Mathematical Modeling of Vortex Interaction Using a Three-Layer Quasigeostrophic Model. Part 1: Point-Vortex Approach

Type Article
Date 2020-08
Language English
Author(s) Sokolovskiy Mikhail A.1, 2, Carton Xavier3, Filyushkin Boris N.2
Affiliation(s) 1 : Russian Acad Sci, Inst Water Problems, 3 Gubkina St, Moscow 119333, Russia.
2 : Russian Acad Sci, Shirshov Inst Oceanol, 36 Nahimovskiy Prospekt, Moscow 117997, Russia.
3 : IUEM UBO, Lab Oceanog Phys & Spatiale, Rue Dumont DUrville, F-29280 Plouzane, France.
Source Mathematics (2227-7390) (Mdpi), 2020-08 , Vol. 8 , N. 8 , P. 1228 (13p.)
DOI 10.3390/math8081228
WOS© Times Cited 2
Note This article belongs to the Special Issue Vortex Dynamics: Theory and Application to Geophysical Flows
Keyword(s) quasigeostrophic model, vortex interaction, intrathermocline lens, point vortex
Abstract The theory of point vortices is used to explain the interaction of a surface vortex with subsurface vortices in the framework of a three-layer quasigeostrophic model. Theory and numerical experiments are used to calculate the interaction between one surface and one subsurface vortex. Then, the configuration with one surface vortex and two subsurface vortices of equal and opposite vorticities (a subsurface vortex dipole) is considered. Numerical experiments show that the self-propelling dipole can either be captured by the surface vortex, move in its vicinity, or finally be completely ejected on an unbounded trajectory. Asymmetric dipoles make loop-like motions and remain in the vicinity of the surface vortex. This model can help interpret the motions of Lagrangian floats at various depths in the ocean.
Full Text
File Pages Size Access
Publisher's official version 13 1 MB Open access
Top of the page