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Abstract :   
 
Tropical tunas are largely consumed worldwide, providing major nutritional benefits to humans, but also 
representing the main exposure to methylmercury, a potent neurotoxin that biomagnifies along food webs. 
The combination of ecological tracers (nitrogen and carbon stable isotopes, δ15N and δ13C) to mercury 
concentrations in tunas is scarce yet crucial to better characterise the influence of tuna foraging ecology 
on mercury exposure and bioaccumulation. Given the difficulties to get modern and historical tuna 
samples, analyses have to be done on available and unique samples. However, δ13C values are often 
analysed on lipid-free samples to avoid bias related to lipid content. While lipid extraction with non-polar 
solvents is known to have no effect on δ15N values, its impact on mercury concentrations is still unclear. 
We used white muscle tissues of three tropical tuna species to evaluate the efficiency and repeatability 
of different lipid extraction protocols commonly used in δ13C and δ15N analysis. Dichloromethane was 
more efficient than cyclohexane in extracting lipids in tuna muscle, while the automated method appeared 
more efficient but as repeatable as the manual method. Lipid extraction with dichloromethane had no 
effect on mercury concentrations. This may result from i) the affinity of methylmercury to proteins in tuna 
flesh, ii) the low lipid content in tropical tuna muscle samples, and iii) the non-polar nature of 
dichloromethane. Our study suggests that lipid-free samples, usually prepared for tropical tuna foraging 
ecology research, can be used equivalently to bulk samples to document in parallel mercury 
concentrations at a global scale. 
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Highlights 

► Scarcity of tuna samples makes essential to get the most out of a single sample. ► Dichloromethane 
is more efficient than cyclohexane to extract lipids. ► Dichloromethane extraction has no effect on Hg 
levels. ► Bulk and lipid-free tropical tuna samples can be used jointly to infer Hg levels. 
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1. Introduction 39 

Mercury (Hg) is a widespread heavy metal of particular concern to wildlife and human health. 40 

In oceans, it is naturally converted into methylmercury (MeHg), its organic and highest 41 

neurotoxic form, well known for its persistence and unique bioaccumulation properties in 42 

food webs (Hintelmann, 2010). Consumption of contaminated seafood is considered as the 43 

main route of human exposure to MeHg. Top predators like tunas are known to display 44 

relatively high MeHg concentrations, sometimes exceeding food safety guidelines (1 µg g
-1

 45 

fresh tissue) (WHO and UNEP Chemicals, 2008) depending on the oceanic basin and the tuna 46 

species. Yet, tunas are also among the most popular marine species consumed worldwide, 47 

particularly tropical species that account for more than 90% of the global tuna fishery (FAO, 48 

2018). In terms of food and nutrition security, they provide a major source of proteins, 49 

essential fatty acids, vitamins and minerals (Di Bella et al., 2015; Sirot et al., 2012).  50 

Knowing their economic importance, nutritional benefits and potential impact on human 51 

health, tropical tunas have been studied broadly but at relatively small spatial scale to 52 

document their Hg exposure and characterize the processes driving Hg biomagnification 53 

along food webs (Bodin et al., 2017; Chouvelon et al., 2017; Houssard et al., 2019; 54 

Kojadinovic et al., 2006; Nicklisch et al., 2017). Complex regional interplay between physical 55 

(e.g. light intensity), geochemical (e.g. redox status), physiological (e.g. organism’s length 56 

and age), and ecological factors (e.g. tuna’s foraging depth) have been identified to govern Hg 57 

concentrations in these top predators (Choy et al., 2009; Houssard et al., 2019; Kojadinovic et 58 

al., 2006; Médieu et al., 2021; Wang et al., 2019). Nevertheless, key global aspects remain 59 

poorly understood, in particular biogeochemical methylation/demethylation mechanisms 60 

controlling MeHg bioavailability at the base of the food web, as well as factors driving both 61 

fate and accumulation through the food web. Global studies combining Hg concentrations and 62 

ecological tracers are therefore needed to clarify these points, especially in the context of the 63 
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UNEP Minamata Convention since monitoring studies in marine biota have become essential 64 

the better characterize Hg cycle and fate in oceans.   65 

Pelagic food web structuration and functioning have been broadly investigated, mainly 66 

through the use of carbon and nitrogen stable isotopes data (δ
13

C and δ
15

N values) (Fry, 67 

2006). Recently, collaborative and global studies relying upon δ
13

C and δ
15

N values enabled 68 

identifying broad-scale patterns of trophic structure, movements and trophodynamics of tunas 69 

in relation to environmental conditions (Logan et al., 2020; Lorrain et al., 2020; Pethybridge 70 

et al., 2018). Based on individual records with associated metadata (i.e. fish length, fishing 71 

date and position) (Bodin et al., 2020), these collaborative and global studies also represent a 72 

gold mine of already collected and preserved samples to characterize spatial and/or temporal 73 

