## **Supplementary material**

**Table S1.** Similarity percentage analysis (SIMPER) of the bacterioplankton community (based on Bray Curtis similarities). The table shows the contribution of the ASVs responsible for more than 50% of the cumulative dissimilarities between the clusters (based on Bray Curtis similarity in Fig. 3). a) Comparison between the clusters control (*in situ*, all t0 and C t24h, t72h) and the cluster DG (DUST and GREENHOUSE t24h and t72h) during the experiment at TYR between. b) Comparison between the cluster Control (*in situ*, all t0 and C t24h, t72h) and the cluster D (t24h and t72h) and between the cluster D and the cluster G (t24h and t72h) during the experiment at ION. c) Comparison between the cluster Control (*in situ*, all t0 and C, D t24h) and the cluster G24h (t24h) and between the cluster the relative abundance of an ASV is the highest.

|           | Relative                   |          |           |        |  |  |  |
|-----------|----------------------------|----------|-----------|--------|--|--|--|
| a)        |                            | abunda   | nce (%)   |        |  |  |  |
| ASV       | Taxonomic affiliation      | Control  | DG        | SIMPER |  |  |  |
| 16S-ASV8  | Alteromonas marina         | 0.3      | 8.2       | 6.83   |  |  |  |
| 16S-ASV3  | Verrucomicrobia Opitulales | 6.0      | 5.5       | 4.79   |  |  |  |
| 16S-ASV16 | Alteromonas sp.            | 0.2      | 5.3       | 4.45   |  |  |  |
| 16S-ASV1  | SAR11 clade la             | 11.4     | 6.6       | 4.36   |  |  |  |
| 16S-ASV10 | Alteromonas sp.            | 0.2      | 4.8       | 4.02   |  |  |  |
| 16S-ASV2  | Synechococcus C9902        | 3.3      | 3.1       | 3.07   |  |  |  |
| 16S-ASV18 | Alteromonas mediterranea   | 0.0      | 3.4       | 2.89   |  |  |  |
| 16S-ASV7  | Rhodospirillales AEGEAN169 | 3.8      | 0.9       | 2.58   |  |  |  |
| 16S-ASV41 | Pseudophaeobacter sp.      | 0.3      | 2.7       | 2.1    |  |  |  |
| 16S-ASV27 | Alteromonas mediterranea   | 0.1      | 2.3       | 1.95   |  |  |  |
| 16S-ASV19 | Alteromonas sp.            | 0.1      | 2.3       | 1.92   |  |  |  |
| 16S-ASV14 | Flavobacteriaceaea         | 1.7      | 1.9       | 1.89   |  |  |  |
| 16S-ASV28 | Aestuariibacter sp.        | 0.0      | 2.2       | 1.85   |  |  |  |
| 16S-ASV4  | Alteromonas sp.            | 3.4      | 1.7       | 1.83   |  |  |  |
| 16S-ASV45 | Alteromonas sp.            | 0.1      | 2.1       | 1.78   |  |  |  |
| 16S-ASV13 | OM60                       | 1.9      | 3.1       | 1.66   |  |  |  |
| 16S-ASV5  | SAR11 clade la             | 4.5      | 2.8       | 1.64   |  |  |  |
| 16S-ASV6  | Erythrobacter sp.          | 0.1      | 1.9       | 1.62   |  |  |  |
|           |                            |          |           |        |  |  |  |
| b)        |                            | Relative | abundance | : (%)  |  |  |  |

(-) no significant contribution to the difference between clusters

| ,         |                       |         |      |      | SIMPER C | SIMPER |
|-----------|-----------------------|---------|------|------|----------|--------|
| ASV       | Taxonomic affiliation | Control | D    | G    | to D     | D to G |
| 16S-ASV6  | Erythrobacter sp.     | 0.81    | 6.64 | 8.47 | 6.05     | 6.19   |
| 16S-ASV49 | Dokdonia sp.          | 0.20    | 4.89 | 0.45 | 5.02     | 6.05   |
| 16S-ASV10 | Alteromonas sp.       | 0.50    | 4.62 | 4.41 | 4.27     | 2.23   |
| 16S-ASV1  | SAR11 clade la        | 9.13    | 6.82 | 3.04 | 3.25     | 4.95   |
| 16S-ASV16 | Alteromonas sp        |         | 1.70 | 5.08 |          | 4.25   |
| 16S-ASV28 | Aestuariibacter sp.   | 0.02    | 2.80 | 0.75 | 2.89     | 3.29   |

