Distribution and long-term change of the sea surface carbonate system in the Mozambique Channel (1963–2019)

Lo Monaco Claire ¹, Metzl Nicolas ^{1,*}, Fin Jonathan ¹, Mignon Claude ¹, Cuet Pascale ², Douville Eric ³, Gehlen Marion ³, Tuyet Trang Chau Thi ³, Tribollet Aline ¹

¹ Laboratoire LOCEAN/IPSL, Sorbonne Université-CNRS-IRD-MNHN, Paris, 75005, France ² Laboratoire ENTROPIE and Laboratoire d'Excellence CORAIL, Université de La Réunion-IRD- CNRS-IFREMER-Université de la Nouvelle-Calédonie, Saint-Denis, La Réunion, 97744, France ³ Laboratoire LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay Gif-sur-Yvette, 91191, France

* Corresponding author : Nicolas Metzl, email address : nicolas.metzl@locean.ipsl.fr

Abstract :

We report new oceanic carbonate system observations obtained during two cruises conducted in January 2004 (OISO-11) and April 2019 (CLIM-EPARSES) in the Mozambique Channel and estimate the longterm trend of sea surface fugacity of CO2 (fCO2) and pH using historical data. While in January 2004 the region was a large CO2 source, the ocean was near equilibrium in April 2019. Although this region experienced a dramatic cyclone event "Idai" in March 2019 leading to low salinity and low dissolved inorganic carbon (CT) and total alkalinity (AT) concentrations in the central channel, salinity normalized AT were unchanged and CT concentrations were higher in 2019 compared to 2004 by about 12 µmol.kg-1, likely due to anthropogenic CO2 uptake over 15 years. Compared to fCO2 observations of 1963 in the channel, the oceanic fCO2 was higher in 2004/2019 by about 100 µatm, an increase close to that observed in the atmosphere (90 ppm). A part of the fCO2 increase from 1963 to 2019 (about +10 µatm) is due to the long-term ocean warming in this region (+0.011 °C.decade-1). We estimated a mean decrease of -0.087 (±0.007) pH unit between 1963 and 2019, typical of the preindustrial versus modern change in the global ocean. Using other observations in the southern part of the Mozambique Channel (around 25°S) we estimated a pH trend of -0.0129.decade-1 (±0.0042) for 1963-1995 and -0.0227.decade-1 (±0.0048) for 1995-2019 suggesting a strengthening of acidification trend in the Mozambique Channel in agreement with the anthropogenic CO2 forcing. For the recent period, these rates were confirmed by reconstructed fCO2 and pH monthly fields using a neural network model. We noted however that the pH trend in the Mozambigue Channel appeared lower than previous estimates at the scale of the Indian Ocean. Based on historical atmospheric CO2 data we estimated that pH in the Mozambique Channel was about 8.18 (±0.014) in the year 1800, i.e. 0.13 higher than in 2019. The concentration of CT in the year 1800 was likely around 1915 (±10) µmol.kg-1. These results will contribute to a better understanding of the impacts of ocean acidification on coral reefs since the industrial revolution by (1) providing a reference level for the reconstruction of pH from coral core samples that were collected at different locations in this region in 2019 and (2) by informing environmental authorities aiming at preserving and protecting those threatened ecosystems.

Highlights

▶ New observations of the marine carbonate system in the Mozambique Channel. ▶ First evaluation of long-term trends of sea surface fCO_2 and pH in the Mozambique Channel. ▶ The fCO_2 increase and pH decrease are mainly attributed to anthropogenic CO_2 uptake. ▶ Results suggest a strengthening of acidification trend in the Mozambique Channel since the mid-90s.

Keywords : Mozambique Channel, Ocean CO2, Acidification, Long-term trends

66

65 1 Introduction:

Since the industrial revolution, about 675 GtC of anthropogenic carbon dioxide (CO₂) has been 67 68 emitted into the atmosphere (Friedlingstein et al, 2019) leading to an unprecedented growth of atmospheric CO₂ concentrations that reached on average 410 ppm in 2019 (Dlugokencky and Tans, 69 70 2020). Since 1750 about 25 % of anthropogenic CO₂ has been absorbed by the ocean (Friedlingstein et al, 71 2019) and about 31% during the period 1994-2007 (Gruber et al., 2019a). This absorption helps to 72 mitigate global warming but induces ocean acidification (Doney et al 2009; Feely et al., 2009; Wu et al. 73 2018). The latter is a major threat to marine ecosystems (Fabry et al., 2008; Gattuso et al 2015). It impacts 74 both calcifying organisms such as coccolithophores (Riebesell et al 2000; Beaufort et al., 2011), 75 foraminifera (de Moel et al 2009), bivalves (Waldbusser et al, 2015; Tan and Zheng, 2020), and corals 76 (Kleypas et al., 1999; Mollica et al. 2018), and major agents of carbonate dissolution, the bioeroding 77 microflora and sponges (Schönberg et al. 2017). The accumulation of anthropogenic CO₂ in the ocean has 78 led to a global decrease in pH in surface waters by on average -0.1 units since the industrial revolution 79 (Jiang et al., 2019). It is projected to further decrease by on average -0.2 to -0.4 units by the end of the century depending on the anthropogenic emission scenario and locations (Orr et al., 2005; Jiang et al., 80 81 2019; IPCC, 2019). Although future pH changes appear to be more pronounced in the cold and high latitudes (especially in the Arctic) compared to equatorial upwelling areas, significant pH changes are 82 83 also likely to occur in the tropics and subtropics (Jiang et al, 2019; Ono et al, 2019).

84 Long-term observations at fixed open ocean monitoring stations since the 1980s or the 1990s 85 show that ocean pH declined between -0.0013 and -0.0026 units per year depending on the location (Bates et al., 2014). High rates of surface ocean acidification are reported for coastal zones, ranging from 86 $-0.0020.yr^{-1}$ (± 0.0007) off the south coast of Japan (Ishii et al 2011) to $-0.0028.yr^{-1}$ (±0.0003) in the 87 Mediterranean Sea (Kapsenberg et al, 2017). In coral reef areas, high-frequency variability (e.g. Hofmann 88 et al, 2011; Cyronak et al., 2020) confounds the assessment of the long-term pH trend by direct 89 measurements. However, pH time series reconstructed based on coral boron isotopic ratio ($\delta^{11}B$) allow to 90 91 identify a prominent ocean acidification trend in the recent decades (e.g. Liu et al 2014; Wu et al, 2018; 92 D'Olivo et al., 2019). A compilation of direct pCO₂ observations at several coral reef locations (Cyronak et al 2014) suggests that over 1992-2012 sea water pCO₂ increased at a rate of +6.6 (\pm 1.4) µatm.yr⁻¹, i.e. 93 94 up to times 3.5 faster than in the atmosphere and the open ocean. At constant temperature and alkalinity this would lead to a fast pH decline of -0.0055.yr⁻¹ in coral reef areas against -0.0018.yr⁻¹ on average in 95 the open ocean (Feely et al., 2009; Lauvset et al 2015; Iida et al, 2020) ultimately triggering net 96 97 dissolution of reef structures (Eyre et al. 2018; Tribollet et al. 2019). At global scale, based on high quality surface ocean fCO2 data compiled in the SOCAT data product version 2 (Bakker et al 2014; Pfeil 98 99 et al 2013), and combined with regional alkalinity/salinity relationships (Lee et al 2006), Lauvset et al (2015) estimated rates of pH declines ranging from -0.0010.yr⁻¹ to -0.0027.yr⁻¹ in different basins over the 100 period 1991-2011. The fastest pH decline of -0.0024.yr⁻¹ (± 0.0004) for the period 1981-2011 and of -101

102 $0.0027.yr^{-1} (\pm 0.0005)$ over 1991-2011 occurred in the Indian Ocean. In addition to ocean warming, such a 103 rapid pH change, if confirmed by independent measurements and correlated to a rapid change of the 104 carbonate saturation state, might put Indian Ocean coral reef ecosystems at risk, including many of those 105 in the Mozambique Channel (e.g. Eparses Islands). In this oceanic region, *in situ* observations remain 106 scarce as very few oceanographic campaigns have been conducted.

Here we present the first temporal observations of the sea surface carbonate system in the Mozambique Channel (including fugacity of CO_2 , fCO_2 , total alkalinity, A_T and dissolved inorganic carbon, C_T) measured during two cruises conducted in January 2004 and April 2019. We also use historical fCO_2 observations to explore the long-term change in fCO_2 and pH in this region over the period 1963-2019 and compare these variations with estimates of regional anthropogenic CO_2 concentrations and with reconstructed monthly pCO2 and pH fields derived from a neural network model (Denvil-Sommer et al, 2019; Chau et al, 2020).

114

115 2 Data collection and methods

116 **2.1 Observations during the 2004 and 2019 cruises**

117 In January 2004 (Cruise OISO-11, 8-Jan/7-Feb 2004) and April 2019 (project CLIM-EPARSES, 5-30 118 April 2019) we conducted two cruises in the Mozambique Channel on-board R.V. Marion-Dufresne 119 (Figure 1, Table 1). During these cruises, underway continuous surface ocean measurements were made for temperature (SST), salinity (SSS), fugacity of CO₂ (fCO₂), total alkalinity (A_T) and total dissolved 120 inorganic carbon (C_T). In addition, discrete sea surface samples were taken for the analysis of Chl-a and 121 122 nutrients. In April 2019, the sampling scheme was completed by hydrocasts at selected stations (0-200m 123 in coastal waters nearby the Eparses Islands, and 0-1000m in open waters between islands). With the exception of Chl-a, analytical methods follow the protocol used since 1998 during OISO cruises onboard 124 R.V. Marion-Dufresne in the Southern Indian Ocean. They have been previously described (Jabaud-Jan et 125 126 al., 2004; Metzl et al 2006; Metzl, 2009).

Sea surface temperature (SST) and salinity (SSS) were measured continuously using a SBE45 thermosalinograph. Salinity data were controlled by regular sampling and conductivity measurements (Guildline Autosal 8400B and using IAPSO standard/OSIL). Sea surface temperature and salinity were also checked against CTD's surface records. Accuracies of SST and SSS are about 0.005 °C and 0.01.

In addition to the continuous underway measurements, we regularly sampled surface water for Chlorophyll-a (Chl-a) and nutrients (Nitrate and Silicate). The Chl-a samples were stored at -80°C onboard after filtration and measured back in the laboratory using a fluorometric method (Aminot and Kerouel, 2004). Nitrate and silicate were measured onboard in January 2004 with an automatic colorimetric Technicon analyser following the methods described by Tréguer and Le Corre (1975). 136 Total alkalinity (A_T) and total dissolved inorganic carbon (C_T) were measured on-board for both underway continuous surface and water-column samples using a potentiometric titration method 137 138 (Edmond, 1970) in a closed cell. The system is automatic for sampling continuously surface seawater and 139 transferring it into the cell. For water-column measurements, samples were collected from Niskin bottles 140 in 500 ml glass bottles for analysis within 4h or by adding 300 µl of saturated mercuric chloride solution 141 before storage in a cool place for subsequent analysis. For calibration, we used the Certified Referenced 142 Materials (CRMs, Batch #52, 58 and 62 for OISO-11 and Batch #173 for CLIM-EPARSES) provided by 143 Pr. A. Dickson (SIO, University of California). For both cruises, we estimated the accuracy at about 3 µmol.kg⁻¹ for both A_T and C_T (based on CRMs measurements). During CLIM-EPARSES standard errors 144 of 122 replicates for surface samples were $\pm 2.6 \ \mu mol.kg^{-1}$ for A_T and $\pm 2.4 \ \mu mol.kg^{-1}$ for C_T. For OISO-145 11, a cruise that took place in January-February 2004 in the Mozambique Channel and the Southern 146 Indian ocean (including 15 stations), errors of replicates for deep samples (n=19) was $\pm 2.7 \ \mu mol.kg^{-1}$ for 147 A_T and $\pm 3.3 \ \mu mol.kg^{-1}$ for C_T . Errors of 31 replicates for surface samples were $\pm 1.5 \ \mu mol.kg^{-1}$ for A_T and 148 $\pm 1.8 \ \mu mol.kg^{-1}$ for C_T . The water column data for OISO-11 have been quality controlled in CARINA (Lo 149 Monaco et al., 2010) and revisited in GLODAPv2 (Key et al., 2015; Olsen et al., 2016) with no 150 151 corrections applied for A_T and C_T. Surface underway A_T and C_T data for OISO-11 and CLIM-EPARSES are both available at NCEID/OCADS (Metzl and Lo Monaco, 2018; Lo Monaco et al, 2020b). 152

During CLIM-EPARSES in April 2019, one station located at 22.30°S/40.40°E was sampled near 153 Europa Island. At 1000m, our measurements for A_T and C_T data are respectively 2334 μ mol.kg⁻¹ and 2247 154 μ mol.kg⁻¹. We are not aware of any biogeochemical stations (including A_T and C_T data) in the central 155 Mozambique Channel. However a WOCE line was sampled in the southern part at 25°S in June 1995 156 (Sabine et al., 1999) and reoccupied in December 2003 (Murata et al., 2010). These data are part of the 157 GLODAPv2.2019 data product (Olsen et al., 2019). At 25°S around 1000m GLODAPv2.2019 data were 158 in a range of 2310-2340 µmol.kg⁻¹ for A_T and 2200-2255 µmol.kg⁻¹ for C_T. Our measurements at 1000m 159 at 22.30°S in 2019 are thus in the higher range of concentrations observed at 25°S in 1995 or 2003, not 160 161 taking into account the natural variability and anthropogenic signals.

162 For fCO₂ measurements, sea-surface water was continuously equilibrated with a "thin film" type equilibrator thermostated with surface seawater (Poisson *et al.*, 1993). The CO_2 in the dried gas was 163 measured with a non-dispersive infrared analyser (NDIR, Siemens Ultramat 5F or 6F). Standard gases for 164 165 calibration (around 270, 350 and 480 ppm) and atmospheric CO₂ were measured every 6 hours. To 166 correct xCO₂ dry measurements to fCO₂ in situ data, we used polynomials given by Weiss and Price 167 (1980) for vapour pressure and by Copin-Montégut (1988, 1989) for temperature (temperature in the equilibrium cell was on average 0.73 °C warmer than SST during OISO-11 and 0.097 °C warmer during 168 169 CLIM-EPARSES). The oceanic fCO₂ for both cruises are available in SOCAT data product (version 170 v2020, Bakker et al., 2016, 2020) and at NCEI/OCADS (Metzl, 2018; Lo Monaco et al., 2020a). Note 171 that when added to SOCAT, original fCO_2 data are recomputed (Pfeil et al., 2013) using temperature

correction from Takahashi et al (1993). Given the small difference between SST and equilibrium
temperature, the fCO₂ data from our cruises are identical (within 1 µatm) in SOCAT and NCEI/OCADS.
For coherence with other cruises we therefore used fCO₂ values as provided by SOCAT.

175 Atmospheric xCO₂ measured on-board was on average $377.02 (\pm 0.73)$ ppm in January 2004 and 410.90 (± 1.40) ppm in April 2019 in the Mozambique Channel (Supp. Figure 1). This corresponds to an 176 increase of +33.9 ppm in 15 years, coherent with global atmospheric xCO₂ values. Our measurements on 177 178 board in this specific region $(10^{\circ}\text{S}-26^{\circ}\text{S})$ are almost identical to the global averaged marine surface 179 monthly mean xCO₂ of 377.04 ppm for January 2004 and 411.06 ppm for April 2019 (Dlugokencky and Tans, 2020). The relatively large standard-deviation of atmospheric xCO₂ encountered in the 180 181 Mozambique Channel (up to \pm 1.4 ppm in 2019) compared to other OISO cruises in the Southern Indian 182 Ocean (Metzl, 2009) is likely linked to the terrestrial signal from Africa and/or Madagascar depending on 183 the season and wind fields. However given the increase of atmospheric xCO_2 over 15 years, the observed regional atmospheric xCO_2 variability during each cruise had no significant impact on the air-sea CO_2 184 185 disequilibrium that we explored in this study. We thus used the mean xCO_2 values for each cruise (377 186 and 411 ppm) and converted xCO₂ to fCO₂ at 100% humidity following Weiss and Price (1980) for airsea disequilibrium estimates. 187

188 2.2 Other observations and data

In order to investigate the long-term variability of fCO₂ and pH we used all fCO₂ data available in 189 190 the Mozambique Channel from the SOCAT data product (version v2020, Bakker et al., 2016, 2020): our 191 observations for 2004 and 2019 and the only other cruise conducted in the Channel in May 1963 (Keeling 192 and Waterman, 1968). These three cruises offer a first view of fCO_2 variations over several decades in the 193 Mozambique Channel, between 14°S and 25°S. However, because they are representative of different 194 seasons (January, April and May) we included fCO₂ data collected in the southern part of the Channel at 195 around 25°S to confirm the fCO₂ and pH trends over decades deduced in the band 14°S-25°S. All the cruises used in this study are shown in Figure 1 (listed in Table 1) from which we select only 196 recommended fCO₂ data (with WOCE Flag 2 in SOCAT). In addition, in order to separate the natural and 197 anthropogenic CO₂ signals, we used water-column data from June 1995 and December 2003 along 25°S 198 199 (Sabine et al, 1999; Murata et al., 2010) quality controlled in GLODAPv2.2019 (Olsen et al., 2019). Our estimates of anthropogenic CO₂ (hereafter C_{ant}) in this region will be compared to a recent evaluation of 200 Cant inventory changes in the global ocean between 1994 and 2007 (Gruber et al, 2019 a, b). To discuss 201 202 the seasonality of the carbonate system and air-sea CO_2 fluxes in this region we will also compare our observations with the climatology produced by Takahashi et al (2009, 2014). Finally, we will compare 203 204 our results with reconstructed pCO₂ and pH monthly fields for the period 1985-2019 derived from a 205 neural network model (named CMEMS-LSCE-FFNN, Denvil-Sommer et al., 2019; Chau et al 2020).

206 2.3 Calculations of carbonate system properties and anthropogenic carbon

Based on the carbonate properties available for each cruise (fCO₂, A_T and C_T) other carbonate 208 209 system properties (like pH, $[H^+]$) or the carbonate saturation state Ω) are calculated using the CO2sys program (version CO2sys v2.5, Orr et al., 2018) developed by Lewis and Wallace (1998) and adapted by 210 211 Pierrot et al. (2006) with K1 and K2 dissociation constants from Lueker et al. (2000) and KSO₄ constant 212 from Dickson (1990). The total boron concentration is calculated according to Uppström (1974). We have 213 tested different K1, K2 constants (Merbach et al, 1973; Hansson, 1973; Dickson and Millero, 1987) and 214 compared measured fCO₂ with fCO₂ calculated from A_T/C_T pairs collocated in space and time (Supp. 215 Figure S2a,b). Given the uncertainties associated to the measurements of temperature $(0.005^{\circ}C)$, salinity (0.01), A_T and C_T (2.5 μ mol.kg⁻¹), the error on calculated fCO₂ is ±13 μ atm. This error is generally larger 216 than the mean differences observed between measured and calculated fCO₂ (Supp. Figure S2b). For 217 218 example, the average differences between measured and calculated fCO₂ when using K1, K2 constants 219 from Lueker et al (2000) were -5.3 (std ± 4.9) µatm for 154 co-located samples in January 2004, and +4.5 (std ±5.2) µatm for 268 co-located samples in April 2019. In line with previous recommendations 220 221 (Dickson et al, 2007; Orr et al, 2015) we used constants from Lueker et al (2000) for all calculations. To 222 account for the effect of salinity on A_T and C_T concentrations these properties are also normalized at constant salinity (35) following N-A_T = A_T * 35/SSS and N-C_T = C_T * 35/SSS. In this study we are 223 interested in evaluating fCO₂ variations over several decades. As fCO₂ is highly dependent on SST, fCO₂ 224 225 will be also normalized at constant temperature (29°C) following the relation established by Takahashi et 226 al (1993).

