H₂-dependent formate production by hyperthermophilic Thermococcales: An alternative to sulphur reduction for reducing-equivalents disposal

Sébastien Le Guellec¹, Elodie Leroy¹, Damien Courtine¹, Anne Godfroy¹, Erwan G. Roussel¹*

¹ Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280

Plouzané, France.

*Corresponding author. Address: Erwan G. Roussel, Erwan.Roussel@ifremer.fr

Supplementary Methods . Thermodynamic calculations: reaction quotient calculation

Table S1. List of Thermococcales used in this study.

Table S2. List of 59 conserved single copy genes used to calculate the *Thermococcales* phylogenomic tree.

Table S3. Reversibility of H₂-dependent formate production by (hyper)thermophilic *Thermococcales*.

Table S4. H₂ and formate concentrations used for representation of environmental concentrations measured for seawater and end-member fluids from six deep-sea hydrothermal vent fields in figure 6.

Figure S1. Comparison of the gene organisations of the *fdh-nor*, *fhl1*, *fhl2* and *fhl3* clusters from 35 genomes of *Thermococcales*.

Figure S2. Phylogenetic trees based on translated partial amino acid sequences of functional genes: (a) formate dehydrogenase catalytic subunit (68 sequences) and (b) formate transporter (17 sequences).

Figure S3. Comparison of the gene organisations of the *codh-nor* and *codh* clusters from 35 genomes of *Thermococcales*.

Figure S4. Cross effects of H₂ and formate on CO₂ reduction rate in *T. onnurineus* NA1 after 96 hours.

Figure S5. The direction of the reaction of CO₂ reduction depends primarily on substrates concentration.

Figure S6. 2D-contour plot representing the thermodynamic modelling of the CO_2 reduction to formate for a range of concentration of formate and H₂ (assumed as dissolved).

Figure S7. Effect of temperature on formate production rates in *T. onnurineus* NA1.

Supplementary Methods

Thermodynamic calculations: reaction quotient calculation

The reaction quotient Qr was calculated according to :

$$Qr = \prod a_i^{V_{i,r}}$$

where a_i stands for the activity of the i^{th} species raised to its stoichiometric reaction coefficient $V_{i,r}$ in the r reaction. In the case of gases, activity is replaced by the fugacity f_i of the species.

The activity (a) of any species *i* can be determined according to:

$$a = \frac{Ci}{C_i^o} \times \gamma i$$

where *Ci* stands for the concentration, C_i^o represents the standard state concentration (usually 1 *m*), and γi represents the corresponding activity coefficient (which is unitless).

The fugacity (f) of any i^{th} gas can be determined with the relation:

$$f_i = P_i \times \gamma i$$

where Pi stands for the partial pressure (bar) and γi represents the corresponding fugacity coefficient (unitless).

Activity of H₂O (I) is taken to be unity ($a_{H_{2O(l)}} = 1$). Activity coefficients of bicarbonate ($\gamma_{H_{CO_i}}$) and formate ($\gamma_{H_{CO_i}}$) are almost identical as they have the same species charge of -1 whatever the ionic strength and temperature as described by Amend et LaRowe (43). In our low-pressure condition (2 bar), regardless of the temperature or ionic strength, values of γi are 0.99–1.00. We therefore assumed that $fi \approx Pi$.

Hence, calculation of reaction quotient (Qr) for the reaction of CO₂ reduction to formate:

$$H_2(g) + HCO_3^{-}(aq) \leftrightarrow HCOO^{-}(aq) + H_2O(l)$$

was simplified using concentrations considering activities of reactants and products almost equal to concentrations:

$$Qr = \frac{a_{HCOO^{-}(aq)} \times a_{H_{2}O(l)}}{f_{H_{2}(g)} \times a_{HCO_{3}^{-}(aq)}} = \frac{([HCOO^{-}] \times \gamma_{HCOO^{-}})}{(P_{H_{2}} \times \gamma_{H_{2}}) \times ([HCO_{3}^{-}] \times \gamma_{HCO_{3}^{-}})} \approx \frac{[HCOO^{-}]}{P_{H_{2}} \times [HCO_{3}^{-}]}$$

where [i] represents the concentration of i in the aqueous solution (M) and Pi the partial pressure (bar).

