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This supplementary document contains additional material for a simple model of swell

generation under extra-tropical storms.

Text T1: Physically informed Optimization of a common Focal Point

T1.1. Wave buoy observations and initial event identification

Each of the chosen wave buoys (CDIP 166, CDIP 179, CDIP 029, CDIP 067, CDIP

106) samples the directional wave spectrum in 30-minute averages. The wave buoy spec-

trograms and their directional information are retrieved from the CDIP datawell (Behrens

et al., 2019).

Local swell maxima are identified in the spectrograms by averaging over the first three

frequency bins whose spectral amplitude exceeds a noise threshold of e−1 m2 Hz−1. This

results in a time series of the amplitude of the longest swell waves that is sensitive to the

amplitude and frequency slope of the swell and. This time series is band-pass filtered for

timescales between 18 hours and 7.5 days using a Lanczos filter to retain variability that

is mainly related to atmospheric synoptic scales. Examples of the identified swell maxima

are shown in main-text figure 1b to e (black dots).

T1.2. Data pre-handling

First, we apply an adaptive directional filter on the wave buoy observations to filter

out local wind waves and focus on dispered swell. The incident directions of the swell

forerunners are used to weight the observed spectrograms. The directional component of

the wave spectrum Dθ(θ, f, t) is used to create a weight for the omni-directional spectral

amplitude Damp(f, t) (here, f is the wave frequency and t is time). Frequency bands

with wave energy in the same direction as the swell forerunners have a weight of one,
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while frequency bands that contain energy from a different direction have a weight close

to zero. This selects wave energy in a ±15◦-angle around the peak direction of the swell

forerunners and filters out secondary swell systems or locally generated higher frequency

waves if they come from a different direction.

In a second step, the pre-identifies wave events are isolated for the optimization pro-

cedure. The initial dispersion slope of each swell event is estimated by the difference

between the prior identified local maxima (main-text figure 1b to e, black dots) and a

local maxima on a frequency band that is 0.01Hz higher compared to the prior identified

local maximum. This slope between the two local maxima on different frequency bands

is used to select and initialize each wave event following (Hell et al., 2019).

T1.3. Initial model fit

The pre-identified single wave events are then used to fit a model of swell arrival to each

case individual. Based on the algorithm in Hell et al. (2019), the two-dimensional model

function for the individual events M k is defined as

M k(t̃, f) = A(mt, µ)K(t̃, t̃0,mt, σK) S(f, U, fm, γpar), (T1.1)

where A describes the amplitude attenuation, K̃(t̃) = K(t̃)/max(K) describes the peak-

normalized and time-normalized time component, and S(f) the frequency dependent

power spectra. The amplitude of M k is defined by the initial spectral power of S and the

attenuation A.
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The power spectra S(f) is modelled by the standard JONSWAP spectrum
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, (T1.2)

with fm as the peak frequency of the spectra, σS = 0.07 for f ≤ fm and σS = 0.09 for

f > fm, and γpar as the amplitude of the peak-enhancement factor (Hasselmann et al.,

1973).

In time, the model is defined as a form of a χ2- or Erlang distribution such that

K(t̃, t̃m) =
t̃m
σK

e−t̃m ,

t̃m =
t̃− t̃0 + fmt

σK
(T1.3)

where t̃ is the non-dimensional time, the relative time of the selected data divided by its

time span ∆t, t̃0 is the non-dimensional initial time, mt is the slope of the peak frequency

in the spectrogram in units of Hz−1, and σK a parameter that controls the width of the

distribution (Hell et al., 2019).

The swell’s attenuation A along the travel path is modeled with a simple exponential

decay that does not depend on direction or frequency (Ardhuin et al., 2009). That means

the decay only depends on the distance traveled along a great circle path r0 such that it

can be directly related to the spectral slope mt (Munk, 1947). The attenuation model is

defined as

A(mt, µ) = exp

(
−µgmt∆t

4π

)
, (T1.4)
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where µ ≈ 3.7 ± 0.210−7 m−1 (Jiang et al., 2016). This simple attenuation model allows

the spectral power at the origin to be estimated from the observed swell spectrogram

alone, assuming that distortions by other processes are small.

The to-be-optimized parameters for each event k are summarized as

pk = {mt, µ, t̃0, U, fm, γpar, σt}T . (T1.5)

They are optimized to find the best fit of the model M k(pk, t̃, f) to the data Dk by

minimizing the the cost function

Jk =
∥∥(Dk −M k)wk

∥∥2 +

∥∥∥∥p0 − p

pσ

∥∥∥∥2 , (T1.6)

for a wave event k individually (adapted from (Hell et al., 2019)). The initial guess of the

parameters p0 was derived from the data, and the priors of the model parameters pσ are

taken from (Hell et al., 2019). The data weighting function wk describes 2D-Gaussian

weight around the center of the event such that noise at the corner of the data is excluded

(dark shading in main-text figure 7 b to f, also F4 and F6, Hell et al., 2019, sec. 6.d).

