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Abstract. We make a physical–mathematical analysis of the
implications that the presence of a large number of tiny bub-
bles may have, when present, on the thin upper layer of the
sea. In our oceanographic example, the bubbles are due to in-
tense rain. It was found that the bubbles increase momentum
dissipation in the near surface and affect the surface tension
force. For short waves, the implications of increased vorticity
are momentum exchanges between wave and mean flow and
modifications to the wave dispersion relation. For the direct
effect we have analyzed, the implications are estimated to
be non-significant when compared to other processes of the
ocean. However, we hint at the possibility that our analysis
may be useful in other areas of research or practical applica-
tion.

1 Introduction

Our interest is in the consequences of intense rain on the
small-scale roughness of the ocean surface. More specifi-
cally, we analyze how the presence of tiny, rain-induced air
bubbles in the thin upper layer of the ocean affects the high-
frequency tail of the gravity wave spectrum, including cap-
illary waves. Although tiny, both in length and height, with
respect to the majestic motion of the surface, these waves are
important for both physical and practical reasons. Physically,
they control a large part of the exchanges between ocean
and atmosphere, and they act as roughness elements for at-
mospheric turbulence and modulate the interaction between
longer waves, currents, and wind (e.g., Ayet et al., 2020). At
the same time, their presence is what allows the scatterome-

ters to measure, globally, the winds on the ocean (Kudryavt-
sev et al., 1999).

The disappearance of capillary sea waves with rain is
not new. Known to mariners since their early attempts (re-
duced small-scale roughness leads also to reduced break-
ing), the subject has also been studied in recent times by,
e.g., Le Méhauté and Khangaonkar (1990) and Cavaleri et al.
(2018). The former authors focused on the mechanical action
of rain on the dynamics of the wave orbital motion. The lat-
ter authors’ attention, taking the wavelets attenuation as a de
facto evidence, focused more on the implications for air–sea
interactions. In this work, we try to clarify one of the rea-
sons why rain attenuates surface wavelets. Granted, if strong
enough, the raindrops’ mechanical action and induced turbu-
lence, we focus our attention on the rain-induced presence of
a large number of tiny air bubbles just below the surface (a
few centimeters) and on how they affect the wave motion. To
avoid the dominance of other processes, we exclude stormy
conditions, considering either only swell or calm sea cases,
but with enough wind to lead to waves on the surface. As for
rain, just to frame the order of magnitude, under an intense
rain with, e.g., 100 mm h−1, assuming 4 mm diameter rain-
drops (volume 3× 10−6 m3), this translates into 100 drops
per square meter per second. Wolf (2001) suggests that, un-
der these conditions, air injected into the sea can be a few
cubic centimeters per square meter per second. Compared
to other mechanisms that introduce air into the sea, one can
conclude that rain contribution is very small. In general, this
is true of quantitative terms, and we consider the process in-
teresting from the physical point of view and with potential
application in other practical fields.
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On this basis, we make a physical–mathematical analysis
of the ensuing processes. In Sect. 2, we propose a model that
suggests how the entrainment of air leads to an increase in the
effective viscosity of the upper ocean. We then use results
from ocean acoustics (see Oguz and Prosperetti, 1990 and
Prosperetti and Oguz, 1993) to compute the distribution of
air bubbles for a given rain rate (Sect. 3). How changes of
effective viscosity affect gravity waves is taken up in Sect. 4.
It is found that, under vigorous rains, the air concentration
due to air bubbles near the surface is capable of producing
a damping effect akin to the (idealized) contamination of a
free surface. A discussion of the results and conclusions and
possible extensions of the present work appear in Sects. 5
and 6.

2 The dynamical approach and the presence of bubbles

To determine the impact of air bubbles on the thin upper level
of the ocean, we perform homogenization on the Navier–
Stokes equations. Homogenization is a well-established tech-
nique in modeling transport in complex media, endowed
with statistical homogeneity in the media, as viewed at large
scales (see Babuška, 1976; Bensousan et al., 1978; Cio-
ranescu and Donato, 1999).