227

207

228
$$fCO2_{29} = fCO2_{SST} * EXP (0.0423*(29-SST))$$

229

For anthropogenic CO₂ calculations in the water column (C_{ant}) we used the TrOCA method (Touratier et al 2007) that was previously applied and compared to other methods in the Southern Indian Ocean along the 32°S section (Álvarez et al, 2009). In short, given A_T, C_T, Oxygen (O₂) and potential temperature (θ) observations at each depth level, the C_{ant} concentrations is derived from the evolution of the quasi-conservative tracer TrOCA compared to its pre-industrial value (see Touratier et al 2007 for a full description). The final expression used to calculate C_{ant} is:

(1)

236

237
$$C_{ant} = \frac{O_2 + 1,279 \left(C_T - \frac{1}{2}A_T\right) - e^{\left[7,511 - (1,087,10^{-2}).\Theta - \frac{7,81,10^5}{A_T^2}\right]}}{1,279}$$
 (2)

238

To compare with the observed C_T long-term trend in surface waters and given the uncertainty on C_{ant} of ±6.25 µmol.kg⁻¹ using the TrOCA method (Touratier et al., 2007) our interpretations in the Mozambique Channel region will be limited to the upper layers (150-200m). In the Southern Indian subtropical region C_{ant} concentrations are generally less than 10 µmol.kg⁻¹ below 1000m (Sabine et al, 1999; Álvarez et al 2009) and C_{ant} accumulation between 1994 and 2007 less than 10 µmol.kg⁻¹ below 500 m (Murata et al., 2010; Gruber et al., 2019a).

245 2.4 Neural network reconstruction of the surface ocean carbonate system.

Surface ocean partial pressure of carbon dioxide (pCO_2) is obtained from an ensemble-based 246 feed-forward neural network (FFNN) model described in Denvil-Sommer et al. (2019). For this study, we 247 used results of the latest version of the model (Chau et al, 2020) which was developed as part of the 248 Copernicus Marine Environment Monitoring Service (CMEMS). The mean pCO_2 of a 100 member 249 250 ensemble is used for comparison and trend analysis throughout this study. Surface ocean pH is computed from reconstructed pCO₂ and alkalinity with the speciation software CO2sys-MATLAB_V2.05 (Van 251 252 Heuven et al, 2011; Orr et al 2018). The multivariate linear regression model LIAR (Carter et al., 2016; 253 2018) is used to derive time and space varying surface ocean alkalinity fields as a function of sea surface 254 temperature and salinity, as well as climatological monthly mean nitrate and dissolved silica 255 concentrations from the World Ocean Atlas 2013 version 2 (Garcia et al, 2014; 256 www.nodc.noaa.gov/OC5/woa13/). Global surface ocean pCO₂ and pH reconstructions at 1°x1° 257 resolution start in 1985 and are updated annually in phase with yearly releases of SOCAT data. Here we used the SOCAT version v2020 (Bakker et al, 2020) and the model fields calculated for the period 1985-258 259 2019. For a full description, access to the data and a statistical evaluation of pCO₂ and pH reconstructions please refer to Chau et al (2020). 260

261 **3 Results**

262 **3.1** Surface properties observed in January 2004 and April 2019 in the Mozambique Channel

263 **3.1.1 Distributions along the Mozambique Channel**

Here we first present the description of sea surface observations obtained in January 2004 and April 2019 in the Mozambique Channel. Underway measurements of SST, SSS and fCO₂ are shown in Figure 2 while A_T and C_T observations are presented in Figure 3. Averaged values in the band 14-25°S are listed in Table 2.

During both cruises SST presents a gradual increase from south to north (Figure 2a). SST was generally higher in January 2004 than in April 2019 except in the South (26°S) and in the North (14°S) of the Channel. In January 2004, SST reached the maximum value of 30°C at 22°S and was quite homogeneous in the band 14°S-22°S, whereas in April 2019, SST increased more gradually to reach 30.5°C north of Madagascar. We observed large SST and SSS variability in the central part of the Channel (18°S-22°S) probably linked to eddies occurring regularly in this region (Halo et al 2014; Hancke et al 2014; Ternon et al 2014). This was well identified from one drifting buoy migrating southwards with an anticyclonic eddy in March-April 2019 (Supp. Figure S3). The SST and SSS variability in the central part of the Channel is also recognized in A_T and C_T distributions (Figure 3) but not in fCO₂ (Figure 2c) because the effects of A_T and C_T on fCO₂ offset each other.

278 During each cruise, we observed a sharp front of salinity in the central part of the Mozambique 279 Channel that was not associated to a change in SST: in January 2004 the front was located around 17°S 280 (near Juan de Nova Island) whereas it was found at 22.5°S in April 2019 (south of Europa Island). Although the salinity was about the same in 2004 and 2019 in the South and the North of the channel, it 281 282 was very different in the central region $(17^{\circ}S-23^{\circ}S, Figure 2b)$. The low salinity (SSS < 35) observed in April 2019 was linked to an excess of precipitations that occurred in March during the dramatic tropical 283 cyclone event called "Idai" (monthly anomaly of precipitation up to 150 mm in the band 18°S-22°S, 284 Supp. Fig S4). This signal was confirmed by an Argo float (Platform Code 2902142) that recorded 285 286 salinity as low as 34 in the surface layer in this region in late March 2019 (Supp Fig S5).

Precipitations caused by the cyclone Idai directly impacted the concentrations of A_T and C_T which were thus much lower in April 2019 in the central part of the channel (Figure 3a, b), although one would expect an increase in C_T over 15 years due to the accumulation of anthropogenic CO₂. The salinity fronts at 17°S or 22.5°S (depending on the cruise) were also well identified in A_T and C_T (Figure 3). The salinity normalized A_T (N- A_T) and C_T (N- C_T) distributions present much less spatial variability than A_T and C_T and are remarkably homogeneous in the Mozambique Channel south of 14°S during each cruise (Figure 4).

294 3.1.2 Differences in A_T and C_T between 2004 and 2019

295

The largest difference in N-C_T between 2004 and 2019 is observed in the southern part of the 296 channel (21°S-25°S) where N-C_T concentrations were 10 to 20 µmol.kg⁻¹ higher in April 2019 compared 297 298 to January 2004 whereas N-A_T values were almost identical for both periods (Figure 4, Table 2). Given 299 that C_T (and N- C_T) climatological annual cycles present higher concentrations in January than in April in 300 the subtropical southern Indian Ocean including the Mozambique Channel (Bates et al 2006; Takahashi et al 2014, Supp Figure S6), the N- C_T average increase of +11.8 µmol.kg⁻¹ observed between 2004 and 2019 301 (mean trend of 0.8 µmol.kg⁻¹.yr⁻¹) likely underestimates the anthropogenic signal. Taking into account the 302 seasonality (based on the C_T climatology computed by Takahashi et al 2014, Supp Figure S6), C_T would 303 be 16.9 µmol.kg⁻¹ lower in April 2004 than in January 2004 (N-C_T in April 2004 would be 1952.2 304 μ mol.kg⁻¹ on average) and the annual increase from April 2004 to April 2019 would be +1.04 (± 0.79) 305 μ mol.kg⁻¹.yr⁻¹ (Table 2). This number is in the range of the theoretical C_T trend of +1.2 μ mol.kg⁻¹.yr⁻¹ 306 307 calculated by assuming that surface ocean fCO₂ follows the atmospheric growth rate observed over 2004-2019 (+2.2 ppm.yr⁻¹). This suggests that most of the increase in N-C_T is due to the accumulation of 308 309 anthropogenic CO₂, which could also explain part of the changes in fCO₂ and pH observed between 2004 and 2019, as well as the long-term trends investigated back to the sixties in section 3.2. 310

313

3.1.3 fCO₂ variability, seasonality and biological processes.

314 Although the C_T and A_T distributions along the Mozambique Channel present large gradients associated with the salinity fronts at 22.5°S or 17°S (Figure 3), their impact on fCO₂ cancel each other 315 and the fronts are not recognized in fCO₂ measurements (Figure 2c). In April 2019, fCO₂ increased 316 317 progressively northward like SST, leading to a positive fCO₂/SST relationship, except for measurements conducted in the vicinity of Juan de Nova near 17°S (Supp. Figure S7). In January 2004, the fCO₂ 318 319 distribution presented a larger spatial variation leading to a poor relation between fCO₂ and SST (Supp. 320 Figure S7), notably due to the low fCO₂ values (below 390 µatm) and high SST observed north of 15°S 321 and around 22°S where we also measured minima in C_T (Figure 3b) and in N-C_T (Figure 4b). These 322 signals were linked to locally enhanced biological activity revealed in both surface Chl-a in-situ 323 measurements around 15°S and 22°S in January 2004 (Supp. Fig S8) and at regional scale in the monthly 324 Chl-a distribution derived from MODIS (Supp. Fig S8). In April 2019, in-situ Chl-a concentrations were 325 in the same range as in January 2004 with few local maxima also detected around 15°S and 22°S (Supp. 326 Fig S8) and also associated with minima in C_T and N-C_T (Figures 3b, 4b). In the vicinity of the islands (Europa at 22°S and Juan de Nova at 17°S) the Chl-a concentrations in April 2019 present some 327 variability but in the range of observations in the open ocean (0-0.25 mg.m⁻³). High in-situ Chl-a 328 329 concentrations are thus only identified at small-scale during both cruises and these local events do not 330 impact the overall trend of the fCO_2 and C_T changes in the Channel between 2004 and 2019. Instead, satellite derived Chl-a products suggest a rather homogeneous Chl-a distribution and slightly higher 331 values in April 2019 compared to January 2004, notably in the central region (Supp Figure S8a). This is 332 333 reflected in the mean seasonal cycle of Chl-a in this region, suggesting a slight gradual increase of Chl-a from December to July (Supp Figure S9). Over the region 15°S-26°S, the average Chl-a concentration 334 derived from MODIS was 0.11 mg.m⁻³ in January 2004 and 0.17 mg.m⁻³ in April 2019, a mean difference 335 of only 0.06 mg.m⁻³ not captured in our *in-situ* localized data (Supp Figure S8). In April 2019, the 336 MODIS Chl-a concentrations of 0.17 mg.m⁻³ were the same as the mean climatological value for April 337 $(0.17 \text{ mg.m}^{-3} \pm 0.02 \text{ on average for years 2003-2019}, \text{ Supp. Figure S9})$. Thus, although one would expect 338 339 the cyclone "Idai" that occurred in March 2019 to have impacted primary production (e.g. through input of nutrients either from the subsurface or from terrigenous material through atmospheric transport), we 340 341 conclude that, except for salinity, observations in April 2019 were close to climatological conditions.

As noted above, climatological C_T concentrations in the channel are on average lower in April than in January (Takahashi et al, 2014) and the fCO₂ decrease from January to April cannot be explained by temperature alone. The seasonal C_T change between winter and summer (up to 30 µmol.kg⁻¹) is likely driven by biological activity but not directly recognized by Chl-a observations (Supp. Figure S9). This seasonal drawdown of C_T is potentially associated to biological N₂-fixation similarly to observations in the south-western tropical Pacific where a similar C_T seasonality has been reported (Moutin et al., 2018). In the Western Indian Ocean and the Mozambique Channel *Trichodesmium* blooms (N₂-fixers) have been detected from satellite data (Westberry and Siegel, 2006). However, the occurrence of blooms from remote sensing data only remains qualitative and obviously limited to large surface aggregations of cells (McKinna, 2015). The hypothesis that diazotrophy may play a significant role in C_T and fCO₂ seasonality is further supported by the observation of high abundances of *Trichodesmium* spp in the Mozambique Channel in April 2011 (Dupuy et al, 2016) but we have no *in-situ* data to document this process during the 2004 and 2019 cruises.

355 **3.1.4 Difference in fCO₂ between 2004 and 2019**

356

Although atmospheric fCO₂ was much higher in 2019 than in 2004, the oceanic fCO₂ range was 357 similar (between 380 and 420 μ atm for both periods, Figure 2c) as well as the mean fCO₂ in the band 358 359 14° S-25°S (Table 2). In January 2004, the ocean fCO₂ was much higher than in the atmosphere (a CO₂ source) with ΔfCO_2 ($\Delta fCO_2 = fCO_{2oc} - fCO_{2atm}$) ranging from 20 to 50 µatm, with a mean value of +36.8 (± 360 8.9) μ atm. In April 2019, the mean Δ fCO₂ value was much lower (+2.5 ± 7.9) μ atm: the ocean was a CO₂ 361 362 source north of 18°S (maximum ΔfCO_2 of +20 µatm), near-equilibrium with the atmosphere in the central 363 channel (22°S-18°S) and a CO₂ sink south of 25°S (minimum ΔfCO_2 of -20 µatm). Not taking into 364 account the increase in oceanic fCO₂ from 2004 to 2019 due to anthropogenic CO₂ uptake, our mean results showing a CO₂ source in January and near-equilibrium in April, are coherent with monthly 365 366 climatological ΔfCO_2 values in this region, i.e. +19.95 (± 3.3) µatm for January and +1.2 (± 5.3) µatm for 367 April (Takahashi et al. 2009). Since very few observations in the Mozambique Channel were used to 368 construct the pCO₂ climatology (Takahashi et al., 2009) our results validate the pCO₂ extrapolation in this region that has been later used to create C_T and pH climatologies (Takahashi et al 2014). 369

In the ocean the seasonal variation of fCO_2 is controlled by a complex interplay of 370 371 thermodynamic, biological, chemical and mixing processes (Takahashi et al. 2002). In the subtropics, 372 including the South Indian Ocean sector, the effect of temperature is generally found to be the dominant 373 process at seasonal (Louanchi et al., 1996; Metzl et al., 1995; Takahashi et al. 2002) and inter-annual 374 scales (Metzl et al., 1998). In order to take into account the thermal effect, observed fCO_2 in January 2004 375 and April 2019 were normalized to a constant temperature of 29°C (fCO₂-29C) close to the average SST observed in January and April. The fCO₂-29C distributions are shown in Figure 4c. For both periods, 376 fCO₂-29C variations tend to follow the N-C_T distributions (Figure 4b). As opposed to fCO₂, but like for 377 378 N-C_T, fCO₂-29C was on average slightly higher in April 2019 (403.4 \pm 8.5 µatm) than in January 2004 379 $(391.9 \pm 10.9 \mu atm)$. The difference of only +11.5 μatm is much lower than the atmospheric increase of +33.9 ppm between 2004 and 2019. The temperature drives only part of the fCO₂ monthly variations and 380 381 it is thus important to correct for other seasonal contributions to evaluate long-term trends in fCO₂. If we 382 adjust the fCO₂ observed in January 2004 to April 2004 based on the climatology (Takahashi et al., 2014, Supp Fig S6b), fCO₂ data for January are reduced by 28.1 µatm and we obtain a mean value of 370.8 383 384 µatm for April 2004 (Table 2). The fCO2 increase from April 2004 to April 2019 would lead to a rate of

1.75 (\pm 0.81) µatm.yr⁻¹ over the last 15 years, slower than +2.2 ppm.yr⁻¹ in the atmosphere over the same 385 period. At constant A_T the observed increase in fCO₂ would translate into a trend of +1.01 (± 0.45) 386 μ mol.kg⁻¹.yr⁻¹ in C_T, the same rate deduced from C_T measurements described above (+1.04 ± 0.79 387 μ mol.kg⁻¹.yr⁻¹ for C_T also adjusted to April, Table 2). This simple calculation based on 2 cruises 388 conducted 15 years apart indicates that on average CO2 concentrations increased in the Mozambique 389 Channel at a rate of around 1.0 μ mol.kg⁻¹.yr⁻¹ and that seasonal signals of fCO₂ and C_T have to be taken 390 391 into account to properly evaluate the fCO₂ and C_T trends. The same is true when one uses fCO₂ data and 392 A_T/SSS relationship to calculate pH and to evaluate the long-term signal of ocean acidification (e.g. 393 Lauvset et al., 2015).

394 395

396

3.1.5 Selecting the regional A_T/SSS relationship

Similar to what is commonly observed in the global ocean (Millero et al., 1998) there is a strong 397 relationship between A_T and salinity for both cruises (Figure 5), except in the vicinity of Mayotte Island 398 399 in January 2004 (north of 14°S). The A_T/SSS relationships are almost the same for January 2004 and April 2019 and close to A_T/SSS relationships derived at large scale in the subtropics or in the Indian 400 401 Ocean (Millero et al., 1998; Lee et al., 2006). This suggests that these empirical A_T/SSS relationships 402 could be used to reconstruct spatial and temporal distribution of A_T from salinity. In turn, pH can be calculated from reconstructed A_T and fCO₂ data (when only fCO₂ data are available as it is the case for 403 404 SOCAT, Bakker et al., 2016). In order to select the best A_T /SSS relationship for the Mozambique 405 Channel, we first compared several relations with A_T measurements obtained in January 2004 and April 406 2019 (Supp. Figure S10). All relationships, including that of Millero et al. (1998) or Lee et al. (2006), 407 lead to the same residuals with no statistical differences. Therefore, in the following we used the A_T /SSS relationship derived from our observations in 2004 and 2019 (black line in Figure 5): A_T (µmol.kg⁻¹) = 408 73.841 (± 1.15) * SSS – 291.02 (± 40.4) (n= 548, $r^2 = 0.88$). 409

410

412

411 **3.1.6 Detecting recent pH changes in the Mozambique Channel**

The A_T /SSS relationship described above enables to calculate pH from fCO₂ and SSS underway 413 414 measurements. Here we are first interested in detecting the change in pH between 2004 and 2019. As we had A_T, C_T and fCO₂ observations for both cruises, we compared pH calculated with A_T and C_T pairs or 415 416 with fCO₂ and A_T based on the A_T/SSS relationship. Average calculated pH values in the band 14°S-25°S 417 are listed in Table 3. Both results are presented in Figure 6 for pH at 29°C (pH-29C). Although calculated 418 pH is subject to uncertainties due to the error in each property (SST, SSS, A_T , C_T or fCO₂) the overall pH-419 29C distributions are the same either based on A_T-C_T pairs or on underway fCO₂ data. Except in the vicinity of the islands pH-29C values ranged between 8.02 and 8.06. Although pH values at in-situ 420 temperature were almost the same (Table 3), pH-29C values were clearly lower in April 2019 compared 421 422 to January 2004 (Figure 6, Table 3). On average pH-29C in April 2019 was lower by -0.0116 or -0.0218 423 depending on the calculation. The pH difference between the 2 cruises reflects both the seasonality and probably the pH decrease due to the accumulation of anthropogenic CO₂ over 15 years. To take into 424 account the seasonality, we adjusted the mean fCO_2 and C_T observation in January 2004 to April 2004 425 426 based on the climatology (Takahashi et al., 2014) and recalculate pH adjusted to April 2004 (Table 3). 427 The pH difference between 2019 and 2004 was -0.0238 (\pm 0.0018) (using average fCO₂ data and 428 associated errors) or -0.0244 (±0.0050) (using average A_T-C_T data). Over 15 years, both results lead to a trend of between -0.0154.decade⁻¹ and -0.016.decade⁻¹ (Table 3). Given all uncertainties attached to pH 429 430 calculations, our estimates either based on fCO₂ (and reconstructed A_T) or A_T-C_T observations show that acidification occurred in the Mozambique Channel at a rate similar to that reported for the northern 431 subtropics (-0.017.decade⁻¹, e.g. Bates et al., 2014; Ono et al, 2019). This is, however, much lower than 432 previous estimates of pH trends derived from fCO₂ data at large scale in the Indian Ocean. Lauvset et al 433 (2015) report rates between -0.024.decade⁻¹ for the period 1981-2011 and -0.027.decade⁻¹ for 1991-2011 434 which suggests a faster pH decrease in the Indian Ocean compared to other regions. The pH trend of -435 $0.00160.\text{yr}^{-1}$ (± 0.00149) derived in our observations in the Mozambique Channel between 2004 and 2019 436 is also close to the average trend of -0.00165.yr⁻¹ (± 0.00038) computed over 2004-2019 in the same 437 438 region from reconstructed monthly pH fields using a neural-network method (Denvil-Sommer et al., 439 2019; Chau et al 2020).