Note that (*Qr*) could also be calculated considering H₂ as dissolved. In that case, for uncharged species H₂, $\gamma_{H_2(aq)} \approx 1$, regardless of temperature or ionic strength and thus, very little error is also introduced by equating $a_{H_2(aq)} \approx [H_2]_{(aq)}$.

Dissolved H_2 concentrations are estimated form the partial pressure of H_2 in the headspeace (P_{H_2}) as described in Materials and Methods section.

43. Amend et LaRowe Amend JP, LaRowe DE. Minireview: demystifying microbial reaction energetics. Environ Microbiol. 2019;21:3539-47.

Table S1. List of *Thermococcales* used in this study. Strains performing H_{2} -dependent formate production are indicated in red.

Genus	Specie	Strain	Culture collection	Genome accession	
			number		
Thermococcus	acidaminovorans	AEDII10 [™]	DSM-11906	Not available	
Thermococcus	aegaeus	P5 [⊤]	DSM-12767	Not available	
Thermococcus	aggregans	$TY^{^{\intercal}}$	DSM-12819	Not available	
Thermococcus	alcaliphilus	AEDII12 [™]	DSM-10322	Not available	
Thermococcus	atlanticus	MA898 [⊤]	IFREMER-898	Not available	
Thermococcus	barophilus	MΡ ^T	DSM-11836	CP002372	
Thermococcus	barophilus	Ch5	UBOCC-M-3206	CP013050	
Thermococcus	barossii	SHCK-94 [™]	UBOCC-M-3299	CP015101	
Thermococcus	celer	Vu13 [⊤]	DSM-2476	CP014854	
Thermococcus	celericrescens	TS2 [™]	DSM-17994	LLYW0000000	
Thermococcus	chitonophagus	GC 74 [⊤]	DSM-10152	CP015193	
Thermococcus	cleftensis	CL1 [™]	DSM-27260	CP003651	
Thermococcus	eurythermalis	A501 [⊤]	JCM-30233	CP008887	
Thermococcus	fumicolans	ST557 [™]	IFREMER-557	Not available	
Thermococcus	gammatolerans	EJ3 [⊤]	DSM-15229	CP001398	
Thermococcus	gorgonarius	W-12 [⊤]	DSM-10395	CP014855	
Thermococcus	guaymasensis	TYS [⊤]	DSM-11113	CP007140	
Thermococcus	hydrothermalis	AL662 [™]	IFREMER-662	Not available	
Thermococcus	kodakarensis	KOD1 [™]	JCM-12380	AP006878	
Thermococcus	litoralis	NS-C [⊤]	DSM-5473	CP006670	
'Thermococcus	marinus'	EJ1	UBOCC-M-3266	Not available	
'Thermococcus	mexicalis'	GY869	IFREMER-869	Not available	
Thermococcus	nautili	30-1 [⊤]	/	CP007264	
'Thermococcus	onnurineus'	NA1	UBOCC-M-3201	CP000855	
Thermococcus	pacificus	$P4^{T}$	DSM-10394	CP015102	
Thermococcus	paralvinellae	ES1 [™]	DSM-27261	CP006965	
Thermococcus	peptonophilus	OG-1 [⊤]	DSM-10343	CP014750	
Thermococcus	piezophilus	CDGS [™]	UBOCC-M-3296	CP015520	
Thermococcus	prieurii	Bio-PL-0405IT2 [™]	UBOCC-M-3069	Not available	
Thermococcus	profundus	DT5432 [™]	UBOCC-M-3193	CP014862	
'Thermococcus	radiotolerans'	EJ2	DSM-15228	CP015106	
Thermococcus	sibiricus	MM 739 [⊤]	DSM-12597	CP001463	
Thermococcus	siculi	RG-20 [™]	DSM-12349	CP015103	
Thermococcus	stetteri	K-3 [⊤]	DSM-5262	Not available	
Thermococcus	thioreducens	OGL-20P [™]	DSM-14981	CP015105	
Thermococcus	sp.	AM4	UBOCC-M-3218	CP002952	
Thermococcus	sp.	MF15	/	unpublished	
Thermococcus	sp.	P6	Not tested	CP015104	
Thermococcus	sp.	4557	Not tested	CP002920	
'Pyrococcus	abyssi'	GE5	IFREMER-855	AL096836	
Pyrococcus	furiosus	Vc 1 ^T	DSM-3638	AE009950	
Pyrococcus	glycovorans	$AL585^{T}$	IFREMER-585	Not available	
Pyrococcus	horikoshii	OT-3 [™]	DSM-12428	BA000001	
Pyrococcus	kukulkanii	NCB100 [™]	DSM-101590	CP010835	
Pyrococcus	yayanosii	Ch1 [™]	UBOCC-M-3110	CP002779	
Pyrococcus	woesei	DSM-3773 [™]	DSM-3773	Not available	
Pyrococcus	sp.	ES4	UBOCC-M-3230	Not available	
Palaeococcus	ferrophilus	DMJ^{T}	DSM-13482	LANF00000000	
Palaeococcus	pacificus	DY20341 [*]	DSM-24777	CP006019	

