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Abstract :   
 
1. Bioinformatic analysis of eDNA metabarcoding data is crucial toward rigorously assessing biodiversity. 
Many programs are now available for each step of the required analyses, but their relative abilities at 
providing fast and accurate species lists have seldom been evaluated.  
 
2. We used simulated mock communities and real fish eDNA metabarcoding data to evaluate the 
performance of 13 bioinformatic programs and pipelines to retrieve fish occurrence and read abundance 
using the 12S mt rRNA gene marker. We used four indices to compare the outputs of each program with 
the simulated samples: sensitivity, F-measure, root-mean-square error (RMSE) on read relative 
abundances, and execution time.  
 
3. We found marked differences among programs only for the taxonomic assignment step, both in terms 
of sensitivity, F-measure and RMSE. Running time was highly different between programs for each step. 
The fastest programs with best indices for each step were assembled into a pipeline. We compare this 
pipeline to pipelines constructed from existing toolboxes (OBITools, Barque, and QIIME 2). Our pipeline 
and Barque obtained the best performance for all indices and appear to be better alternatives to highly 
used pipelines for analyzing fish eDNA metabarcoding data with a complete reference database. Real 
eDNA metabarcoding data also indicated differences for taxonomic assignment and execution time only.  
 
4. This study reveals major differences between programs during the taxonomic assignment step. The 
choice of algorithm for the taxonomic assignment can have a significant impact on diversity estimates and 
should be made according to the objectives of the study. 
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1. Introduction

Environmental DNA (eDNA) metabarcoding is a promising approach to identify species within 

communities and can be used to evaluate biodiversity through a variety of estimators (Boulanger et al., 

2021; Deiner et al., 2020; Pawlowski et al., 2018). The approach is based on the collection of 

environmental samples (e.g. soil, air or water) that contain the target organisms’ DNA. After DNA 

extraction, DNA amplification with primers designed for a specific taxonomic group is performed and 

submitted to high-throughput sequencing (Deiner et al., 2017; Taberlet et al., 2018). The resulting 

sequencing data typically contains millions of amplicon DNA fragments. Bioinformatic programs are then 

used to i) clean the data, ii) associate fragments to samples when amplicons are pooled in a single library 

and iii) produce either a matrix of read counts per species occurring within each sample using a reference 

database or a matrix of operational taxonomic units (OTUs) occurring within each sample. With decent 

completeness of the genetic reference database, eDNA metabarcoding can provide accurate representation 

of the taxonomic composition within samples (Djurhuus et al., 2020; Marques et al., 2020; Minamoto et al., 

2012). Nevertheless, many biases can reduce the performance of such approaches which need to be 

controlled for, such as PCR and sequencing errors, gaps in reference databases, different species with 

identical sequences in the amplified region, etc. (Kwok & Higuchi, 1989; Schnell, Bohmann, & Gilbert, 

2015; Zinger et al., 2019). Several of these biases mitigated with posterior bioinformatics analyses by 

implementing appropriate filters. Yet comparative quantitative analyses are still lacking on the different key 

steps of bioinformatics pipelines.

A literature search with the keywords “environmental DNA”, “metabarcoding”, “community”, 

“bioinformatics analysis” (Supporting Information Method S1) identified six steps from raw sequence 

fragments to final identifications: paired-end reads merging, demultiplexing, dereplication, quality filtering, 

removal and correction of PCR/sequencing errors and taxonomic assignment (Fig 1). The order of those 

steps can vary depending on the pipeline being used. Some of these steps can have a strong impact on the 

resulting taxonomic composition and consequently, on biodiversity estimation (Bonder et al., 2012; 

Calderón-Sanou et al, 2020). Therefore, choosing the most appropriate bioinformatics program producing 

accurate, fast and sensitive taxa identifications is crucial (Pauvert et al., 2019). Until now, no consensus 

among existing bioinformatics programs and pipelines has emerged to choose the most appropriate for 

analyzing eDNA metabarcoding data (Bazinet & Cummings, 2012; Gardner et al., 2019; Lindgreen et al., 

2016; Peabody et al., 2015; Prodan et al., 2020; Sczyrba et al., 2017; Siegwald et al., 2017). In particular, 

there is no standard or recommendation related to existing programs, based on quantitative comparisons, in 

the context of aquatic eDNA data and particularly so for Teleostean fishes. 
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With more than 32,000 species, Teleostean fishes are the largest group of vertebrates (www.fishbase.org). 

Worldwide, a growing number of fish species and populations are threatened and decreasing in size due to 

overfishing as well as habitat degradation (Yan et al., 2021). With more than 60% of the publications on 

eDNA dealing with vertebrate monitoring, fishes represent the most studied group using eDNA approaches 

(Tsuji et al., 2019). As a result, they represent a relevant candidate taxonomic group to compare eDNA 

metabarcoding programs and pipelines.

eDNA metabarcoding based on water samples was first applied to monitor fish species both in marine 

(Thomsen et al., 2012) and freshwater environments (Robson et al., 2016). Currently, there is increasing 

interest in this technique for characterizing fish diversity (Berger et al., 2020; Jerde, Wilson, & Dressler, 

2019; Juhel et al., 2020; McElroy et al., 2020; Sigsgaard et al., 2017) in particular when classical methods 

are too invasive or do not perform well, as is the case for rare species or those that inhabit the deep sea. 