The carbonate system parameters (A_T , C_T , fCO₂) measured in January 2004 and April 2019 described in this section, along with pH estimates using different inputs (A_T and C_T or fCO₂), show that (i) N-A_T concentrations are stable, (ii) there is a well characterized A_T /SSS relationship, (iii) the changes in C_T , fCO₂ and pH over 15 years are significant and (iv) when seasonality is taken into account the observed trends of C_T , fCO₂ and pH likely reflect the uptake of anthropogenic CO₂. In the following section, we explore these signals over a longer time period extending back to the sixties.

446 **3.2 Detecting the long-term trends of fCO₂ and pH in the Mozambique Channel**

447 3.2.1 Comparison with historical observations collected in the Mozambique Channel in 1963

448 In order to explore the long-term change in fCO_2 and pH in the Mozambique Channel, we 449 compared our fCO_2 observations obtained in 2004 and 2019 with the only other fCO_2 dataset obtained in 450 this region along a latitudinal transect in May 1963 (Keeling and Waterman, 1968). To estimate pH changes, we used fCO₂, SST and SSS data for the 3 cruises and the A_T/SSS relation described above. We 451 452 note that in May 1963, salinity was not measured and for this cruise we used the mean monthly salinity 453 from the World Ocean Atlas, WOA (Antonov et al., 2006), as listed in the SOCAT data product (Bakker 454 et al., 2016). The mean WOA salinity in the band 14°S-25°S in May is 34.88 close to those measured in 455 January 2004 (35.15) and April 2019 (34.97). The use of WOA salinity has a negligible impact on pH 456 calculations and derived trends. The comparison of observations obtained in 1963, 2004 and 2019 is 457 presented in Figure 7 for the original data and in Figure 8 for fCO_2 and pH normalized at SST 29°C along 458 with calculated N-C_T for these cruises.

The atmospheric xCO₂ value in May 1963 was around 315 ppm, 90 ppm lower than in 2019. Like 459 460 in April 2019, oceanic fCO₂ in May 1963 was quite homogeneous in the Mozambique Channel increasing progressively northward with values ranging from 290 µatm at 25°S to 305 µatm at 16°S (Figure 7b). 461 This region was a small CO₂ sink during this period. Average ΔfCO_2 was -9.3 (± 4.9) µatm in May 1963, 462 very close to the climatological value for May (-5.3 \pm 7.4 µatm for a reference year 2000, Takahashi et al., 463 464 2009) and not very different from our recent observations in April 2019 (near equilibrium with average ΔfCO_2 of +2.5 \pm 7.9 µatm). The most remarkable change is, like for atmospheric CO₂, the much lower 465 ocean fCO₂ observed in May 1963 (Figure 7b, Table 2). Consequently this leads to higher pH in 1963 466 compared to 2004 or 2019 (Figure 7c, Table 3). Based on these data, oceanic fCO₂ increased by + 101 (\pm 467 5) µatm from 1963 to 2019 and pH decreased by -0.104 (± 0.006). This change in pH is similar to the 468 reduction estimated for the global ocean between preindustrial and modern times of -0.11 (Jiang et al., 469 2019). These differences are a snapshot between two cruises conducted 56 years apart and modulated by 470 SST variations that should be taken into account to better interpret the long-term trends of fCO₂ and pH. 471

472 **3.2.2** Seasonal temperature and the impact of long-term warming on the fCO₂ trend

473 The observed SST seasonal variation is significant with the ocean being much colder in May 474 1963 compared to January 2004 or April 2019 (Figure 7a). The measurements in 1963 present also a 475 sharp front in SST at 20° S which is not seen in fCO₂ records (Figure 7b). This is probably because both 476 A_T and C_T concentrations in May 1963 (not measured in 1963) drive fCO₂ the same way as observed in April 2019 (see description above, Figure 2). In 1963, the increase in SST from 24°C in the south to 27°C 477 478 in the north would lead to a fCO₂ increase of about +45 μ atm but measurements show only a difference of 479 + 15 µatm from south to north. This suggests a competitive balance between the thermal, physical and 480 biological processes, all leading to rather homogeneous fCO₂ and pH distributions in 1963 (Figures 7b,c).

In addition, the Indian Ocean, including the Mozambique Channel, experienced a significant 481 long-term warming in recent decades that would drive part of the fCO₂ and pH trends. Based on monthly 482 SST products (Reynolds et al., 2002) extracted at 15°S-20°S in the Mozambique Channel from 1981 to 483 2019 we estimated an annual long-term warming of +0.011 (\pm 0.007) °C.yr⁻¹ (Supp. Figure S11). Such a 484 pronounced warming has also been identified in the Indian Ocean subtropics (> 0.1° C.decade⁻¹) dating 485 486 back to the sixties (Alory et al, 2007; Roxy et al, 2014). It could be due to a fast response to recent 487 climate change or to natural multi-decadal variability (Zinke et al 2014). Relying on corals sampled in the 488 reefs off Southwestern Madagascar at 43°E-23°S, Zinke et al (2014) reconstructed a warming rate of 489 +0.13 °C.decade⁻¹ between the years 1720 and 1800 and between 1900 to present.

490 A long-term warming around $\pm 0.1^{\circ}$ C.decade ⁻¹ is also consistent with the observed SST in May 491 1963 in the band 14°S-20°S (26.82 ± 0.25 °C) being 0.7°C lower than the mean climatological SST in 492 May computed in recent years (27.52 ± 0.39°C for the period 2000-2018). This long-term warming would increase sea surface fCO_2 by about +7.5 µatm and would decrease pH by -0.009 units, a signal not directly linked to the oceanic CO_2 uptake. This corresponds to about 7% of the net fCO_2 increase of +101 µatm observed between 1963 and 2019.

496

497 498

3.2.3 Changes in fCO₂, pH and C_T in the Mozambique Channel over 56 years

499 To separate the effect of temperature and anthropogenic CO₂, fCO₂ and pH were normalized at 500 SST 29°C (Figure 8a, b). We also compared N-C_T calculated with fCO₂ and reconstructed A_T for the 3 501 cruises (Figure 8c, Table 2). To validate the pH and N-C_T calculations based on fCO₂ data for 1963, we 502 first compared the N-C_T calculated with fCO₂ (N-C_{Tcal}) and reconstructed A_T with N-C_T derived from the measurements (N-C_{Tmes}) described in Section 3.1 for 2004 and 2019. On average and taking into account 503 504 the uncertainty of the measurements and calculations, the N-C_{Tcal} and N-C_{Tmes} values were of the same order for each cruise (Table 2). In 2019 both N-C_{Tcal} and N-C_{Tmes} were higher than in 2004 (respectively 505 +7 and +12 μ mol.kg⁻¹) and adjusted values for April lead to the same N-C_T trend for 2004-2019 (Table 2). 506 507 We have thus confidence in N-C_T and pH values calculated with fCO_2 and the A_T/SSS for 1963.

For all three cruises, fCO₂-29C and N-C_T decreased northward and the opposite for pH-29C (Figure 8). In May 1963 the decrease occurred more sharply at the SST front near 20°S (Figure 7a). Consequently, the changes in fCO₂, pH and N-C_T between 1963 and 2004/2019 are slightly more pronounced in the North. The same contrast is observed for aragonite (Ω_{Ar}) and calcite (Ω_{Ca}) saturation states calculated with fCO₂ and A_T/SSS for each cruise (Supp. Figure S12).

513 On average fCO₂ and N-C_T in 1963 were much lower than in 2004 and 2019, and pH-29C much 514 higher (Figure 8, Table 2, 3). To estimate the long-term trend, fCO₂ observations in May 1963 were 515 adjusted to April 1963 (+11.9 µatm based on the climatology) and compared with April 2004 and 2019 to 516 calculate the trends (Tables 2, 3). From 1963 to 2004, the fCO₂, N-C_T and pH trends were respectively 517 $+1.5 (\pm 0.3) \mu atm.yr^{-1}$, $+1.0 (\pm 0.4) \mu mol.kg^{-1}.yr^{-1}$ and $-0.0015.yr^{-1} (\pm 0.0004)$. From 1963 to 2019 results 518 are almost the same, $+1.6 (\pm 0.2) \mu atm.yr^{-1}$, $+1.0 (\pm 0.3) \mu mol.kg^{-1}.yr^{-1}$ and $-0.0015.yr^{-1} (\pm 0.0003)$.

These results, although based on only three cruises, are remarkably close to the atmospheric xCO_2 519 trend of +1.6 ppm.yr⁻¹ over 1963-2019 and to theoretical trends of +1.04 μ mol.kg⁻¹.yr⁻¹ for C_T and -520 0.00165.yr⁻¹ for pH assuming that the ocean followed the atmospheric CO₂ increase and constant 521 alkalinity. Subtracting the effect of the long-term warming in this region (+0.011°C.yr⁻¹) on the fCO₂ 522 trend (+0.13 μ atm.yr⁻¹), leads to a trend of fCO₂ of 1.39 μ atm.yr⁻¹ (1963-2004) or 1.44 μ atm.yr⁻¹ (1963-523 524 2019) that would reflect the anthropogenic CO_2 uptake. Our results also suggest that observed trends in 525 the Mozambique Channel were slightly more pronounced in the recent decades (Tables 2, 3), but this is 526 deduced from only three cruises. For a better evaluation of the decadal variability and long-term trends 527 we now focus on the southern region of the Mozambique Channel where more fCO₂ data are available for different seasons and years (Table 1). 528

529 **3.3** Long-term trends in the southern region of the Mozambique Channel

- To confirm the changes observed in the Mozambique Channel from the three cruises in 1963, 2004 and 2019, we explored the fCO₂ and pH variations based on all data available in SOCAT-v2020 around 25°S. Here we selected the data in the region $23.5^{\circ}S-26.5^{\circ}S/38^{\circ}E-42^{\circ}E$ (identified with a green circle in Figure 1). This added 3 cruises conducted in June 1995, December 2003 and July 2014 (Table 1). In 1995 and 2003 C_T and A_T were also measured at fixed stations (Sabine et al., 1999; Murata et al., 2010) and we used these surface data (3-10m) to compare with N-C_T calculated from fCO₂ and A_T.
- 536 Sea surface temperature, fCO₂ and pH (calculated) for the six cruises are shown in Figure 9 and the averages of observed and calculated properties around 25°S for each cruise are listed in Table 4. For 537 538 each period SST, fCO₂ and pH are fairly homogeneous in this region (Figure 9) and this translates into a 539 low standard-deviations around the mean (Table 4). The ocean was colder in May, June and July than in 540 December, January and April (Figure 9a). For the cold season as expected, the fCO₂ was the lowest in 541 May 1963 (< 300 µatm) compared to June 1995 (>300 µatm) and July 2014 (>350 µatm) and pH was 542 higher in 1963 (> 8.15) compared to 2014 (< 8.09). During the warm season (December-April), fCO₂ was 543 always higher than 370 µatm (Figure 9b). As described above, the same fCO₂ values (near 390 µatm) 544 were observed in January 2004 and April 2019, i.e. 15 years apart. The lowest pH (range 8.033 < pH <8.066) was always observed during the warm season (Figure 9c). 545
- 546 The two cruises conducted one month apart in December 2003 and January 2004 on different 547 ships recorded surprisingly the same range of fCO₂, around 385-390 µatm (Table 4). At 40°E, however, 548 despite SST being the same (Figure 9a), fCO₂ was higher in December 2003 than in January 2004 by +12 μ atm on average (Figure 9b). This is opposed to the climatology according to which December fCO₂ is 549 550 generally lower by -20 µatm than January in this region (Supp. Figure S6). An inspection of the Quality 551 Control information available on-line in SOCAT (www.socat.info) indicated that for the December 2003 552 cruise (Expocode 49NZ20031209) there was no equilibrator temperature and pressure recorded. We are thus less confident with the accuracy of fCO₂ data for this cruise (Lauvset et al, 2019). Like for our 553 cruises in 2004 and 2019, the C_T concentrations measured in 1995 and 2003 were close to the C_T 554 calculated from fCO₂ and our A_T/SSS relationship (last two columns in Table 4) confirming the pH 555 556 values calculated the same way for different years and seasons. For the trend analysis we thus use pH and 557 C_T calculated using fCO₂ data for all cruises (except December 2003).
- The temporal evolutions of fCO₂, pH and N-C_T averaged at 25°S are shown in Figure 10 and the 558 559 trends evaluated on different periods listed in Table 5 and illustrated in Figure 11. The trends were estimated after adjusting fCO₂ data to June each year (grey diamonds in Figure 10). We also compared 560 the observational results with the pCO₂ and pH values reconstructed by Chau et al (2020). Here we 561 562 extracted the CMEMS-LSCE-NN model gridded results at the location 25°S-40°E. The trends from the 563 model are evaluated for June to compare with observations (Figure 12) or using the annual values (Table 5). Given the errors in the trends estimated for each property based on both measurements uncertainty, 564 spatial variability and pH or N-C_T calculations, trends for short periods, e.g. 1995-2004 (Figure 11) have 565

large errors and thus the interpretation of observed changes is mainly limited to multi-decadal variations(1963-1995 versus 1995-2019).

We first noted that the long-term trends estimated with all data at 25°S are almost identical to 568 those derived when using only 1963 and 2019 observations in the Mozambique Channel for the band 569 570 14°S-25°S as described above. This suggests that the results at 25°S reflect the trends in a larger domain. However, these additional data allowed us to identify a shift in the trends before and after 1995, as 571 expected from the recent faster increase of atmospheric CO₂ concentrations. At 25°S, the trends evaluated 572 573 over the period 1995-2019 were almost twice as large as those evaluated over 1963-1995 (Table 5, Figure 11). For fCO₂ we estimated an annual rate that changed from +1.14 (\pm 0.23) µatm.yr⁻¹ in 1963-1995 to 574 +2.20 (\pm 0.26) µatm.yr⁻¹ in 1995-2019 (Figures 10a and 11). For pH the trends varied from -0.00129 (\pm 575 0.00042) to -0.00227 (\pm 0.00048) unit yr⁻¹ for the same periods (Figures 10b and 11). To confirm these 576 577 results we also evaluated the temporal change of pH based on [H⁺] concentrations calculated for each 578 cruise (Supp. Figure S13) and using Equation (3) (Kwiatkowski and Orr, 2018).

579 580

581

 $\Delta p H = -1 \Delta [H^+]/2.303 [H^+]$ (3)

where ΔpH and $\Delta [H^+]$ are the temporal differences between each period (1995 versus 1963 or 2019 versus 582 1995) and $[H^+]$ the concentration at the beginning of each period (1963 or 1995). The derived pH trends 583 using Equation (3) are -0.00137 yr⁻¹ for 1963-1995 and -0.00232 yr⁻¹ for 1995-2019 (Table 5). Like for 584 585 the trends deduced from the mean pH values at 25°S (Figure 10b), the pH trend based on [H⁺] 586 concentrations is about twice faster in 1995-2019. For the recent period the observed fCO₂ and pH trends are remarkably close to those derived from the CMEMS-LSCE-NN model (Figure 10a,b, Figure 12, 587 Table 5). For C_T , we estimated a trend of +0.82 (± 0.41) µmol.kg⁻¹.yr¹ for 1963-1995 and +1.37 (± 0.42) 588 µmol.kg⁻¹.yr¹ for 1995-2019 in the same range as the trends deduced when comparing data collected in 589 2004 and 2019 in the whole Channel (section 3.1, Table 2) and indicative of the accumulation of 590 591 anthropogenic CO₂.

592 **3.4** Anthropogenic CO₂ in the southern region of the Mozambique Channel

In order to separate the contributions of natural or climate change induced variations (e.g. 593 warming) and the accumulation of anthropogenic CO₂ to the fCO₂ and pH trends described above, we 594 evaluated the anthropogenic fraction of C_T (hereafter noted C_{ant}) in the southern Mozambique Channel 595 596 region based on water-column observations. Data from two cruises at 25°S in June 1995 and December 2003 are available in the GLODAPv2.2019 data product (Olsen et al., 2019). Murata et al (2010) used 597 these observations to evaluate the changes of anthropogenic CO_2 concentrations in the interior of the 598 South Indian Ocean. They estimated a mean increase of C_{ant} of +7.9 (± 1.1) µmol.kg⁻¹ from June 1995 to 599 December 2003 in the upper layer of the subtropical water in the Central Indian Ocean. Over 8.5 years 600 this corresponds to a trend of +0.93 (\pm 0.13) µmol.kg⁻¹.yr⁻¹, in the range of our estimate based on surface 601

602 observations (Figure 10c, Table 5). Specifically for the period 1995-2004, we evaluated an increase in N-603 C_T of +10.5 µmol.kg⁻¹ in surface waters but over only 9 years the trend is uncertain, +1.15 (± 1.25) 604 µmol.kg⁻¹.yr⁻¹ (Table 5).

To further explore C_T and C_{ant} variations across the Mozambique Channel, we revisited the data 605 used by Murata et al (2010) focusing on the stations within the same region as selected for surface data 606 described in the previous section (25°S/38°E-42°E). To calculate Cant we used the TrOCA method 607 developed by Touratier et al. (2007) (see Section 2.3). Because indirect methods like TrOCA are not 608 609 suitable to evaluate C_{ant} concentrations in surface waters (due to biological activity and gas exchange) we calculated Cant in the layer 150-200m below the nitracline. The averages of observed and calculated 610 properties in this layer are listed in Table 6 as well as the differences between the cruises. From 1995 to 611 2003 C_T and N-C_T increased by about 10 μ mol.kg⁻¹ and no significant change was observed for A_T. Our 612 C_{ant} estimate in this region increased from 35.1 (± 1.2) µmol.kg⁻¹ in 1995 to 42.3 (± 3.2) µmol.kg⁻¹ in 613 2003. The C_{ant} increase of +7.3 (\pm 3.4) µmol.kg⁻¹ reported here around 25°S is very close to the average 614 value of +7.9 (\pm 1.1) µmol.kg⁻¹ derived by Murata et al (2010) in the subtropical Indian Ocean subsurface 615 waters. The Cant increase explains 70 % of the CT increase of +10.5 µmol.kg⁻¹ over this period (1995-616 2003). The remaining 30% is probably linked to natural C_T variations associated to internal processes 617 such as eddy activity around 24°S (Swart et al., 2010) and/or remineralization as revealed by the decrease 618 619 in oxygen concentration (Table 6).

Our estimate of Cant variations at regional scale can be also compared to the results by Gruber et 620 al (2019a) who evaluated the changes in Cant in the global ocean between 1994 and 2007. We extracted 621 the Cant data for the Mozambique Channel made available by Gruber et al (2019b) and estimated the mean 622 C_{ant} changes at 25°S in different layers (Table 7). The accumulation of C_{ant} between 1994 and 2007 is 623 rather homogeneous in the Mozambique Channel (Supp. Figure S14). In the top layer (0-200m) the mean 624 C_{ant} increase between 1994 and 2007 is +14.03 (± 0.78) µmol.kg⁻¹ in the Channel (15°S-27°S). At 25°S, 625 the accumulation in the layer 150-200m is +12.94 (\pm 0.56) µmol.kg⁻¹, i.e. a rate of +1.00 (\pm 0.04) 626 μ mol.kg⁻¹.yr⁻¹ which is slightly higher than our C_{ant} estimate of +0.86 (± 0.4) μ mol.kg⁻¹.yr⁻¹ based on 627 628 TrOCA and for the period June 1995 to December 2003.

Although the C_{ant} estimates described above were obtained for different periods and using 629 different methods (Murata et al., 2010; Gruber et al, 2019a; this study), all results lead to the same 630 conclusion: there was a gradual increase in C_T concentrations in the upper waters of the southern 631 Mozambique Channel from +0.82 (\pm 0.41) µmol.kg⁻¹.yr⁻¹ in 1963-1995 to +1.37 (\pm 0.42) µmol.kg⁻¹.yr⁻¹ in 632 1995-2019 (Table 5, Figure 11). It is mainly driven by the accumulation of anthropogenic CO₂ (Table 6, 633 7). This also explains the observed long-term trends of fCO_2 and the progressive pH decline in this region 634 (Figure 10). The warming of +0.11°C.decade⁻¹ would translate into a pH decrease of -0.0017.decade⁻¹, i.e. 635 about 10% of the observed long-term trend for 1963-2019 of -0.0167 (±0.002) .decade⁻¹. Most of the 636

637 observed pH change in the Mozambique Channel is thus likely due to anthropogenic CO_2 . This could 638 impact not only the biological processes in the open ocean but also coral reef ecosystems in this region.