The cost function Jk is optimized with three-stage optimization procedure. An initial

semi-random ‘basinhopping’ search finds the minimal cost varying only mf and t̃0 to

determine the best model slope that goes through the pre-identified forerunner point

(Wales & Doye, 1997). In a second step, the cost function is minimized by varying

all parameters using the Levenberg-Marquardt Algorithm (LM, damped least-squares,

Newville et al., 2014) and finally, a posteriori error distribution is derived with a Parallel

Tempering Markov-Chain-Monte-Carlo (PTMCMC, Goodman & Weare, 2010; Foreman-

Mackey et al., 2013; Earl & Deem, 2005).
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This procedure is applied to all pre-identified swell events at five stations between the

year 2014 to 2018 resulted in about 77 successfully fitted wave events per station per year.

After quality control, only about 56% of these cases can be bundled to sets of observed

events with a common source (see next section).

T1.4. Identifying and optimizing common swell source

To derive a common source location we combine the identified wave events from the

previous step from the five wave buoys. The initial fitting acts here as a quality control,

such that we only use events that provide a reasonable radial distance (> 200 km), a small

fractional error (−werr + 1 < 0.6, eq. T1.9), and have a σK < 0.2 to sort out short local

events.

The matching of events between the five wave buoy stations are done using the fitted

initial time and their uncertainty estimates (Figure F7 for the year 2016). Blue lines

are two-standard deviation uncertainty ranges around estimated initial times that pass a

quality criterion of good model fit (Hell et al., 2019), while light green lines show the initial

time uncertainties that do not pass this criterion. Red blocks indicate time ranges where

two or more initial time estimates overlap. These events are used to triangulate the source

locations in the north pacific (longitude and latitude) from the radial distance estimates

of the identified overlapping subset. Figure F7 illustrates that by far not all initial time

estimates are good enough and the not all initial time estimates coincide. To account for

this, the triangulated location and time from the identified subset of wave buoys are used

to re-select data from the not identified wave buoys by forward propagating the model M

and estimating the slope and model shape at the buoy location. The now selected data

in the additional wave buoys is then again fed in to the parameter estimation described
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in sec. T1.3. This results in a data array from each wave buoy and these five data arrays

likely contain observations from the same swell event.

Using this procedure, only about 7.5 events per year are well observed at 2 or more

wave buoys, while about 50-70 event per year are identified in each wave buoy. That

low matching rate by the initial time only is due to a) an insufficient initial detection

algorithm based on the forerunners of swell (sec. T1.1), b) noise by local wind swell at

buoy locations, c) deflection of waves by currents, and finally d) the fact that not all wave

events propagate across the north pacific such that they are detected by multiple wave

buoys.

T1.5. Multiple-stations cost function

The identification of a common swell source by their initial time t0 described in the

previous section results in 31 sets of swell events that had a common t0. Many other

events are distorted by noise at the station or the wave ray refraction on their path

through the ocean (Gallet & Young, 2014; Villas Bôas & Young, 2020).

The sets of swell event observations were then used to reassess the model parameters by

adding the constraint of a common source. The optimization problem was reformulated

in terms of parameters describing a common swell event from a single location

pm = {λ, φ, t}, (T1.7)

with the longitude λ, latitude φ, and time t define the source location. The slope parameter

mt and attenuation µ at each station k were calculated based on the common source

position (Munk, 1947; Barber & Ursell, 1948). Other parameters of the model M k were

set to the five-station mean of the individual fitted parameters and do not vary during the
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multi-station optimization. This reduces the search space of the optimization procedure

and allows for faster optimization. Alternatively, the parameter space pm (eq. T1.5) could

have been extended with parameters that describe the spectral shape as well. However

a larger parameter space required larger computational efforts and here we focused on

the source location and time, which only requires changes of the dispersion slope, timing,

and amplitude. Tests where more parameters are optimized resulted in a lower total

fractional error (eq. T1.10), but did not change the results in the optimization of the

position. Hence, the reduction of the parameter space leads to larger systematic error in

the cost function, but its physical interpretation remains the same.

The parameters for each station pk(pm) are calculated at each function evaluation of the

multi-station optimization. The cost function for optimization over N stations is defined

as

Jm =
N∑
k

wkerr∑N
i w

i
err

Jk, (T1.8)

where Jk is the regularized cost function for each individual event k (eq.T1.6) and wkerr is

the measure of the fit derived from the individual fitting procedure. It is defined for each

event at a station k as

wkerr = 1−
∥∥(Dk −M k)wk

∥∥2∥∥Dkwk
∥∥2 , (T1.9)

where w is again the geometric weight of the event (dark shading in main-text figure 7

b to f, also F4 and F6, Hell et al., 2019, sec. 6.d). A wkerr = 1 expresses a perfect model

fit, while a wkerr = 0 describes a complete failure of the optimization at the individual

station. The weighting emphasizes station data with a high signal-to-noise ratio rather
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than uncorrelated noisy data that might appear in some cases. This methodology can be

easily extended to incorporate more data from other observations.

