Sharks surf the slope: Current updrafts reduce energy expenditure for aggregating marine predators

Type Article
Date 2021-10
Language English
Author(s) Papastamatiou Yannis P.ORCID1, Iosilevskii GilORCID2, Di Santo ValentinaORCID3, Huveneers CharlieORCID4, Hattab TarekORCID5, Planes SergeORCID6, 7, Ballesta Laurent8, Mourier JohannORCID9
Affiliation(s) 1 : Institute of the Environment Department of Biological Sciences Florida International University North Miami FL ,USA
2 : Faculty of Aerospace Engineering Technion Haifa ,Israel
3 : Division of Functional Morphology Department of Zoology Stockholm University Stockholm ,Sweden
4 : College of Science and Engineering Flinders University Bedford Park South Australia ,Australia
5 : MARBEC, Univ Montpellier CNRS IFREMER IRD Sète, France
6 : PSL Research University EPHE‐UPVD‐CNRS USR 3278 CRIOBE Perpignan ,France
7 : Laboratoire d'Excellence “CORAIL” USR 3278 CNRS‐EPHE‐UPVD CRIOBE Perpignan ,France
8 : Andromede Oceanology Carnon ,France
9 : MARBEC, Univ Montpellier CNRS IFREMER IRD Sète, France
Source Journal Of Animal Ecology (0021-8790) (Wiley), 2021-10 , Vol. 90 , N. 10 , P. 2302-2314
DOI 10.1111/1365-2656.13536
WOS© Times Cited 8
Keyword(s) biologging, energy seascape, grey reef sharks, tides

An animal's energy landscape considers the power requirements associated with residing in or moving through habitats. Within marine environments, these landscapes can be dynamic as water currents will influence animal power requirements and can change rapidly over diel and tidal cycles.

In channels and along slopes with strong currents, updraft zones may reduce energy expenditure of negatively buoyant fishes that are also obligate swimmers. Despite marine predators often residing within high-current area, no study has investigated the potential role of the energetic landscape in driving such habitat selectivity.

Over 500 grey reef sharks Carcharhinus amblyrhynchos reside in the southern channel of Fakarava Atoll, French Polynesia. We used diver observations, acoustic telemetry and biologging to show that sharks use regions of predicted updrafts and switch their core area of space use based on tidal state (incoming versus outgoing).

During incoming tides, sharks form tight groups and display shuttling behaviour (moving to the front of the group and letting the current move them to the back) to maintain themselves in these potential updraft zones. During outgoing tides, group dispersion increases, swimming depths decrease and shuttling behaviours cease. These changes are likely due to shifts in the nature and location of the updraft zones, as well as turbulence during outgoing tides. Using a biomechanical model, we estimate that routine metabolic rates for sharks may be reduced by 10%–15% when in updraft zones.

Grey reef sharks save energy using predicted updraft zones in channels and ‘surfing the slope’. Analogous to birds using wind-driven updraft zones, negatively buoyant marine animals may use current-induced updraft zones to reduce energy expenditure. Updrafts should be incorporated into dynamic energy landscapes and may partially explain the distribution, behaviour and potentially abundance of marine predators.

Full Text
File Pages Size Access
13 2 MB Access on demand
31 MB Access on demand
Author's final draft 40 1 MB Open access
Top of the page

How to cite 

Papastamatiou Yannis P., Iosilevskii Gil, Di Santo Valentina, Huveneers Charlie, Hattab Tarek, Planes Serge, Ballesta Laurent, Mourier Johann (2021). Sharks surf the slope: Current updrafts reduce energy expenditure for aggregating marine predators. Journal Of Animal Ecology, 90(10), 2302-2314. Publisher's official version : , Open Access version :