Many primer pairs have been developed to amplify different mitochondrial DNA fragments of fish DNA. 

The primer pair used in this study (teleo 12S mt rRNA; Valentini et al., 2016) is one of the most frequently 

used and has been proven effective in detecting rare biodiversity and discriminating species in European 

fluvial ecosystems (Civade et al., 2016; Collins et al., 2019; Pont et al., 2019). Since teleo 12S mt rRNA is 

a widely used primer set, it is a good candidate to explore the efficiency of different bioinformatics 

programs.

In this context, the goals of this study were to: i) explore common bioinformatic tools including one-step 

programs used in the different steps of metabarcoding data analysis and integrated pipelines, ii) assess the 

ability of these programs to retrieve accurately and rapidly species composition (occurrences and 

abundances) of representative fish communities, iii), assemble the best-performing programs for each step 

into a custom assembled pipeline, and compare its performance to three other pipelines designed for 

metabarcoding analysis (Barque, OBITools and QIIME2-based) using both simulated and real data.

2. Material and methods

2.1. Simulated fish communities

We simulated 29 different species assemblages, hereafter designed as “samples”, using the program 

Grinder (Angly et al., 2012). In these samples, the presence of 18 to 51 fish species were included (among a 

variety of cartilaginous and bony fishes: Actinopteri, Chondrichthyes, Cladistia, Cyclostomata and 

Sarcopterygii). Each sample was composed of random species from various classes, orders and families. 

Some samples contained several species belonging to the same genus (samples 3, 4, 6, 14, 19, 21 and 28). 

Relative abundances were attributed to each sequence in a given sample to represent real datasets. In 

sample 1, the most abundant species represented 50% of the reads and the other species had decreasing read A
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abundances with each having half as many sequences as the previous one. For six samples (2 to 7), species 

relative abundance were based on real samples from both large and small rivers (Cantera et al., 2019; 

Milhau et al., 2019; Pont et al., 2018) and marine ecosystems (Polanco Fernández et al., 2020). In samples 

9 and 25, all fish species (30 and 18, respectively) had equal abundance. For the other samples, abundances 

were attributed such that some sequences were very abundant and others rare (see Supporting Information 

Table S1). We simulated amplicons of the 26 to 60 bp 12S mt rRNA region containing the teleo primer. 

Species composing each sample were selected randomly from a custom reference database of 2,070 

sequences of the fish mitochondrial 12S rRNA gene (downloaded from GenBank, on the 23/01/2019). Each 

simulated assemblage was replicated 12 times, with the same species and abundance composition, to mimic 

PCR replicates variability. To obtain a dataset similar to those obtained from high-throughput sequencing, 

we applied an Illumina error model with 98% substitutions and 2% insertions/deletions. A total of 45,000 

reads were simulated in each sample replicate, for a total of 15,660,000 reads in the complete dataset. All 

the Grinder FASTQ files containing the interleaved amplicon sequences and quality scores for each 

simulated assemblage were concatenated to obtain output files similar to those obtained after a Miseq 

sequencing of one library of pooled PCR samples. Grinder also produced a text file describing the 

abundance of each sequence in the simulated replicates for each sample. These files were used as expected 

species composition and relative abundances to compute sensitivity, F-measure and RMSE on reads 

abundance using the outputs of each program involved in the comparative analysis.

The input and output data as well as the code written to construct the simulated dataset are available as a 

GitHub repository at: https://github.com/lmathon/metabarcoding_data_simulation.

2.2. Selected programs and steps

We selected some of the most cited programs for each step through a literature review with the keywords 

“bioinformatics”, “metabarcoding” and the name of the analysis step (see Supporting Information Table S2 

and Method S1). The most cited programs we considered are listed in Supporting Information Table S3. 

Here, we use the word “program” to define an independent binary or package dedicated to one of the six 

steps of eDNA metabarcoding analysis. The word “pipeline” refers to a program or set of programs that 

proceeds to analyzing all the steps from raw read assembly to species identification. 

The characteristics of our simulated dataset (Illumina sequencing, mitochondrial 12S mt rRNA gene region, 

very short amplicons, fish DNA) excluded many programs from our comparisons since they were not 

compatible with such data. For example, Mothur is specialized in analyzing 16S rRNA gene sequences, 

TagCleaner and DeML do not support paired-end reads, and Kaiju is specialized in protein-level 

assignment (see Supporting Information Table S3). QIIME is no longer maintained and some studies have 

shown that it requires a long execution time (Bonder et al., 2012) and the plugins used give a F-measure 

worse than that of QIIME2 (Gardner et al., 2019). As a result, QIIME2 was tested instead of QIIME. A
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USEARCH (R. C. Edgar, 2010) is a widely used program but is only available as open-source in its 

memory-limited 32-bit version which does not meet our open-source requirement. Instead, we used 

VSEARCH, its open-source equivalent (Rognes et al., 2016). 

