

Supplement of

Impact of dust addition on the microbial food web under present and future conditions of pH and temperature

Julie Dinasquet et al.

Correspondence to: Julie Dinasquet (jdinasquet@ucsd.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary material

Table S1: Values at T24h for bacterial production (BP), Bacterial biomass specific growth rates (BBGR), prokaryotes abundance (HB), mortality, % of lytic (FLIC) and lysogenic (FLC) cells, viral production (VP), virus and heterotrophic nanoflagellates (HNF) abundance.

	TYR					
	C1	C2	D1	D2	G1	G2
BP (ngC/L/h)	101.0	66.1	741.0	619.2	1027.8	847.8
BBGR (/d)	0.2	0.1	1.2	0.9	1.6	1.2
HB (cells/mL)	5.8E+05	6.0E+05	7.4E+05	7.9E+05	7.9E+05	8.6E+05
Mortality (/d)	0.2	0.1	0.5	0.5	0.6	0.5
FLIC (%)	10.8	17.2	4.8	16.8	31.4	9.2
FLC (%)	6.9	0.0	0.0	0.0	0.0	0.0
VP (VLP/L/h)	2.6E+07	2.2E+07	1.2E+08	7.8E+07	4.7E+07	2.0E+08
virus (/mL)	2.4E+06	2.6E+06	2.6E+06	2.6E+06	2.4E+06	
HNF (cells/mL)	97.0	97.0	143.4	73.9	427.3	
			IO	Ν		
	C1	C2	D1	D2	G1	G2
BP (ngC/L/h)	65.5	59.8	231.8	419.8	798.6	645.2
BBGR (/d)	0.0	0.3	0.8	1.2	1.8	1.6
HB (cells/mL)		2.8E+05	3.5E+05	4.2E+05	5.3E+05	4.9E+05
Mortality (/d)		0.2	0.4	0.5	0.6	0.6
FLIC (%)	23.1	39.1	28.9	2.9	10.7	12.6
FLC (%)	0.0	0.0	0.4	6.1	2.1	0.0
VP (VLP/L/h)	1.7E+07	5.1E+07	6.4E+07	9.7E+06	7.0E+07	1.6E+08
virus (/mL)	1.4E+06	1.6E+06	1.4E+06	1.5E+06	1.4E+06	1.5E+06
HNF (cells/mL)	56.9	58.4	59.1	65.6	64.9	96.6
			FA	ST		
	C1	C2	D1	D2	G1	G2
BP (ngC/L/h)	69.4	102.4	201.7	306.4	1073.1	1966.7
BBGR (/d)	0.1	0.2	0.4	0.5	1.6	2.9
HB (cells/mL)	6.0E+05	6.3E+05	6.6E+05	7.1E+05	8.2E+05	8.2E+05
Mortality (/d)	0.1	0.2	0.3	0.3	0.6	0.7
FLIC (%)	17.3	1.1	12.4	1.1	6.6	14.0
FLC (%)	0.0	4.8	0.5	9.7	0.0	0.0
VP (VLP/L/h)	2.9E+07	2.6E+07	2.2E+08	1.4E+07	3.1E+07	8.5E+07
virus (/mL)	3.1E+06	3.0E+06	2.6E+06	3.1E+06	3.0E+06	3.5E+06
HNF (cells/mL)	181.4	177.2	202.6	206.8	614.8	312.7

Table S2. Similarity percentage analysis (SIMPER) of the bacterioplankton community (based on Bray Curtis similarities). The table shows the contribution of the ASVs responsible for more than 50% of the cumulative dissimilarities between the clusters (based on Bray Curtis similarity in Fig. 3). a) Comparison between the clusters control (*in situ*, all t0 and C t24h, t72h) and the cluster DG (DUST and GREENHOUSE t24h and t72h) during the experiment at TYR between. b) Comparison between the cluster Control (*in situ*, all t0 and C t24h, t72h) and the cluster D (t24h and t72h) and between the cluster D and the cluster G (t24h and t72h) during the experiment at ION. c) Comparison between the cluster Control (*in situ*, all t0 and C, D t24h) and the cluster G24h (t24h) and between the cluster the relative abundance of an ASV is the highest.