639 **3.5 A Paleo-acidification perspective**

640 Like in other regions, coral reefs in the Mozambique Channel are subject to multiple stressors due 641 to warming, sea level rise and acidification, combined or not to local anthropization (e.g. in Mayotte). 642 Historical SST and pH can be reconstructed from aragonite skeletal cores collected from massive scleractinian coral species like Porites sp. from geochemical proxies such as trace element ratios (e.g. 643 Li/Mg, Sr/Ca), oxygen (δ^{18} O) or boron (δ^{11} B) isotopic ratio (e.g. Montagna et al, 2014; Tierney et al, 644 2015; Liu et al; 2014; Wu et al, 2018; D'Olivo et al, 2019; Cuny-Guirriec et al, 2019). Above we have 645 646 estimated the change in pH since 1963. If we assume that the trends derived from observations between 647 the sixties and 2019 are representative of the trend over the historical period (i.e. fCO₂ tracks atmospheric CO₂) historical changes in sea surface fCO₂, pH and N-C_T can be evaluated back to the pre-industrial 648 period (Figures 13a,b). We used historical atmospheric xCO₂ data for the southern hemisphere 649 650 reconstructed by Meinshausen et al (2017) for the period 1800-2014 along with recent atmospheric xCO₂ 651 recorded over 2015-2019 (Dlugokencky and Tans, 2020). C_T and pH were calculated assuming constant salinity (35) and alkalinity (2300 μ mol.kg⁻¹, the mean of all A_T observations in January 2004 and April 652 2019 was 2297.6 ± 14.7 µmol.kg⁻¹, Figure 3a). We also assume that the oceanic fCO₂ is either in 653 654 equilibrium with the atmosphere (orange line in Figures 13a,b) or that fCO₂ seasonality is constant over 655 time (grey lines in Figures 13a,b).

656 The results of the reconstruction for the recent decades (Figures 13a) show a good agreement with 657 observations for fCO₂ and pH when available. For the period 1985-2019 the reconstructed fCO₂ and pH 658 are also close to the monthly values from the neural network model (Chau et al 2020, purple lines in Figures 13a). Reconstructed N-C_T concentrations are also in the range of N-C_T measured or calculated 659 660 between 1963 and 2019. In the year 1800, values of fCO_2 , pH and N-C_T were respectively around 270 (± 10) μ atm, 8.18 (± 0.014) and 1915 (± 10) μ mol.kg⁻¹. This gives a reference for pH reconstructions based 661 on 2 m-long coral cores recently collected at different locations along the Mozambique Channel during 662 663 the CLIM-EPARSES cruise (work in progress, Tribollet, 2019, 2020).

Since 1800, the mean annual pH decreased progressively from 8.180 to 8.136 in 1963 (the first 664 direct observation) and then decreased sharply to reach 8.05 in 2019. The pH decline of -0.13 between 665 666 1800 and 2019, evaluated here at local scale, is slightly larger than the -0.11 pH units estimated for the 667 global ocean (Jiang et al., 2019). Based on our reconstruction, we evaluated a pH trend of -0.0027.decade ¹ during 1800-1963, -0.0138.decade⁻¹ during 1963-1995 and -0.0187.decade⁻¹ during 1995-2019. 668 669 Recalling our results based on observations (Table 5), it is clear that the rate of acidification has increased over the past recent decades, and it is likely that this process will continue in the next decade given the 670 rapid increase of atmospheric CO₂ concentrations that reached a new record of +2.6 ppm.yr⁻¹ in 2019 for 671 672 a non ENSO year (Dlugokencky and Tans, 2020). If future atmospheric CO₂ levels keep increasing at the same rate, a further decrease of pH by -0.1 is likely to occur by 2040 (pH < 8) while aragonite saturation state (Ω_{Ar}) would reach the value of 3 (Supp. Fig S14) which is below the critical threshold of Ω_{Ar} = 3.25 that seems to limit the distribution of tropical coral reefs in the contemporary ocean (e.g. Hoegh-Guldberg et al., 2007).

Such a rapid reduction of pH and Ω_{Ar} in the Mozambique Channel in response to anthropogenic 677 CO₂ emissions could have severe negative impacts on coral reefs because of a simultaneous reduction of 678 calcification of the main reef framebuilders (corals and crustose coralline algae; Pandolfi et al. 2011) and 679 680 a stimulation of carbonate dissolution processes (Schönberg et al. 2017; Evre et al. 2018; Tribollet et al. 681 2019). Impacts on coral reefs of combined effects of ocean warming and acidification, together with local disturbances (e.g. eutrophication), need to be further investigated as the interaction of stressors might be 682 683 synergistic or antagonistic (Chauvin et al. 2011; Trnovsky et al. 2016; Schönberg et al. 2017; Boyd et al 684 2018). Future studies need to address impacts of multiple drivers on coral reefs at the regional scale, f.i. 685 along thermal, pH and pollution gradients, to better apprehend and predict the fate of those ecosystems.

686 4. Summary and Concluding remarks

This study presents new observations of the carbonate system in the Mozambique Channel for 687 688 January 2004 and April 2019. Remarkable differences are observed between these cruises conducted 15 689 years apart and at different seasons. The region was a large CO₂ source in January due to high 690 temperature (30°C) and near equilibrium in April. In 2019 this region was hit by the strong cyclone "Idai" leading to low salinity and low C_T and A_T concentrations. However, when normalized to salinity, N-C_T 691 concentrations were higher in 2019 compared to 2004 by about 12 (\pm 7) µmol.kg⁻¹, which reflects in part 692 693 the uptake of anthropogenic CO₂ over 15 years. Surprisingly the fCO₂ (and pH) data at in-situ SST were 694 almost identical in 2004 and 2019, although atmospheric xCO_2 observed onboard increased by +34 ppm. 695 However, when the thermal effect is taken into account, we estimate a small increase in fCO₂ (+11.5 \pm 696 9.8 μ atm) and decrease in pH (-0.012 \pm 0.008) driven by N-C_T changes. N-A_T concentrations are the same in 2004 and 2019 and do not impact fCO₂ and pH variations. The relatively small difference of fCO₂ 697 698 between the two cruises is due to seasonal variability that has to be taken into account to detect long-term 699 trends. The decrease in C_T and fCO₂ from January to April is in part due to biological processes. 700 Diazotrophy provides a likely explanation as *Trichodesmium* spp has been observed in abundance in the Mozambique Channel (Dupuy et al, 2016). When the seasonality is taken into account, our observations 701 in 2004 and 2019 reveal an increase in fCO₂ of +1.75 (\pm 0.81) µatm.yr⁻¹, in C_T of +1.04 (\pm 0.79) µmol.kg⁻¹ 702 1 .yr⁻¹ and a decrease of pH of -0.0016.yr⁻¹ (± 0.0015). 703

The data from these two cruises lead to a robust A_T /SSS relationship in this region that can be used to calculate pH from fCO₂ data from other cruises. We attempted a comparison of our recent observations with sea surface data collected in 1963 in the Mozambique Channel (Keeling and Waterman, 1968). As expected, the fCO₂ was much higher in 2004/2019 than in 1963 (by about 100 µatm) reflecting an atmospheric CO₂ increase by +90 ppm between 1963 and 2019. In addition to anthropogenic CO₂ uptake, long-term ocean warming in this region ($\pm 0.11^{\circ}$ C.decade⁻¹) contributes to fCO₂ increase from 1963 to 2019 (by approximately about $\pm 10 \mu$ atm). For pH, we observed a large decrease in all sectors of the Mozambique Channel, including near coral reef areas in the Eparses Islands (Europa, Juan de Nova). We estimated a mean decrease of ± 0.104 (± 0.006) pH unit between 1963 and 2019, typical of the preindustrial versus modern change in the global ocean (Jiang et al., 2019).

Results from the three cruises (1963, 2004 and 2019) covering a large region (14°S-25°S) are 714 715 corroborated by three additional observations collected in the southern part of the Mozambique Channel (25°S). Based on those 6 cruises from 1963 to 2019, we evaluated a long-term trend for fCO₂ of +1.55 (\pm 716 0.11) µatm.vr⁻¹ almost identical to the atmospheric trend. For pH the trend over 1963-2019 is -0.00167.yr⁻¹ 717 ¹ (\pm 0.0002), and for C_T we estimated an increase of +1.04 (\pm 0.21) µmol.kg⁻¹.yr⁻¹. This is close to the 718 719 trend of anthropogenic CO₂ evaluated in the upper ocean layers ranging between +0.93 (\pm 0.13) and +1.00 (±0.04) µmol.kg⁻¹.yr⁻¹ depending on the method and data used (Murata et al., 2010, Gruber et al., 720 721 2019a, this study). It is worth noting that the fCO₂, pH and C_T trends appear to be more pronounced in the 722 recent decades although this is derived from few cruises only (Table 5). For pH we estimated a trend of -723 0.0129.decade⁻¹ (± 0.0042) over 1963-1995 and -0.0227.decade⁻¹ (± 0.0048) for 1995-2019 suggesting an acceleration of acidification. Our different estimates based either on fCO2 or AT/CT measurements in the 724 725 Mozambique Channel agree with trends in this region derived from global scale reconstructions of pCO2 726 and pH (Denvil-Sommer et al., 2019; Chau et al, 2020). We also note that the pH trend in the 727 Mozambique Channel appears lower than previous estimates at basin scale in the Indian Ocean which range between -0.024.decade⁻¹ for the period 1981-2011 and -0.027.decade⁻¹ for 1991-2011 (Lauvset et al, 728 729 2015).

730 The results presented in this analysis aimed at evaluating the change of the carbonate system in the Mozambique Channel at regional scale and we conclude that the anthropogenic CO₂ emissions are 731 732 responsible for a significant acidification in surface waters supported here by various sea surface 733 observations and independent anthropogenic CO₂ concentration estimates in the water column. Given the 734 results based on observations since the sixties, we reconstructed the pH change back to the pre-industrial period. In the year 1800, we estimated that pH in the Mozambique Channel was about 8.18 (±0.014), i.e. 735 0.13 higher than in 2019. Concentration of C_T in the year 1800 was likely around 1915 (±10) µmol.kg⁻¹. 736 These values could serve as a reference for reconstructing pH from coral core samples collected during 737 738 the CLIM-EPARSES cruise in April 2019 (Tribollet, 2019, 2020).

Our analysis reflects only the change in the open ocean and the "remote" anthropogenic impact through CO₂ emissions. To further evaluate impacts of global environmental change and ocean acidification on coral reefs, a continuous *in situ* sampling program will be needed at higher temporal and spatial scale. It should include the sea level changes either due to global warming or linked to marine heat waves or climate fluctuations such as the Indian Ocean Dipole (IOD) and ENSO in the Pacific (Ampou et al., 2017), the frequency of cyclone events or local anthropization (especially in Mayotte). In the present
analysis, pH was calculated from carbonate system properties, i.e. not from direct pH measurements. In
the future and similarly to what is done in other coral reefs areas (Tilbrook et al., 2019), pH should be
monitored at high frequency. Detailed analysis of the observations obtained during CLIM-EPARSES
cruise near the Islands and in coral reefs (Juan de Nova, Europa, Mayotte and Glorieuses) will be
investigated in further studies.

750

756

Authors contribution: AT is PI of the ongoing CLIM-EPARSES project. NM was PI of the OISO-11 cruise in 2004. fCO_2 , A_T and C_T data for OISO-11 were measured and qualified by NM and CLM. fCO_2 , A_T and C_T data for CLIM-EPARSES were measured and qualified by CLM, JF, CM and NM. PC provided the Chl-a data for CLIM-EPARSES. MG and TC provided the neural network model results. NM wrote the draft of this manuscript and prepared figures with contributions from all authors.

757 Acknowledgments: The OISO program was supported by the French institutes INSU (Institut National des Sciences de l'Univers) and IPEV (Institut Polaire Paul-Emile Victor), the French program 758 759 SOERE/Great-Gases, the programs CARBOOCEAN (grant 511176) and European and 760 CARBOCHANGE (grant 264879). The CLIM-EPARSES project is supported by TAAF (Terres Australes et Antarctic Françaises), IRD (Institut de Recherche pour le Développement), Fondation Prince 761 Albert II de Monaco (www.fpa2.org), INSU (Institut National des Sciences de l'Univers), CNRS (Centre 762 763 National de Recherche Scientifique), Museum National d'Histoire Naturelle (MNHN), UMRs LOCEAN-764 IPSL, ENTROPIE and LSCE. We thank the captains and crew of R.R.V. Marion Dufresne and the staff at the French Polar Institute (IPEV). The development of the neural network model benefited from funding 765 by the French INSU-GMMC project "PPR-Green-Grog (grant no 5-DS-PPR-GGREOG), the EU H2020 766 project AtlantOS (grant no 633211), as well as through the Copernicus Marine Environment Monitoring 767 768 Service (project CMEMS-TAC-MOB). Anna Conchon contributed to the development and computation of pCO2 and pH reconstructions. The Surface Ocean CO2 Atlas (SOCAT, www.socat.info) is an 769 international effort, endorsed by the International Ocean Carbon Coordination Project (IOCCP), the 770 Surface Ocean Lower Atmosphere Study (SOLAS) and the Integrated Marine Biogeochemistry and 771 772 Ecosystem Research program (IMBER), to deliver a uniformly quality-controlled surface ocean CO2 773 database. We thank the two anonymous reviewers for making constructive suggestions, which resulted in 774 improvements of this paper and Raleigh Hood, Editor of this IIOE-2 special issue.

- 775
- 776

777 **References:**

778

Alory, G., Wijffels, S., and Meyers, G., 2007. Observed temperature trends in the Indian Ocean over
1960–1999 and associated mechanisms, *Geophys. Res. Lett.*, 34, L02606, doi:10.1029/2006GL028044.

781

Alvarez, M., Lo Monaco, C., Tanhua, T., Yool, A., Oschlies, A., Bullister, J. L., Goyet, C., Metzl, N.,

783 Touratier, F., McDonagh, E., and Bryden, H. L., 2009. Estimating the storage of anthropogenic carbon in

the subtropical Indian Ocean: a comparison of five different approaches, Biogeosciences, 6, 681–703,
https://doi.org/10.5194/bg-6-681-2009.

Aminot, A., and R. Kérouel, 2004. *Hydrologie des écosystèmes marins: paramètres et analyses*. Ed.
Ifremer, 336 p.

- Ampou, E. E., Johan, O., Menkes, C. E., Niño, F., Birol, F., Ouillon, S., and Andréfouët, S., 2017. Coral mortality induced by the 2015–2016 El-Niño in Indonesia: the effect of rapid sea level fall, Biogeosciences, 14, 817–826, https://doi.org/10.5194/bg-14-817-2017.
- 792

Antonov, J. I., Locarnini, R. A., Boyer, T. P., Mishonov, A. V., and Garcia, H. E, 2006. World Ocean
Atlas 2005, in: Volume 2: Salinity, edited by Levitus, S., NOAA Atlas NESDIS 62, US Government
Printing Office, Washington, DC, 182 pp.

- 797 Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., 798 799 Bates, N. R., Boutin, J., Bozec, Y., Cai, W.-J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, 800 K., de Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N. 801 J., Hoppema, M., Huang, W.-J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., 802 Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., 803 Manke, A. B., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A. M., Ono, T., 804 Park, G.-H., Paterson, K., Pierrot, D., Ríos, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A. J., Suzuki, T., 805 806 Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., van Heuven, S. M. A. C., Vandemark, D., 807 Vlahos, P., Wallace, D. W. R., Wanninkhof, R., and Watson, A. J., 2014. An update to the Surface Ocean 808 CO2 Atlas (SOCAT version 2), Earth Syst. Sci. Data, 6, 69–90, doi:10.5194/essd-6-69-2014.
- 809
- 810 Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., 811 Harasawa, S., Jones, S. D., Nakaoka, S.-I., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, 812 813 N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, 814 N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, 815 816 M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., 817 Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., 818 Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., 819 820 Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., 821 Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., Van Heuven, S. M. A. C., 822 Vandemark, D., Ward, B., Watson, A. J., and Xu, S., 2016. A multi-decade record of high-quality fCO₂ data in version 3 of the Surface Ocean CO₂ Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383-413, 823 824 doi:10.5194/essd-8-383-2016.
- 825

Bakker, D. C. E. et al., 2020. Surface Ocean CO2 Atlas Database Version 2020 (SOCATv2020) (NCEI
Accession 0210711). NOAA National Centers for Environmental Information. Dataset.
https://doi.org/10.25921/4xkx-ss49. Last Access 15/6/2020.

829

Bates, N. R., A. C. Pequignet, and C. L. Sabine, 2006. Ocean carbon cycling in the Indian Ocean: 1.
Spatiotemporal variability of inorganic carbon and air-sea CO2 gas exchange, Global Biogeochem.
Cycles, 20, GB3020, doi:10.1029/2005GB002491.

833

Bates, N., Astor, Y., Church, M., Currie, K., Dore, J., Gonaález-Dávila, M., Lorenzoni, L., MullerKarger, F., Olafsson, J. and Santa-Casiano, M., 2014. A Time-Series View of Changing Ocean Chemistry

- Bue to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification, Oceanography, 27(1), 126–141,
 doi:10.5670/oceanog.2014.16.
- Beaufort, L., I. Probert, T. de Garidel-Thoron, E.M. Bendif, D. Ruiz-Pino, N. Metzl, C. Goyet, N.
 Buchet, P. Coupel, M. Grelaud, B. Rost, R.E.M. Rickaby and C. de Vargas, 2011. Sensitivity of
 coccolithophores to carbonate chemistry and ocean acidification. *Nature*, doi:10.1038/nature10295.
- 842 Boyd, P.W., S. Collins, S. Dupont, K. Fabricius, J.-P. Gattuso, J. Havenhand, D. A. Hutchins, U.
- Riebesell, M. S. Rintoul, M. Vichi, H. Biswas, A. Ciotti, K. Gao, M. Gehlen, C. L. Hurd, H. Kurihara, C.
- 844 M. McGraw, J. M. Navarro, G. E. Nilsson, U. Passow, H.-O. Pörtner, 2018. Experimental strategies to
- assess the biological ramifications of multiple drivers of global ocean change—A review. *Glob Change Biol.* 2018; 24: 2239–2261. doi:10.1111/gcb.14102.
- 847

- Carter, B. R., N. L. Williams, A. R. Gray, and R. A. Feely. 2016. Locally interpolated alkalinity
 regression for global alkalinity estimation. Limnol. Oceanogr.: Methods 14: 268–277.
 doi:10.1002/lom3.10087.
- 851

- Carter, B. R., R. A. Feely, N. L. Williams, A. G. Dickson, M. B. Fong and Y. Takeshita, 2018. Updated
 methods for global locally interpolated estimation of alkalinity, pH, and nitrate. Limnology and
 Oceanography: Methods, 16: 119-131. doi: 10.1002/lom3.10232
- Chau, T. T., Gehlen, M., and Chevallier, F., 2020: Global Ocean Surface Carbon Product
 MULTIOBS_GLO_BIO_CARBON_SURFACE_REP_015_008, E.U. Copernicus Marine Service
 Information. "https://resources.marine.copernicus.eu/documents/QUID/CMEMS-MOB-QUID-015008.pdf".
- 860
- Chauvin, A., V. Denis, and P. Cuet, 2011. Is the response of coral calcification to seawater acidification
 related to nutrient loading?. *Coral Reefs* 30, 911. DOI:10.1007/s00338-011-0786-7
- 863
- Copin-Montégut, C., 1988. A new formula for the effect of temperature on the partial pressure of CO₂ in
 seawater. *Marine Chemistry*, 25, 29-37. https://doi.org/10.1016/0304-4203(88)90012-6
- 866 Copin-Montégut, C., 1989. A new formula for the effect of temperature on the partial pressure of CO_2 in 867 seawater. Corrigendum. *Marine Chemistry*, 27, 143-144. https://doi.org/10.1016/0304-4203(89)90034-0.
- 868 Cuny-Guirriec K., E. Douville, S. Reynaud, D. Allemand, L. Bordier, M. Canesi, C. Mazzoli, M. Taviani,
 869 S. Canese, M. McCulloch, J. Trotter, S. D. Rico-Esenaro, J.A. Sanchez-Cabeza, A.C.Ruiz-Fernández, J.P
 870 Carricart-Ganivet, P. Scott, A. Sadekov and P. Montagna, 2019. Coral Li/Mg thermometry: Caveats and
- 871 constraints. *Chemical Geology*, 523, 162-178. https://doi.org/10.1016/j.chemgeo.2019.03.038.
- Cyronak, T., Schulz, K. G., Santos, I. R. and Eyre, B. D., 2014. Enhanced acidification of global coral
 reefs driven by regional biogeochemical feedbacks, *Geophys. Res. Lett.*, 2014GL060849,
 doi:10.1002/2014GL060849.
- 875
- Cyronak, T., Takeshita, Y., Courtney, T.A., DeCarlo, E.H., Eyre, B.D., Kline, D.I., Martz, T., Page, H.,
 Price, N.N., Smith, J., Stoltenberg, L., Tresguerres, M. and Andersson, A.J., 2020. Diel temperature and
 pH variability scale with depth across diverse coral reef habitats. Limnol Oceanogr, 5: 193-203.
 doi:10.1002/lol2.10129.