To compare and identify the best programs, each bioinformatic step was tested successively by changing 

the program that performs this part of the analysis and by maintaining all others fixed. We decided to use 

the OBITools pipeline (Boyer et al., 2016) as a backbone for the performance tests (Fig. 1), because this 

pipeline generates reliable results for fish eDNA metabarcoding data (Bylemans et al., 2018; Pont et al., 

2018; Sales et al., 2019). All OBITools programs composing the fixed pipeline were evaluated in parallel 

with the other programs tested for each step. The steps were defined as follows: 1) Merging, where forward 

and reverse reads were aligned to create a single consensus sequence, 2) Demultiplexing, which assigned 

each sequence to its sample and removed the primers, 3) Dereplication, or keeping only one representing 

sequence and count for strictly identical sequences, 4) Quality filtering, which removed sequences that 

were too short or contained ambiguous bases, 5) Removing variants/PCR errors, so taking into account that 

real haplotypes and variants due to intractable sequencing/PCR errors should be grouped to avoid 

overestimating species richness and 6) Identifying taxa, where a taxon was assigned to each sequence. For 

this last step, we used the same reference database as the one used for the Grinder simulations. Only 

sequences assigned to the species level with more than 98% similarity were considered for species 

identification. The 10 programs compared in this study are listed in Table 1. Parameters chosen at each step 

for each program being compared can be found in Table 2. Since Grinder cannot simulate chimeras, the 

chimera removal step was not tested in this study. Each program was run on a cluster using Ubuntu 18.04.3 

LTS with 128GB RAM and 1 CPU to obtain comparable execution times. Data and software commands 

necessary to reproduce this study are available at: https://github.com/lmathon/eDNA--

benchmark_pipelines. 

2.3. Performance evaluation

Each program was evaluated by calculating indices that quantify its ability to produce accurate species lists 

(sensitivity and F-measure) and relative read abundances expected from the known or ground-truth 

simulated communities (RMSE). The execution time of each program was also recorded. Details on the 

computation of execution times can be found in Supporting Information Method S2.

After taxonomic assignment, sequence counts were aggregated by species and by replicate. For each tested 

program, the number of false positives (FP, species present in the output of the program but not in the 

initial community), true positives (TP, species present in both the output of the program and the initial 

community) and false negatives (FN, species present in the initial community but not in the output of the A
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program) were calculated. We then computed the sensitivity (equation 1) and F-measure (equation 2) 

indices for each replicate of each sample from FP, TP and FN, as suggested in Gardner et al. (2019):

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁     (1)

𝐹 ― 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁     (2)

These indices present complementary advantages. Sensitivity is relevant to identify programs missing rare 

taxa while the F-measure highlights programs detecting false positives. For each sample, we derived the 

mean and the standard error of these indices for each replicate. The standard error among replicates 

represents intra-sample variability for a given program. The mean and standard error among the 29 samples 

represent the inter-sample variability for the results of each program. We compared the indices averaged 

across all samples between programs to determine if there was a significant difference of performance 

between programs. Since the data were not normally distributed, the mean comparison was carried out with 

a non-parametric Kruskal-Wallis test followed by a Dunn post-hoc test. Sensitivity and F-measure were 

also calculated after removing singletons from the dataset (sequences with only 1 read in the pipeline 

outputs).

Here, we are referring to species abundance as the number of reads assigned to a given species in each 

sample replicate. For each replicate of each sample, the relative abundance of each species was calculated 

from the total number of reads and compared to the expected relative abundances for each species 

(simulated by the Grinder program). The root mean square error (RMSE) was then calculated for each 

abundance comparison. This index quantifies the level of dissimilarity between two lists of abundances: the 

lower the RMSE is, the more similar are the observed and expected relative abundances. The mean RMSE 

per sample was calculated as well as the associated standard error. Sensitivity, F-measure and RMSE were 

also calculated per sample, after summing the species counts in the twelve replicates. Statistical analyses 

were carried out with R v3.5.3. 

2.4. Comparing assembly of best programs to full pipelines

A complete pipeline was built by assembling the most performant programs for each step based on the 

performance indices to detect species occurrence, to retrieve the relative read abundances and the execution 

time. Formatting scripts were written when necessary to facilitate the transition between programs. This 

pipeline was compared to other pipelines, namely Barque v1.6.2, OBITools v1.2.13 and QIIME2 (Bolyen 

et al., 2019). Since QIIME2 is a toolbox, the results will be dependent on the plugins used. Here we used 

demux for demultiplexing, cutadapt for primer removal, DADA2 (Callahan et al., 2016) for error removal, A
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dbotu-q2 for ASV clustering and sklearn-classifier for taxonomic assignment. Barque uses trimmomatic for 

filtering, Flash for merging, its own python script to split amplicons, and VSEARCH for taxonomic 

assignment. The steps, programs, and parameters used by Barque and QIIME2-based pipelines can be 

found in Table 3. Because Barque takes demultiplexed reads as inputs, the demultiplexing was performed 

upstream with Cutadapt using the same parameters as for our assembled pipeline. Each pipeline was run 

using 16 CPUs. The same performance indices (sensitivity, F-measure and RMSE on reads abundance) 

were calculated for the outputs of each pipeline and compared.

