FN Archimer Export Format PT J TI Exploring the future of the Coral Sea micronekton BT AF Receveur, Aurore Dutheil, Cyril Gorgues, Thomas Menkes, Christophe Lengaigne, Matthieu Nicol, Simon Lehodey, Patrick Allain, Valerie Menard, Frederic Lebourges-Dhaussy, Anne AS 1:1,2,3;2:2,4;3:5;4:2;5:6;6:1,7;7:1,8;8:1;9:3;10:9; FF 1:;2:;3:;4:;5:;6:;7:;8:;9:;10:; C1 OFP/FEMA, Pacific Community, 95 Promenade Roger Laroque, BP D5, Nouméa, New Caledonia ENTROPIE, UMR 9220, IRD, Univ. de la Réunion, CNRS, 101 Promenade Roger Laroque, Nouméa, New Caledonia Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France Department of Physical Oceanography and Instrumentation, IOW, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany Univ. Brest, CNRS, Ifremer, IRD, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, F-29280, Plouzane, France MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Sete, France Institute for Applied Ecology, University of Canberra, Bruce 2601, Australia CLS, Sustainable Fisheries, Marine Ecosystem Modelling, 11 rue Hermes, Ramonville, France IRD, Univ. Brest, CNRS, Ifremer, LEMAR, Campus Ifremer, BP70, Plouzane, France C2 OFP FEMA, FRANCE IRD, FRANCE UNIV AIX MARSEILLE, FRANCE LEIBNIZ INST BALT SEA RES (IOW), GERMANY UBO, FRANCE IRD, FRANCE UNIV CANBERRA, AUSTRALIA CLS, FRANCE IRD, FRANCE UM LOPS LEMAR MARBEC ENTROPIE IN WOS Cotutelle UMR copubli-france copubli-europe copubli-univ-france copubli-int-hors-europe IF 4.416 TC 4 UR https://archimer.ifremer.fr/doc/00696/80780/84115.pdf https://archimer.ifremer.fr/doc/00696/80780/84116.docx LA English DT Article DE ;Micronekton;Echosounder;Coral Sea;Climate change;Dynamical ecosystem model;Statistical ecosystem model AB Ecosystem models forced by future climate simulations outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulate a substantial decline of tropical marine animal biomass over the course of the 21st century. Regional projections are however far more uncertain because of well-known biases common to most CMIP5 historical simulations that propagate within the food web. Moreover, the model outputs for high trophic levels marine fauna suffer from lack of validation based on in situ data. In this study, we implement a “bias-mitigation” strategy to reduce the physical oceanography and biogeochemical biases simulated by three CMIP5 models under the future RCP8.5 scenario. We force two very different micronekton models with these “bias-mitigated” outputs to infer the future micronekton changes in the Coral Sea: a 3-D deterministic population dynamics model; and a 3-D statistical model based on in situ hydro-acoustic data. These two models forecast a consistent pattern of micronekton abundance changes in the epipelagic layer (0–150 m) by 2100 for three different climate forcing used, with a marked decrease south of 22°S and a smaller increase further north mostly related to temperature and chlorophyll changes. In contrast, changes in the vertical patterns of micronekton predicted by the two models considerably differ in the upper mesopelagic layers (150–450 m) and lower mesopelagic layer (450–1000 m), highlighting the structural sensitivity in model type. Since micronekton are prey of all larger marine predators, those discrepancies in vertical structures of micronekton may hamper our potential to predict how top predators may evolve in the future. PY 2021 PD JUN SO Progress In Oceanography SN 0079-6611 PU Elsevier BV VL 195 UT 000660310900002 DI 10.1016/j.pocean.2021.102593 ID 80780 ER EF