Hg trends in tunas.  74 

An issue with global modern and historical datasets is that samples from different laboratories 75 

are not always processed the same way. To account for the influence of lipids on δ
13

C values 76 

(DeNiro and Epstein, 1977) while making a single analysis for both δ
13

C and δ
15

N values, 77 

δ
13

C values are either produced from i) bulk tissue and a mathematical correction (Sardenne et 78 

al., 2015), or from ii) lipid-free tissue, with lipids removed through various methods and 79 

solvents selected not to alter δ
15

N values. In the latter case, manual or automated (high 80 

temperature and pressure) methods are generally applied with solvents of low polarity such as 81 

dichloromethane and cyclohexane (Bodin et al., 2009; Ménard et al., 2007). While these 82 

methods do not affect δ
15

N values and provide valuable data on lipid content, nothing is 83 

known regarding their effect on Hg content, restricting the development of global studies on 84 

tuna's Hg concentration with preserved samples prepared for tuna foraging ecology research. 85 

Here, we investigated i) the efficiency and repeatability of two common lipid extraction 86 

methods (manual and automated) and two neutral solvents (dichloromethane and 87 

cyclohexane) on lipid content determination (experiment A), and ii) the influence of the most 88 
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efficient solvent for lipid extraction on total Hg concentrations (experiment B). Experiments 89 

were carried out in three tropical tuna species, i.e. bigeye (Thunnus obesus), yellowfin (T. 90 

albacares) and skipjack (Katsuwonus pelamis), and on white muscle tissues, the commonly 91 

used tissue in studies investigating both trophic ecology and Hg bioaccumulation and the final 92 

storage for MeHg in fish. .   93 
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2. Material & methods 94 

2.1. Sample collection 95 

All bigeye, yellowfin, and skipjack tuna samples (ntotal = 33) were collected in the western 96 

Indian Ocean during the unloading of commercial vessels (purse seine) at Victoria port 97 

(Seychelles). To test for efficiency and repeatability of different lipid extraction protocols 98 

(experiment A), we used three individuals, one per tuna species (nexp A = 3). To test for the 99 

effect of lipid extraction on Hg concentrations (experiment B), we used 10 other individuals 100 

per tuna species (nexp B = 30), all collected from the same fishing set. For these 30 individuals, 101 

fork length (FL) was measured to the lowest cm and ranged respectively for bigeye, yellowfin 102 

and skipjack from 44 to 91 cm (62 ± 17 cm), 35 to 129 cm (70 ± 35 cm), and 34 to 64 cm (45 103 

± 10 cm) (Supplementary Information Appendix S1). For both experiments, white muscle 104 

samples of around 20 g (wet weight) were collected in the front dorsal position, stored frozen 105 

at -20°C, freeze-dried for 48 hours with an Alpha 1-4 LD freeze-dryer (Christ, Coueron, 106 

France) and finally ground to a fine homogeneous powder using a MM400 grinder (Retsch, 107 

Eragny sur Oise, France) prior to lipid extraction and total Hg analyses.  108 

 109 

2.2. Lipid extraction protocols 110 

Two lipid extraction methods (manual and automated) and neutral solvents (dichloromethane 111 

and cyclohexane) were first tested on five replicates of three individuals, one  per tropical 112 

tuna species, to identify the most efficient and repeatable method and solvent in extracting 113 

lipids (experiment A, nexp A = 3, Fig. 1A). The use of one single individual per tuna species 114 

allowed overcoming the potential bias related to inter-individual variability when estimating 115 

both efficiency and repeatability of the lipid extraction methods, as recommended and done in 116 
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other studies testing for different lipid extraction methods (AOCS, 2017; JCGM, 2012; 117 

Sardenne et al., 2019a). All lipid extractions were done at LEMAR (Plouzané, France).  118 

2.2.1. Manual extraction: Following the method of Ménard et al. (2007), 100 ± 4 mg of each 119 

powdered and dried aliquot were mixed with 10 mL of solvent for 1 hour using a rotary 120 

shaker. The mixture of the powder and the solvent was then separated by centrifugation at 121 

2500 rpm for 10 min at 10°C. The lipid-free powders were stored in a dry-room until total Hg 122 

analysis, while the lipid extracts were collected in a pre-weighted vial and evaporated to 123 

dryness under N2 flow with a N-evap 111 nitrogen evaporator (OA-SYS, Berlin, USA).  124 