The parameters pm are not regularized to allow a more unbiased search of the source

location. However, the search space is limited to the North Pacific (20◦N to 60◦N, 140◦E

to 120◦ W) and ±2 days around the 5-station mean of the individual fits.

The error of the model model fit for the multi-station cost function is than defined as

the sum of the individual weighted cost functions (T1.8) normalized by the sum of the

(geometrically) weighted data such that

ef =
Jm∑N

k (Dkwk)2
, (T1.10)

for a given set of N stations. The fractional error ef can be interpreted as a likelihood

Lef = 1− ef = 1− Jm∑N
k (Dkwk)2

, (T1.11)

such that a perfect match (ef = 0) results in a likelihood of 1 and a failure of the model

results in a likelihood of zero.

The 31 sets of matched observations are used to explore the multi-station cost function

Jm (eq. T1.8) with two different procedures to explore the cost function. The first

procedure is a brute-force sampling in the 3-dimensional parameter space of pm on the

same grid as the wind data was provided (hourly and 25km). This creates a time-varying

map of model fit using eq. T1.8 that is transformed to a map of likely wave origins using

eq. T1.11 (see main-text section 3.2 and main-text figure 7a, F4 a and F6 a). The second

procedure uses a sequence of two gradient decent methods; First simplicial homology

global optimization (SHGO, Endres et al., 2018), and then a dual annealing method (DA

Tsallis, 1988; Tsallis & Stariolo, 1996; Xiang et al., 1997). Both methods are developed
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for fast convergence to a single global optimum of a complex cost-function. Regardless

of the method, or procedure all optimizations return a focal points that are the same, as

least on scales that are relevant for this study (figure F1).
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Figures F1 Comparison of the brute force (green dot) and SHGO (red hexagon) opti-

mization, while the optimized location and time are indicated next to them. The dark

green dots are positions of minimal fractional error from the brute force method before

and after the best smallest fractional error on hourly intervals. The gray circle lines are

the great circle distances centered around the stations in main-text figure 1a according to

their radial distance through the SHGO point.
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Figures F2 Illustration of transects through wind data along the trace of most likely

wind origins. The black line in (a) indicates the estimated great-circle line (see section 3.2

in the main text), and the gray, light blue, or dark blue patches are the group grid points

used for each transformed wind vector (black thin line). The wind speed is shown as red

shading an the likelihood map of wave origin as green lines. The zonal and meridional

wind, wind speed, as well as the transformed along- and across-track velocities are shown

in panel (b). The vectors again show the zonal and meridional wind direction for each of

the along-track averages bins indicated in panel (a).
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Figures F3 Least square fit (black line) to the points of maximum along track wind at

each time step (green dots). These local maxima are determined within the centered wind

event (green contours). The along track wind is shown are red and blue shading. The

wind data is transformed according to the black line (see section 3.3. in the main text)

while the left boundary is defined by the parallel shifted red line.
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Figures F4 Same as main-text Figure 7 but for a case storm around February 10th 2016.

02/12

b) CDIP 067 | weight 0.33

02/08 02/11 02/14
0.03

0.04

0.05

0.06

0.07

0.08

0.09

Fr
eq

ue
nc

y 
(H

z)

c) CDIP 179 | weight 0.4

02/13

d) CDIP 029 | weight 0.26

02/15

e) CDIP 106 | weight 0.0

180° 160°W 140°W 120°W

30°N

45°N

A

B

a) best fit efrac = 0.25 | 2016-02-10T08:23:31

0 15 30 45 60
Energy (m^2/s)

0.48 0.54 0.60 0.66 0.72
Swell origin Likelihood

June 3, 2021, 6:00pm



HELL ET AL. 2021: SWELL GENERATION UNDER EXTRA-TROPICAL STORMS X - 15

Figures F5 Same as main-text figure 9b, but now for the case in figure F4. See figure

caption of figure F4.
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Figures F6 Same as main-text Figure 7 but for a case storm around January 17th 2014.
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Figures F7 Simplified time series for one year of fitted initial times uncertainty estimates.

Each green or dark blue line shows t0 ± 2σt0 for events identified at one of the stations.

Green bars indicate events that have fractional error ef < 0.4, while blue bars are events

with ef ≥ 0.4. The red areas show time spans where at least 3 or more events have

overlapping estimated initial times.
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