009 See Section 4 thermometry. Dispersion lower 

than 0.09 mK 

Surface conductivity 0.16 Scatter of the average conductivity relative to 

the conductivity obtained using the TE11z 

mode 

Microphone perturbation 0.023 Shift between the radius obtained with the 

TM11 mode and that of the other modes at the 

time of the first measurement and currently. 

Waveguide corrections 0.05 Difference between the radii observed with 

straight and loop antennae 

Dielectric layer 0.067 Difference in the radii obtained with only TM 

modes and only TE modes 

   

Total 
                    0.20 

 
Square root of the sum of squares 
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7. Measurement and analysis of acoustic resonance properties of the cavity  

We recall the principle of the method used to measure the speed of sound via acoustic resonance 
frequencies [11] then describe how data are corrected to account for several physical effects. The 
equipment, instruments, sensors and techniques to measure the acoustic field in the resonator and 
detect resonance frequencies and half-widths are very similar to those used in our previous work 
[8,10,30]. Aside from the larger resonator volume, the main difference relates to the sound source and 
acoustic sensor which here are two identical ¼’’ condenser microphones (GRAS 40BF9) flush-mounted 
on the wall of the cavity. The corrections are all estimated using well-established models [5,8,11], [31-
33].  

 

7.1. General principle  

The speed of sound c(p,T) at a given pressure and temperature can be related to the acoustic 
resonance frequencies  of the radial modes an ideal gas-filled spherical cavity. For the type of quasi-
spherical cavity considered here, and the radial acoustic mode of (0, ), this relationship can be written 
as 

 ,     (3) 

where ( , ) is the equivalent radius determined in section 6 and  the eigenvalue of the acoustic 
mode considered, close to the zeros of the first derivative of the corresponding spherical Bessel 
function and accounting for the real shape of the cavity [25,34]. 

We obtain the ideal resonance frequency f0n by adding to the measured acoustic resonance frequency 
f0n a correction term f0n that includes all the perturbing acoustic effects occurring in the cavity (see 
section6.3). These correction terms are calculated from analytical models of the acoustic field in the 
“perturbed” cavity [32,35]. The half-width  associated with the acoustic mode can be predicted by 
the same models. The excess half-widths between measured and calculated values provide a check on 
the validity of these models.  

To determine the values of f0n and g  experimentally, we use the same frequency scanning scheme as 
in Pitre et al [8] (same number of points and same spacing). As there, only a linear background is used 
for the complex resonant function. The acoustic modes acquired here are the first eight radial modes, 
i.e. modes (0,2) to (0,9), at several pressures from about 0.14 MPa to 0.70 MPa, and at temperatures 
close to TTPW (Isothermal). 

 

7.2. Acoustic perturbations and correction terms  

The speed-of-sound measurements are corrected for several physical effects, most significantly the 
thermal boundary layer. The other corrections are related to bulk dissipation, temperature 
discontinuity between the acoustic gas and resonator surface, duct effects of inlet and outlet tubes 
and the properties of the acoustic transducers. The thermal conductivity of the wall is neglected here 
(effect lower than 5  10-9). After years of experimental and theoretical effort especially by the NIST 
group [5,11,35,36], but also elsewhere [31-33], all the corrections are considered to be well 
understood. 
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In this latest experiment, special attention was paid to the effect of the inlet and outlet gas ducts. The 
ducts, i.e. long, narrow cylindrical tubes flush-mounted on the wall of the cavity, induce acoustic 
perturbations whose effects are estimated using well-established models of acoustic plane-wave 
propagation in cylindrical open ducts [34,37,38]. Given the dimensions of the ducts, the influence of 
their terminal radiation impedance [39] is negligible. The length of the tube was chosen to minimize 
the acoustic effect. The inlet tubing is very long (6 m) to thermalise the gas and minimise perturbations 
to the acoustic frequency. By contrast the outlet tube is relatively short (8.77 cm) since the flowing gas 
pressure is measured on this side. The choice of length was somewhat critical and resulted from a 
compromise that would perturb least the ensemble of acoustic modes to be studied [29]. Both tubes 
have a radius of 0.507 mm. Following Gillis et al [38], to estimate the uncertainty due to the effect of 
the tube, we changed the radius by 10 %. 