2.2.2. Automated extraction: 150 ± 10 mg of homogenized dried aliquot were extracted with 125 

20 mL of solvent at 100°C under 1400 psi for 10 min using a ASE 350 Accelerated Solvent 126 

Extractor (Dionex, Voisins de Bretonneux, France), following the method of Bodin et al. 127 

(2009). The lipid-free powders were stored in a dry-room until total Hg analysis, while the 128 

lipid extracts were collected in a pre-weighted vial and evaporated to dryness under N2 flow 129 

with a N-evap 111 nitrogen evaporator (OA-SYS, Berlin, USA).  130 

2.2.3. Total lipid content: For both extraction methods, lipid residuals were weighted on a 131 

Mettler Toledo MX5 analytical micro-balance (Mettler Toledo, Colombus, Ohio) to the 132 

nearest 0.001 mg to determine the total lipid content (TLC, %) of the samples, expressed on a 133 

dry weight basis (dw).  134 

 135 

2.3. Total mercury analysis 136 

The potential impact of lipid extraction methods on Hg concentrations was assessed on 10 137 

individuals per tuna species, with Hg concentrations determined on both bulk and lipid-free 138 

powders (Experiment B, nexp B = 30, Fig. 1B). Total Hg concentrations were measured on 139 

powdered, dried and homogenized tissue by thermal decomposition, gold amalgamation and 140 
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atomic adsorption (AMA 254, Altec, Czech Republic, Száková et al., 2004) at GET 141 

(Toulouse, France). Blanks and two biological materials, TORT-3 (lobster hepatopancreas; 142 

Hg = 292 ± 22 ng g
-1

 dw) and BCR-464 (tuna fish; Hg = 5240 ± 100 ng g
-1

 dw), covering a 143 

wide range of Hg concentrations, were routinely used every 5-10 samples in each analytical 144 

batch to check Hg measurement accuracy. Recovery rates (defined as the ratios of observed 145 

value by certified value) were calculated for the two certified reference materials (TORT-3: 146 

100 ± 3%; and BCR-464: 100 ± 2%) and variability was below 4%. Hg concentrations are 147 

expressed in µg g
-1

 (equivalent to part per million, ppm), on a dw basis.  148 

 149 

 150 

Figure 1: Outline of the two experiments testing for A) the efficiency and repeatability of each lipid extraction 151 

protocol (manual and automated method, and dichloromethane and cyclohexane solvent) using five replicates of 152 

the same individual per tropical tuna species ; and for B) the influence of manual and automated method with 153 
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dichloromethane on total Hg concentrations (nexp B = 30 individuals). TLC=Total Lipid Content. See Material and 154 

methods for details.  155 

 156 

2.4. Statistical analysis 157 

All statistical analyses were performed with the statistical open source R software 3.6.1 (R 158 

Core Team, 2018). We first evaluated the efficiency of both solvents (i.e. dichloromethane 159 

and cyclohexane) and methods (i.e. manual and automated) in extracting lipids with an 160 

analysis of variance (ANOVA) on TLC values (experiment A). The higher the TLC values, 161 

the higher the efficiency. Repeatability of each extraction experiment was assessed per 162 

tropical tuna species using the coefficient of variation (CV, defined as the ratio of standard 163 

deviation by mean) of TLC values measured on the five replicate samples. The lower the CV, 164 

the higher the repeatability. Then, we assessed the influence of manual and automated 165 

extraction methods on total Hg concentrations with two separated paired t-test on ΔHg values 166 

(with ΔHg = Hgbulk – Hglipid-free) (experiment B). For these two tests, we considered all 167 

individuals (nexp B = 30 pairs of observations), no matter the species, as ΔHg values do not 168 

significantly differ between species (ANOVA, p>0.05 for both methods). TLC, ΔHg values, 169 

and residuals of ANOVA were tested for normality  with a Shapiro test. Observations were 170 

considered as outliers according to the “1.5 rule”, i.e. if they were less that Q1 – 1.5*IQR, or 171 

greater than Q3 + 1.5*IQR, where Q1, Q3 and IQR are the lower quantile, upper quantile and 172 

inter-quantile range (defined as Q3-Q1), respectively.   173 
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3. Results & discussion 174 

3.1. Efficiency and repeatability of lipid extraction methods and solvents: TLC values 175 

measured in white muscle varied between 0.4 and 1.7% dw (Supplementary Information 176 