884

888

de Moel, H., Ganssen, G. M., Peeters, F. J. C., Jung, S. J. A., Kroon, D., Brummer, G. J. A., and Zeebe,
R. E., 2009. Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean
acidification? Biogeosciences, 6, 1917–1925, https://doi.org/10.5194/bg-6-1917-2009.

- Denvil-Sommer, A., Gehlen, M., Vrac, M. and Mejia, C., 2019. LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean pCO_2 over the global ocean, Geosci. Model Dev., 12, 2091-2105, https://doi.org/10.5194/gmd-12-2091-2019.
- B89 Dickson, A. G. 1990. Standard potential of the reaction: $AgCl(s) + \frac{1}{2}H2(g) = Ag(s) + HCl(aq)$, and the standard acidity constant of the ion HSO4– in synthetic sea water from 273.15 to 318.15 K. J. Chem. *Thermodyn.* 22: 113–127. doi:10.1016/0021-9614(90)90074-Z
- 892

895

898

902

906

909

Dickson, A. G. and Millero, F. J. 1987. A comparison of the equilibrium constants for the dissociation of
carbonic acid in seawater media. *Deep Sea Res.* 34(10), 1733–1743. Doi:10.1016/0198-0149(87)90021-5.

Bickson, A.G., Sabine, C.L. and Christian, J.R. (Eds.) 2007. Guide to Best Practices for Ocean CO2
Measurements. *PICES Special Publication* 3, 191 pp.

- B199 Dlugokencky, E. and Tans, P., 2020. Trends in atmospheric carbon dioxide, National Oceanic &
 Atmospheric Administration, Earth System Research Laboratory (NOAA/ESRL), available at: http://
 www.esrl.noaa.gov/gmd/ccgg/trends/global.html, (last access: 22 February 2020).
- D'Olivo J. P., G. Ellwood, T. M. DeCarlo and M. T. McCulloch, 2019. Deconvolving the long-term
 impacts of ocean acidification and warming on coral biomineralisation. *Earth and Planetary Science Letters*, Volume 526, 115785, https://doi.org/10.1016/j.epsl.2019.115785.
- Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A., 2009. Ocean acidification: The other CO2
 problem. *Annual Review of Marine Science*, 1(1), 169–192. 10.1146/annurev.marine.010908.163834
- Dupuy, C., M. Pagano, P. Got, I. Domaizon, A. Chappuis, G. Marchessaux, M. Bouvy, 2016. Trophic
 relationships between metazooplankton communities and their plankton food sources in the Iles Eparses
 (Western Indian Ocean). *Marine Environmental Research*, 116, 18-31,
 doi.org/10.1016/j.marenvres.2016.02.011.
- Edmond, J. M., 1970. High precision determination of titration alkalinity and total carbon dioxide content
 of sea water by potentiometric titration, *Deep-Sea Res.*, 17, 737–750, https://doi.org/10.1016/00117471(70)90038-0.
- 918

- 919 Eyre B.D., Cyronak T., Drupp P., De Carlo E.H., Sachs J.P., Andersson A.J., 2018. Coral reefs will
 920 transition to net dissolving before end of century. *Science* 359, 6378, 908–911,
 921 DOI:10.1126/science.aao1118.
- 922
- Fabry, V. J., Seibel, B. A., Feely, R. A. and Orr, J. C, 2008. Impacts of ocean acidification on marine
 fauna and ecosystem processes. *ICES J. Mar. Sci.* 65, 414–432. https://doi.org/10.1093/icesjms/fsn048
- Feely, R. A., Doney, S. C., and Cooley, S. R., 2009. Ocean acidification: Present conditions and future
 changes in a high-CO2 world. Oceanography, 22(4), 36–47. 10.5670/oceanog.2009.95

Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., 929 930 Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, 931 P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, 932 F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., 933 934 Kaplan, J. O., Kato, E., Klein Goldewijk, K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., 935 936 Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., 937 Smith, N., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J., and 938 Zaehle, S., 2019. Global Carbon Budget 2019, Earth Syst. Sci. Data, 11, 1783-1838, 939 940 https://doi.org/10.5194/essd-11-1783-2019. 941

- Garcia, H. E., R. A. Locarnini, T. P. Boyer, J. I. Antonov, O.K. Baranova, M.M. Zweng, J.R.
 Reagan, D.R. Johnson, 2014. World Ocean Atlas 2013, Volume 4: Dissolved Inorganic Nutrients
 (phosphate, nitrate, silicate). S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 76,
 25 pp.
- 946

Gattuso J.-P., Magnan A., Billé R., Cheung W. W. L., Howes E. L., Joos F., Allemand D., Bopp L.,
Cooley S., Eakin M., Hoegh-Guldberg O., Kelly R. P., Pörtner H.-O., Rogers A. D., Baxter J. M.,
Laffoley D., Osborn D., Rankovic A., Rochette J., Sumaila U. R., Treyer S. and Turley C., 2015.
Contrasting futures for ocean and society from different anthropogenic CO₂ emissions scenarios. *Science*349:aac4722.doi: 10.1126/science.aac4722

- Gruber, N., D. Clement, B. R. Carter, R. A. Feely, S. van Heuven, M. Hoppema, M. Ishii, R. M.
 Key, A. Kozyr, S. K. Lauvset, C. Lo Monaco, J. T. Mathis, A. Murata, A. Olsen, F. F. Perez, C. L.
 Sabine, T. Tanhua, and R. Wanninkhof, 2019a. The oceanic sink for anthropogenic CO₂ from 1994
 to 2007, *Science* vol. 363 (issue 6432), pp. 1193-1199. DOI: 10.1126/science.aau5153
- 957

952

Gruber, N., Clement, D., Carter, B. R., Feely, R. A., Heuven, S. van, Hoppema, M., Ishii, M., Key, R. M.,
Kozyr, A., Lauvset, S. K., Lo Monaco, C., Mathis, J. T., Murata, A., Olsen, A., Perez, F. F., Sabine, C. L.,
Tanhua, T. and Wanninkhof, R., 2019b: The oceanic sink for anthropogenic CO2 from 1994 to 2007 - the
data (NCEI Accession 0186034). NOAA National Centers for Environmental Information. Dataset.
https://doi.org/10.25921/wdn2-pt10. [last acces 17/02/2020].

- 963
- Halo, I., B. Backeberg, P. Penven, I. Ansorge, C. Reason, and J.E. Ullgren, 2014. Eddy properties in the
 Mozambique Channel: A comparison between observations and two numerical ocean circulation models. *Deep Sea Research Part II: Topical Studies in Oceanography*, 100, 38-53,
- 967 https://doi.org/10.1016/j.dsr2.2013.10.015.
- 968
- Hancke, L., M.J. Roberts, and J.F. Ternon, 2014. Surface drifter trajectories highlight flow pathways in
- the Mozambique Channel. *Deep Sea Research Part II: Topical Studies in Oceanography*, 100, 27-37,
 doi:/10.1016/j.dsr2.2013.10.014.
- 972

- 973 Hansson, I. 1973. The determination of dissociation constants of carbonic acid in synthetic sea water in
- 974 the salinity range of 20 40% and temperature range of $5 30^{\circ}$ C. *Acta Chem. Scand.* 27, 931–944. Doi:
- 975 10.3891/acta.chem.scand.27-0931.

Hoegh-Guldberg, O., P. J. Mumby, A. J. Hooten, R. S. Steneck, P. Greenfield, E. Gomez, C. D. Harvell,
P. F. Sale, A. J. Edwards, K. Caldeira, N. Knowlton, C. M. Eakin, R. Iglesias-Prieto, N. Muthiga, R. H.
Bradbury, A. Dubi and M. E. Hatziolos, 2007. Coral Reefs Under Rapid Climate Change and Ocean
Acidification. *Science*, 14, 1737-1742, doi:10.1126/science.1152509

- 980
- Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA, et al., 2011. High-Frequency Dynamics of
 Ocean pH: A Multi-Ecosystem Comparison. PLoSONE 6(12): e28983.
 doi:10.1371/journal.pone.0028983.
- 984

988

992

996

- IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner,
 D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A.
 Okem, J. Petzold, B. Rama, N. Weyer (eds.)]. In press.
- Ishii, M., N. Kosugi, D. Sasano, S. Saito, T. Midorikawa, and H. Y. Inoue, 2011, Ocean acidification off
 the south coast of Japan: A result from time series observations of CO2 parameters from 1994 to 2008, *J. Geophys. Res.*, 116, C06022, doi:10.1029/2010JC006831.
- Jabaud-Jan, A., Metzl, N., Brunet, C., Poisson, A. and Schauer, B., 2004: Interannual variability of the
 carbon dioxide system in the southern Indian Ocean (20°S–60°S): The impact of a warm anomaly in
 austral summer 1998, *Global Biogeochemical Cycles*, 18(1), doi:10.1029/2002GB002017.
- Jiang, L.-Q., Carter, B. R., Feely, R. A., Lauvset, S. K. and Olsen, A., 2019: Surface ocean pH and buffer
 capacity: past, present and future, *Sci Rep*, 9(1), 1–11, doi:10.1038/s41598-019-55039-4.
- Kapsenberg, L., Alliouane, S., Gazeau, F., Mousseau, L., and Gattuso, J.-P., 2017. Coastal ocean acidification and increasing total alkalinity in the northwestern Mediterranean Sea. *Ocean Sci.*, 13, 411-426, doi:10.5194/os-13-411-2017.
- 1006
 1007 Keeling, C. D., and Waterman, L. S., 1968. Carbon dioxide in surface ocean waters: 3. Measurements on
 1008 Lusiad Expedition 1962–1963, *J. Geophys. Res.*, 73(14), 4529–4541, doi:10.1029/JB073i014p04529.
 - 1009

- Key, R., Olsen, A., Van Heuven, S., Lauvset, S., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T.,
 Hoppema, M., Jutterstrom, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F., and Suzuki, T., 2015.
- Global Ocean Data Analysis Project, Version 2 (GLODAPv2), ORNL/CDIAC-162, ND-P093, dataset,
 https://doi.org/10.3334/CDIAC/OTG.NDP093_GLODAPv2.
- 1014

^{Iida, Y., Takatani, Y., Kojima, A. and Ishii, M., 2020. Global trends of ocean CO₂ sink and ocean acidification: an observation-based reconstruction of surface ocean inorganic carbon variables.} *J Oceanogr.* doi:10.1007/s10872-020-00571-5

- 1015 Kleypas, J. A., R. W. Buddemeier, D. Archer, J.-P. Gattuso, C. Langdon, and B. N. Opdyke, 1999. 1016 Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science, 284(5411), 1017 118-120, doi:10.1126/science.284.5411.118.
- 1018

- 1019 Kwiatkowski L. and J. C. Orr, 2018. Diverging seasonal extremes for ocean acidification during the 1020 twenty-first century, Nature Climate Change, doi:10.1038/s41558-017-0054-0
- 1022 Lauvset, S. K., Gruber, N., Landschützer, P., Olsen, A., and Tjiputra, J., 2015. Trends and drivers in 1023 global surface ocean pH over the past 3 decades. Biogeosciences, 12, 1285-1298, doi:10.5194/bg-12-1024 1285-2015.
- 1025 Lauvset S., K. Currie, N. Metzl, S. Nakaoka, D. Bakker, K. Sullivan, A. Sutton, K. O'Brien and A. Olsen, 1026 2019. SOCAT Quality Control Cookbook for SOCAT version 7. Int. Report. Available at 1027 www.socat.info.
- 1028
- 1029 Lee, K., Tong, L.T., Millero, F.J., Sabine, C.L., Dickson, A.G., Goyet, C., Park, G.H., Wanninkhof, R., 1030 Feely, R.A., and Key, R.M., 2006. Global relationships of total alkalinity with salinity and temperature in
- 1031 surface waters of the world's oceans. Geophys. Res. Lett. 33, L19605. doi10.1029/2006GL027207.
- 1032 Lewis E., and D. W. R. Wallace, 1998. Program developed for CO2 system calculations. ORNL/CDIAC-1033 105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US. Dept. of Energy, 1034 Oak Ridge, TN.
- 1035 Liu, Y., Z. Peng, R. Zhou, S. Song, W. Liu, C.-F. You, Y.-P. Lin, K. Yu, C.-C. Wu, G. Wei, L. Xie, G. S. 1036 Burr and C.-C. Shen, 2014. Acceleration of modern acidification in the South China Sea driven by anthropogenic CO2. Sci. Rep. 4, 5148. DOI: 10.1038/srep05148. 1037
- 1038 1039 Lo Monaco, C., Álvarez, M., Key, R. M., Lin, X., Tanhua, T., Tilbrook, B., Bakker, D. C. E., van 1040 Heuven, S., Hoppema, M., Metzl, N., Ríos, A. F., Sabine, C. L., and Velo, A., 2010: Assessing the
- 1041 internal consistency of the CARINA database in the Indian sector of the Southern Ocean, Earth Syst. Sci. Data, 2, 51-70, https://doi.org/10.5194/essd-2-51-2010. 1042
- 1043 Lo Monaco, C., Metzl, N., and Tribollet, A., 2020a. Sea surface measurements of fugacity of CO2 1044 (fCO2), temperature and salinity during the cruise Clim-EPARSES (EXPOCODE 35MV20190405) 1045 onboard R/V Marion-Dufresne in the Indian Ocean and Mozambique Channel from 2019-04-04 to 2019-04-30 (NCEI Accession 0208809). NOAA National Centers for Environmental Information. Dataset. 1046 1047 https://accession.nodc.noaa.gov/0208809.
- 1048
- 1049 Lo Monaco C., N. Metzl, J. Fin and A. Tribollet, 2020b. Sea surface measurements of dissolved inorganic 1050 carbon (DIC) and total alkalinity (TALK), temperature and salinity during the R/V Marion-Dufresne 1051 cruise CLIM-EPARSES (EXPOCODE 35MV20190405) in the Indian Ocean and Mozambique Channel 1052 from 2019-04-04 to 2019-04-30. (NCEI Accession 0212218). [indicate subset used]. NOAA National 1053 Centers for Environmental Information. Dataset. https://accession.nodc.noaa.gov/0212218.
- 1054

- 1055 Louanchi, F., N. Metzl, A. Poisson, 1996. Modelling the monthly sea surface fCO2 fields in the Indian 1056 Ocean. Marine Chemistry, 55, 265-279. https://doi.org/10.1016/S0304-4203(96)00066-7.
- 1058 Lueker, T.J., Dickson, A.G., Keeling, C.D., 2000. Ocean pCO(2) calculated from dissolved inorganic 1059 carbon, alkalinity, and equations for K-1 and K-2: validation based on laboratory measurements of CO2

- in gas and seawater at equilibrium. *Marine Chemistry* 70, 105-119. https://doi.org/10.1016/S0304 4203(00)00022-0.
- 1062
- McKinna, L.I.W., 2015. Three decades of ocean-color remote-sensing Trichodesmium spp. in the
 World's oceans: A review. *Progress in Oceanography*, 131, 177-199
 https://doi.org/10.1016/j.pocean.2014.12.013.
- 1066
- 1067 Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., Fraser, P. J., 1068 Montzka, S. A., Rayner, P. J., Trudinger, C. M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. 1069 S., Enting, I. G., Law, R. M., Lunder, C. R., O'Doherty, S., Prinn, R. G., Reimann, S., Rubino, M., 1070 Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and Weiss, R. 2017. Historical greenhouse gas 1071 concentrations for climate modelling (CMIP6), Geosci. Model Dev., 10, 2057-2116, 1072 https://doi.org/10.5194/gmd-10-2057-2017.
- Mehrbach, C., Culberson, C. H., Hawley, J. E. and Pytkowicz, R. M. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. *Limnol. Oceanogr.* 18, 897–907. doi:10.4319/lo.1973.18.6.0897.
- 1077

- Metzl, N., A. Poisson, F. Louanchi, C. Brunet, B. Schauer & B. Bres, 1995. Spatio-temporal distributions
 of air-sea fluxes of CO₂ in the Indian and Antarctic oceans, *Tellus B: Chemical and Physical Meteorology*, 47:1-2, 56-69, DOI:10.3402/tellusb.v47i1-2.16006
- Metzl, N., F. Louanchi, and A. Poisson, 1998. Seasonal and interannual variations of sea surface carbon
 dioxide in the subtropical indian ocean. *Marine Chemistry*, 60, 131-146. https://doi.org/10.1016/S03044203(98)00083-8.
- 1084
- Metzl, N., C. Brunet, A. Jabaud-Jan, A. Poisson and B. Schauer, 2006. Summer and winter air-sea CO2
 fluxes in the Southern Ocean *Deep Sea Res I*, 53, 1548-1563, doi:10.1016/j.dsr.2006.07.006
- Metzl, N., 2009. Decadal increase of oceanic carbon dioxide in the Southern Indian Ocean surface waters
 (1991-2007). *Deep Sea Research Part II: Topical Studies in Oceanography*, 56, 8–10, 607-619.
 https://doi.org/10.1016/j.dsr2.2008.12.007.
- Metzl, N., 2018. Carbon dioxide, temperature, salinity, and other variables collected via surface underway
 survey from Volunteer Observing Ship Marion Dufresne in the Indian Ocean and Southern Oceans (> 60
 degrees South) from 2004-01-06 to 2004-02-08 (NCEI Accession 0080996). NOAA National Centers for
 Environmental Information. Dataset. https://doi.org/10.3334/cdiac/otg.vos_oiso_11.
- 1095
- Metzl, N., and Lo Monaco, C., 2018. Sea surface measurements of dissolved inorganic carbon (DIC),
 total alkalinity (TALK), temperature and salinity during the R/V Marion-Dufresne Ocean Indien Service
 d'Observations 11 (OISO-11) cruise (EXPOCODE 35MV20040106) in the Indian Ocean from 2004-0106 to 2004-02-08 (NCEI Accession 0173515). Version 1.1. NOAA National Centers for Environmental
 Information. Dataset. doi:10.7289/V52805Z3.
- 1101
- Millero, F. J., Lee, K. and Roche, M. 1998. Distribution of alkalinity in the surface waters of the major
 oceans. *Mar. Chem.* 60, 111–130. https://doi.org/10.1016/S0304-4203(97)00084-4.
- 1104