2.5. Illustrating the benchmark on real data

The same comparison process was run on an empirical dataset obtained from the Mediterranean Sea. The 

eDNA samples were collected on the 5th of June 2018 in four replicates within the no-take reserve of Carry-

le-Rouet, at 5 km, and at 10 km outside the reserve, for a total of 12 samples (Boulanger et al., 2021). For 

each sample, 30 L of seawater were continuously collected along a 2km transect from approximately 1m 

below the surface. Transects were conducted close to the coastline and the substrate to ensure the sampling 

of coastal organisms. Seawater samples were filtered on site using a VigiDNA® 0.2 µM cross flow 

filtration capsule (SPYGEN, le Bourget du Lac, France). Immediately after filtration, the capsule was 

drained by filtering air, filled with 80 ml of CL1 buffer (SPYGEN) and stored at room temperature until the 

extraction. DNA extraction, amplification (12 replicates per sample) and sequencing followed the protocol 

described in Polanco Fernández et al., (2020). The different programs and pipelines were run on the raw 

sequences obtained after sequencing. The reference database used for the taxonomic assignment was built 

by performing in-silico PCR with teleo primers using ecoPCR (Boyer et al., 2016) on the entire public 

database ENA (Leinonen et al., 2011; release 141) and by adding sequences from Mediterranean species 

sequenced by our group (Boulanger et al., 2021). Since the information about actual read abundances in the 

environment is unknown, it was not possible to measure the RMSE index. Hence, only the sensitivity and 

F-measure indices were measured before and after removing singletons in samples. To do so, fish species 

lists obtained by each program or pipeline were compared to lists of fish species identified by underwater 

visual census in Carry-le-Rouet reserve and outside, during several campaigns in 2018 (Charbonnel, 

Monin, & Bachet, 2020). Those lists obtained by independent sampling methods were considered as the 

expected species occurrences. To measure comparable execution time, each individual program was run 

using 1 CPU, and each pipeline was run using 16 CPUs.

3. Results

3.1. Sensitivity, F-measure and RMSE on abundancesA
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For each program tested, a mean index was estimated by averaging raw values of indices across replicates 

and samples. 

For the merging, demultiplexing, dereplication, read filtering and error removal steps, the sensitivity, F-

measure and RMSE were not significantly different between the programs (Supporting Information Fig S1-

3). The mean sensitivity obtained with the full OBITools pipeline was 0.94 and ranged from 0.78 to 1 with 

a mean standard error per sample of 0.004. The mean F-measure obtained with OBITools was 0.97 (ranged 

between 0.88 and 1). The mean RMSE between the relative abundances obtained for each replicate and the 

expected relative abundances was 1.1 with OBITools (ranged between 0.09 and 4.6).

We found significant differences between programs only for the taxonomic assignment step (Fig. 2). 

Taxonomic assignment with Sintax produced significantly lower sensitivity (0.57, Fig. 2a, p=4.8e-13) and 

F-measure (0.71, Fig. 2b, p=7.1e-13) and higher RMSE (3.2, Fig. 2c, p=2e-08) than VSEARCH –

usearch_global and ecotag. VSEARCH –usearch_global provided a significantly higher mean sensitivity 

than ecotag (0.97), and significantly lower mean RMSE (0.4). The assignment program VSEARCH was 

therefore more accurate when evaluating community composition and read abundances than ecotag. 

Sensitivity and F-measures, after removing singletons, showed the same pattern but were lower due to less 

TP and more FN (Supporting Information Fig. S4-5). Sensitivity and F-measure per sample were higher 

and RMSE lower due to the increased detection of rare species when pooling the 12 replicates (Supporting 

Information Fig. S6-8), but the difference between programs showed the same patterns.

3.2. Execution time

Execution time varied importantly between programs (Fig. 3). For all but one step, OBITools programs 

were the slowest, sometimes by a factor of more than 200. The fastest program for merging was 

VSEARCH (3.1 min, Fig. 3). Demultiplexing with Cutadapt was faster than with ngsfilter (30 min and 488 

min respectively, Fig. 3). Execution time of the sequence dereplication step was 198 min with obiuniq, and 

0.8 min only with VSEARCH (Fig. 3). VSEARCH and Flexbar were faster than other programs to filter 

reads (0.2 min). Execution time of the PCR and sequencing error removal step lasted 17.4 min with 

obiclean, while Swarm and VSEARCH –cluster_unoise ran in 0.4 min (Fig. 3). Sintax and VSEARCH –

usearch_global executed the assignment in 1.8 and 0.14 min respectively while ecotag (OBITools) ran in 

58 min on our simulated dataset (Fig. 3).

3.3. Comparison between pipelines

From the step comparison results between programs, we selected the best ones in terms of sensitivity, F-

measure, RMSE on the abundance, and execution time. Since indices varied in the same direction, the 

selection was straightforward. These selected programs were integrated in a pipeline following the order of A
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the steps shown in Figure 1. This custom pipeline was composed of VSEARCH –fastq_mergepairs for 

assembling the reads, Cutadapt for demultiplexing, VSEARCH –derep_fulllength for the dereplication, 

VSEARCH –fastx_filter for the quality filtering, Swarm for the suppression of PCR and sequencing errors 

and VSEARCH –usearch_global for the taxonomic assignment.