The perturbing effects of the acoustic transducers could be estimated using models of condenser 
microphones, [33,40,41]. However, to calculate correction terms one requires an accurate knowledge 
of the parameters of individual microphones which are not accessible to direct measurements, notably 
the tension of the membrane. For this reason, we include an extra term in the uncertainty budget (see 
section7.4), which turns out to be one of the largest. 

We have also taken account of the penetration of a thermal wave into the cavity wall. This effect is 
well modelled in the supplementary data A in [5]. Due to the large heat capacity of the copper 
resonator compared with that of the helium gas, this effect reduces the speed of sound by only 0.091 
parts in 106 for all the modes. 

In principle, the frequency dependence of the half-widths in the fitting function requires an additional 
correction to the fitted parameters  and  of the order ( n/2 )2 [42]. In practice, the maximum 
relative value of this correction for mode (0,2) is 0.03 parts in 106 at 0.15 MPa, with a negligible impact 
on our final determination of the speed of sound at zero pressure. 

Finally, the coupling between the acoustic field in the gas and the resonator shell can generate strong 
perturbations to acoustic modes whose frequencies lie close to vibration resonances of the shell [43]. 
If the prediction of these frequencies for a real resonator (sphere with equatorial rim, bolts and 
support) is an exceedingly difficult task, such a calculation is of great help for the design of the cavity 
since is provides an estimation of where the normal modes are likely to occur. On the other hand, it is 
not accurate enough to allow corrections to acoustic frequencies at the sub-part-per-million level 
required in the present experiment. Note however that the effect, which is approximately linear as a 
function of pressure, has no consequences on the zero-pressure extrapolation of the acoustic data and 
thus does not contribute any uncertainty to the determination of .    
 
To check for consistency, it is desirable to study as many acoustic modes as possible [5]. Here we 
excited modes (0,2) to (0,9); modes (0,7) and (0,9) were excluded from determinations of the speed of 
sound due to their large excess half-widths caused by overlap and/or coupling with other modes. An 
advantage of helium-4 over argon as far as shell vibrations are concerned is that corresponding 
acoustic mode eigenfrequencies are ( / )1/2   times higher and so less likely to excite them. 
(With the present resonator filled with helium-4 we shall see that only modes (0,2) and possibly (0,3) 
are significantly perturbed by shell vibrations whereas with argon, four of them are (0,4), (0,5), (0,6) 
and (0,8)).  
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7.3. Isotherm analysis and fitting function for the speed of sound 

As mentioned in the introduction (equation (2)), rather than fit square sound velocities to a pressure-
dependent function and extract the zero-order term  to deduce the ideal gas limit of the speed of 
sound, we fit instead the difference between experimental values and ab initio predictions based on 
the CODATA 2014 value of . Three runs were performed to obtain the data. In the first two, the 
inner wall of the pressure vessel was lined with cotton fabric to dampen any sound emitted by the 
sphere within it. For the third run, the fabric was removed. The residuals from a fit with equation (2)2 
to the data for the radial mode (0,2) are shown in figure 8. Instead of decreasing with rising pressure, 
they fall then rise again at the highest pressure. This effect is much less apparent in the residuals for 
mode (0,3) whose frequency lies further away from that of a shell resonance (figure 9); indeed, it might 
be statistically absent. For the mode (0,4) whose frequency lies well away from any shell resonance, 
no pressure dependence is discernible (figure 10). The same is true for modes (0,5), (0,6) and (0,8). 
Consequently, mode (0,2) was not used to measure the Boltzmann constant. Figure11 shows the 
excess half-widths scaled by 2×106f for the different modes. The fact they are all small indicates good 
agreement with the model. Figure 12 shows a plot of the function  /( ), which describes the 
increase of the half-widths at low pressure due to thermal boundary layer losses. The convergence of 
all the intercepts towards zero indicates the good quality of the acoustic model at low pressure. Figure 
13 shows residuals of the fits of the pressure-dependent function of equation (2) to selected acoustic 
data for five radial modes in the pressure range 0.15 MPa-0.7 MPa. The error bars correspond to the 
type-A fitting uncertainty of each single datum shown in figures 8, 9 and 10. The residuals obtained 
using the three different fitting methods described below are identical to the naked eye. 