- 1105 Mollica N. R., W. Guo, A. L. Cohen, K. –F. Huang, G. L. Foster, H. K. Donald and A. R. Solow, 2018.
- 1106 Ocean acidification affects coral growth by reducing skeletal density. Proceedings of the National
- 1107 Academy of Sciences, 115 (8) 1754-1759; DOI: 10.1073/pnas.1712806115
- 1108
- Montagna, P., M. McCulloch, E. Douville, M. López Correa, J. Trotter, R. Rodolfo-Metalpa, D. Dissard,
 C. Ferrier-Pagès, N. Frank, A. Freiwald, S. Goldstein, C. Mazzoli, S. Reynaud, A. Rüggeberg, S. Russo,
 M. Taviani, 2014. Li/Mg systematics in scleractinian corals: Calibration of the thermometer, *Geochimica*
- 1112 *et Cosmochimica Acta*, 132, 288-310, https://doi.org/10.1016/j.gca.2014.02.005.
- 1113
- Moutin, T., Wagener, T., Caffin, M., Fumenia, A., Gimenez, A., Baklouti, M., Bouruet-Aubertot, P.,
 Pujo-Pay, M., Leblanc, K., Lefevre, D., Helias Nunige, S., Leblond, N., Grosso, O., and de Verneil, A.,
 2018. Nutrient availability and the ultimate control of the biological carbon pump in the western tropical
 South Pacific Ocean, *Biogeosciences*, 15, 2961-2989, https://doi.org/10.5194/bg-15-2961-2018.
- Murata, A., Kumamoto, Y., Sasaki, K., Watanabe, S., & Fukasawa, M., 2010. Decadal increases in
 anthropogenic CO2 along 20°S in the South Indian Ocean. *Journal of Geophysical Research*, *115*,
 C12055. https://doi.org/10.1029/2010JC006250
- 1121

- Olsen, A., R. M. Key, S. van Heuven, S. K. Lauvset, A. Velo, X. Lin, C. Schirnick, A. Kozyr, T. Tanhua,
 M. Hoppema, S. Jutterström, R. Steinfeldt, E. Jeansson, M. Ishii, F. F. Pérez & T. Suzuki, 2016. An
 internally consistent data product for the world ocean: the Global Ocean Data Analysis Project, version 2
 (GLODAPv2), Earth Syst. Sci. Data, 8, 297-323, doi:10.5194/essd-8-297-2016.
- Olsen, A., Lange, N., Key, R. M., Tanhua, T., Álvarez, M., Becker, S., Bittig, H. C., Carter, B. R., Cotrim
 da Cunha, L., Feely, R. A., Heuven, S. van, Hoppema, M., Ishii, M., Jeansson, E., Jones, S. D.,
 Jutterström, S., Karlsen, M. K., Kozyr, A., Lauvset, S. K., Monaco, C. L., Murata, A., Pérez, F. F., Pfeil,
 B., Schirnick, C., Steinfeldt, R., Suzuki, T., Telszewski, M., Tilbrook, B., Velo, A. and Wanninkhof, R.,
 2019. GLODAPv2.2019 an update of GLODAPv2, Earth System Science Data, 11(3), 1437–1461,
 doi:https://doi.org/10.5194/essd-11-1437-2019.
- Ono H, Kosugi N, Toyama K, Tsujino H, Kojima A, Enyo K, Iida Y, Nakano T, Ishii M, 2019.
 Acceleration of ocean acidification in the Western North Pacific. Geophys Res Lett.doi:10.1029/2019G
 L0851 21
- 1136
- Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N.,
 Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A.,
 Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D.,
 Totterdell, I. J., Weirig, M.-F., Yamanaka, Y. and Yool, A., 2005. Anthropogenic ocean acidification over
 the twenty-first century and its impact on calcifying organisms, *Nature*, 437(7059), 681–686,
 doi:10.1038/nature04095.
- 1143
- 1144 Orr, J. C., J.-M. Epitalon, and J.-P. Gattuso, 2015. Comparison of ten packages that compute ocean 1145 carbonate chemistry, *Biogeosciences*, 12(5), 1483–1510, doi:10.5194/bg-12-1483-2015.
- 1146
- Orr, J. C., J.-M. Epitalon, A. G. Dickson and J.–P. Gattuso, 2018. Routine uncertainty propagation for the
 marine carbon dioxide system, *Marine Chemistry*, Vol. 207, 84-107, doi:10.1016/j.marchem.2018.10.006.
- Pandolfi, J.M., S. R. Connolly, D. J. Marshall and A. L. Cohen, 2011. Projecting Coral Reef Futures
 Under Global Warming and Ocean Acidification. *Science*, 333, 418-422. Doi:10.1126/science.1204794

1152 Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, J., Manke, A., Metzl, 1153 1154 N., Sabine, C. L., Akl, J., Alin, S. R., Bates, N., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., 1155 Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Fassbender, A. J., Feely, R. A., González-Dávila, M., Govet, C., Hales, B., Hardman-Mountford, N., Heinze, C., Hood, M., Hoppema, M., Hunt, C. W., Hydes, 1156 D., Ishii, M., Johannessen, T., Jones, S. D., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., 1157 1158 Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, 1159 1160 K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., Santana-Casiano, J. M., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, 1161 T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Tiiputra, J., Vandemark, D., 1162 1163 Veness, T., Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue, H., 2013. A 1164 uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 5, 125-143, 1165 doi:10.5194/essd-5-125-2013. 1166

- Pierrot, D., E. Lewis, and D. W. R. Wallace, 2006. MS Excel Program Developed for CO2 System
 Calculations ORNL/CDIAC-105, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., U. S. Dept. of
 Energy, Oak Ridge, Tenn.
- 1170
- Poisson, A., Metzl, N., Brunet, C., Schauer, B., Bres, B., Ruiz-Pino, D., and Louanchi, F., 1993.
 Variability of sources and sinks of CO₂ in the western Indian and southern oceans during the year 1991, *J. Geophys. Res.*, 98(C12), 22759–22778, doi:10.1029/93JC02501.
- 1174 Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An Improved In Situ and
 1175 Satellite SST Analysis for Climate. *J. Climate*, 15, 1609–1625, https://doi.org/10.1175/15201176 0442(2002)015<1609:AIISAS>2.0.CO;2.
- 1177 Riebesell U., Zondervan I., Rost B., Tortell P.D., Zeebe R.E. and Morel F.M.M., 2000. Reduced
 1178 calcification of marine plankton in response to increased atmospheric CO₂. Nature. 407(6802): 364–7.
 1179 doi:10.1038/35030078.
- 1180
- 1181 Roxy, M. K., K. Ritika, P. Terray and S. Masson, 2014. The Curious Case of Indian Ocean Warming.
 1182 *Journal of Climate*, American Meteorological Society, 27 (22), pp.8501-8509. 10.1175/JCLI-D-141183 00471.1.
- 1184
- Sabine, C. L., Key, R. M., Johnson, K. M., Millero, F. J., Poisson, A., Sarmiento, J. L., Wallace, D. W. R.
 and Winn, C. D., 1999. Anthropogenic CO2 inventory of the Indian Ocean. *Global Biogeochemical Cycles*, 13(1), 179–198, doi:10.1029/1998GB900022.
- Sabine, C. L., R. Wanninkhof, R. M. Key, C. Goyet, and F. J. Millero, 2000. Seasonal CO2 fluxes in the
 tropical and subtropical Indian Ocean, *Mar. Chem.*, 72, 33–53. https://doi.org/10.1016/S03044203(00)00064-5.
- 1191
- 1192 Schlitzer, R, 2013. Ocean Data View, http://odv.awi.de.
- Schönberg C.H.L., Fang J.K.H., Carreiro-Silva M., Tribollet A. and Wisshak M., 2017. Bioerosion: the
 other ocean acidification problem *ICES Journal of Marine Science* fsw254. DOI:10.1093/icesjms/fsm254

- Swart, N. C., Lutjeharms, J. R. E., Ridderinkhof, H., and de Ruijter, W. P. M., 2010. Observed
 characteristics of Mozambique Channel eddies, *J. Geophys. Res.*, 115, C09006,
 doi:10.1029/2009JC005875.
- 1198
- Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland, S. C., 1993. Seasonal
 variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study, *Global Biogeochem. Cycles*, 7(4), 843–878, doi:10.1029/93GB02263.
- Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N.,
 Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., and Nojiri, Y., 2002. Global Sea-Air CO2 Flux
 Based on Climatological Surface Ocean pCO2, and Seasonal Biological and Temperature Effect. *Deep- Sea Res. II*, 49, 9-10, 1601-1622, https://doi.org/10.1016/S0967-0645(02)00003-6.
- 1206 Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., 1207 Friederich, G., Chavez, F., Sabine, C., Watson, A. J., Bakker, D. C., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., 1208 1209 Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C., Delille, B., Bates, N., and de Baar, H. J., 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea air 1210 1211 **CO2** flux over global oceans. Deep-Sea Res. *II*,56(8-10), 554-577. the http://dx.doi.org/10.1016/j.dsr2.2008.12.009. 1212
- Takahashi, T., Sutherland, S. C., Chipman, D. W., Goddard, J. G., Ho, C., Newberger, T., Sweeney, C.
 and Munro, D. R., 2014. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3
 saturation in the global surface ocean, and temporal changes at selected locations. *Marine Chemistry*, 164, 95–125, doi:10.1016/j.marchem.2014.06.004.
- Tan, K. and H. Zheng, 2020. Ocean acidification and adaptive bivalve farming. Science of The Total
 Environment, Volume 701, 134794,https://doi.org/10.1016/j.scitotenv.2019.134794.
- Ternon, J.F., M.J. Roberts, T. Morris, L. Hancke, and B. Backeberg, 2014. In situ measured current
 structures of the eddy field in the Mozambique Channel. *Deep Sea Research Part II: Topical Studies in Oceanography*,100,10-26,https://doi.org/10.1016/j.dsr2.2013.10.013.
- 1223

- 1224 Tierney, J. E., N. J. Abram, K. J. Anchukaitis, M. N. Evans, C. Giry, K. H. Kilbourne, C. P. Saenger,
- 1225 H. C. Wu, and J. Zinke, 2015. Tropical sea surface temperatures for the past four centuries
- reconstructed from coral archives, *Paleoceanography*, *30*, 226–252, doi:10.1002/2014PA002717.
- Tilbrook, B., Jewett, E. B., DeGrandpre, M. D., Hernandez-Ayon, J. M., Feely, R. A., Gledhill, D. K.,
 Hansson, L., Isensee, K., Kurz, M. L., Newton, J. A., Siedlecki, S. A., Chai, F., Dupont, S., Graco, M.,
 Calvo, E., Greeley, D., Kapsenberg, L., Lebrec, M., Pelejero, C., Schoo, K. L. and Telszewski, M., 2019.
 An Enhanced Ocean Acidification Observing Network: From People to Technology to Data Synthesis
 and Information Exchange, *Front. Mar. Sci.*, 6, doi:10.3389/fmars.2019.00337.
- 1233
- Touratier, F., Azouzi, L. and Goyet, C., 2007. CFC-11, Δ 14C and 3H tracers as a means to assess anthropogenic CO2 concentrations in the ocean. *Tellus B*, 59(2), 318–325, doi:10.1111/j.1600-0889.2006.00247.x.
- Tréguer, P., and P. Le Corre, 1975. Manuel d'analyse des sels nutritifs dans l'eau de mer (utilisation de
 l'autoanalyseur II Technicon), 2nd ed., 110 pp., L.O.C.U.B.O., Brest, 1975.

- 1239 Tribollet, A., 2019. Rapport de campagne, Rotation du Marion Dufresne dans les Iles Eparses du 4 au 30
- avril 2019, CONSORTIUM DE RECHERCHE TAAF « ILES EPARSES 2017-2020 », Rapport Interne
 LOCEAN, 15 pp.
- 1242 Tribollet, A., 2020. Rapport d'activité intermédiaire 2019 : Projet CLIM-EPARSES. CONSORTIUM DE
 1243 RECHERCHE TAAF "Iles Eparses 2017-2020". 8 pp.
- Tribollet A., A. Chauvin and P. Cuet, 2019. Carbonate dissolution by reef microbial borers: a
 biogeological process producing alkalinity under different pCO2 conditions. *FACIES*, 65, 2,
 DOI:10.1007/s10347-018-0548-x
- Trnovsky, D., L. Stoltenberg, T. Cyronak and B.D. Eyre, 2016. Antagonistic Effects of Ocean
 Acidification and Rising Sea Surface Temperature on the Dissolution of Coral Reef Carbonate Sediments. *Frontiers in Mar. Sci.* doi: 10.3389/fmars.2016.00211
- Uppström, L. R., 1974. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean, Deep Sea
 Research and Oceanographic Abstracts, 21, 161–162, https://doi.org/10.1016/0011-7471(74)90074-6.
- 1253

- Van Heuven, S., Pierrot, D., Rae, J.W.B., Lewis, E., Wallace, D.W.R., 2011. MATLAB Program
 Developed for CO2 System Calculations. ORNL/CDIAC-105b. Oak Ridge, TN: Carbon Dioxide
 Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy.
 DOI:10.3334/CDIAC/otg.CO2SYS_MATLAB_v1.1.
- Waldbusser, G. G., Hales, B., Langdon, C. J., Haley, B. A., Schrader, P., Brunner, E. L., Gray, M. W.,
 Miller, C. A., and Gimenez, I., 2015. Saturation-state sensitivity of marine bivalve larvae to ocean
 acidification. *Nature Clim. Change*, 5(3), 273-280. Doi:10.1038/NCLIMATE2479.
- 1262

1265

1268

- Weiss, R. F. and Price, B. A., 1980. Nitrous oxide solubility in water and seawater. *Marine Chemistry*, 8(4), 347–359, doi:10.1016/0304-4203(80)90024-9.
- Westberry, T. K., and D. A. Siegel, 2006. Spatial and temporal distribution of Trichodesmium blooms in
 the world's oceans, *Global Biogeochem. Cycles*, 20, GB4016, doi:10.1029/2005GB002673.
- Wu H., Dissard D., Douville E., Blamart D., Bordier L., Tribollet A., Le Cornec F., Pons-Branchu E.,
 Dapoigny A. and Lazareth C.E., 2018. Surface ocean pH variations since 1689 CE and recent ocean
 acidification in the tropical south Pacific. *Nature Comm.*, 9:2543, DOI:10.1038/s41467-018-04922-1
- 1272 Zinke, J., Loveday, B., Reason, C., Dullo, W.-C., & Kroon, D., 2014. Madagascar corals track sea surface
 1273 temperature variability in the Agulhas Current core region over the past 334 years. *Scientific Reports*, 4,
- 1274 4393. https://doi.org/10.1038/srep04393
- 1275

1277 Figures Captions

- 1278 Figure 1: Cruises in the Mozambique Channel included to the SOCAT data product (version v2020,
- 1279 www.socat.info, Bakker et al., 2016, 2020). Color code is for Year. In the Mozambique Channel, cruises
- 1280 for May 1963 (in blue), January 2004 (OISO-11, in orange), April 2019 (CLIM-EPARSES, in brown). Water-
- column data from GLODAP at 25°S were collected in Jun-1995 (yellow) and Dec-2003 (orange). All
- 1282 cruises used in this study are listed in Table 1. Figure produced with ODV (Schlitzer, 2013).
- Figure 2: Sea surface temperature (a), salinity (b) and fCO₂ (c) in the Mozambique Channel observed in
 January 2004 (orange) and April 2019 (blue). In (c) the dashed lines correspond to atmospheric fCO₂. All
 underway data, including near Islands are shown.
- Figure 3: (a) Sea surface A_T (µmol.kg⁻¹) and (b) sea surface C_T (µmol.kg⁻¹) in the Mozambique Channel
 observed in January 2004 (orange) and April 2019 (blue). All underway data, including near Islands are
 shown.
- 1289 Figure 4: Same as Figure 3 for (a) Salinity normalized A_T (N- A_T , μ mol.kg⁻¹) and (b) Salinity normalized C_T
- 1290 (N-C_T, μmol.kg⁻¹) in the Mozambique Channel observed in January 2004 (orange) and April 2019 (blue).
- 1291 Also presented in (c) the fCO₂ normalized at SST 29°C (fCO₂-29C, μ atm). All underway data, including
- 1292 near Islands are shown.
- Figure 5: Total Alkalinity (A_{T} , μ mol.kg⁻¹) versus salinity in surface water in the Mozambique Channel (14-1293 1294 25°S) observed in January 2004 (orange circles) and April 2019 (blue triangle). Linear relation for each 1295 period are also shown (orange and blue dashed-lines). In January 2004 data north of 14°S near Mayotte 1296 are identified with filled orange circles and not used for the A_T/SSS relationship. Also shown are the 1297 A_T/SSS relationships from Millero et al. (1998) for the Indian Ocean (Purple dashed) and from Lee et al. 1298 (2006) for the subtropical oceans (Grey dashed). The A_T /SSS relationship based on Jan-2004 and Apr-1299 2019 data in the Mozambique Channel (noted AT-MOZ, black line) is the final relationship used in this 1300 analysis: A_T= 73.841* S – 291.02.
- Figure 6: Surface water pH (at SST 29°C) distribution in the Mozambique Channel observed in January 2004 (orange) and April 2019 (blue). (a) pH at 29°C calculated with A_T and C_T pairs. (b) pH at 29°C calculated with fCO₂ and A_T reconstructed from salinity. Data very close to Islands filtered (e.g. Juan de Nova at 17°S).
- Figure 7: Surface water temperature (a), fCO₂ (b) and calculated pH (c) in the Mozambique Channel
 observed in May 1963 (grey), January 2004 (orange) and April 2019 (blue). In (b) atmospheric fCO₂ also
 shown for each year (same color, dashed line).
- Figure 8: Surface water fCO₂ at SST=29°C (a) and calculated pH at SST=29°C (b) in the Mozambique Channel observed in May 1963 (grey), January 2004 (orange) and April 2019 (blue). In (c) also shown N-C_T distribution calculated with fCO₂ and A_T reconstructed.
- 1311 Figure 9: Sea surface water temperature (a), fCO₂ (b) and calculated pH (c) around 25°S in the
- 1312 Mozambique Channel observed in May 1963, June 1995, December 2003, January 2004, July 2014 and
- 1313 April 2019. Cruises are listed in Table 1 and tracks identified in Figure 1. The mean observations for each
- 1314 cruise are listed in Table 4.

Figure 10: Temporal evolution of fCO_2 (a), pH (b) and N-C_T (c) around 25°S in the Mozambique Channel 1315 1316 based on data shown in Figure 9. Measured fCO₂ and N-C_T are indicated by orange dots. pH and N-C_T 1317 calculated with fCO_2 and A_T are indicated by open circles. In all panels, values adjusted to the month of June indicated by grey diamond and used for trend estimates (dashed grey lines). In (a) and (b) results 1318 1319 from monthly reconstructed pCO₂ and pH (at 25°S-40°E) shown in purple line for June 1985-2019 (CMEMS-LSCE-NN, Chau et al 2020). In (a) also shown the atmospheric fCO₂ (orange dotted line). The 1320 1321 mean observations for each cruise are listed in Table 4 and trends listed in Table 5. Standard-deviations 1322 for observations and calculated pH or N-C_T are indicated by vertical bars (generally about the size of 1323 symbols).

Figure 11: Annual trends (see Table 5) estimated for different periods in the southern Mozambique Channel (25°S) based on observations for fCO_2 (grey, μ atm.yr⁻¹), pH (orange, unit.yr⁻¹) and N-C_T (blue, μ mol.kg⁻¹.yr⁻¹). For pH, the annual trend is multiplied by -1000 (a pH trend of 1.5 in the figure is -0.0015.yr⁻¹). For short periods such as 1995-2004 the errors are large and thus the interpretation is limited. For longer periods, fCO_2 and pH trends are higher in 2004-2019 compared to 1963-1995 and mainly linked to anthropogenic CO₂ as suggested by N-C_T changes.

1330

Figure 12: Annual trends (see Table 5) for fCO_2 (grey, $\mu atm.yr^{-1}$) and pH (orange, unit.yr⁻¹) estimated for different periods in the southern Mozambique Channel (25°S) based on observations (filled bars) and the CMEMS-LSCE-FFNN model (hatched bars). For pH, the trend is multiplied by -1000 (a pH trend of 1.5 in the figure is -0.0015.yr⁻¹). Given the errors associated to these estimates, the trends are the same either based on observations or the CMEMS-LSCE-FFNN model.