Our assembled pipeline obtained a mean sensitivity of 0.97, the same as Barque (0.97), higher than 

OBITools (0.94) and significantly higher than QIIME2-based (0.9) (Fig. 4a, p=6.4e-03). The mean F-

measure was the same for the assembled pipeline and Barque (0.98) and significantly higher than OBITools 

(0.97, Fig. 4b, p=0.05) and QIIME2-based (0.94). Barque and our assembled pipeline were also the best 

pipelines to recover relative abundances, and mean RMSE were not significantly different, with 0.31 for 

Barque and 0.44 for our pipeline, while mean RMSE were significantly higher for OBITools (1.1) and 

QIIME2-based (1.24) (Fig. 4c, p=2.5e-07). Sensitivity and F-measures after removing singletons showed 

the same pattern but were lower due to less TP and more FN (Supporting Information Fig. S9).

The execution times of the four pipelines were very different. Barque alone ran in 2min25sec and in 30 min 

when the demultiplexing with Cutadapt was added. With 16 CPUs used where possible, our assembled 

pipeline ran in 46 min and QIIME2 in 95 min. OBITools was the longest and ran in 1010 min so 40 times 

slower than Barque (Fig. 4d). 

The percentage of reads assigned to the species level with 98% similarity also differed between pipelines. 

Barque was able to assign a species name to 98.7% of the raw demultiplexed reads (15,458,570) whereas 

our pipeline assigned 95.6% of the reads (14,970,256 reads), OBITools 94.4% (14,783,635), and QIIME2 

91.5% (14,316,059). 

3.4. Illustration from real data

The comparison of the program performances on empirical data provided results identical to those obtained 

with the simulated dataset. The only significant difference was found for the assignment step where Sintax 

obtained a significantly lower F-measure. The sensitivity and F-measure showed slight variations between 

programs, but these were not significant (Supporting Information Fig. S10-11). After removing singletons, 

sensitivity and F-measures showed the same variation which were lower due to less TP and more FN 

(Supporting Information Fig. S12-13). Execution time on real data confirmed that VSEARCH was the 

fastest program for merging, dereplicating, filtering and assigning (along with Sintax), Cutadapt was fastest 

for demultiplexing, and Swarm was fastest for cleaning errors (Supporting Information Fig. S14). The 

performance comparison between our assembled pipeline and the other pipelines provided results 

concordant with the analyses on simulated data. QIIME2-based pipeline was significantly less performant 

than Barque, OBITools and our assembled pipeline for sensitivity (Fig. 5a, p=5.7e-06) and F-measure (Fig. 

5b, p=2.2e-06), also when removing singletons (Fig. 5c-d). Barque was only significantly less performant A
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than OBITools and the assembled pipeline for F-measure, due to a slightly higher number of FP. Execution 

times were much shorter for Barque and the assembled pipeline (53 and 155 minutes respectively, Fig. 5e). 

The lower sensitivity and F-measure values obtained with all programs tested on the empirical dataset were 

due to a high number of FN (species seen by divers and not found with eDNA). However, many of these 

species were identified with eDNA with a similarity to the reference sequence that was lower than our 

threshold of 98% and were thus discarded from further analyses. 

4. Discussion

4.1. A step-by-step comparison between programs

The results of our program comparison allowed us to select the best programs for retrieving the initial 

community composition and abundance structure of both simulated and real fish communities. For five out 

of six steps, execution time was the most discriminant factor. OBITools programs obtain high sensitivities 

and F-measures but require much longer execution times than the other programs. Results obtained with the 

real dataset are similar to those obtained with the simulated data. The assignment step was the only one 

showing significant differences between programs indices, and time was the deciding factor for all other 

steps.

We thus provide recommendations for programs to use at each step. For merging reads, we recommend to 

use VSEARCH –fastq_mergepairs, which is the fastest program. For demultiplexing we suggest Cutadapt, 

which has similar performance as OBITools’ ngsfilter but is much faster. VSEARCH –derep_fulllength 

and --fastx_filter are retained for dereplication and read filtering respectively, because they obtain similar 

performances as other programs tested, but are faster. For error removal, we recommend using Swarm, 

which produces results as good as obiclean and VSEARCH --cluster_unoise but is faster. VSEARCH –

usearch_global provides significantly better results than Sintax and ecotag for taxonomic assignment with 

a complete reference database, both in terms of sensitivity, F-measure and RMSE on relative abundances.

4.2. Comparison of complete pipelines

The comparison of complete pipelines shows that Barque obtains sensitivity and F-measures as high as 

those of the assembled pipeline made of the best individual programs. These two pipelines also report the 

most accurate estimates of relative abundances. Barque is the fastest pipeline while our pipeline takes 1.5 

times longer to analyse the same simulated dataset. QIIME2-based pipeline is slightly slower than our 

pipeline while taxonomic and abundance results are significantly worse than with the other pipelines. 

OBITools requires more than 30 times the running time of Barque, the fastest pipeline. It also returns A
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significantly worse results for abundances RMSE but provides good sensitivity and F-measures. It is 

noteworthy to consider that the intentions behind the design of these pipelines differ. For example, Barque 

aims to be exhaustive in the detection of species while minimizing the risk of not detecting a rare species of 

potential interest, such as an invasive species, so omits a denoising step. As a result, Barque annotates a 

higher proportion of the raw reads, and also produces slightly more false positives than our pipeline. In 

contrast, while the goal of our pipeline is also to provide species abundances that are as close to reality as 

possible, it controls more stringently for false positives by using a denoising step, which could lead to the 

removal of some very rare species and to less annotated reads. Despite these different designs, Barque and 

our pipeline give almost identical results on all three indices. QIIME2 is a toolbox with many different 

steps where several plugins are available. The plugins chosen in the QIIME2-based pipeline were the most 

suitable for our data given the goal of our study, and the most comparable to the tools comprised in the 

other pipelines. However, many other possibilities exist and choosing other plugins and other treatment 

steps would result in as many different pipelines, each with a different outcome. QIIME2 offers numerous 

possibilities, and choosing the most appropriate tools for the purpose of a given study is important as this 

will influence the results and interpretation.