| 16S-ASV48 | Synechococcus sp.          |      | 1.28 | 3.20 |      | 2.99 |
|-----------|----------------------------|------|------|------|------|------|
| 16S-ASV13 | OM60                       | 1.75 | 4.46 | 4.40 | 2.85 | 1.97 |
| 16S-ASV3  | Verrucomicrobia Opitulales | 5.49 | 4.32 | 0.48 | 2.8  | 2.07 |
| 16S-ASV18 | Alteromonas mediterranea   | 0.18 | 2.69 | -    | 2.6  | -    |
| 16S-ASV17 | OM60                       | 1.43 | 3.73 | -    | 2.41 | -    |
| 16S-ASV19 | Alteromonas sp.            | 0.13 | 2.20 | 1.41 | 2.15 | 1.82 |
| 16S-ASV33 | Flavobacteria NS5          | 2.55 | 0.50 | -    | 2.15 | -    |
| 16S-ASV2  | Synechococcus C9902        | 2.61 | 0.55 |      | 2.14 | -    |
| 16S-ASV7  | Rhodospirillales AEGEAN169 | 3.99 | 2.05 |      | 2.01 | -    |
| 16S-ASV8  | Alteromonas marina         | 0.49 | 2.27 | 5.85 | 1.88 | 4.5  |
| 16S-ASV20 | Flavobacteria NS4          | 2.14 | 0.45 |      | 1.75 | -    |
| 16S-ASV51 | Alteromonas sp.            | 0.12 | 1.72 | 1.14 | 1.7  | 2.1  |
| 16S-ASV27 | Alteromonas mediterranea   | 0.18 | 1.79 |      | 1.67 | -    |
| 16S-ASV4  | Flavobacteria NS4          | 2.51 | 0.95 | 3.73 | 1.63 | 3.5  |
| 16S-ASV5  | SAR11 clade Ia             | 4.56 | 3.41 | 1.59 | 1.62 | 2.38 |
| 16S-ASV40 | Erythrobacter sp.          |      | 1.42 | 2.44 |      | 2.08 |
|           |                            |      |      |      |      |      |

c)

| 0)        | Relative abundance (%)     |         |       |       |       |          |             |
|-----------|----------------------------|---------|-------|-------|-------|----------|-------------|
|           |                            |         |       |       |       | SIMPER C | SIMPER C96h |
| ASV       | Taxonomic affiliation      | Control | G24h  | C96h  | GD96h | to G24h  | to GD96h    |
| 16S-ASV6  | Erythrobacter sp.          | 1.40    | 10.81 | 0.94  | 8.42  | 8.35     | 8.17        |
| 16S-ASV36 | Celeribacter sp.           |         |       | 10.52 | 2.46  |          | 8.81        |
| 16S-ASV12 | Verrucomicrobia Opitulales |         |       | 9.36  | 1.31  |          | 8.8         |
| 16S-ASV9  | Prochlorococcus MIT9313    | 9.37    | 0.34  |       |       | 7.52     |             |
| 16S-ASV2  | Synechococcus C9902        |         |       | 12.36 | 19.06 |          | 7.33        |
| 16S-ASV28 | Aestuariibacter sp.        | 0.11    | 6.85  | 0.09  | 2.67  | 5.62     | 2.82        |
| 16S-ASV10 | Alteromonas sp.            | 0.86    | 6.82  | 0.73  | 3.03  | 5.05     | 2.52        |
| 16S-ASV19 | Alteromonas sp.            | 0.63    | 6.23  |       |       | 4.67     |             |
| 16S-ASV18 | Alteromonas mediterranea   | 0.51    | 4.59  |       |       | 3.41     |             |
| 16S-ASV1  | SAR11 clade la             | 6.53    | 2.68  | 4.98  | 1.65  | 3.21     | 3.63        |
| 16S-ASV4  | Flavobacteria NS4          |         |       | 1.03  | 3.89  |          | 3.13        |
| 16S-ASV27 | Alteromonas mediterranea   | 0.45    | 3.61  |       |       | 2.65     |             |
| 16S-ASV62 | Rhodobacteraceae           | 0.02    | 2.61  |       |       | 2.16     |             |
| 16S-ASV7  | Rhodospirillales AEGEAN169 | 2.99    | 0.44  |       |       | 2.12     |             |
| 16S-ASV14 | Flavobacteriaceaea         | 1.42    | 3.93  | 5.94  | 7.44  | 2.09     | 3.45        |
| 16S-ASV78 | <i>Thalassobius</i> sp.    |         |       | 3.26  | 1.35  |          | 2.08        |
| 16S-ASV8  | Alteromonas marina         | 0.71    | 2.76  |       |       | 2.01     |             |
| 16S-ASV16 | Alteromonas sp.            | 0.47    | 2.12  |       |       | 1.55     |             |