Table S2. List of 59 conserved single copy genes used to calculate the*Thermococcales* phylogenomic tree.

PFAM ID	HMM name	Description of archaeal genes
PF00687	Ribosomal_L1	Ribosomal protein L1p/L10e family
PF00466	Ribosomal_L10	Ribosomal protein L10
PF00298	Ribosomal_L11	Ribosomal protein L11, RNA binding domain
PF03946	Ribosomal_L11_N	Ribosomal protein L11, N-terminal domain
PF00572	Ribosomal_L13	Ribosomal protein L13
PF00238	Ribosomal_L14	Ribosomal protein L14p/L23e
PF00827	Ribosomal L15e	Ribosomal L15
PF00252	Ribosomal L16	Ribosomal protein L16p/L10e
PF01280		Ribosomal protein L19e
Pf00181	Ribosomal L2	Ribosomal Proteins L2, RNA binding domain
PF01157	 Ribosomal_L21e	Ribosomal protein L21e
PF00237	Ribosomal 122	Ribosomal protein 22n/l 17e
PE00276	Ribosomal 123	Ribosomal protein L 23
PE00831	Ribosomal 1 29	Ribosomal J 29 protein
DE03047	Ribosomal 1.2 C	Ribosomal Protoins I.2. C-terminal domain
FF03947		Ribosomal protein L2
FF00297		Ribosomal protein L3
PF00327	Ribosomai_L30	Ribosomai protein L30p/L7e
PF01198	Ribosomal_L31e	Ribosomal protein L31e
PF01655	Ribosomal_L32e	Ribosomal protein L32
PF01780	Ribosomal_L37ae	Ribosomal L37ae protein family
PF00832	Ribosomal_L39	Ribosomal L39 protein
PF00573	Ribosomal_L4	Ribosomal protein L4/L1 family
PF00935	Ribosomal_L44	Ribosomal protein L44
PF00281	Ribosomal_L5	Ribosomal protein L5
PF00673	Ribosomal_L5_C	ribosomal L5P family C-terminus
PF00347	Ribosomal_L6	Ribosomal protein L6
PF00411	Ribosomal_S11	Ribosomal protein S11
PF00164	Ribosomal_S12	Ribosomal protein S12
PF00416	Ribosomal_S13	Ribosomal protein S13/S18
PF08069	Ribosomal_S13_N	Ribosomal S13/S15 N-terminal domain
PF00312	Ribosomal_S15	Ribosomal protein S15
PF00366	Ribosomal S17	Ribosomal protein S17
PF00833	Ribosomal S17e	Ribosomal S17
PF00203	 Ribosomal S19	Ribosomal protein S19
PF01090		Ribosomal protein S19e
PF00318	Ribosomal S2	Ribosomal protein S2
PF01282	Ribosomal S24e	Ribosomal protein S24e
PF01599	Ribosomal S27	Ribosomal protein S27a
PE01200	Ribosomal S28e	Ribosomal protein S28e
DE01015	Ribosomal S3Ao	Pibosomal S3Ao family
PE00190	Ribosomal S2 C	Ribosomal protoin S2. C terminal domain
PF00109	Ribosomal S4a	
PF00900	Ribosomai_54e	Ribosomal raming 54e
PF00333	Ribosomal_55	Ribosomai protein S5, N-terminal domain
PFU3/19	Ribosomal_S5_C	Ribosomai protein 55, C-terminal domain
PF01092	Ribosomal_S6e	Ribosomai protein S6e
PF00177	Ribosomal_S7	Ribosomal protein S7p/S5e
PF00410	Ribosomal_S8	Ribosomal protein S8
PF01201	Ribosomal_S8e	Ribosomal protein S8e
PF00380	Ribosomal_S9	Ribosomal protein S9/S16
PF01984	dsDNA_bind	Double-stranded DNA-binding domain
PF01912	eIF-6	eIF-6 family
PF09173	elF2_C	Initiation factor eIF2 gamma, C terminal
PF00749	tRNA-synt_1c	tRNA synthetases class I (E and Q), catalytic domain
PF03950	tRNA-synt_1c_C	tRNA synthetases class I (E and Q), anti-codon binding domain
PF00750	tRNA-synt 1d	tRNA synthetases class I (R)
PF09249	tRNA NucTransf2	tRNA nucleotidyltransferase, second domain
PF04414	tRNA deacvlase	D-aminoacyl-tRNA deacylase
PF00368	HMG-CoA red	Hydroxymethylglutaryl-coenzyme A reductase
PF01351	 RNase HII	Ribonuclease HII