		Rela	tive	
a)		abunda	nce (%)	
ASV	Taxonomic affiliation	Control	DG	SIMPER
16S-ASV8	Alteromonas marina	0.3	8.2	6.83
16S-ASV3	Verrucomicrobia Opitulales	6.0	5.5	4.79
16S-ASV16	Alteromonas sp.	0.2	5.3	4.45
16S-ASV1	SAR11 clade la	11.4	6.6	4.36
16S-ASV10	Alteromonas sp.	0.2	4.8	4.02
16S-ASV2	Synechococcus C9902	3.3	3.1	3.07
16S-ASV18	Alteromonas mediterranea	0.0	3.4	2.89
16S-ASV7	Rhodospirillales AEGEAN169	3.8	0.9	2.58
16S-ASV41	Pseudophaeobacter sp.	0.3	2.7	2.1
16S-ASV27	Alteromonas mediterranea	0.1	2.3	1.95
16S-ASV19	Alteromonas sp.	0.1	2.3	1.92
16S-ASV14	Flavobacteriaceaea	1.7	1.9	1.89
16S-ASV28	Aestuariibacter sp.	0.0	2.2	1.85
16S-ASV4	Alteromonas sp.	3.4	1.7	1.83
16S-ASV45	Alteromonas sp.	0.1	2.1	1.78
16S-ASV13	OM60	1.9	3.1	1.66
16S-ASV5	SAR11 clade la	4.5	2.8	1.64
16S-ASV6	Erythrobacter sp.	0.1	1.9	1.62

(-) no significant contribution to the difference between clusters

1	``
ŀ	۱
ι	"

Relative abundance (%)

					SIMPER C	SIMPER
ASV	Taxonomic affiliation	Control	D	G	to D	D to G
16S-ASV6	Erythrobacter sp.	0.81	6.64	8.47	6.05	6.19
16S-ASV49	Dokdonia sp.	0.20	4.89	0.45	5.02	6.05
16S-ASV10	Alteromonas sp.	0.50	4.62	4.41	4.27	2.23
16S-ASV1	SAR11 clade la	9.13	6.82	3.04	3.25	4.95
16S-ASV16	Alteromonas sp		1.70	5.08		4.25
16S-ASV28	Aestuariibacter sp.	0.02	2.80	0.75	2.89	3.29
16S-ASV48	Synechococcus sp.		1.28	3.20		2.99
16S-ASV13	OM60	1.75	4.46	4.40	2.85	1.97

Dinasquet et al.

16S-ASV3	Verrucomicrobia Opitulales	5.49	4.32	0.48	2.8	2.07
16S-ASV18	Alteromonas mediterranea	0.18	2.69	-	2.6	-
16S-ASV17	OM60	1.43	3.73	-	2.41	-
16S-ASV19	Alteromonas sp.	0.13	2.20	1.41	2.15	1.82
16S-ASV33	Flavobacteria NS5	2.55	0.50	-	2.15	-
16S-ASV2	Synechococcus C9902	2.61	0.55		2.14	-
16S-ASV7	Rhodospirillales AEGEAN169	3.99	2.05		2.01	-
16S-ASV8	Alteromonas marina	0.49	2.27	5.85	1.88	4.5
16S-ASV20	Flavobacteria NS4	2.14	0.45		1.75	-
16S-ASV51	Alteromonas sp.	0.12	1.72	1.14	1.7	2.1
16S-ASV27	Alteromonas mediterranea	0.18	1.79		1.67	-
16S-ASV4	Flavobacteria NS4	2.51	0.95	3.73	1.63	3.5
16S-ASV5	SAR11 clade la	4.56	3.41	1.59	1.62	2.38
16S-ASV40	Erythrobacter sp.		1.42	2.44		2.08

c)

Relative abundance (%)						

C)		Reidi	live abui	iuance (70]		
						SIMPER C	SIMPER C96h
ASV	Taxonomic affiliation	Control	G24h	C96h	GD96h	to G24h	to GD96h
16S-ASV6	Erythrobacter sp.	1.40	10.81	0.94	8.42	8.35	8.17
16S-ASV36	Celeribacter sp.			10.52	2.46		8.81
16S-ASV12	Verrucomicrobia Opitulales			9.36	1.31		8.8
16S-ASV9	Prochlorococcus MIT9313	9.37	0.34			7.52	
16S-ASV2	Synechococcus C9902			12.36	19.06		7.33
16S-ASV28	Aestuariibacter sp.	0.11	6.85	0.09	2.67	5.62	2.82
16S-ASV10	Alteromonas sp.	0.86	6.82	0.73	3.03	5.05	2.52
16S-ASV19	Alteromonas sp.	0.63	6.23			4.67	
16S-ASV18	Alteromonas mediterranea	0.51	4.59			3.41	
16S-ASV1	SAR11 clade la	6.53	2.68	4.98	1.65	3.21	3.63
16S-ASV4	Flavobacteria NS4			1.03	3.89		3.13
16S-ASV27	Alteromonas mediterranea	0.45	3.61			2.65	
16S-ASV62	Rhodobacteraceae	0.02	2.61			2.16	
16S-ASV7	Rhodospirillales AEGEAN169	2.99	0.44			2.12	
16S-ASV14	Flavobacteriaceaea	1.42	3.93	5.94	7.44	2.09	3.45
16S-ASV78	<i>Thalassobius</i> sp.			3.26	1.35		2.08
16S-ASV8	Alteromonas marina	0.71	2.76			2.01	
16S-ASV16	Alteromonas sp.	0.47	2.12			1.55	