## Relative abundance (%)

Table S2. Similarity percentage analysis (SIMPER) of the micro-eukaryotes community (based on Bray Curtis similarities). The table shows the contribution of the ASVs responsible for more than 40% of the cumulative dissimilarities between the clusters (based on Bray Curtis similarity in Fig. 4). a) Comparison between the cluster controls (in situ, all t0 and t24h in the controls) and the cluster DG24h (DUST and GREENHOUSE at t24h) during the experiment at TYR. b) Comparison between the cluster control (in situ, all minicosms at t0 and t24h as well as controls at t72h) and the cluster D (DUST minicosms at t72h) and between the cluster D and the cluster G (t72h) during experiment at ION. c) Comparison between the cluster control (in situ, all minicosms at t0 and controls at t24h and t96h) and cluster DG24 (DUST and GREENHOUSE at t24h) and between DG24 and DG96 (DUST and GREENHOUSE at t96h) during the experiment at FAST. Grey gradient shows in which cluster the relative abundance of an ASV is the highest.

| a)          |                             | Relati  |       |        |
|-------------|-----------------------------|---------|-------|--------|
| ASV         | Taxonomic affiliation       | Control | DG24h | SIMPER |
| 18S-ASV2754 | Heterocapsa rotundata       | 19.8    | 20.6  | 9.38   |
| 18S-ASV1689 | Uncultured Syndiniales      | 1.6     | 7.8   | 6.04   |
| 18S-ASV1058 | Uncultured Gymnodiniales    | 5.4     | 0.3   | 4.93   |
| 18S-ASV621  | Uncultured Gymnodiniales    | 4.5     | 6.0   | 3.44   |
| 18S-ASV477  | Chlorophyta                 | 0.1     | 2.1   | 1.97   |
| 18S-ASV807  | <i>Gonyaulax</i> sp.        | 0.3     | 2.3   | 1.94   |
| 18S-ASV1197 | Uncultured Syndiniales      | 3.5     | 4.9   | 1.84   |
| 18S-ASV1917 | Heterocapsa rotundata       | 1.5     | 3.2   | 1.72   |
| 18S-ASV2742 | Uncultured Syndiniales      | 1.6     | 1.2   | 1.64   |
| 18S-ASV2112 | Gyrodinium sp.              | 1.8     | 0.2   | 1.6    |
| 18S-ASV1155 | Uncultured Gymnodiniales    | 1.0     | 1.6   | 1.43   |
| 18S-ASV2479 | Tripos Muelleri             | 0.8     | 1.4   | 1.33   |
| 18S-ASV2116 | Tripos Furca                | 0.5     | 1.6   | 1.31   |
| 18S-ASV173  | Amoebophrya sp. Syndiniales | 1.2     | 2.1   | 1.09   |
| 18S-ASV1770 | Uncultured dinophyceae      | 1.4     | 0.3   | 1.06   |

I.

(-) no significant contribution to the difference between clusters

| 1   | > |
|-----|---|
| h   | 1 |
| - U |   |

## **Relative abundance (%)**

1

|             |                          |         |      |      | SIMPER C | SIMPER<br>D72h to |
|-------------|--------------------------|---------|------|------|----------|-------------------|
| ASV         | Taxonomic affiliation    | Control | D72h | G72h | to D72h  | G72h              |
| 18S-ASV621  | Uncultured Gymnodiniales | 15.2    | 3.4  |      | 5.92     |                   |
| 18S-ASV2754 | Heterocapsa rotundata    | 19.4    | 8.3  | 27.0 | 5.57     | 13.3              |
| 18S-ASV1500 | Karlodinium veneficum    | 9.0     | 3.6  | 11.5 | 2.74     | 5.62              |
| 18S-ASV1917 | Heterocapsa rotundata    | 4.1     | 0.6  | 8.3  | 1.79     | 5.49              |
| 18S-ASV1086 | Peridiniales             | 5.1     | 2.2  | 6.5  | 1.43     | 3.07              |
| 18S-ASV621  | Uncultured Gymnodiniales |         | 3.4  | 0    |          | 2.42              |
| 18S-ASV599  | Chlorophyta              |         | 1.3  | 4.6  |          | 2.39              |
| 18S-ASV1344 | Uncultured dinophyceae   | 3.4     | 0.7  |      | 1.38     |                   |
| 18S-ASV9    | Emiliania huxleyi        | 0.8     | 3.3  |      | 1.22     |                   |
| 18S-ASV1058 | Uncultured Gymnodiniales | 0.4     | 2.8  | 0    | 1.17     | 1.99              |