 

 

 

Figure 8. Residuals of fits of the difference of experimental and ab initio square sound speeds as a function of 
pressure for the radial acoustic mode (0,2) studied during three separate runs. The greater dispersion at lower 
pressures results from the lower signal-to-noise ratio. The marked difference at low pressures between runs 1 
and 2 (acoustically damped pressure vessel) and run 3 (undamped) strongly suggests a shell vibration related 
effect. The noise in run 3 is higher for some inexplicable reason. None of the other modes exhibit this behaviour. 
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Figure 9. Residuals of fits of the difference of experimental and ab initio square sound speeds as a function of 
pressure for the radial acoustic mode (0,3) studied during three separate runs. The greater dispersion at lower 
pressures results from the lower SNR. The difference at low pressures between run 3 and runs 1 and 2 at low 
pressures hints at a shell vibration related effect. 

 

 

Figure 10. Residuals of fits of the difference of experimental and ab initio square sound speeds as a function of 
pressure for the radial acoustic mode (0,4) studied during three separate runs. The greater dispersion at lower 
pressures results from the lower SNR. Unlike the case of modes (0,2) (figure 8) and (0,3) (figure 9), there is no 
obvious difference at any pressure between runs 1 and 2 (acoustically damped pressure vessel) and run 3 
(undamped) since the frequency of mode (0,4) lies far from any shell vibration resonance.  
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Figure 11. Double average excess half-widths 2  relative to mode frequencies  0n as a function of pressure 
for the ensemble of radial acoustic mode used to determine the Boltzmann constant. The fact the values lie close 
to zero gives confidence in the model used to analyze the acoustic resonance frequencies [8]. 

 

Finally, five acoustic modes are considered in the following for the determination of the Boltzmann 
constant: modes (0,3) to (0,6) and (0,8). As mentioned in the introduction, square acoustic velocities 
are fitted to a pressure-dependent function to yield values for the coefficients ,  and  (equation 
(2)).  There are at least three ways to do this to arrive at a final value for the  and thereby the 
Boltzmann constant. Values obtained using three methods described hereafter are given in Table 5 
while further data is provided in appendix A. Method 1, used in previous experiments at LNE [8,10] 
and INRiM [14], determines the value of  for each mode and uses these results to it to obtain a 
single mean estimate of the temperature jump coefficient T [44] (formerly the thermal 
accommodation coefficient ). This is then used to correct the frequency of each resonance and hence 
the speed of sound. The corrected data is then refitted with no  /  term to yield individual values 
of  that are then averaged to give the result. According to the model, the relative frequency 
perturbation caused by imperfect thermal accommodation at the cavity surface is expected to be the 
same for all modes; moreover, it does not contribute to the halfwidths. In reality, the value of -1 can 
include other effects that cause it to vary between modes.  The drawback of Method 1 is thus that it 
neglects the experimental dispersion of the different acoustic modes, which should naturally lead to 
small variations between the fitted values of  for each mode. Indeed, the intercepts of zero pressure 
extrapolations of excess half-widths do show tiny variations from one mode to another (figure 11). A 
second approach (Method 2), used notably by de Podesta et al. [23], is to constrain the values of  
and  to be identical for each mode in the fitting procedure. In this way, only fitted values of the  
coefficient vary from mode to mode, as one might expect. This method implies then the same 
assumptions as the first one, concerning both  and . A third possibility (Method 3) is to float all 
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three coefficients for each mode. The average value of  is then used to calculate . The advantage 
of this method is that it includes and accounts for the experimental dispersion of different acoustic 
modes. However, to implement such a method successfully requires accurate acoustic data at low 
pressures; such data were not available in previous work [8,10]. While the uncertainties are somewhat 
greater than with the second method, it is no longer assumed that  is mode-independent. For this 
reason, it is the one we chose to adopt for the determination of . Results for the three methods are 
shown in appendix A. Whatever the relative merits of these approaches, it is most reassuring to note 
that they all yields values for  that agree to within their standard uncertainties. Figure 14 shows the 
residuals for all three methods. 