Analyses on the empirical dataset also revealed that the new pipeline is the most performant. Barque 

appears slightly less performant on the real data due to an important number of what was classified as false 

positives in the dataset. However, many of these species were observed by divers in different years. These 

species were thus probably present in the area during eDNA sampling even though they were not spotted 

by divers at the time of their campaign. As a result, it is important to be critical towards the species 

identified by eDNA and keep in mind that they could be real occurrences even if they were not reported 

using conventional observation methods. Therefore, in the context of Teleostean metabarcoding based on 

primer teleo, we recommend using Barque or the assembled pipeline. However, it is important to keep in 

mind that each pipeline considered here is a bespoke solution to the questions we aimed to address. 

Moreover, the differences observed in the performance of each pipeline depends on the choice of tools 

composing each pipeline.

4.3. Taxonomic assignment

The three taxonomic assignment algorithms we tested differ in many aspects. OBITools’s ecotag searches 

the reference database to find the reference sequence with the highest similarity to the query sequence. It 

then searches for all other potential reference sequences with a similarity to the first reference sequence 

equal or higher than the similarity to the query sequence. Ecotag then assigns the query sequence to the 

lowest common ancestor (LCA) of reference sequences. Ecotag provides a taxon name at the family, genus 

or species level as well as information about all matching reference sequences (Boyer et al., 2016). A
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VSEARCH –usearch_global filters reference sequences that share the highest number of k-mers with the 

query sequence and then computes the optimal global alignment between the query sequence and these 

reference sequences (Rognes et al., 2016). The taxonomic assignment contains the list of species matching 

to the query sequence with equal similarity. Sintax also proceeds with a k-mers search, among 100 

iterations (Edgar, 2016). For each iteration, a sub-sample of k-mers contained in the query sequence is 

extracted. The reference sequence that has the maximum k-mers in common is retained and the taxonomy 

is taken from this sequence. After the 100 iterations, the species name that occurs most often is identified 

and its frequency is reported, along with the frequency of the genus and family identifications. If these 

frequencies are lower than the chosen identity threshold, then the assignment is not retained. QIIME2-based 

pipeline uses the plugin classify-sklearn that apply a machine learning classifier from the SciKit-learn 

algorithm (Pedregosa et al., 2011). The method is based on k-mer counts extraction from the reference 

sequences (up to 32-mers) and training of the scikit-learn multinomial naive Bayes classifier (Bokulich et 

al., 2018). Barque also uses VSEARCH --usearch_global and provides assignments to species, genus, and 

group level (which can be anything above the genus, for example the family) and uses different similarity 

thresholds for assignment at each of these three levels. However, assignments to taxonomic levels above 

the species level were not analyzed here, as we focused on species name assignments.

4.4. Sources of variation in species detection

Some samples from the simulated dataset obtained much poorer sensitivity and F-measure values 

regardless of the program used. This is due to the presence of false negatives of several origins. First, some 

species of the custom reference database used for simulation and assignment have 100% identical 

sequences for this portion of the 12S rRNA gene and are therefore not distinguishable at the species level 

(e.g. Neosalanx taihuensis and N. tangkahkeii). Secondly, some species have a very low abundance and are 

therefore not found in each of the 12 replicates of the samples in the pipeline outputs. The presence of these 

false negatives also influences the RMSE between the expected and obtained abundances. For each of these 

false negatives, the observed relative abundance is 0 and the RMSE is thus higher for these replicates. The 

computation of the performance indices per sample, after pooling the observations in the 12 replicates, 

shows better results, as the full consideration of rare species decreases the number of false negatives. Only 

a few false positives are observed in the outputs of the different programs and pipelines; they are due to 

wrong taxonomic assignments either caused by sequencing errors introduced during the amplicon 

simulations or represent residual errors in the real dataset.

Performance indices for the empirical dataset are lower than the ones on the simulated data due to a high 

number of false negatives (some due to the too stringent similarity threshold) and some false positives. It is 

likely that with an eDNA sampling limited to one day, we did not detect all of the species present on site A
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and that divers did not detect elusive or hidden species (Aglieri et al., 2020; Polanco F. et al., 2020). In 

order to reduce the number of false negatives and false positives, it would be necessary to extend the eDNA 

sampling of each site to several seasons and to consider similarity thresholds adapted for the taxonomic 

assignment.

For all programs tested in this study, as well as for both datasets, we looked at the impact of the removal of 

singletons. This results in a slight decrease in sensitivity and F-measure (see Supporting Information Fig. 