Table S3. Reversibility of H_2 -dependent formate production by (hyper)thermophilic *Thermococcales* depending on substrates-products concentration ratio in absence of S⁰. *Thermococcus cleftensis* CL1^T possess the FHL1 complex, *Palaeococcus pacificus* DY20341^T possess the Fdh-Nor complex and *Thermococcus onnurineus* NA1 possess both. ASW medium contained: no S⁰, 0.2 g L⁻¹ yeast extract, headspace gas (200 kPa). Incubation temperature was 80 °C.

Formate concentration (mM)								
	CO ₂ reduction	Formate oxidation 2 mM bicarbonate			Successively during the incubation 2 mM bicarbonate			
Incubation	30 mM bicarbonate							
time (h)	H ₂ /CO ₂ ; 80:20	N ₂ /CO ₂ ; 80:20			H_2/CO_2 followed after 48h by N_2/CO_2 ; 80:20			
	no formate	10 to 12 mM formate			no formate			
	<i>T. onnurineus</i> NA1 (FHL1+Fdh-Nor)	<i>T. onnurineus</i> NA1 (FHL1+Fdh-Nor)	<i>T. cleftensis</i> CL1 [⊤] (FHL1)	<i>P. pacificus</i> DY20341 [⊤] (Fdh-Nor)	<i>T. onnurineus</i> NA1 (FHL1+Fdh-Nor)	<i>T. cleftensis</i> CL1 [⊤] (FHL1)	<i>P. pacificus</i> DY20341 [⊤] (Fdh-Nor)	
0	0.0	12.0	9.6	9.4	0.0	0.0	0.0	
24	4.4	7.5	9.3	8.8	1.4	0.3	0.8	
48	6.3	4.6	9.0	8.9	2.0	0.5	0.9	
72	6.8	3.3	8.6	8.9	0.7	0.5	0.6	
96	6.9	2.6	8.3	8.9	0.4	0.4	0.4	
192	7.0	2.2	8.0	8.8	0.2	0.2	0.2	

Table S4. H_2 and formate concentrations used for representation of environmental concentrations measured for seawater and end-member fluids from six deep-sea hydrothermal vent fields in figure 6. At the pH used for the calculations (6.8), HCOOH was considered negligible as formic acid (pKa 3.75) does not significantly dissociate and remains at 99,999 % as HCOO⁻, and HCO₃⁻ represent the dominant form (>80%) of CO₂. The diversity of total CO₂ concentrations in endmember fluids at different hydrothermal sites were not specifically used for the thermodynamic modelling. (*) This work.