We assume that air bubbles are distributed uniformly in
the transverse direction within the vicinity of the ocean sur-
face. For our specific example, we explore how the presence
of bubbles affects the effective viscosity of the fluid averaged
over a cell�, of size `3 (sub-wave scale), over which the dis-
tributions of the density and viscosity of the combined water
and air bubble mixture are statistically stationary. The typi-
cal sub-wave speed is u�. The ratio of the bubble radii to the
averaging ` defines, for us, a small parameter ε� 1.

Velocity and position are denoted by u= (u,v,w) and r =

(x,y,z), respectively. The free surface is denoted by η, and
z= 0 corresponds to the quiescent sea level. Gravity is gẑ,
and the vector ẑ points upwards, along increasing z. Velocity
is scaled by u�, length by `, time by `/u�, density by ρw,
and the density of water pressure by ρwu

2
�. We then define

a Reynolds number α = u�`/νw, where νw is the kinematic
viscosity of water. We also define a Froude number 1/

√
γ =

u�/
√
g`. The scaling leads to the following:

αut +αu ·∇u=−αγ∇5+∇ · [D(r)4] ,

∇ ·u= 0, (1)

where 5 is pressure and 4 the stress tensor 4=∇u+

[∇u]>. D is the proportionality tensor.
Let R= (X,Y,Z) be the large-scale space variable, such

that ∇ =∇+ε∇R, and assume slow time ∂t = δ∂T . Also, as-
sume that5(r,R,T )= p−z+ε2p0+ε

4p1+. . ., u= ε(u0+

εu1+ε
2u2. . .), and η = α(η0+εη1+ε

2η2. . .). The orders are
α =O(ε2), δ =O(ε), and γ =O(ε−1).

In the following, we derive the fluid mechanics equations
for averaged dynamic quantities (see the related work of

Caflisch et al., 1985), appropriate at wave spatiotemporal
scales, for example. Our goal is to find effective equations
valid in a composite media, under the assumptions made
above. The equations and the dynamic quantities will agree
with the non-averaged ones, when the media has a single
species density ρw and the tensor D = νwδij . Here we intro-
duce the inhomogeneity as tiny air bubbles, uniformly dis-
tributed in the transverse direction in a matrix of water. The
source of the bubbles is rain, and the connection between the
bubble density in the near surface and the rain rate will be
suggested in a later section. Anticipating some of the results,
the momentum and continuity equations for the averaged dy-
namic quantities are similar to the point versions. However,
material properties, such as the density and the tensor D are
different for the averaged cells, quantitatively affecting the
momentum predictions.

Collecting by orders in ε, the momentum equation reads,
as follows:

– O(ε).

∇ · [D(r)40] = 0.

At this microscale, pressure gradients in the cell are
negligible, as are variations in velocity within the cell.
We are also assuming stationary conditions. Upon in-
tegrating in r and invoking periodicity, it is clear that
40 =40(R, t,T ) and, thus, u0 = u0(R, t,T ).

– O(ε2).

∇ ·[D(r)41]+∇ ·[D(r)40]+∇R ·[D(r)40] = 0. (2)

The last term above is zero (we made use of
∇ · (∇4)T =∇(∇ ·4)). Integration by parts of
Eq. (2) and using periodicity, 41(r,R, t,T )=
−40+D

−1(r)C(R, t,T ), where C is a tensor that is
independent of r . Periodicity and integration in r over
� of every differential term in 41 implies that, in the
following:

0=−�40+

∫
�

D−1(r)drC(R, t,T ). (3)

Solving for the tensor from this equation and integrating
with respect to r , one obtains the following:

C(R, t,T )=

 1
�

∫
�

D−1(r)dr

−1

40.