Appendix S1). These values are similar to levels reported in same tropical tuna species from 177 

the Indian (~3%, Sardenne et al., 2016), Atlantic (~6%, Sardenne et al., 2019) and Pacific 178 

(~2%, Peng et al., 2013) Oceans, which confirms tropical tunas are lean species.  179 

For the three tropical tuna species, TLC values were significantly higher when lipids were 180 

extracted with dichloromethane than with cyclohexane (Fig. 2; ANOVA, p<0.01). 181 

Dichloromethane and cyclohexane are both non-polar solvents recommended for routine 182 

analysis of lipids/fatty acids and/or prior δ
13

C and δ
15

N analysis (Bodin et al., 2009; Ménard 183 

et al., 2007). Here, the higher efficiency of dichloromethane may result from its slightly 184 

higher Snyder polarity index (3.1) compared to cyclohexane (0.2) and therefore to the fact 185 

that dichloromethane, although a neutral solvent is likely to extract some membrane polar 186 

lipids (e.g. phospholipids and sphingolipids) too, increasing TLC values. Nevertheless, this 187 

might be of minor importance regarding the protein fraction as this solvent has been shown to 188 

have negligible effects on the δ
15

N values across tissues and tuna species (Sardenne et al., 189 

2015). 190 

Regarding differences between manual and automated methods, TLC values were 191 

significantly higher for bigeye and skipjack replicates for the automated extraction (Fig. 2; 192 

ANOVA, p<0.05). For bigeye replicates, interaction between solvent and method was also 193 

significant, showing that the efficiency of the extraction method depends on the solvent used, 194 

with automated extraction with dichloromethane being the most efficient protocol to extract 195 

lipids (Fig. 2, ANOVA p<0.05). Conversely, TLC values did not differ significantly between 196 

the two extraction methods for yellowfin replicates (Fig. 2; ANOVA, p>0.05). The higher 197 
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efficiency of the automated method may be explained by its combined conditions of elevated 198 

temperature and pressure that maintain solvents near their supercritical region where they 199 

have high extraction properties (Ramos et al., 2002). This suggests that lipid extraction with 200 

automated method would be preferred over manual method. On the other hand, this automated 201 

method is twice more costly in polluting solvent, and its cleaning steps are longer compared 202 

to the manual method. Considering the low difference in extraction efficiency and the fact that 203 

is was significant only for the skipjack in-house reference sample, both manual and automated 204 

methods are relevant to extract lipids from lean tuna muscle tissues.  205 

The repeatability of the different experiments varied between the protocols between 4 and 206 

27%, but remained overall lower than 18% (Supplementary Information Appendix 2). 207 

Acceptable repeatability often ranges between 5 and 10%, but for lean tissues like white 208 

muscle of tropical tunas, repeatability down 20-30% is considered acceptable too, as found in 209 

other studies (Bodin et al., 2009; Dodds et al., 2004). As expected, automated method showed 210 

generally lower CV values, as ASE 350 has been developed to reduce handling steps and to 211 

ensure increased reproducibility. This would be another argument to prefer the automated 212 

method; yet given the pros and cons arguments listed above, both manual and automated 213 

methods remain acceptable for the lipid extraction from white muscle tissue of tropical tunas.  214 Jo
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 215 

Figure 2: Boxplots of total lipid content (TLC, % dry weight) associated to the four lipid extraction protocols 216 

and measured in five replicates of each single individual per tuna species. Thick bar is the median value, points 217 

are outliers of five replicates, and the box contains 50% of the data.  218 

 219 

3.2. Influence of lipid extraction on total Hg concentrations: Bulk total Hg concentrations 220 

(mean ± sd, min-max, dw) varied between tuna species (Kruskal-Wallis, p<0.05), with 221 

significantly higher levels in bigeye (0.81 ± 0.47 µg g
-1

, 0.20-1.37 µg g
-1

; Dunn’s test, 222 

p<0.05) than yellowfin (0.38 ± 0.27 µg g
-1

, 0.12-1.03 µg g
-1

) and skipjack (0.30 ± 0.17 µg g
-1

, 223 

0.12-0.61 µg g
-1

) (Supplementary Information Appendix S1). Those levels and differences are 224 

similar to those reported previously in the western Indian Ocean or in both north and south 225 

Pacific Oceans for similar fish size ranges (Bodin et al., 2017; Choy et al., 2009; Médieu et 226 

al., 2021). The highest Hg concentrations in bigeye are likely to result from confounding 227 

effects: a higher trophic position, a deeper vertical habitat giving access to mesopelagic 228 

species with higher Hg concentrations, and a longer lifespan compared to the two other 229 

tropical tunas (Choy et al., 2009; Olson et al., 2016).  230 

Manual and automated lipid extractions with dichloromethane did not significantly affect the 231 