1336

Figure 13a: Reconstructed (black lines) sea surface fCO_2 (a), pH (b) and N-C_T (c) for the periods 1960-2019 based on atmospheric xCO_2 historical data. Also shown the mean results at 25°S based on observations (orange circles for fCO_2 and N-C_T) or calculated from fCO_2 and A_T/SSS (blue triangles) as described in Figure 10 and listed in Table 4. The monthly pCO₂ and pH (at 25°S-40°E) for 1985-2019 from the CMEMS-LSCE-NN model (Chau et al 2020) is shown in purple line in (a) and (b). In all figures the orange curves are the reconstructed values assuming ocean fCO_2 in equilibrium with the atmosphere.

1343Figure 13b: Same as figure 11a for the period 1800-2019. For clarity results from the CMEMS-LSCE-NN1344model for 1985-2019 not shown here.

1347 <u>Tables</u>

1348

1349Table 1: List of cruises in the Mozambique Channel ($10^{\circ}S-25^{\circ}S$) used in this study for surface fCO2 data1350(SOCAT, version v2020, Bakker et al., 2016, 2020) and for A_T/C_T water column at 25°S1351(GLODAPv2.2019, Olsen et al, 2019).1352

	·	Month-Year	(Lat.	on Band)	PI or Reference
	Sur	face Underway fCO	2		
SOCAT-v2020	31AR19630216	May-1963	10°S-27°S	Keelin	g and Waterman (1968
SOCAT-v2020	316N19950611	Jun-1995	at 25°S	Kev B	
SOCAT-v2020	49NZ20031209	Dec-2003	at 25°S	Murata A.	
SOCAT-v2020	35MV20040106	Jan-2004	10°S-27°S	Metzl (2009) and this study ^{(a}	
SOCAT-v2020	06BE20140710	Jul-2014	at 25°S	25°SSteinhoff, T., Koertzinger, A°S-27°SThis Study ^a	
SOCAT-v2020	35MV20190405	Apr-2019	10°S-27°S		
	Hydrocast s	tations (with C_T and	A_{T} in water colum	n)	
GLODAPv2-2019 316N19950611		Jun-1995	at 25°S	Sabine	e et al (1999)
GLODAPv2-2019 49NZ20031209		Dec-2003	at 25°S	Murat	a et al (2010)
Table 2: Mean measured, calculated and trends of surface properties in the band 14°S-25°S based on 1376 1377 observations in May 1963, January 2004 and April 2019 in the Mozambique Channel. Nb is the number of data (ND= No Data). Standard deviations are indicated in bracket. Average N-C_T and N-A_T measured 1378 1379 only in 2004 and 2019 are also listed to compare with N-C_T and N-A_T calculated with fCO₂ and A_T/SSS 1380 relationship. Adjusted values for April 2004 and April 1963 as specified were used to estimate the trends 1381 of fCO₂ and N-C_T for different periods. Errors for the trends (in bracket) are based on fCO₂, A_T and C_T measurements uncertainty for each cruise as documented in the main text and Table S1 in Supplementary 1382 Material. Last line is the fCO₂ trend without the long-term warming of +0.011 °C.yr⁻¹. 1383

Period	Nb	°C ℃	tCO ₂ μatm	N-C _{Tcal} µmol/kg	N-A _{τcal} μmol/kg	Nb	N-C _{Tmes} N-A _{Tmes} μmol/kg μmol/kg
						070	
April-2019	1677	28.61 (0.83)	397.2 (7.9)	(4.4)	2293.1 (1.3)	376	(6.9) (4.8)
January-2004	480	29.45	398.9	1958.0	2294.7	142	1955.8 2296.3
		(0.73)	(8.9)	(5.8)	(1.3)		(8.6) (5.8)
May-1963	59	25.77	296.2	1925.7	2292.4	ND	ND ND
		(1.45)	(4.9)	(10.0)	(1.0)		
۹pril-2004 (adju	usted)		370.8	1949.9			1952.2
April-1963 (adjı	usted)		308.1	1908.4			ND
 Гrend			fCO ₂	N-C _{Tcal}			N-C _{Tmes}
			µatm.yr⁻¹	µmol.kg ⁻¹ .yr ⁻¹			µmol.kg ⁻¹ .yr ⁻¹
2004-2019			+1.75	+1.00			+1.04
			(0.81)	(0.81)			(0.79)
1963-2004			+1.53	+1.00			ND
			(0.28)	(0.39)			
1963-2019			+1.58	+1.00			ND
			(0.18)	(0.29)			
1963-2019 (wit	hout war	ming)	+1.44				

1421

1422 Table 3: Mean sea surface and trends of pH in the band 14°S-25°S in May 1963, January 2004 and April 2019 in the Mozambique Channel. Nb is the number of data (ND= No Data). Standard deviations for 1423 1424 mean values and errors for trends are indicated in bracket. Errors for trends are based on fCO₂, A_T and C_T measurements uncertainty for each cruise as documented in the main text and Table S1 in Supplementary 1425 1426 Material. pH is calculated with fCO₂ data and A_T/SSS relationship or with measured C_T and A_T (for 2004 1427 and 2019). Averaged pH at SST-29°C is also listed. Adjusted values for April 2004 and April 1963 as 1428 specified were used to estimate the trends of pH for different periods. Last line is the pH trend without the long-term warming of +0.011 °C.yr⁻¹. 1429

Period	Nb (fCO ₂)	рН TS	pH-29C TS	Nb (A _T -C _T)	рН TS	рН TS
April-2019	1677	8.040 (0.008)	8.034 (0.007)	376	8.035 (0.008)	8.0 (0.
January-2004	480	8.039 (0.008)	8.045 (0.009)	142	8.044 (0.010)	8.0 (0.
Мау-1963	59 (0.008)	8.143 (0.015)	8.094	ND	ND	ND
April-2004 (adjusted)		8.063			8.059	
Avril-1963 (adjusted)		8.126			ND	
Trend		pH (fCO TS.yr ⁻¹	2)		рН (А _Т -С _Т) TS.yr ⁻¹	
2004-2019		-0.0015 (0.0010	4 0)		-0.00160 (0.00149)	
1963-2004		-0.0015 (0.0003	4 9)			
1963-2019		-0.0015 (0.0002	4 8)			
1963-2019 (without war	ming)	-0.0013 (0.0002	7 8)			

1469Table 4: Mean sea surface measured or calculated properties around 25°S for 6 cruises in the south part of1470Mozambique Channel. Nb = number of data from surface underway sampling used to calculate $[H^+]$, pH1471and N-C_T. Standard deviations are in bracket. N-C_T stands for salinity normalized C_T concentrations1472either calculated with fCO₂ and A_T (N-C_{Tcal}) or measured (N-C_{Tmes}) when available. ND= No Data

Period	Nb	SST °C	fCO₂ µatm	[H⁺] nmol.kg⁻¹	рН TS	N-C _{Tcal} µmol.kg ⁻¹	N-C _{Tmes} μmol.kg
May-1963	15	23.70	288.6	6.965	8.157	1937.8	ND
		(0.59)	(2.6)	(0.055)	(0.003)	(5.6)	
June-1995	717	22.66	314.6	7.381	8.132	1964.7	1961.3
		(0.39)	(1.9)	(0,044)	(0.003)	(2.6)	(4.8) n9
		()	(-)		()	(-)	(- / -
Dec-2003	180	27.58	389.3	8.901	8.051	1968.4	1967.4
		(0.53)	(8.1)	(0.146)	(0.007)	(3.9)	(5.3) n5
Jan-2004	111	27.61	384.6	8.813	8.055	1965.6	1960.5
		(0.53)	(4.5)	(0.101)	(0.005)	(3.3)	(4.5) n24
Jul-2014	820	23.57	359.7	8.268	8.083	1985.9	ND
		(0.67)	(3.9)	(0.080)	(0.004)	(5.0)	
Apr-2010	156	27 21	207.0	8 861	8 052	1060 0	1072 6
Api-2019	150	(0.16)) (2 0)	0.004 (0.090)	(0.004)	$(1 \ 1)$	$(2.0) \text{ p1}^{-1}$
		(0.10)	(5.6)	(0.080)	(0.004)	(1.4)	(2.0) 111

1500 Table 5: Trends observed around 25°S in the Mozambique Channel evaluated from observations between 1963 and 1501 2019 adjusted to June (as shown in Figure 10 and Supp. Figure S13 for [H⁺]). Standard errors of slope are in 1502 bracket. Trends for pH are also calculated from $[H^+]$ concentrations following Equation 3 (see text, noted pH_{H+}). 1503 Also indicated are the trends for atmospheric xCO_2 for different periods and from the monthly reconstructed pCO_2 1504 and pH values based on a neural network model (CMEMS-LSCE-NN, Denvil-Sommer et al 2019; Chau et al 2020). 1505 For CMEMS-LSCE-NN the trends are for June or using all months in 1985-2019. For comparison the trends in June 1506 for period 1995-2004, 2004-2019 and 1995-2019 are underlined. ND = No Data. Detail for errors on the trends is 1507 documented in the Methods and Table S2 in the Supplementary Material.

Period	Atm xCO ₂ ppm.yr ⁻¹	fCO ₂ µatm.yr ⁻¹	[H ⁺] nmol.kg ⁻¹ .yr ⁻¹	pH _{H+} TS.yr ⁻¹	pH TS.yr ⁻¹	N-C _{Tcal} μmol.kg ⁻¹ .yr ⁻¹
1963-2019	+1.60	+1.55	0.0290	-0.00188	-0.00167	+1.04
	(0.02)	(0.11)	(0.0036)		(0.0002)	(0.21)
1963-1995	+1.35	+1.14	0.0213	-0.00137	-0.00129	+0.82
	(0.02)	(0.23)	(0.0069)		(0.00042)	(0.41)
995-2004	+1.82	+1.70	0.0318	-0.00190	-0.00185	+1.15
	(0.04)	(0.81)	(0.0242)		(0.00144)	(1.25
004-2019	+2.13	<u>+2.41</u>	0.0452	-0.00247	<u>-0.00243</u>	+1.46
	(0.04)	(0.43)	(0.0145)		(0.00079)	(0.69
005 0010			0.0442	0.00000	0 0000-	
<u>.995-2019</u>	+2.04	$\frac{+2.20}{(2.26)}$	0.0412	-0.00232	<u>-0.00227</u>	+1.37
	(0.03)	(0.26)	(0.0085)		(0.00048)	(0.42
CMEMS-LSCE-	NN	fCO ₂			нα	
		µatm.yr ⁻¹			TS.yr ⁻¹	
		. ,				
<u>995-2004 Jur</u>	<u>ie</u>	<u>+1.70</u>			<u>-0.00186</u>	
		(0.95)			(0.00163)	
2004-2019 Jur	<u>ie</u>	+2.45			<u>-0.00247</u>	
		(0.51)			(0.00078)	
1995-2019 lur		+2.28			-0 00234	
<u>1995-2019 Jul</u>		(0.23)			<u>-0.00234</u> (0.00039)	
		(0.23)			(0.00033)	
1985-2019 Jur	ie	+1.89			-0.00196	
-		(0.14)			(0.00024)	
		. ,				
1995-2004 An	nual	+2.02			-0.00203	
		(0.48)			(0.00071)	
1995-2019 An	nual	+1.88			-0.00180	
		(0.14)			(0.00019)	
2004 2010 4 m	nual	1 90			0.00165	
2004-2019 AN	liudi	+1.90			-0.00165 (0 00020)	
		(0.50)			(0.00058)	
1985-2019 An	nual	+1.80			-0.00177	
		. 1.00			0.001//	

1557

Table 6: Mean observed or calculated properties and their temporal differences in the layer 150-200m in the region $25^{\circ}S/38-42^{\circ}E$. Data are from GLODAPv2.2019 (Olsen et al., 2019). All units in μ mol.kg⁻¹. Standard-deviations are in bracket. Nb is number of samples in the 150-200m layer.

Month-Year	Expocode	С _т	N-C _T	Α _T	N-A _T	02	C _{ant}	Nb
Jun-1995	316N19950611	2070.8 (5.9)	2039.0 (5.2)	2329.8 (2.6)	2293.8 (1.9)	194.8 (11.8)	35.1 (1.2)	9
Dec-2003	49NZ20031209	2081.3 (14.2)	2048.0 (15.6)	2332.8 (5.6)	2295.5 (3.1)	184.4 (14.7)	42.3 (3.2)	8
Difference								
2003-1995		+10.5 (15.4)	+9.0 (16.4)	+3 (6.7)	+1.6 (3.7)	-10.4 (18.9)	+7.3 (3.4)	
àble 7: Mear	n C _{ant} accumulation om Gruber et al, 20	and trends be 19b). Standard	etween 1 1-deviati	994 and ions are	2007 ir in brack	the reg	 gion 25°	°S/42°E i
Table 7: Mear ayers (data fr 	n C _{ant} accumulation om Gruber et al, 20 E	and trends be 19b). Standard elta-C _{ant}	etween 1 1-deviati	994 and ions are Tre	2007 ir in brack	1 the reg et. 4 to 200	gion 25° 	°S/42°E i
Table 7: Mear layers (data fr Layer	n C _{ant} accumulation om Gruber et al, 20 E	and trends be 19b). Standard Pelta-C _{ant} mol.kg ⁻¹	etween 1 1-deviati	994 and ions are Tre	2007 ir in brack nd (199 μmol.k	1 the reg et. 4 to 200 g ⁻¹ .yr ⁻¹	gion 25°)7)	°S/42°E i
Table 7: Mear layers (data fr Layer 0-30m	n C _{ant} accumulation om Gruber et al, 20 E µ	and trends be 19b). Standard elta-C _{ant} mol.kg ⁻¹ 4.44 (0.05)	tween 1 1-deviati	994 and ions are Tre	2007 ir in brack nd (199 μmol.k	1 the reg et. 4 to 200 g ⁻¹ .yr ⁻¹ .004)	gion 25° 97)	°S/42°E i
Table 7: Mear layers (data fr Layer 0-30m 50-100m	n C _{ant} accumulation om Gruber et al, 20 C J 1	and trends be 19b). Standard Pelta-C _{ant} mol.kg ⁻¹ 4.44 (0.05)	etween 1 1-deviati	994 and ions are Tre	2007 ir in brack nd (199 μmol.k 1.11 (0 1.08 (0	1 the reg et. 4 to 200 g ⁻¹ .yr ⁻¹ .004) .015)	gion 25° 	°S/42°E i
Table 7: Mear layers (data fr Layer 0-30m 50-100m 100-150m	n C _{ant} accumulation om Gruber et al, 20	and trends be 19b). Standard elta-C _{ant} mol.kg ⁻¹ 4.44 (0.05) 4.04 (0.19) 3.64 (0.15)	tween 1 1-deviati	994 and ions are Tre	2007 ir in brack nd (199 μmol.k 1.11 (0 1.08 (0 1.05 (0	the reget. 4 to 200 g ⁻¹ .yr ⁻¹ .004) .015)	gion 25°	°S/42°E i
Table 7: Mear layers (data fro Layer 0-30m 50-100m 100-150m 150-200m	n C _{ant} accumulation om Gruber et al, 20 [[[] 1 1 1 1 1	and trends be 19b). Standard relta-C _{ant} mol.kg ⁻¹ 4.44 (0.05) 4.04 (0.19) 3.64 (0.15) 2.94 (0.56)	etween 1 1-deviati	994 and ions are Tre	2007 ir in brack and (199 μmol.k 1.11 (0 1.08 (0 1.05 (0 1.00 (0	a the reg et. 4 to 200 g ⁻¹ .yr ⁻¹ .004) .015) .012) .043)	gion 25°	°S/42°E i

Figures

Figure 1

Figure 5

Figure 9

Longitude

Figure 12

Year

Supplementary Material

Title: Distribution and long-term change of the sea surface carbonate system in the Mozambique Channel (1963-2019).

Claire Lo Monaco¹, Nicolas Metzl¹, Jonathan Fin¹, Claude Mignon¹, Pascale Cuet², Eric Douville³, Marion Gehlen³, Thi Tuyet Trang Chau³, and Aline Tribollet¹

¹ Laboratoire LOCEAN/IPSL, Sorbonne Université-CNRS-IRD-MNHN, Paris, 75005, Fr

² Laboratoire ENTROPIE and Laboratoire d'Excellence CORAIL, Université de La Réunion-IRD- CNRS-IFREMER-Université de la Nouvelle-Calédonie, Saint-Denis, La Réunion, 97744, Fr

³ Laboratoire LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay Gif-sur-Yvette, 91191, Fr

> *Correspondence to*: Nicolas Metzl (<u>nicolas.metzl@locean.ipsl.fr</u>) Laboratoire LOCEAN – IPSL - UMR 7159 CNRS/IRD/SU/MNHN, Sorbonne Université, Case 100 - 4 Place Jussieu 75252 Paris cedex 05, France

> Revision, Submitted for Special Issue DSRII, "IIOE-2 Volume 4" Second Revised version, April 1st, 2021

This document includes Figures S1 to S15, Methods for trends and uncertainties estimates, Tables S1, S2 and Figure S16 to S17.

Figure S1: Atmospheric xCO_2 (ppm) measured on-board during OISO-11 in January 2004 (Orange symbols) and Clim-EPARSES in April 2019 (Blue symbols) in the Mozambique Channel. Mean xCO_2 concentrations along these tracks were respectively 377.02 and 410.90 ppm.

Figure S2a: Comparison of measured fCO_2 and calculated fCO_2 from A_T/C_T pairs using K1, K2 constants from Lueker et al (2000). Results are presented for January 2004 (top, orange), April 2019 (middle, blue) and the difference fCO_2 calc- fCO_2 mes (bottom) for both cruises. Each point corresponds to colocalized values (within 5-10 minutes time). In January 2004, for 154 co-located samples the mean difference was -5.3 µatm (±4.9). In April 2019, for 268 co-located samples the mean difference was +4.5 µatm (±5.2).

Figure S2b: Comparison of measured fCO₂ and calculated fCO₂ from A_T/C_T pairs using K1, K2 constants from (i) Lueker et al (2000) as in figure S2a, (ii) Merbach et al (1973) refitted by Dickson and Millero (1987) (noted MDM) or (iii) from Hansson (1973) and Merbach et al (1973) refitted by Dickson and Millero (1987) (noted HMDM). Figures show the difference fCO₂calc-fCO₂mes for January 2004 (top) and April 2019 (middle). Each point corresponds to co-localized fCO2 and A_T/C_T data (within 5-10 minutes time). Differences of fCO₂ as a function of the ratio C_T/A_T are also shown for the two cruises (bottom). Mean differences for each cruise and different constants K1, K2 listed below.

Figure S3: Left: Trajectory of a drifting buoy (Platform code 1601545) for the period 1-Jan-2019 to 8-June-2019 in the Mozambique Channel, showing the Eddy-like trajectories in the central channel. Right: In mid-March 2019 around 20°S-40°E the buoy recorded low atmospheric pressure (< 990 hPa) due to the passage of the Cyclone "Idai" leading to high precipitation (Figure S4). This explains the SST and SSS records in April 2019. Source: <u>http://www.coriolis.eu.org/Data-Products/Data-</u> <u>Delivery/Data-selection</u>. (Last access, 03-Dec-2020). Figures produced with ODV (Schlitzer, 2013).

Figure S4: Precipitation anomaly in March 2019 in the western Indian Ocean. The maximum anomaly (150mm) in the Mozambique Channel was linked to the severe Cyclone event Idai. Map from: *https://iridl.ldeo.columbia.edu/maproom/Global/Precipitation/Anomaly.html* (last access, 28-Nov-2020).

Figure S5: ARGO float trajectory (Plate-form Code 2902142) in the Mozambique Channel. Left: The map shows the float trajectory from Aug-2014 to Feb-2020. Right: Salinity at surface recorded when the float enters the Mozambique Channel in January 2017 (note the minimum in March 2019). Bottom: Salinity section (0-50m) recorded by the float in Jan-May 2019 showing the salinity minimum in late March 2019 after the Cyclone Event Idai. All figures produced with Ocean Data View, ODV (Schlitzer, 2013). Float data obtained from <u>http://www.coriolis.eu.org/Data-Products/Data-Delivery/Data-selection</u>. (last access, 25-Feb-2020).

Figure S6: The annual cycle of SST (a), pCO2 (b) and C_T (c) in the Mozambique Channel (at 16°S, 20°S and 24°S) from the climatology (Takahashi et al 2014).