We define the tensor as follows:

χ =

 1
�

∫
�

D−1(r)dr

−1

. (4)
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Then, we returning to Eq. (2), as follows:

41 =−40+D
−1(r)χ40, (5)

which prescribes the first-order correction to the stress
tensor, which could be obtained explicitly if the zeroth
order is known (D−1(r) is an observed quantity). Tak-
ing the divergence of Eq. (5), as follows:

∇R · (D41)=−∇R · (D(r)40)+∇R · (χ40). (6)

– O(ε3). The momentum balance reads as follows:

∂u0

∂T
+u0 ·∇Ru0+u0 ·∇u1+∇Rp0

=+∇ · [D(r)41] +∇R · [D(r)40]

+∇ · [D(r)42] +∇R · [D(r)41]. (7)

Using Eq. (6) in the last term in Eq. (7) and averaging all
quantities over �, (i.e., integrating over r using periodicity
in the cells), leads to the following:

∂u0

∂T
+u0 ·∇Ru0+∇Rp0

=∇R ·
{
χ
(
∇Ru0+ [∇Ru0]

>

)}
. (8)

The homogenized incompressibility condition is as follows:

∇R ·u0 = 0. (9)

At this point, we have a set of (closed) mean field equa-
tions for momentum and mass conservation, valid at the
wave scales (R,T ). The mean field velocity and pressure
are well defined, assuming homogeneity conditions at the
small scale are valid. The effective tensor of proportional-
ity in the stress tensor term χ is formally obtained by know-
ing the microscale composition, density distribution, and dy-
namic viscosities. In practice, it is obtained by examining the
stress/strain relation for the composite fluid.

Since the above derivation is not explicitly connected to
rain, one can imagine that the same approach applies to sim-
ilar situations where, for whichever reason, a large number
of bubbles is distributed in the enclosing medium. We will
touch on this point further in the final discussion.

The tensor χ takes the value of the ocean, changing it
when bubbles appear for whatever reason. In what follows,
we limit ourselves to the simplest possible case, i.e., χ =
νwδij , when bubbles are not present, where δij is the 3-
dimensional space Kronecker delta. For our specific exam-
ple, we use Eq. (4), assuming a matrix consisting of a ho-
mogeneous concentration of air bubbles, with diffusion con-
stant νa, in a background fluid. In this very simple case, the
enhanced value of χ becomes the following:

χ =Kδij , with K =
νw

1−2(1−Nν)
, (10)

Figure 1. Relative effective momentum dissipation K/νw, as a
function of volumetric ratio of air to water 2, using Eq. (10). As-
sumed here, the ratio is Nν := νw/νa = 1/15. The range or 2 has
been limited to that applicable to oceanic conditions (over the whole
range, the relative effective momentum dissipation is a monotoni-
cally increasing function).

whereNν = νw
νa

, and2 connotes the volumetric ratio of air to
water. For a given2> 0,Nν < 1 leads to an increased effec-
tive momentum dissipation, and when Nν > 1, the effective
dissipation is lower. For air or oil bubbles, Nν < 1.

With a fixed ratio Nν = 1/15, which is roughly the ratio
of viscosities of water and air, Fig. 1 shows how the effective
dissipation coefficient K changes as a function of the volu-
metric ratio 2. The relationship is nearly linear for the small
volume fractions of the oceanic case.

If we adopt the specific form of χ as in Eq. (10), the dis-
sipation term in Eq. (8) becomes K∇2

Ru0 when bubbles are
present and νw∇2

Ru0, when there are no air bubbles. Equa-
tion (10) leads us to conclude that the effective momentum
dissipation of water with air bubbles will be different from
(actually larger than) νw. Physically, there is an increase in
the rotational component of the flow and an associated in-
crease in energy dissipation.

3 Air entrainment due to rain

In this section, we assume a statistical distribution for rain-
drops and derive the consequent density of air bubbles in the
ocean surface layer.

3.1 Rain distribution

The density of raindrops is assumed to follow the Marshall–
Palmer distribution (see Marshall and Palmer, 1948). The
density Nr of raindrops of radius r (meters) per unit volume
(“number” m−3 m−1) is as follows:

Nr(r,R)= 2N0 exp(−3(R)r), (11)

whereN0 = 8×106 m−3m−1,3(R)= 8.2R−0.21
×103 (me-

ter), and R (millimeters per hour) is the rain rate. Using Nr ,
we can then define the drop rate density (DRD), which de-
scribes the rate of falling raindrops of radius r per surface
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area (“number” m−2 s−1 m−1). Namely, in the following:

DRD(r,R)= wr(r)Nr(r,R), (12)

wherewr is the terminal velocity of drops in the air (see Med-
win et al., 1992). The terminal velocity is computed follow-
ing the third-order polynomial estimates of Dingle and Lee
(1972).