Table 5 Values of coefficients  and their standard uncertainties obtained using three different methods of 
analysis of acoustic data. More details are given in appendix A.  

Method (m2 s-2) 
  

(m2 s-2) 

 0.13 0.08 
 0.16 0.15 
 0.09 0.27 

 

 

 

 

Figure 12. Plot of the function  /  for the radial acoustic modes (0, ) with =3, 4, 5, 6 and 8. The function 
describes the increase of the half-widths at low pressure due to thermal boundary layer losses. The convergence 
of all the intercepts towards zero indicates the good quality of the acoustic model at low pressure.  
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Figure13. Residuals of the fits of the pressure-dependent function of equation (2) to selected acoustic data for 
five radial modes in the pressure range 0.15 MPa to 0.7 MPa. The error bars correspond to the type-A fitting 
uncertainty of each single datum shown previously in figures 8-10. The residuals obtained using the three 
different fitting methods described in the text are identical to the naked eye. 

 

Figure 14. Residuals for fits of the square of the speed of sound for the radial mode (0,4) as a function of pressure 
deduced using Methods 1, 2 and 3 together with their standard uncertainties. The difference between the 
residuals of each method is clearly far less than the uncertainty, whatever the pressure. 
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7.4. Uncertainty budget for acoustic measurements  

The uncertainty budget for acoustic measurements shown in Table 6 is dominated by two 
contributions. The largest of these, contributing to  at a level of 0.28 10-6, results from the scatter 
among acoustic modes when the pressure-independent term of equation (2) is extracted. This scatter 
naturally includes the contribution due to the uncertainty in the frequency of each acoustic resonance 
from peak fitting. The guiding principle of acoustic thermometry is to use as many modes as possible 
to estimate this spread, itself an indication of the exactness of the acoustic model used. The second 
largest term, for which we have ascribed a conservative upper limit of 0.24 10-6, arises from 
perturbations of the resonator surface due to the introduction of acoustic transducers. Although 
pressure measurements were made with particular care using a piston balance and servo control, 
there is some uncertainty in their value. This in turn has an impact on the analysis of acoustic 
frequencies as a function of pressure and contributions to the relative standard uncertainty in  at the 
level of 0.10 10-6. An experimental limit on the effect of the tubing impedance yields a term of 
comparable size, namely 0.09 10-6. There results a contribution of 0.06 10-6 from the ab initio value 
of the speed of sound arising from the uncertainty in the virial coefficients [12]. Finally, the two 
smallest contributions mentioned in the table, affecting  at the 0.02 10-6 level, are related to 
imperfect knowledge of the thermal conductivity of helium (via the boundary layer correction) and 
higher order corrections to allow for the non-spherical resonator shape. Assuming all these corrections 
to be independent, we calculate the total standard uncertainty as the square root of the quadratic 
sum, which amounts to 0.40 10-6.  It is therefore marginally the largest contributor to the total 
uncertainty in the Boltzmann constant, slightly exceeding the thermometry contribution discussed in 
section 3. 

Table 6. Uncertainty budget for the acoustic measurements for the determination of the Boltzmann constant.  