| 18S-ASV2509 | Tripos sp.             | 0.2 | 2.1 | 0 | 1.05 | 1.52 |
|-------------|------------------------|-----|-----|---|------|------|
| 18S-ASV2278 | Uncultured syndiniales | 2.1 | 0.4 |   | 0.88 |      |
| 18S-ASV2446 | Cryptophyceae          | 0.4 | 1.9 |   | 0.88 |      |
| 18S-ASV2696 | Choanoflagellata       | 0.1 | 1.6 |   | 0.79 |      |
| 18S-ASV1770 | Uncultured dinophyceae | 1.3 | 2.2 |   | 0.72 |      |

| c)          |                          | Relative | e abundanc | e (%) |          |          |
|-------------|--------------------------|----------|------------|-------|----------|----------|
|             |                          |          |            |       |          | SIMPER   |
|             |                          |          |            |       | SIMPER C | DG24h to |
| ASV         | Taxonomic affiliation    | Control  | DG24h      | DG96h | to DG24h | DG96h    |
| 18S-ASV1500 | Karlodinium veneficum    | 17.2     | 16.4       | 24.2  | 7.49     | 9.91     |
| 18S-ASV1155 | Uncultured Gymnodiniales | 2.3      | 8.0        | 0     | 6.53     | 9.15     |
| 18S-ASV2754 | Heterocapsa rotundata    | 12.9     | 7.7        | 8.7   | 5.89     | 1.93     |
| 18S-ASV1227 | Protodinium sp.          |          | 0.7        | 5.4   |          | 5.3      |
| 18S-ASV1058 | Uncultured Gymnodiniales | 1.5      | 2.8        | 0.1   | 3.39     | 3.17     |
| 18S-ASV1689 | Uncultured Syndiniales   | 1.8      | 4.7        |       | 3.3      |          |
| 18S-ASV2037 | Heterocapsa rotundata    | 4.2      | 1.7        | 4.9   | 2.99     | 3.96     |
| 18S-ASV3236 | Uncultured Gymnodiniales | 0.6      | 2.9        |       | 2.65     |          |
| 18S-ASV1547 | Uncultured Syndiniales   | 2.2      | 0.4        |       | 2.01     |          |
| 18S-ASV2346 | Uncultured Gymnodiniales | 1.6      | 0.4        |       | 1.89     |          |
| 18S-ASV1917 | Heterocapsa rotundata    | 2.0      | 3.4        | 4.8   | 1.74     | 2.7      |
| 18S-ASV2536 | Acantharea               |          | 1.0        | 2.1   |          | 2.24     |
| 18S-ASV1533 | Gonyaulacales            | 0.3      | 1.6        |       | 1.54     |          |
| 18S-ASV979  | Heterocapsa rotundata    | 3.3      | 2.6        |       | 1.5      |          |
| 18S-ASV9    | Emiliania huxleyi        | 1.9      | 0.6        | 8     | 1.48     | 8.5      |

Dinasquet et al.



Figure S1: Determination of the viral populations by flow cytometry



**Figure S2.** Log transformed relationship between bacterial and viral abundance in the three treatments. Dotted lines represent linear regressions for each treatment.

Dinasquet et al.



**Figure S3.** Evolution of Virus like particles abundances (VLP) of three different viral populations over the course of the three experiments (TYR, ION and FAST). The first row represents low DNA viruses or phages, the second row represents high DNA viruses, and the third row represents giant viruses (Giruses).

Dinasquet et al.



**Figure S4.** Bray-Curtis clustering showing the difference in microbial community in the initial waters of the 3 experiments, a) bacterial community composition (16S rDNA) and b) micro-eukaryotes community composition (18S rDNA) at the start of the three experiments in the initial water (t-12h) and when the dust was added (t0). Red cluster show samples with no significant differences (based on SIMPROF test).

Dinasquet et al.



**Figure S5:** nMDS plots of bacterial (16S rDNA) and micro-eukaryotes (18S rDNA) community composition during the three experiments, based on Bray-Curtis dissimilarity.



**Figure S6.** Diversity index (Faith index) between 18S rDNA community of the clusters from Fig. 4 during experiment ION.