3.2 Bubble production

To complete our quantitative example, we need to relate
the number of bubbles in the upper layer of the ocean to
rain. Falling raindrops generate subsurface air bubbles in the
neighborhood of the sea surface (see Prosperetti and Oguz,
1993 for a review). Small raindrops produce small air bub-
bles with a very narrow distribution of radii. Intermediate
raindrops, with a radius between 0.55–1.1 mm, were shown
not to produce air bubbles (see Medwin et al., 1992). For
these, the impinging raindrops do not have the kinetic energy
necessary to produce the requisite conical crater and jetting
of the sea surface that engulfs air. Large raindrops, with radii
larger than 1.1 mm, create a crater and a canopy on the sea
surface, which, by collapsing, produces a downward liquid
jet at the bottom of the crater, followed by the generation of
an air bubble. At high rain rates, the larger raindrops are re-
sponsible for the bulk of the gas injection, creating bubbles
with a varied distribution of radii.

The production of air bubbles by rain can be measured by
acoustic means (see Prosperetti and Oguz, 1993). Oguz and
Prosperetti (1990) classify air bubble production by falling
raindrops in two regimes. Small raindrops, of radii between
0.41 and 0.55 mm, create type I air bubbles. These have a
radius of 0.22 mm and are created at the bottom of a con-
ical crater created on the ocean surface by the impinging
raindrop. These air bubbles have a narrow acoustic spectrum
with a spectral peak at 14 Hz. The acoustic spectrum for these
type I air bubbles was found to be insensitive to the rain rate.
Medwin et al. (1990) observed that, when rain hits the ocean
surface at an angle, owing to strong winds or very steep wave
conditions, the acoustic spectrum peak shifts downward, and
there is a broadening of the spectrum at higher frequencies.
The type I air bubbles do not contribute significantly to total
submerged gas volume, and their contribution will be ignored
in what follows.

Raindrops with a radius greater than 1.1 mm produce
type II air resonant bubbles of varying radius. The relation-
ship between the raindrop radius r (meters) and the peak
acoustic emission frequency f0 (kilohertz) due to trapped
air bubbles was empirically determined (see Medwin et al.,
1992) as follows:

f0 =
160

8r3× 109 + 0.6. (13)

The relation between the near-surface air bubble radius a
(meters) and the peak acoustic emission follows from the

Figure 2. Probability of air bubble creation by large raindrops as a
function of raindrop radius r (from Medwin et al., 1992).

Rayleigh–Plesset equation (Leighton, 1994, p. 306). For the
large bubbles considered here, it can be simplified to Min-
naert’s formula (see Minnaert, 1933; Plesset and Prosperetti,
1977) as follows:

f0 =
1

2πa× 103

√
3γP
ρ0

, (14)

where γ = 1.4 is the ratio of the specific heat of the bubble
gas, P is the ambient pressure (surrounding the bubble), and
ρ0 = 1030 kg m−3 is the density of sea water. Close to the
surface, the ambient pressure is approximately the surface
pressure P = 1.01× 105 Pa and Eq. (14), further simplified
as f0 = 3.25× 10−3/a (see Medwin and Clay, 1997).

The relation between the entrained air bubble radius a(r)
(meters) and the incident raindrop radius r , for large rain-
drops, thus, reads, for r > 1.1× 10−3 m, as follows:

a(r)= 3.25× 10−3
(

160

8r3× 109 + 0.6
)−1

. (15)

As an example, raindrops of radius 1.1–2.3 mm produce
type II air bubbles of radius 0.2–1.3 mm, respectively.

Small raindrops (r < 0.55 mm) almost always produce
type I air bubbles. However, this is not the case for larger
raindrops. The distribution of the number of air bubbles pro-
duced, as a function of the raindrop radius r , was found by
Medwin et al. (1992) and is depicted in Fig. 2 as a probability
distribution.

3.3 Bubble distribution in the wave boundary layer

Tying back to Sect. 2, by finding the bubble distribution in
the wave boundary layer, we can estimate the dimension-
less volume fraction 2. More precisely, the volume frac-
tion reads 2=

∫
V (a)N(a)da for bubbles of radius a, with

density N(a) (“number” m−3 m−1) that occupy a volume
V (a)= (4/3)πa3. The aim of the final part of this section
is to link 2 to the rain precipitation rate.