Term Effect on k (Parts in 106) Note 

   

Scatter among modes 0.28 Disagreement among modes (0,3) to 

(0,6) and (0,8)  

Thermal conductivity of helium 0.02 As given in [12] 

Uncertainty of ab initio speed of 

sound  

0.06 Due to uncertainty in ab initio virial 

coefficients 

Microphone perturbation 0.24 Worst possible case 

Relative shape perturbation 

corrections 

0.02 Microwave or CMM eigenvalue 

Tubing acoustic impedance 0.09 Difference in result when the 

impedance is increased by 10% 

Pressure uncertainty 0.10 Offset of 11.2 Pa  

Total 0.40 Square root of the sum of squares 
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8. Final result and uncertainty budget 

We find a value for the universal gas constant =8.314 4614 (50) J·mol-1·K-1. Using the current best 
available value of the Avogadro constant =6.022140857(74) x1023 mol-1 [7], we obtain 

= 1.38064878 (83) ×10-23J·K-1. Figure 10 shows the present result along with other measurements of 
the Boltzmann constant including CODATA 2014. Overall the most recent determinations by non-
acoustic techniques have uncertainties at the level of the earlier acoustic measurements and are in 
general agreement with them. We see our value lies close to the CODATA 2014 value and is in good 
agreement with that of our previous determinations. The overall uncertainty, below 1 part in 106 
includes the contributions of acoustic measurements, thermometry and pressure determinations, 
dimensional size and mass spectrometry. One of the largest components, 0.39parts in 106, was from 
the thermometry. The budget is given in Table 1. Upon request, the authors will provide the data in 
the form of spreadsheets. Also, the data will be posted on the internet [45]. In all our experiments, the 
uncertainty contributions related to resonator size, molar mass and temperature are correlated to a 
certain extent. In appendix B, we examine the effect of such correlations on the weighted average of 
all our measurements, which should be of interest to CODATA.  

 

 

Figure 15. Determinations of the Boltzmann constants showing values and their standard uncertainties. The 
present result LNE4 lies in excellent agreement with the CODATA 2014 value and is compatible with results of 
our previous determinations of . For clarity, we have separated results obtained using AGT (AGT) from those 
from dielectric constant gas thermometry (DCGT), Johnson noise thermometry (JNT) and refractive-index gas 
thermometry (RIGT); chronological order within each group is from top to bottom; References: CODATA 2014 
[7], NPL1 [46], NPL2 [31], NPL3 [23] corrected in [47] and [48], INRiM1 [15], INRiM2 [14], LNE1 [9], LNE2 [8], LNE2 
[10], NIM-NIST1 [49], NIM-NIST2 [50], NIM-NIST 3 [51]  NIST JNT 1 [52], NIST JNT 2 [53], NIST RIGT [54], PTB1 
[55], PTB2 [56], PTB3 [57], PTB4 [58]  NMIJ-JNT[59] UVa-CEM [60].   
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9. Conclusion and perspectives 

We have performed a new measurement of the Boltzmann constant  by acoustic thermometry of 
heium-4 gas. It marks an improvement in accuracy over our previous measurement using a smaller 
resonator of similar design. The result is in good agreement with our previous measurement with 
helium [10] and consistent with that performed with helium by Gavioso et al [14] in a resonator of 
volume 3-litres. We believe the lower data scatter and corresponding lower uncertainty components 
for acoustic and microwave measurements result from a better-defined geometry of the tri-axial 
ellipsoid (here) compared with that of two slightly offset hemispheres (Gavioso et al [14]). In our case, 
it was possible to use higher-order shape corrections calculated by Mehl [25,26] that were essential to 
obtain the stated level of accuracy. The present result also agrees with that of our earlier 
measurements of  using argon [8,9]. All our measurements yield values close to the CODATA 2014 
value [7] derived from many determinations including those using other techniques (e.g. DCGT). 

Perhaps the most interesting aspect of the present work lies in the analysis of acoustic resonances and 
their associated correction terms. For modes whose frequencies lie closest to those of shell vibrations, 
there is clearly a pressure-dependent effect. Reducing the effect of the shell vibrations is 
straightforward to implement and should be of future benefit in all similar acoustic gas thermometry 
experiments worldwide. 
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Appendix A:  Values of coefficients ,  and their standard uncertainties obtained using three 
different methods of analysis of acoustic data. 