Name	Localisation	H ₂ (mM) Ref.	Formate (mM) Ref.	ΣCO₂ (mM)	Ref.
Ashadze 1	12°58'N - 44°51'W	8 - 19 (78)	0.023 - 0.028 (*)	3.7	(78)
Lost City	30°07'N - 42°07'W	1 - 15 (75)	0.036 - 0.158 (75)	0.0001 - 0.0026	(82)
Lucky Strike	37°17'N - 32°16'W	0.02 - 0.73 (78)	0.0004 - 0.0043 (*)	13 - 28	(78)
Rainbow	36°14'N - 33°54'W	13 - 16 (78)	0.007 - 0.028 (*)	16 - 17	(78)
Snake Pit (MARK)	23°22'N - 44°57'W	0.19 - 0.48 (78)	0.0018 - 0.0039 (*)	5.2 - 6.7	(78)
Von Damm (VDVF)	18°22'N - 18°47'W	9.96 - 18.3 (79)	0.082 - 0.669 (79)	2.8	(79)
Seawater		0.0004 (78)	0.001 - 0.002 (*)	2.3	(78)

75. Lang SQ, Butterfield DA, Schulte M, Kelley DS, Lilley MD. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim Cosmochim Acta. 2010;74:941-52

78. Charlou JL, Donval JP, Konn C, Ondréas H, Fouquet Y, Jean-Baptiste P, et al. High production and fluxes of H_2 and CH_4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. In: Rona PA, Devey CW, Dyment J, Murton BJ (eds). Diversity of hydrothermal systems on slow spreading ocean ridges. (John Wiley & Sons: Hoboken, 2010) pp 265-296

79. McDermott JM, Seewald JS, German CR, Sylva SP. Pathways for abiotic organic synthesis at submarine hydrothermal fields. Proc Natl Acad Sci USA. 2015;112:7668-72

82. Proskurowski G, Lilley MD, Seewald JS, Früh-Green GL, Olson EJ, Lupton JE, et al. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science. 2008;319:604-7

Figure S1. Comparison of the gene organisations of the *fdh-nor*, *fhl1*, *fhl2* and *fhl3* clusters from 35 genomes of *Thermococcales*. Gene clusters of *Thermococcales* that perform H_2 -dependent formate production are indicated in red. GenBank accession numbers are given in brackets. Data were obtained from SyntTax software (<u>http://archaea.u-psud.fr/synttax</u>).

(a) Fdh catalytic subunit

0.1

Figure S2. Phylogenetic trees based on translated partial amino acid sequences of functional genes: (a) formate dehydrogenase catalytic subunit (68 sequences) and (b) formate transporter (17 sequences). The trees were constructed using the neighbor-joining method (83) and the evolutionary distances were computed using the Dayhoff matrix-based method (84). Nodes with a bootstrap value > 80% (for 1 000 replicates) are marked in black solid dots. GenBank accession numbers are given in brackets. Scale bar represents 0.1 substitutions per amino acid position.

83. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution. 1987;4(4):406-25.

84. Dayhoff M, Schwartz R, Orcutt B. A model of evolutionary change in proteins. Atlas of protein sequence and structure. 1978;5:345-52.

Figure S3. Comparison of the gene organisations of the *codh-nor* and *codh* clusters from 35 genomes of *Thermococcales*. Gene clusters of *Thermococcales* that perform H_2 -dependent formate production are indicated in red. GenBank accession numbers are given in brackets. Data were obtained from SyntTax software (<u>http://archaea.u-psud.fr/synttax</u>).