In doing so, we will make some approximations. First,
bubbles are injected at a very limited depth by raindrops,
and this depth may vary with bubble size (see Ho et al.,
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2000). Second, a homogeneous air bubble distribution in the
layer between the depth of injection and the surface is an ap-
proximation, as the accumulation of bubbles near the surface
can be highly complex due to buoyant forces, damping, and
the background turbulence (see, e.g., Merlivat and Memerly,
1983). We will specify how this is taken into account.

The bubble distribution N(a) can be described by an
advection–diffusion equation (see Woolf and Thorpe, 1991
and references therein and, for a similar case for oil drops,
Moghimi et al., 2018). This equation describes a balance be-
tween the advection of bubbles by the vertical fluid velocity,
the attenuation of bubble density (i.e., diffusion, which in-
cludes the shrinking of bubble radius during their lifetime;
see Merlivat and Memerly, 1983), the production of bubbles
by rain, and a sink term that captures the loss of air bubbles
bursting at the surface or being dispersed by oceanic turbu-
lence.

Solutions of the advection–diffusion equation necessitate
the specification of the velocity and the dispersion, gen-
erating non-stationary descriptions that might also include
mixing due to wave turbulence (see Restrepo et al., 2015;
Moghimi et al., 2018).

In the following, the advection–diffusion equation is sim-
plified to estimate the air bubble concentration in a thin layer
close to the surface, similar to those in Keeling (1993). First,
we assume that the air bubble concentration can be linearly
related to a bulk bubble distribution (i.e., averaged over the
thin layer), which we, thus, define as ceN(a). Second, a
steady state is considered in which the bulk bubble distri-
bution follows from a balance between the incoming bubble
flux due to rain and the outgoing bubble flux due to upward
bubble advection and bursting at the surface, as follows:

wr(r)Pr(r)Nr(r)= ceW [a(r)]N [a(r)], (16)

where Pr(r) is the probability of the production of an air
bubble by a raindrop of radius r (see Fig. 2), and W(a)

is the upward vertical ascent speed of bubbles of radius a.
From this equation, the bubble distribution reads N(a)=
wrNr(r,R)Pr/[ceW(a)]. We assume, as an estimate for the
bubble upward speed W(a), the following form:

W(a)=

√
τ

aρ0
+ ga, (17)

where τ = 72.8× 10−3 N m−1 is the air–sea surface ten-
sion (see Clift et al., 1978, p. 172). This form, predicted in
Mendelson (1967), is valid for ellipsoidal bubbles with a ra-
dius greater than 0.65 mm and whose upward path is not rec-
tilinear.

Referring to the above approximations, the factor ce can
first be interpreted as a depth scaling parameter account-
ing for differences between the bulk estimate and the non-
homogeneous bubble distribution N . A further approxima-
tion is that the effective vertical velocity of bubbles can be
significantly lower than Eq. (17) by up to 60 % due to the

presence of contaminants at the bubble surface (see Clift
et al., 1978; Fig. 7.3). Hence, the factor ce is also to be in-
terpreted as a decrease in the bubble vertical velocity, which
then reads ceW(a).

Making use of Eq. (12), N(a)= (DRD×Pr)(r)/ceW(a).
The volumetric ratio 2=

∫
V (a)N(a)da, for bubbles of

radius a with density N(a) that occupy volume V (a)=
(4/3)πa3 then reads as follows:

2(R)=

2.3×10−3∫
1.1×10−3

4π
3
a(r)3

(DRD×Pr)(r)
ceW(a)

dr, (18)

where the limits of integration encompass the volumetric
contributions of type II bubbles. The obtained values of vol-
ume fraction are consistent with data from the laboratory ex-
periments of Ho et al. (2000) (see their Fig. 7), which sug-
gests that, for rain rates of 114 mm per hour, the volume frac-
tion near the air–water interface is between 10−6 and 10−5,
corresponding to ce of the order of 0.1.