Values of coefficients obtained using Method 1 are shown in Table A1. The Method yielded a value of 
the thermal jump coefficient  T= 6.740 ( =0.395).  The weighted average =0.13(m2 s-2) with an 
uncertainty of 0.084 (m2 s-2). 
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Table A1. Values of the coefficients ,  and their respective standard uncertainties A’0 and A’1   obtained 
using Method 1 for the radial acoustic modes (0,3) to (0,6) and (0,8). 

Radial acoustic 
mode 

 (m2 s-2) A’0(m2 s-2)  (m2 s-2 MPa-1) A’1(m2 s-2 MPa-1) 

(0,3) 0.15 0.30 91.84 0.24 
(0,4) 0.18 0.27 31.02 0.22 
(0,5) 0.12 0.20 18.76 0.16 
(0,6) 0.09 0.21 13.75 0.17 
(0,8) 0.17 0.29 9.21 0.23 

 

Values of coefficients obtained using Method 2 are shown in Table A2. From the value of  , we 
obtain T =6.65±0.67 while the value of =-0.051 (m2 s-2) with an uncertainty of 0.145 (m2 s-2). 

 

Table A2. Values of the coefficients , obtained using Method 2 together with 
their respective standard uncertainties. The subscript “13” refers to the coefficient ’1 for radial mode (0,3) etc. 

Coefficient Value Standard 
uncertainty 

 (m2 s-2) 0.160 0.145 
 (m2 s-2 MPa) 1.395 0.03 
 (m2 s-2 MPa-1) 91.76 0.16 
 (m2 s-2 MPa-1) 31.11 0.17 
 (m2 s-2 MPa-1) 18.76 0.17 
 (m2 s-2 MPa-1) 13.47 0.17 
 (m2 s-2 MPa-1) 9.31 0.17 

 

Values of coefficients obtained using Method 3 are shown in Table A3. They yield a weighted average 
=0.16 (m2 s-2) with an uncertainty of 0.27 (m2 s-2). 

 

Table A3.  Values of the coefficients ’0 , ’1 and the thermal jump coefficient T together with their standard 
uncertainties obtained using Method 3 for the radial modes (0,3) to (0,6) and (0,8). 

Radial 
acoustic 

mode 

 
(m2 s-2) 

A’0  

(m2 s-2) 
 

(m2 s-2 MPa-1) 
A’1 

(m2 s-2 MPa-1) T T 

(0,3) 0.59 0.46 91.24 0.20 6.481 0.46 
(0,4) -0.54 0.41 31.87 0.18 7.10 0.41 
(0,5) 0.11 0.30 18.84 0.13 6.773 0.31 
(0,6) 0.38 0.32 13.17 0.14 6.486 0.33 
(0,8) 0.20 0.46 9.37 0.19 6.808 0.46 
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Appendix B:  Average of all four determinations of  at LNE with or without correlation 

The LNE group has made four measurements of the Boltzmann constant k by acoustic thermometry 
one with argon “LNE 2” [8], and three with helium-4 “LNE1” [9] “LNE 3” [10] and this work “LNE 4”. 
They used three different quasi-spherical ellipsoidal resonators. The first “kBCU2v2” had a volume of 
0.5 litre but its surface was not diamond turned. The second, “kBCU3” also of volume 0.5 l had a 
diamond turned surface. The third “kBCU4” used in the present experiment has a volume around 3 l 
and a diamond-turned surface. These measurements are correlated to a certain degree since they 
involve some of the same apparatus for measuring temperature, molar mass and the resonator’s 
dimensions. Since it is not possible for us to specify the exact values of correlation coefficients, we 
treat the limiting cases to obtain weighted averages of the four values.  

The first two experiments using helium then argon had different resonators (kBCU2v2 and kBCU3) but 
the same thermometers so only thermometry could have been correlated. The latter resonator and 
thermometers were the same as those used for the second experiment with helium-4 (kBCU3He). In 
the experiments on helium, the molar mass determinations could be correlated. In fact, different 
laboratories performed the mass spectrometry for the helium experiments (LNE 3 and LNE 4) so we 
are conservative by assuming that these mass determinations are correlated. The correlations shown 
in Table B1 were included or not (with a correlation coefficient of 1 if correlated and 0 if not).  