Hg concentrations in white muscle samples of the three tuna species (Fig. 3; paired t-test, 232 

p>0.05). This agrees with Cipro et al. (2017) where no difference of Hg levels was found 233 
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between bulk and lipid-free muscle samples of two marine fish (i.e. Notothenia coriiceps and 234 

N. rossii). This may be related to the particular chemical properties of MeHg in fish flesh and 235 

the polarity of the solvent used for lipid extraction. In tuna white muscle, most of total Hg 236 

(>91%) is in its methylated form (Bloom, 1992; Houssard et al., 2019), which is known to 237 

bioaccumulate in the protein fraction of the muscle, mostly by forming complexes with the 238 

amino acid cysteine (Amlund et al., 2007; Leaner and Mason, 2004; Manceau et al., 2021). 239 

On the other hand, we used dichloromethane, a neutral solvent that does not affect the protein 240 

fraction by limiting the removal of proteins bound to membrane lipids (Bodin et al., 2009). 241 

Thus, by preserving the Hg-protein fraction in muscle tissues during lipid extraction, we 242 

assumed to have preserved MeHg concentrations of the samples. The absence of a significant 243 

effect of lipid extraction on Hg concentrations may be due also to the low lipid content of 244 

tropical tuna species (<6%), as measured in our experiment and showed in other studies (Peng 245 

et al., 2013; Sardenne et al., 2019b, 2016), and therefore to an unchanged mass balance in the 246 

samples. Finally, when discussing the effects of the different protocols tested, it is worthwhile 247 

mentioning that high temperature and pressure conditions of the automated extraction did not 248 

significantly affect total Hg concentrations neither, suggesting no thermal and pressure 249 

degradation of the total Hg pool in the samples. This confirms that MeHg is bound up tightly 250 

to the protein fraction in fish muscle tissues, where it is known to remain for a long time 251 

(Leaner and Mason, 2004).. 252 

 253 

 254 
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 255 

Figure 3: Boxplots of the differences of Hg concentrations (µg g
-1

, dry weight) between bulk and lipid-free 256 

samples. Box colours display lipid extraction methods (manual and automated). Thick bar is the median value, 257 

points are outliers, and the box contains 50% of the data.  258 

 259 

4. Conclusion 260 

This study reveals the higher efficiency of dichloromethane compared to cyclohexane to 261 

extract lipids in tropical tuna white muscle tissue, which may be attributed to its slightly 262 

higher polarity index. Automated method appeared more efficient than manual method to 263 

extract lipids, especially when used with dichloromethane, which may be attributed the 264 

combined conditions of elevated temperature and pressure. Repeatability of all experiments 265 

were in acceptable ranges considering that we were working on lean samples.  266 

We show no significant effect of lipid extraction with dichloromethane on total Hg 267 

concentrations in tropical tuna white muscle tissue. This may be related to i) the affinity of 268 

MeHg (i.e. the most abundant Hg chemical form in tuna muscles) to proteins, ii) the relative 269 

low lipid content in white muscle tissue of tropical tuna species, and iii) the non-polar 270 

characteristics of dichloromethane, known to efficiently extract storage lipids without 271 

affecting the protein fraction. This suggests that white muscle samples that have undergone 272 

lipid extraction with dichloromethane can be used equivalently to bulk samples to investigate 273 
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Hg bioaccumulation in these pelagic top predators from the western Indian Ocean. Knowing 274 

that tropical tunas in the Atlantic, Indian and Pacific Oceans all have relatively low lipid 275 

content in white muscle tissue (<6%, Peng et al., 2013; Sardenne et al., 2019, 2016), this 276 

suggests that our results might be valid at a global scale, but further studies are needed to 277 

confirm this statement. As lipid content can vary between tissues, species and oceanic basins 278 

because of differences in diet and/or in energy allocation strategies distributed among 279 

metabolic functions (i.e. growth, reproduction and maintenance), we recommend using bulk 280 

samples to infer precisely Hg concentrations in marine fish other than tropical tunas. Further 281 

studies would be particularly needed for tissues and species with high lipid content (e.g. 282 

swordfish white muscle tissue, between 20-40% dw, Young et al., 2010).    283 
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Highlights  

 

 Scarcity of tuna samples makes essential to get the most out of a single sample 

 Dichloromethane is more efficient than cyclohexane to extract lipids 

 Dichloromethane extraction has no effect on Hg levels 

 Bulk and lipid-free tropical tuna samples can be used jointly to infer Hg levels 
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