4 The effect of rain on gravity and capillary waves

The subject of mathematical models for wave dissipation that
reproduce the observed dissipation rates observed in labo-
ratory experiments is considered in the study by Henderson
et al. (2015). The focus is on the dissipation effects of small
waves due to surface contamination with air above it. Several
wave damping models are compared to data. In this work, a
model by Jenkins and Jacobs (1997) is compared to experi-
mental data of the damping of small waves. The model posits
a small (boundary) layer sitting over a deep water layer. The
two-layer model yields expressions valid under several lim-
its. Our work can contribute to this work by defining how the
equations in the upper layer are modified by the presence of
air bubbles and how their density relates to rain, if this is the
mechanism for their generation.

In what follows, we will invoke a far less general, but
more consistent, way of addressing the question on how the
presence of rain bubbles affects water waves. The derivation
of infinitesimal amplitude gravity waves dynamics, starting
from Navier–Stokes, appears in Lamb (1926), article 349.
We revert to dimensional quantities in what follows. The so-
lution u0 satisfies the linear version of Eqs. (8) and (9) and
the two stress conditions at the surface. Namely, in the fol-
lowing:

K [∂Xv0+ ∂Yu0]= 0, at z= η, (19)

−∂T φ0+

(
g−

τ

ρ∗
∂XX

)
η0+ 2K∂Y v0 = 0, at z= η, (20)

where φ0 is the mean field velocity potential, and ρ∗ is the
density of water (no rain) or the reduced density (i.e., raining,
with air bubbles in the water), and time (at wave scales) is T .

https://doi.org/10.5194/npg-28-285-2021 Nonlin. Processes Geophys., 28, 285–293, 2021
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At some distance ` below the surface, the conditions are as
follows:

νw[∂Xv+ ∂Yu] =K[∂Xv0+ ∂Yu0], at z= η− `, (21)
−∂T φ+ 2νw∂Y v =−∂T φ0+ 2K∂Y v0, at z= η− `. (22)

By combining the boundary and non-boundary solutions,
the approximate solution of the system, assuming a vanish-
ingly small upper layer thickness and vanishing velocity at
depth, is as follows:

φ = AekZ+i(kX−σT ) exp[−2Kk2T ],

ψ =
2Kk2A

σ
ekZ+i(kX−σT ) exp[−2Kk2T ],

η =
kA

σ
ei(kX−σT ) exp[−2Kk2T ], (23)

where ψ is the streamfunction, and σ is the angular fre-
quency. The solution (23) represents infinitesimal progres-
sive waves traveling in the X direction.

The dispersion relation for the waves is as follows:

σ 2
= gk+

τ

ρ∗
k3,

showing that changes in the surface tension due to the pres-
ence of air bubbles injected by the rain impacts the dispersion
relation. The effective density is as follows:

ρ∗ =
1
�

∫
�

ρ(r)dr,

which, in our simplified accounting, would be ρ∗ =2ρa+

(1−2)ρw.
The effective wave dissipation 2K appears in the exponen-

tial factor exp[−2Kk2T ]. When the rainstorm is sufficiently
intense (but the raindrops are not too large), the wave dissi-
pation 2K will change from 2νw to a higher value, depending
on how much air is injected by the impinging raindrops.

The dependence of the effective wave dissipation on the
rain rate, using Eqs. (10) and (18), is depicted in Fig. 3. The
surface tension effect increases as well, affecting the disper-
sion relation. These effects are manifest primarily in capil-
lary, high-frequency wave components. The bubble model
derived in Sect. 3 has one free parameter, ce, which controls
the upward flux of bubbles. The solid line shows the wave
dissipation for ce = 1, i.e., the situation for which the bulk es-
timation of the upward flux of bubbles is assumed to be cor-
rect. The dashed line shows the wave dissipation correspond-
ing to the more realistic value, ce = 0.1, which matches the
measured volume fraction of Ho et al. (2000). With respect
to ce = 1, it corresponds to a situation where the residence
time of the bubbles in the upper ocean layer is increased, due
to, e.g., near-surface turbulence.