Table B1. Correlation of parameters between the four determinations of the Boltzmann constant k carried out 
at LNE: =temperature, = molar mass,  = effective radius. 

Experiment LNE 1 LNE 2 LNE 3 LNE 4 
LNE 1  
LNE 2 
LNE 3 
LNE 4  

 

To obtain the value of Boltzmann’s constant shown in Tables B2 and B3, we used the CODATA 2006 
[61] value of the Avogadro constant and the atomic weights for the experiments LNE 1 and LNE 2, 
the CODATA  2010 [62] value for LNE 3 and that of CODATA 2014 [7] for the present measurement 
LNE 4. 

Table B2. Values of standard uncertainties and relative weights r for the four determinations of the Boltzmann 
constant  at LNE. The negative value for LNE1 is the result of a numerical accident. 

Experiment Gas Resonator 
 × 1023 

(J.K-1) 

ur  

(Parts in 106) 
r(without) r(with) Reference 

LNE1  He kBCU2v2 1.3806496 2.79 0.03 -0.01 [9] 

LNE 2  Ar kBCU3 1.3806477 1.40 0.11 0.08 [8] 

LNE 3 He kBCU3 1.3806487 1.04 0.21 0.13 [10] 

LNE 4 He kBCU4 1.38064878 0.60 0.65 0.80 This work 

(without)   1.38064887 0.48      

(with)   1.38064887 0.56      
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The negative value for LNE 1 arises from the inverse matrix of the correlation matrix. Note that this 
experiment has a much greater standard uncertainty than the three others. It is interesting therefore 
to consider the result with the analysis limited to the last three determinations of  (Table B3). When 
correlations are included, the ensemble average has the same uncertainty as that of the average of all 
four experiments, namely 0.56 parts in 106. With no correlations, the ensemble average of the four 
measurements has an uncertainty marginally lower (0.48parts in 106) than that with three (0.49 parts 
in 106). This implies that including or ignoring LNE1 will have a negligible impact on the final value of k 
used for the future definition of the kelvin. 

 

Table B3. Values of the Boltzmann constant and universal gas constant together with their standard 
uncertainties and relative weights r for the last three determinations of the Boltzmann constant  at LNE. Due 
to the negligible uncertainty of the Avogadro constant, the relative uncertainty in  and  is identical at this 
level of accuracy.  

Experiment 
 ×1023 

(J.K-1) 

  

(J.mol-1.K-1) 

uR  

(Parts in 106) 
r(without) r(with) 

LNE 2 1.3806477 8.3144565 1.40 0.12 0.08 

LNE 3 1.3806487 8.3144615 1.04 0.21 0.13 

LNE 4 1.38064878 8.31446142 0.60 0.67 0.79 

k(without) 1.38064864 8.31446084 0.49   

k(with) 1.38064868 8.31446102 0.56     

 

The values of k in Tables B2 and B3 (and in the supporting publications) used the best values of the 
Avogadro constant and atomic weights available at the time of publication.  For the convenience of 
the CODATA group and others who would like to recalculate k, we provide the values of the squared 
speed of sound 0

2 and molar mass for each of our four determinations. These are given in Table B4 
together with their standard uncertainties. 

 

Table B4. Values of the squared speed of sound and molar mass of helium-4 (LNE 1, LNE 2 and LNE 4) and 
argon (LNE3) together with their standard uncertainties. The molar mass uncertainty of LNE 2 was changed 
according to [47]. 

Experiment  c02 (  (g mol-1) (g mol-1) 

LNE1 945709.4 2.2 4.00260325 9.6×10-7 

LNE 2 94756.01 0.1 39.947805 3.5×10-5 

LNE 3 945708.82 0.79 4.0026032 2.1×10-6 

LNE 4 945708.81 0.42 4.00260321 3.6×10-7 
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