S4-6 and S9-10). After removing the sequences with a very weak representation, some of the false positives 

are removed. However, removing the singletons also removes species with real but very low abundances, 

thus increasing the number of false negatives, which can also lead to bad interpretations of species 

presence/absence. In real eDNA samples, singletons represent rare taxa of high interest, like invasive or 

threatened species, but also contamination and PCR or sequencing errors, such as tag or index jumps 

(Kwok & Higuchi, 1989; Schnell et al., 2015; Taberlet et al., 2018). In the real data from Carry-le-Rouet, 

the removal of singletons led to the loss of true positives, indicating that eDNA can detect rare and low-

abundance species. The decision to remove singletons from a dataset should then depend on the objectives 

and preferences of the study, or aimed at finding a balance between removing all contaminations and errors 

and retaining higher chances to detect rare species.

4.5. Perspectives

In this study we focused on a specific fish 12S mitochondrial gene region but this benchmark process could 

be extended to other taxa and barcodes with only slight modifications. When using different markers, 

depending for example on the size of the barcode and the completeness of reference databases, some 

parameters will have to be updated, but the general bioinformatic treatment will be similar, and the same 

programs can be used. 

The same comparison could be extended to recent bioinformatic programs, or programs not considered in 

this study, such as MeFit for merging and filtering (Parikh et al., 2016), or DUDE-seq for denoising and 

correction of sequencing errors (Lee et al., 2017). We could also apply our comparison approach on other 

pipelines, such as eDNAFlow which produces ZOTUs and uses a LCA assignment method 

(Mousavi‐Derazmahalleh et al., 2021) or CoMa (Hupfauf et al., 2020). 

The similarity threshold set at 98% for assigning a sequence to a species is equivalent, on our short 

amplicons, to a maximum of either zero or one mismatch between the query and the reference sequences, 

depending on the length of the amplicon, which varies from one species to another. This can result, as in 

the case of the real data analyzed here, in the removal of a number of sequences that would have been 

correctly assigned with a lower confidence and thus lead to some false negatives. Therefore, it would be 

relevant to consider adaptive thresholds.A
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In this study, we focused on taxonomic assignment at the species level. As a result, we did not explore the 

ability of the algorithm to provide taxonomic assignment above the species level. Nevertheless, it would be 

worthwhile for ecological applications to consider higher taxonomic assignment using an algorithm with 

such abilities, especially in the case of incomplete reference databases. PROTAX, for example, is a 

probabilistic method for taxonomic assignment that uses outputs of other classifiers (BLAST, RDP 

classifier, Wang et al., 2007) as predictors (Somervuo et al., 2016). The Anacapa Toolkit (Curd et al., 2019) 

includes the Anacapa Classifier module that aligns ASVs to a reference database using Bowtie2 and assigns 

taxonomy with a Bayesian Lowest Common Ancestor (BLCA) method (Gao et al., 2017). These two 

approaches might provide relevant results for taxonomic assignments at higher levels, with probability and 

confidence scores.

Conclusion

The main finding of this study is that the choice of a given program for eDNA metabarcoding analysis 

depends mostly on the taxonomic assignment step and the resulting diversity estimates. For all other steps, 

the only difference between programs standardized with the same parameters is in the execution time. This 

study provides some guidance for the choice of the best bioinformatics tools or the best pipeline to use for 

analysis of eDNA metabarcoding data. Most importantly, this study highlights the need for more efficient 

and accurate tools for eDNA metabarcoding taxonomic assignments, especially when only incomplete 

reference databases are available.
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Figures and Tables

Table 1. Bioinformatic programs and pipelines used for the comparison

Program Step Reference Source code

OBITools Pipeline Boyer et al., 

2016

https://git.metabarcoding.org/obitools/obitools/wikis/home

Barque Pipeline -- https://github.com/enormandeau/barque

QIIME2 Pipeline Bolyen et 

al., 2018

https://docs.qiime2.org

VSEARCH M, Dr, 

QF, E, 

T†

Rognes et 

al., 2016

https://github.com/torognes/VSEARCH

Pear M Zhang et al., 

2014

http://www.exelixis-lab.org/web/software/pear

FLASh M Magoč & 

Salzberg, 

2011

https://sourceforge.net/p/flashpage

CASPER M Kwon et al., 

2014

http://best.snu.ac.kr/casper/

Fastq-join M Aronesty, 

2013

https://github.com/brwnj/fastq-join

Fastp M, QF Chen et al., 

2018

https://github.com/OpenGene/fastp

Cutadapt Dm, QF Martin., 

1994

https://github.com/marcelm/cutadapt

https://cutadapt.readthedocs.io

Prinseq QF Schmieder 

& Edwards, 

2011

http://prinseq.sourceforge.net

Flexbar QF Dodt et al., 

2012

https://github.com/seqan/flexbar/wiki

Swarm E Mahé et al., 

2015

https://github.com/torognes/swarm

Sintax T Edgar, 2016 https://www.drive5.com/usearch/manual/cmd_sintax.html
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† Step abbreviations: M: merging, Dm: demultiplexing, Dr: dereplication, QF: quality filtering, E: 

PCR/sequencing error removal, T: taxonomic assignment
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Table 2. Description of the six analyses steps, their objectives, and the parameters set for each programs 

compared

Analysis step Objective Program Parameters

illuminapairedend --

VSEARCH
--fastq_mergepairs

–threads 1 –fastq_maxdiffpct 25

Flash -m 10 –M 150 –x 0.25 –t 1

Fastq-join -m 10 –p 25

CASPER -w 10 –g 0.25 –t 1 -j

Pear -v 10 –c 0 –n 0 –j 1

Merging reads

Assemble forward and 

reverse reads.