In both cases, the increase in effective wave damping due
to the injection of air, at least as estimated by simple con-
siderations, is small compared to the values reported in the

Figure 3. Relative effective wave dissipation 2K/2νw, as a function
of rain rate R for two values of the unconstrained parameter, ce,
with 1 (solid) and 0.1 (dashed). The very small region with the gray
shading, below the upper curve, corresponds to a variation in air
diffusivity between 10−5 m s−2 (dashed line) and 10−4 m s−2 for
a fixed ce = 0.1. The figure highlights that the model outcomes are
more sensitive to the parameter ce than to the value of the diffusivity
νa.

experiments in Peirson et al. (2013) (and in Tsimplis, 1992),
further proof of what was stated in the introduction – i.e.,
that, for large rain rates and, as in the wave tank experiments,
large raindrops, the mechanical effect is dominant for the im-
mediate, albeit limited, attenuation of water waves. In these
instances, using very high rain rates, the effective dissipation
was found to increase by 3–10 times when rain is present,
compared to without rain.

Figure 3 also shows the sensitivity of the model to changes
in νw/νa, which is much lower than to changes in the bubbles
volume fraction, i.e., the tuning parameter ce. The gray shad-
ing shows the intervals obtained by varying the air viscosity
inside air bubbles (νa) from 10−5 to 10−4 (the lower and up-
per parts of the shading, respectively) for a fixed ce of 0.1.
This range of variation in νa corresponds to variations in the
effective kinematic viscosity of air due to the mechanical ef-
fect of raindrops, as observed in Harrison and Veron (2017).

5 Discussion and conclusions

Stimulated by an oceanographic problem, we have developed
a physical–mathematical approach to analyze how the pres-
ence of a large number of small bubbles affects the character-
istics of the containing liquid. Given the general method and
having specified the necessary conditions for its application,
we focused on a specific example, namely the presence of air
bubbles in the thin upper layer of the ocean, and their impact
on ocean surface waves. We first derived the (upscaled) equa-
tions for mass and momentum conservation. The upscaled
velocity and pressure are averages over sub-wave scales over
which the material with heterogeneities assumes a stationary
distribution. These equations revealed that the effective (up-
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scaled) momentum dissipation is increased when bubbles are
present with respect to the no-bubble case.

Under homogenization conditions, the model yields a dy-
namic equation that has a higher effective diffusion constant
with bubbles than without bubbles. This translates into an in-
creased kinematic viscosity of the air–water mixture, which
is directly related to an increase in the damping of surface
waves. The source for the tiny uniformly distributed bubbles
is, in our case, rain, whose small drops generate the bubble
distribution (large drops lead to splashing and turbulence in
the upper layer, which is a different process). For typical rain
rates, we found that the resulting wave damping due to bub-
bles is not significant with respect to other damping sources,
such as turbulence-induced dissipation due to the impact of
large raindrops. We also found that the presence of bub-
bles affects the capillary waves’ dispersion relation through
a change in the effective surface tension felt by the waves.

The increase in wave damping (related to kinematic vis-
cosity) when bubbles are present may appear counterintuitive
at first sight, but it results from kinematic viscosity being the
ratio of the dynamic viscosity and the density of the fluid of
interest. As bubbles are injected into water, the homogenized
kinematic viscosity decreases, but so does the homogenized
fluid density, with the overall effect being an increase in the
homogenized kinematic viscosity. Physically, the presence
of small bubbles at the typically small void ratios of non-
breaking waves enhances the momentum transfer between
the waves and the mean flow. The enhanced wave rotational
component results in higher viscous effects. Moreover, since
the density enters explicitly in the definition of the surface
tension force, when the volume fraction of air to water is not
zero, then the average density of the medium decreases, and,
thus, with this decrease comes an increase in surface tension
forces. Finally, the viscous effects and changes in the surface
tension also lead to changes in the dispersion relation and, as
a consequence, in the wave group velocity as well.