Figure S4. Cross effects of H_2 and formate on CO_2 reduction rate in *T. onnurineus* NA1 after 96 hours. The blue area indicates favourable zone for CO_2 reduction and the white area when reaction is at equilibrium. Green dashed line defines the experimental *in vivo* point of chemical equilibrium of the reaction ($\Delta G' = 0 \text{ kJ mol}^{-1}$). Effect of H_2 concentrations was examined in a range of 0-80 % (v/v; 200 kPa; 0-0.8 mM dissolved H_2) with CO_2 concentrations kept at 20 % (v/v). Formate concentrations were in a range of 0 to 1 mM. ASW medium contained: 2 mM bicarbonate, 0.2 g L⁻¹ yeast extract, no S⁰ was added, temperature 80 °C.

Figure S5. The direction of the reaction of CO_2 reduction depends primarily on substrates concentration. Plot representing the thermodynamic modelling of the CO_2 reduction to formate for a range of concentration of formate, H_2 . and CO_2 . Gibbs free energy of the reaction $(H_{2(g)} + HCO_3^{-}_{(aq)} \rightarrow HCOO^{-}_{(aq)} + H_2O_{(j)})$ was calculated for 80 °C and for a range of bicarbonate concentrations (0.00016 to 16 mM). 1.6 mM represents the bicarbonate concentration in seawater at a pH of 6.8 for a concentration of 2 mM total DIC. Black solid lines define points of chemical equilibrium of the reaction ($\Delta G' = 0 \text{ kJ mol}^{-1}$) from thermodynamic modelling for 6 different CO_2 concentrations, 0.00016 mM, 0.0016 mM, 0.16 mM, 1.6 mM. and 16 mM. Grey squares represent environmental concentrations measured for seawater and six hydrothermal vent field (data available on Table S4).

Figure S6. The direction of the reaction of CO_2 reduction depends primarily on substrates concentration. 2D-contour plot representing the thermodynamic modelling of the CO_2 reduction to formate for a range of concentration of formate and H_2 . Gibbs free energy of the reaction ($H_{2(aq)} + HCO_3^{-}_{(aq)} \rightarrow HCOO^{-}_{(aq)} + H_2O_{(i)}$) was calculated for 80 °C and 2 mM of bicarbonate and H_2 was considered as dissolved. The blue area indicates conditions for which formate oxidation occurs while the red area indicates conditions for which CO_2 reduction to formate occurs. Black solid line and dashed lines define points of chemical equilibrium of the reaction ($\Delta G' = 0 \text{ kJ mol}^{-1}$) from thermodynamic modelling for three different bicarbonate concentration, 2.0 mM, 0.2 mM, 20.0 mM respectively. Green dashed line defines the experimental *in vivo* point of the chemical equilibrium of the reaction measured for T. *onnurineus* NA1 in culture medium after 96 hours of incubation at 80 °C (see details Fig. S4). Effect of H_2 concentrations were examined in a range of 0 to 1 mM. ASW medium contained: 2 mM bicarbonate, 0.2 g L⁻¹ yeast extract and no S⁰ was added. Grey squares represent environmental concentrations measured for seawater and six hydrothermal vent field (data available on Table S4).

Figure S7. Effect of temperature on formate production rates in *T. onnurineus* NA1. (a) Formate production rates (blue squares) determined from the temperature-gradient incubation experiment after 24 hours of incubation and specific growth rate (red circles) obtained from (31). ASW medium contained: 30 mM bicarbonate, H_2/CO_2 (80:20, v/v; 200 kPa), and 0.2 g L⁻¹ yeast extract. Error bars show standard error (n = 3). (b) Arrhenius plot of the data from panel (a).

31. Bae S-S, Kim Y-J, Yang S-H, Lim J-K, Jeon J-H, Lee H-S, et al. *Thermococcus onnurineus* sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J. Microbiol. Biotechnol. 2006;16:1826-31.