Table S3. Similarity percentage analysis (SIMPER) of the micro-eukaryotes community (based on Bray Curtis similarities). The table shows the contribution of the ASVs responsible for more than 40% of the cumulative dissimilarities between the clusters (based on Bray Curtis similarity in Fig. 4). a) Comparison between the cluster controls (in situ, all t0 and t24h in the controls) and the cluster DG24h (DUST and GREENHOUSE at t24h) during the experiment at TYR. b) Comparison between the cluster control (in situ, all minicosms at t0 and t24h as well as controls at t72h) and the cluster D (DUST minicosms at t72h) and between the cluster D and the cluster G (t72h) during experiment at ION. c) Comparison between the cluster control (in situ, all minicosms at t0 and controls at t24h and t96h) and cluster DG24 (DUST and GREENHOUSE at t24h) and between DG24 and DG96 (DUST and GREENHOUSE at t96h) during the experiment at FAST. Grey gradient shows in which cluster the relative abundance of an ASV is the highest.

a)		Relati	ve abundance (%)	
ASV	Taxonomic affiliation	Control	DG24h	SIMPER
18S-ASV2754	Heterocapsa rotundata	19.8	20.6	9.38
18S-ASV1689	Uncultured Syndiniales	1.6	7.8	6.04
18S-ASV1058	Uncultured Gymnodiniales	5.4	0.3	4.93
18S-ASV621	Uncultured Gymnodiniales	4.5	6.0	3.44
18S-ASV477	Chlorophyta	0.1	2.1	1.97
18S-ASV807	<i>Gonyaulax</i> sp.	0.3	2.3	1.94
18S-ASV1197	Uncultured Syndiniales	3.5	4.9	1.84
18S-ASV1917	Heterocapsa rotundata	1.5	3.2	1.72
18S-ASV2742	Uncultured Syndiniales	1.6	1.2	1.64
18S-ASV2112	Gyrodinium sp.	1.8	0.2	1.6
18S-ASV1155	Uncultured Gymnodiniales	1.0	1.6	1.43
18S-ASV2479	Tripos Muelleri	0.8	1.4	1.33
18S-ASV2116	Tripos Furca	0.5	1.6	1.31
18S-ASV173	Amoebophrya sp. Syndiniales	1.2	2.1	1.09
18S-ASV1770	Uncultured dinophyceae	1.4	0.3	1.06

I.

(-) no significant contribution to the difference between clusters

1	>
h	1
- U	

Relative abundance (%)

1

					SIMPER C	SIMPER D72h to
ASV	Taxonomic affiliation	Control	D72h	G72h	to D72h	G72h
18S-ASV621	Uncultured Gymnodiniales	15.2	3.4		5.92	
18S-ASV2754	Heterocapsa rotundata	19.4	8.3	27.0	5.57	13.3
18S-ASV1500	Karlodinium veneficum	9.0	3.6	11.5	2.74	5.62
18S-ASV1917	Heterocapsa rotundata	4.1	0.6	8.3	1.79	5.49
18S-ASV1086	Peridiniales	5.1	2.2	6.5	1.43	3.07
18S-ASV621	Uncultured Gymnodiniales		3.4	0		2.42
18S-ASV599	Chlorophyta		1.3	4.6		2.39
18S-ASV1344	Uncultured dinophyceae	3.4	0.7		1.38	
18S-ASV9	Emiliania huxleyi	0.8	3.3		1.22	
18S-ASV1058	Uncultured Gymnodiniales	0.4	2.8	0	1.17	1.99