Figure S7: fCO₂ (µatm) versus SST (°C) for January 2004 (orange circles) and April 2019 (blue triangles) in the Mozambique Channel. The green ellipse identifies data in the vicinity of Juan de Nova Islands.

Figure S8: Top: Surface Chl-a (mg.m⁻³) observations in the Mozambique Channel measured at several locations in January 2004 (orange) and April 2019 (blue). In 2004, the higher Chl-a values at 14-15°S and 22°S explain the low fCO_2 and departure from fCO_2/SST relation (fig S7). In 2019 a minimum in C_T

was observed at 15.5°S where Chl-a reached a maximum. Bottom: Map of monthly surface Chl-a (mg.m⁻³) in the region for January 2004 and April 2019 derived from MODIS data, highlighting the maximum around 22°S in 2004 extended from the coastal zone of Madagascar. In April 2019, MODIS data show higher Chl-a over the central region. Map produced with ODV (Schlitzer, 2013) from data downloaded at http://marine.copernicus.eu/services-portfolio/access-to-products/ (OCEANCOLOUR GLO CHL L4 REP OBSERVATIONS 009 082), last access, 20-Oct-2020. In both figures the Chl-a scale is 0-0.5 mg.m⁻³.

Figure S9: Top: Time-series of monthly sea surface Chl-a concentration (mg.m⁻³) averaged in the Mozambique Channel (mean in bounding Box: 38E/26S-43E/15S). Data extracted from MODIS (Giovanni/NASA, last access 31/5/20). Bottom: Mean annual cycles of monthly Chl-a (from data in the top figure) and of N-C_T climatology at 20°S/42°E (open triangles, from Takahashi et al 2014). The N-C_T decrease from January to April is in part linked to biological activity.

Figure S10: Difference of A_T calculated with different A_T /SSS relationships and measured A_T (January 2004 and April 2019, total 505 data) versus salinity. Only A_T samples from open ocean waters are included (i.e. samples measured closed to Islands are not used). A_T /SSS relationships are from Millero et al. (1998) for the Indian Ocean (open squares), from Lee et al. (2006) for the subtropical oceans (open circles), from January 2004 data (orange circles), from April 2019 data (blue triangles) or using Jan-2004 + Apr-2019 data (noted AT-MOZ, black squares). All relationships lead to the same results with no clear statistical differences. Therefore, in this analysis, we use the relationship derived from January 2004 + April 2019 data: A_T = 73.841* S – 291.02 (as shown in Figure 5, see main text).

Figure S11: Monthly SST in the Mozambique Channel for the period 1981-2019 The dashed-line is the estimated annual SST trend of +0.011 (+/-0.007) °C.yr⁻¹. Data from Reynolds et al (2002). <u>http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/.GLOBAL/.Reyn_SmithOlv2/.mon</u> thly/ (last access 1/4/2020).

Figure S12: Sea surface distribution of (a) Ω_{Ca} and (b) Ω_{Ar} in the Mozambique Channel calculated from fCO₂ observations in May 1963 (grey), January 2004 (orange) and April 2019 (blue).

Figure S13: Top: Sea surface water [H+] concentrations around 25°S in the Mozambique Channel based on fCO₂ data in May 1963, June 1995, December 2003, January 2004, July 2014 and April 2019. Bottom: Temporal evolution of [H+] around 25°S in the Mozambique Channel based on data shown on top. [H+] concentrations calculated with fCO₂ and A_T are indicated by black circles (listed in Table 4). Values adjusted to the month of June indicated by grey diamond and used for trend estimates (dashed grey lines). Trends for 1963-1995 and 1995-2019 are respectively +0.0212 nmol.kg.yr⁻¹ and +0.0409 nmol.kg.yr⁻¹.

Figure S14: Distribution in the top 1000m of C_{ant} accumulated between 1994 and 2007 (Delta- C_{ant} in μ mol.kg⁻¹) in the Mozambique Channel. Data are from Gruber et al., (2019b). Figure produced with Ocean Data View, ODV (Schlitzer, 2013).

Figure S15: Reconstructed Aragonite saturation state (Ω_{Ar}) based on atmospheric xCO₂ historical data for seasonal fCO₂ (grey line) or assuming equilibrium (orange line). Calculated values from fCO₂ and A_T/SSS observations in 1963 to 2019 are also shown (blue triangles). The Orange circle identifies Ω_{Ar} = 3 in 2040 if the observed trend in recent decade is projected. Figure S16: Trend analysis on a Monte Carlo simulation of fCO_2 and pH observed around 25°S in the Mozambique Channel, and adjusted to June (blue stars: mean values of observations, light blue bars: mean ± total uncertainty, black points: pseudo samples, grey and light blue lines: linear functions fitted to the samples and mean observations).

Figure S17: Trend analysis on a Monte Carlo simulation of the CMEMS-LSCE-FFNN estimates for fCO_2 and pH around 25°S in the Mozambique Channel in June for 1985-2019 or 2004-2019 (blue stars: mean values of observations, light blue envelop: mean \pm model uncertainty, black points: pseudo samples, grey and light blue lines: linear functions fitted to the samples and mean observations).

Figure S1: Atmospheric xCO_2 (ppm) measured on-board during OISO-11 in January 2004 (Orange symbols) and Clim-EPARSES in April 2019 (Blue symbols) in the Mozambique Channel. Mean xCO_2 concentrations along these tracks were respectively 377.02 and 410.90 ppm.

Figure S2a: Comparison of measured fCO₂ and calculated fCO₂ from A_T/C_T pairs using K1, K2 constants from Lueker et al (2000). Results are presented for January 2004 (top, orange), April 2019 (middle, blue) and the difference fCO₂calc-fCO₂mes (bottom) for both cruises. Each point corresponds to colocalized values (within 5-10 minutes time). In January 2004, for 154 co-located samples the mean difference was -5.3 µatm (±4.9). In April 2019, for 268 co-located samples the mean difference was +4.5 µatm (±5.2).

Figure S2b: Comparison of measured fCO₂ and calculated fCO₂ from A_T/C_T pairs using K1, K2 constants from (i) Lueker et al (2000) as in figure S2a, (ii) Merbach et al (1973) refitted by Dickson and Millero (1987) (noted MDM) or (iii) from Hansson (1973) and Merbach et al (1973) refitted by Dickson and Millero (1987) (noted HMDM). Figures show the difference fCO₂calc-fCO₂mes for January 2004 (top) and April 2019 (middle). Each point corresponds to co-localized fCO2 and A_T/C_T data (within 5-10 minutes time). Differences of fCO₂ as a function of the ratio C_T/A_T are also shown for the two cruises (bottom). Mean differences for each cruise and different constants K1, K2 listed below:

Figure S3: Left: Trajectory of a drifting buoy (Platform code 1601545) for the period 1-Jan-2019 to 8-June-2019 in the Mozambique Channel, showing the Eddy-like trajectories in the central channel. Right: In mid-March 2019 around 20°S-40°E the buoy recorded low atmospheric pressure (< 990 hPa) due to the passage of the Cyclone "Idai" leading to high precipitation (Figure S4). This explains the SST and SSS records in April 2019. Source: <u>http://www.coriolis.eu.org/Data-Products/Data-</u> <u>Delivery/Data-selection</u>. (Last access, 03-Dec-2020). Figures produced with ODV (Schlitzer, 2013).

Longitude

Figure S4: Precipitation anomaly in March 2019 in the western Indian Ocean. The maximum anomaly (150mm) in the Mozambique Channel was linked to the severe Cyclone event Idai. Map from: *https://iridl.ldeo.columbia.edu/maproom/Global/Precipitation/Anomaly.html* (Last access, 28-Nov-2020).

Figure S5: ARGO float trajectory (Plate-form Code 2902142) in the Mozambique Channel. Left: The map shows the float trajectory from Aug-2014 to Feb-2020. Right: Salinity at surface recorded when the float enters the Mozambique Channel in January 2017 (note the minimum in March 2019). Bottom: Salinity section (0-50m) recorded by the float in Jan-May 2019 showing the salinity minimum in late March 2019 after the Cyclone Event Idai. All figures produced with Ocean Data View, ODV (Schlitzer, 2013). Float data obtained from http://www.coriolis.eu.org/Data-Products/Data-Delivery/Data-selection. (Last access, 25-Feb-2020).

Figure S7: fCO_2 (µatm) versus SST (°C) for January 2004 (orange circles) and April 2019 (blue triangles) in the Mozambique Channel. The green ellipse identifies data in the vicinity of Juan de Nova Islands.

Figure S8: Top: Surface Chl-a (mg.m⁻³) observations in the Mozambique Channel measured at several locations in January 2004 (orange) and April 2019 (blue). In 2004, the higher Chl-a values at 14-15°S and 22°S explain the low fCO₂ and departure from fCO₂/SST relation (fig S7). In 2019 a minimum in C_T was observed at 15.5°S where Chl-a reached a maximum. Bottom: Map of monthly surface Chl-a (mg.m⁻³) in the region for January 2004 and April 2019 derived from MODIS data, highlighting the maximum around 22°S in 2004 extended from the coastal zone of Madagascar. In April 2019, MODIS data show higher Chl-a over the central region. Map produced with ODV (Schlitzer, 2013) from data downloaded at http://marine.copernicus.eu/services-portfolio/access-to-products/ (OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_082), last access, 20-Oct-2020. In both figures the Chl-a scale is 0-0.5 mg.m⁻³.

Figure S9: Top: Time-series of monthly sea surface Chl-a concentration (mg.m⁻³) averaged in the Mozambique Channel (mean in bounding Box: 38E/26S-43E/15S). Data extracted from MODIS (Giovanni/NASA, last access 31/5/20). Bottom: Mean annual cycles of monthly Chl-a (from data in the top figure) and of N-C_T climatology at 20°S/42°E (open triangles, from Takahashi et al 2014). The N-C_T decrease from January to April is in part linked to biological activity.

Year

Figure S10: Difference of A_T calculated with different A_T /SSS relationships and measured A_T (January 2004 and April 2019, total 505 data) versus salinity. Only A_T samples from open ocean waters are included (i.e. samples measured closed to Islands are not used). A_T /SSS relationships are from Millero et al. (1998) for the Indian Ocean (open squares), from Lee et al. (2006) for the subtropical oceans (open circles), from January 2004 data (orange circles), from April 2019 data (blue triangles) or using Jan-2004 + Apr-2019 data (noted AT-MOZ, black squares). All relationships lead to the same results with no clear statistical differences. Therefore, in this analysis, we use the relationship derived from January 2004 + April 2019 data: A_T = 73.841* S – 291.02 (as shown in Figure 5, see main text).

Figure S11: Monthly SST in the Mozambique Channel for the period 1981-2019 The dashed-line is the estimated annual SST trend of +0.011 (+/-0.007) °C.yr⁻¹. Data from Reynolds et al (2002). http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/.GLOBAL/.Reyn SmithOlv2/.mon thly/ (Last access 1/4/2020).

Figure S12: Sea surface distribution of (a) Ω_{Ca} and (b) Ω_{Ar} in the Mozambique Channel calculated from fCO₂ observations in May 1963 (grey), January 2004 (orange) and April 2019 (blue).

Figure S13: Top: Sea surface water [H+] concentrations around 25°S in the Mozambique Channel based on fCO_2 data in May 1963, June 1995, December 2003, January 2004, July 2014 and April 2019. Bottom: Temporal evolution of [H+] around 25°S in the Mozambique Channel based on data shown on top. [H+] concentrations calculated with fCO_2 and A_T are indicated by black circles (listed in Table 4). Values adjusted to the month of June indicated by grey diamond and used for trend estimates (dashed grey lines). Trends for 1963-1995 and 1995-2019 are respectively +0.0212 nmol.kg.yr⁻¹ and +0.0409 nmol.kg.yr⁻¹.

Figure S14: Distribution in the top 1000m of C_{ant} accumulated between 1994 and 2007 (Delta- C_{ant} in μ mol.kg⁻¹) in the Mozambique Channel. Data are from Gruber et al., (2019b). Figure produced with Ocean Data View, ODV (Schlitzer, 2013).

Figure S15: Reconstructed Aragonite saturation state (Ω_{Ar}) based on atmospheric xCO₂ historical data for seasonal fCO₂ (grey line) or assuming equilibrium (orange line). Calculated values from fCO₂ and A_T/SSS observations in 1963 to 2019 are also shown (blue triangles). The Orange circle identifies Ω_{Ar} = 3 in 2040 if the observed trend in recent decade is projected.

Methods for trends and uncertainties estimates

Trends and associated uncertainties provided in Tables 2, 3, 5 and in the main text are estimated as the means of slopes and standard deviation derived from the computation of linear least-squares regressions on Monte Carlo simulations. In general, 100000 samples are drawn from the Gaussian distribution with empirical means and standard deviation calculated from the observations (see in Tables 2, 3, 4) or the CMEMS-LSCE-FFNN model. The *stats.linregress* function in the *scipy* python package is used to fit a linear least-squares regression for two sets of data (e.g., measurements against datetime values) for each sample and for different time periods. Illustrations of this Monte Carlo approach on fCO₂ and pH, and other statistics to assess the significance of the regression analysis for all variables are shown in this Supplementary Materials (Tables S1, S2, Figures S16 and S17). These statistics include the 68% confidence interval (CI, mean \pm uncertainty) of all slope estimates, the root mean square deviation (RMSD, the standard error between the target sample and the fit), and coefficient of determination (r^2 , the degree of linear correlation between the target sample and the fit). Details of the regression analysis based on the observations and the model outputs are described as follows:

a. Trends evaluated from observations/calculations:

Given the means of observations or calculated variables, their standard deviations and measurement/calculation errors (see in Tables 2, 3, 4), we first compute the total uncertainty for each variable (e.g., pH) in each year (e.g., 1963). This total uncertainty is defined as the square root of the sum squared of the two sources of observation/calculation uncertainty. The individual observations are not used directly for the analysis but their mean values after adjustment to the month of June. For each iteration of 20 bootstrapping cycles, we generate, for each year, Nb pseudo-data (the corresponding number of observations in the year of interest, e.g., Nb= 15 in 1963) based on the calculated mean and uncertainty. This step allows recreating a set of individual pseudo-observations for the month of June which is statistically equivalent to the original data set. Then, these data are resampled to create a new ensemble of data with the size N = 5000, the slope and intercept as well as other statistics for different period are calculated for each realization in this ensemble. Figure S16 illustrates the method for the 1963-2019 and a sub-period (2004-2019).

b. Trends evaluated from the CMEMS-LSCE-FFNN model outputs

The CMEMS-LSCE-FFNN model provides a reconstruction of fCO_2 and pH from an ensemble-based approach. Monthly mean and model uncertainty are available at $1^{\circ}x1^{\circ}$ resolution. June data or the monthly data in the Mozambique Channel are extracted for the trend analysis and for comparison to those from the observations. The annual trend and uncertainty reported in Table 5 are calculated on the annual mean of the monthly data. Here we directly generate 100000 samples and fit linear functions among them. Figure S17 shows an illustration of the regression on only 500 realizations for fCO₂ and pH in June 1985-2019 and 2004-2019.

Table S1: Statistics for regression analysis on trends of surface properties and pH (see Tables 2, 3) in the band 14°S-25°S in May 1963, January 2004 and April 2019. These statistics include the 68% confidence interval (CI, mean \pm uncertainty) of all slope estimates, the root mean square deviation (RMSD, the standard error between the target sample and the fit), and the coefficient of determination (r², the degree of linear correlation between the target sample and the fit).

Periods	fCO ₂ µatm.yr ⁻¹			μm	N-C _{Tca} ol.kg⁻¹.y	r ⁻¹	N-C _{Tmes} μmol.kg ⁻¹ .γr ⁻¹				
	[68% CI]	RMSD	r2	[68% CI]	RMSD	r2	[68% CI]	RMSD	r2		
2004- 2019	[0.94, 2.56]			[0.19, 1.81]			[0.25, 1.83]				
1963- 2004	[1.26, 1.81]			[0.61, 1.40]							
1963- 2019	[1.40, 1.76]	0.22	0.98	[0.72, 1.29]	0.22	0.94					
	pH (fCO ₂)			pl	H (A _T -C _T))					
2004- 2019	[- 0.00255, - 0.00054 1	13.y1		[- 0.00309, -0.0001]	13.91						
1963- 2004	[- 0.00193, - 0.00115]										
1963- 2019	[- 0.00182, - 0.00126]	0.00026	0.97								

Table S2: Statistics for regression analysis on trends observed around 25°S in the Mozambique Channel evaluated from observations and from the monthly reconstructed pCO_2 and pH values based on a neural network model (CMEMS-LSCE-FFNN, Denvil-Sommer et al 2019; Chau et al 2020) between 1963 and 2019 adjusted to June (as shown in Figure 10 and Tables 4,5). These statistics include the 68% confidence interval (CI, mean ± uncertainty) of all slope estimates, the root mean square deviation (RMSD, the standard error between the target sample and the fit), and the coefficient of determination (r^2 , the degree of linear correlation between the target sample and the fit). For CMEMS-LSCE-FFNN the trends are computed for the month of June or using the annual mean of all months over 1985-2019.

	Periods	1	fCO ₂ (µatm.yr ⁻¹)		H+ (nmol.kg ⁻¹ .yr ⁻¹)			pH (TS.yr ⁻¹)			N-C _T (µmol.kg ⁻¹ .yr ⁻¹)		
		[68% CI]	RMSD	r2	[68% CI]	RMSD	r2	[68% CI]	RMSD	r2	[68% CI]	RMSD	r2
Observa tions	1963- 2019	[1.44,	0.21	0.95	[0.0255,	0.0049	0.92	[-0.00188, -0.00147]	0.00026	0.93	[0.83,	0.20	0.89
	1963- 1995	[0.90, 1.37]			[0.0144, 0.0283]			[-0.00171, -0.00087]			[0.41, 1.23]		
	1995- 2004	[0.90, 2.51]			[0.0076, 0.0559]			[-0.00329, -0.00004]			[-0.10, 2.40]		
	1995- 2019	[1.93, 2.46]	0.30	0.96	[0.0327, 0.0497]	0.0089	0.91	[-0.00275, -0.00179]	0.0049	0.91	[0.95, 1.79]	0.44	0.82
	2004- 2019	[1.98, 2.84]	0.50	0.96	[0.0307, 0.0597]	0.0152	0.89	[-0.00322, -0.00164]	0.00083	0.89	[0.77, 2.14]	0.76	0.78
CMEMS- LSCE- FFNN	1985- 2019 June	[1.74, 2.03]	0.16	0.82				[-0.00220, -0.00172]	0.00025	0.66			
	1995- 2004 June	[0.74, 2.65]	0.88	0.34				[-0.00349, -0.00023]	0.00158	0.22			
	1995- 2019 June	[2.04, 2.51]	0.25	0.78				[-0.00272, -0.00195]	0.00040	0.60			
	2004- 2019 June	[1.94, 2.96]	0.51	0.62				[-0.00325, -0.00169]	0.00078	0.42			
	1985- 2019 Annual	1.71, 1.89]	0.08	0.93				[-0.00189, -0.00165]	0.00011	0.88			
	1995- 2004 Annual	[1.55, 2.50]	0.47	0.69				[-0.00274, -0.00132]	0.00072	0.50			
	1995- 2019 Annual	[1.74, 2.03]	0.14	0.89				[-0.00199, -0.00161]	0.00019	0.80			
	2004- 2019 Annual	[1.50, 2.10]	0.29	0.73				[-0.00203, -0.00127]	0.00037	0.60			

Figure S16: Trend analysis on a Monte Carlo simulation of fCO_2 and pH observed around 25°S in the Mozambique Channel, and adjusted to June (blue stars: mean values of observations, light blue bars: mean \pm total uncertainty, black points: pseudo samples, grey and light blue lines: linear functions fitted to the samples and mean observations).

Figure S17: Trend analysis on a Monte Carlo simulation of the CMEMS-LSCE-FFNN estimates for fCO_2 and pH around 25°S in the Mozambique Channel in June for 1985-2019 or 2004-2019 (blue stars: mean values of observations, light blue envelop: mean \pm model uncertainty, black points: pseudo samples, grey and light blue lines: linear functions fitted to the samples and mean observations).