Many simplifications were made in the formulation of the
rain/wave model. In the momentum equation, we used the
most simplistic model for the tensor D(r); the consequence
is meek momentum exchanges between the rotational and ir-
rotational components of the velocity, and this argues for a
more vigorous research effort in determining more realistic
models for the tensor. In particular, the tensor should account
for all sources of small-scale heterogeneity besides air bub-
bles. The model for the mechanism that ties the rain, the bub-
ble presence in the layer, and the momentum and mass con-
servation equations below the free surface has three critical
parameters, namely the rain rate R, the air-to-water volume
fraction 2 (through the flux strength parameter, ce, associ-
ated with the upward flux of air bubbles from their injection
depth to the surface), and the ratio of diffusivities of water
and air, Nν . Given those approximations, the basic result is
that the volume fraction of air to water would have to be ex-
ceptionally large for the effect to be significant when com-
pared to other damping mechanisms. However, granted the

limited effect in the analyzed case, larger amounts of bubbles
or, mutatis mutandis, of buoyant organic or hydrocarbons are
certainly possible. In these cases that we have not explored,
the damping effect can indeed be relevant and, within the
specified approximations, quantifiable following the proce-
dure we have outlined.

A last simplification is related to the fact that waves oc-
cur in a salty ocean. The densities of the fresh water due
to rain and the salt water of the ocean are different. Both
fresh water and air bubbles are, thus, affecting the compo-
sition of the ocean in the near surface and, thus, the local
density and the tensor D(r). The change in the water com-
position will also affect some aspects of the bubble distribu-
tion model presented earlier. The more complex composition
will quantitatively affect the results, but it is presumed not
to affect the qualitative conclusions presented. Another ef-
fect that has been ignored here is a full consideration of the
water–air interface stress conditions when rain is present. In
Veron and Meussiens (2016), a model is presented for how
the impact of rain affects the boundary conditions (see their
Eqs. 2.11, 2.14, and, for waves, 3.4), i.e., the pressure at the
free surface is composed of the atmospheric pressure plus
a rain-induced pressure. The rain-induced pressure is triv-
ially space averaged in order to enter the homogenized set
of momentum/condition equations presented here. The con-
sequences on the waves enter through Bernoulli’s equation
and affect the dispersion of the waves. These issues are pre-
sented in Veron and Meussiens (2016) and not repeated here.

There are several processes in which the mixture of a liq-
uid containing a large number of bubbles or droplets has dif-
ferent characteristics. Examples are a frothy ocean, whatever
the content, or cavitating flows, as it happens in ship pro-
pellers or in pressurized flows. An example we came across
while preparing this article describes how foams are used to
ameliorate unwanted ship motion due to sloshing of their
holding tank contents (see Denkov et al., 2005; Kim et al.,
2007) and the stabilizing effect of free surface sloshing of
bubbly drinks (see Sauret et al., 2015). These foamy cases are
non-trivial extensions of the homogenization procedure we
present in this paper. Consideration of the chemistry, com-
pressible effects, and topology is required, and the intricate
formulation of the stress conditions at the interfaces would
need to be derived. Nevertheless, the procedure may play a
constructive role in formulating a mean field description of
the dissipation and the consequent attenuation of the foam
on sloshing motions.

6 Summary

We itemize our main conclusions here, as follows:

1. A general methodology has been developed to quantify
the effect of small-scale bubbles on the properties of the
containing liquid. Averaged dynamic quantities can be
defined, and for these, averaged momentum and mass
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conservation equations of general applicability can be
derived.

2. A model was derived that permits an estimate of the
amount of air injected by rain.

3. The presence of tiny air bubbles, which we assume are
uniformly distributed, changes the physical characteris-
tics of the containing liquid, affecting the momentum
balances – the momentum dissipation of irrotational
motions is enhanced due to an increase in the rotational
component of the flow.

4. We have also specifically addressed the impact of the
presence of air bubbles on gravity waves. We found
that air bubbles increase the effective wave damping
and, hence, that rain has a damping effect on waves.
Changes in the density near the free surface will also af-
fect the surface tension. Since the generation of bubbles
by rain is small in the natural setting, the damping effect
is small, akin to the damping of waves due to surface
contamination. An increase in wave damping has im-
plications for momentum exchanges between the waves
and the mean flow. Wave damping changes and surface
tension changes impact the wave dispersion relation and
the group velocity. These effects are primarily relevant
to the dynamics of small and capillary waves.

5. We have cited a number of situations where, granted
certain conditions, our approach can be applied for a
general estimate of the overall increased dissipation.
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