18S-ASV2509	Tripos sp.	0.2	2.1	0	1.05	1.52
18S-ASV2278	Uncultured syndiniales	2.1	0.4		0.88	
18S-ASV2446	Cryptophyceae	0.4	1.9		0.88	
18S-ASV2696	Choanoflagellata	0.1	1.6		0.79	
18S-ASV1770	Uncultured dinophyceae	1.3	2.2		0.72	

c)		Relative abundance (%)				
						SIMPER
					SIMPER C	DG24h to
ASV	Taxonomic affiliation	Control	DG24h	DG96h	to DG24h	DG96h
18S-ASV1500	Karlodinium veneficum	17.2	16.4	24.2	7.49	9.91
18S-ASV1155	Uncultured Gymnodiniales	2.3	8.0	0	6.53	9.15
18S-ASV2754	Heterocapsa rotundata	12.9	7.7	8.7	5.89	1.93
18S-ASV1227	Protodinium sp.		0.7	5.4		5.3
18S-ASV1058	Uncultured Gymnodiniales	1.5	2.8	0.1	3.39	3.17
18S-ASV1689	Uncultured Syndiniales	1.8	4.7		3.3	
18S-ASV2037	Heterocapsa rotundata	4.2	1.7	4.9	2.99	3.96
18S-ASV3236	Uncultured Gymnodiniales	0.6	2.9		2.65	
18S-ASV1547	Uncultured Syndiniales	2.2	0.4		2.01	
18S-ASV2346	Uncultured Gymnodiniales	1.6	0.4		1.89	
18S-ASV1917	Heterocapsa rotundata	2.0	3.4	4.8	1.74	2.7
18S-ASV2536	Acantharea		1.0	2.1		2.24
18S-ASV1533	Gonyaulacales	0.3	1.6		1.54	
18S-ASV979	Heterocapsa rotundata	3.3	2.6		1.5	
18S-ASV9	Emiliania huxleyi	1.9	0.6	8	1.48	8.5

Dinasquet et al.

Figure S1: Determination of the viral populations by flow cytometry. Three main viral populations were discriminated based on their DNA fluorescence (DNA axis) and Side Scatter (SSC axis). The population of Low DNA viruses generally comprises viruses of bacteria (phages) with small genome, that of High DNA viruses is made of viruses with larger genome size (generally 200 – 300 kb) such as for some viruses of cyanobacteria or picoeukaryotes) while the Girus (giant virus) population typically comprises viruses of nanoeukaryotes (*e.g.*, microalgae, HNF) with giant genome (generally > 300 kb).

Figure S2. Nutrients (nitrate + nitrite): NO_x , dissolved inorganic phosphorus: DIP, silicate: Si(OH)₄ and the molar ratio between NO_x and DIP, measured in each tank during the experiments at TYR, ION and FAST. The dashed vertical line indicates the time of seeding (after t0). Reproduced from Gazeau et al. (2021a).

Figure S3. Abundance of autotrophic pico-eukaryotes, autotrophic nano-eukaryotes, *Synechococcus,* heterotrophic prokaryotes (HP), and heterotrophic nano-flagellates (HNF), measured by flow cytometry and heterotrophic bacterial production rates (BP), in each tank during the experiments at TYR, ION and

FAST. The dashed vertical line indicates the time of seeding (after t0). Figures reproduced from Gazeau et al (2021a, b.)

Figure S4: Bacterial biomass specific growth rates (BBGR) in each tank during the experiments at TYR, ION and FAST.

Dinasquet et al.

Figure S5. Log transformed relationship between bacterial and viral abundance in the three treatments. Dotted lines represent linear regressions for each treatment.

Dinasquet et al.

Figure S6. Bray-Curtis clustering showing the difference in microbial community in the initial waters of the 3 experiments, a) bacterial community composition (16S rDNA) and b) micro-eukaryotes community composition (18S rDNA) at the start of the three experiments in the initial water (t-12h) and when the dust was added (t0). Red cluster show samples with no significant differences (based on SIMPROF test).

Dinasquet et al.

Figure S7: nMDS plots of bacterial (16S rDNA) and micro-eukaryotes (18S rDNA) community composition during the three experiments, based on Bray-Curtis dissimilarity.

Figure S8. Diversity index (Faith index) between 18S rDNA community of the clusters from Fig. 4 during experiment ION.

Figure S9: Bacteriochlorophyll a concentration measured by HPLC (see Gazeau et al. (2021a) for pigments measurements) over the course of the three experiments (TYR, ION and FAST).