Min. overlap =10

Max. overlap = 150

(Max mismatch = 25%)

Fastp

--merge –overlap_len_require 10

--overlap_diff_limit 15 –w 1

--overlap_diff_limit_percent 25

ngsfilter -e 2

Demultiplexing

Assign reads to sample 

and remove primers.

0 mismatch on tags, max. 

2 mismatches on primers
Cutadapt

-g –j 1 –e 0 (or 0.12) –O 8 (or 15)

--revcomp

obiuniq -m sample

Dereplication

Gather strictly identical 

sequences and keep count 

of reads abundance.
VSEARCH

--derep_fulllength –sizeout

–fasta_width 0 –threads 1

--minseqlength 1

obigrep -s’[ATCG]+$’–l 20

VSEARCH
--fastx_filter –fastq_maxn 0

–fastq_minlength 20 –threads 1

Cutadapt -m 20 –max_n 0 –j 1

Flexbar
--max-uncalled 0 –n 1

–min-read-length 20

Prinseq
-min_length 20

–ns_max_n 0 -noniupac

Quality filtering

Filter sequences shorter 

than 20bp and/or 

containing ambiguous 

bases

Fastp -n 0 –l 20 –w 1

obiclean -r 0.05 –H

Error removal

Identify and remove PCR 

and sequencing errors (by 

clustering with proportion 
VSEARCH

--cluster_unoise --sizein

–minsize 1 –sizeout –threads 1A
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–unoise_alpha 2 --minseqlength 

20

of variants/parents)

Swarm -z –f –t 1

ecotag –m 0.98

VSEARCH

--usearch_global –id 0.98

–fasta_width 0 –dbmask none

--maxaccepts 20 --maxrejects 20

–blast6out –maxhits 20

--top_hits_only --qmask none

--minseqlength 1 –threads 1

–dbmatched --matched

Taxonomic 

assignment

Assign reads to a species, 

with a 98% similarity 

threshold with the best 

match

Sintax -sintax_cutoff 0.98 –threads 1
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Table 3. Programs and parameters used in the pipelines studied

Pipeline Step Program used Parameters

Demultiplexing demux emp-paired --p-golay-error-correction FALSE

Primer removal cutadapt trim-paired --p-error-rate 0.12 --p-overlap 16

Filtering and 

denoising
Dada2 denoise-paired

--p-trunc-len-f 0 --p-trunc-len-r 0

--p-trunc-left-f 0 --p-trunc-left-r 0

--p-max-ee-f 2 –p-max-ee-r 2

--p-trunc-q 2 --p-chimera-method none

OTU calling dbotu-q2 call-otus
--p-gen-crit 0.1 --p-abund-crit 0

--p-pval-crit 0.005

QIIME2

Taxonomic 

assignment

Feature-classifier classify-

sklearn
--p-confidence 0.7

Filter and trim raw 

reads
Trimmomatic Min_hit_length 16 Crop_length 80

Merge paired-end 

reads
Flash -t 1 –z –m 20 –M 280

Split amplicon
Python script

split_amplicons_one_file.py
Max_primer_diff 8Barque

Taxonomic 

assignment
VSEARCH –usearch_global

--qmask none –dbmask none –id 0.98 –

maxaccepts 20 –maxrejects 20

–maxhits 20 –minseqlength 20

–query_cov 0.6 –fasta_width 0
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Figure 1. Protocol of the step-by-step program comparisons. The comparison of each program (white boxes) is 

arranged sequentially according to the suite of steps in the OBITools pipeline (grey boxes).
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Figure 2. Compared performance indices of each 

program tested on the simulated dataset, for the 

taxonomic assignment step. The dots represent the 

mean index for the 12 replicates of each sample, with 

the standard error; the boxplot represents the median 

of the performance index and the first and third 

quartiles for the 29 samples. (a): Sensitivity calculated 

on the raw outputs of each pipeline, (b): F-measure 

calculated on the raw outputs of each pipeline, (c): 

RMSE calculated between observed abundances and 

expected abundances for each replicate of each 

sample. Letters indicate significant differences.
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Figure 3. Execution time in minutes of each program tested for each step on the simulated dataset. Programs 

compared for the assembly, demultiplexing, dereplication, filtering, error removal, and assignment steps.
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Figure 4. Performance indices of each pipeline on the simulated dataset. The dots represent the mean index for the 

12 replicates of each sample, with the standard error; the boxplots represent the median of the index and the first and 

third quartiles for the 29 samples. (a) Sensitivity calculated on the raw outputs of each pipeline, (b) F-measure 

calculated on the raw outputs of each pipeline, (c) RMSE calculated between observed abundances and expected 

abundances for each replica of each sample, (d) Execution time of each pipeline.
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Figure 5. Performance index of the 4 pipelines on the real dataset. (a) Mean sensitivity, (b) Mean F-measure, (c) 

Mean sensitivity, after removing singletons from the dataset, (d) Mean F-measure, after removing singletons from the 

dataset, (e) Execution time of each pipeline. 
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