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Abstract :   
 
An observing system simulation experiment (OSSE) is conducted to identify potential locations for making 
surface ocean pCO2 measurements in the Indian Ocean using the Bayesian Inversion method. As of the 
SOCATv3 release, the pCO2 data is limited in the Indian Ocean. To improve our modeling of this region, 
we need to identify where and what observation systems would produce the most good or benefit for their 
cost. The potential benefits of installing pCO2 sensors in the existing RAMA and OMNI moorings of the 
Indian Ocean, the potential of Bio-Argo floats (with pH measurements), and the implementation of the 
ship of opportunity program (SOOP) for underway sampling of pCO2 are evaluated. A cost function of 
dissolved inorganic carbon as a model state vector and CO2 flux mismatch as the source of error is 
minimized, and the basin-wide CO2 flux uncertainty reduction is estimated for different seasons. The 
maximum flux uncertainty reduction achievable by installing pCO2 sensors in the existing RAMA and 
OMNI moorings is limited to 30% during different seasons. One may consider that around 20 Bio-Argos 
are still the right choice over installing mooring based pCO2 sensors and achieve uncertainty reduction 
up to 50% with additional benefit of profiling the sub-surface upto 1000 & ndash;2000 m. However, a 
single track SOOP has the potential to reduce the uncertainty by approximately 62%. This study identifies 
vital RAMA and OMNI moorings and SOOP tracks for observing Indian Ocean pCO2.  
 
Plain Language Summary.  
 
Surface ocean partial pressure of CO2 (pCO2) information is vital for estimating sea-to-air CO2 
exchanges. This parameter is least available from the Indian Ocean as compared to other global tropical 
and southern oceans. There has been no effort made so far to measure surface ocean pCO2 in the Indian 
Ocean with routine monitoring such as by mounting instruments to moorings or by underway sampling 
via any ship of opportunity program. Therefore there is a considerable demand to start pCO2 observations 
in the Indian Ocean. However, one key question that emerges is where to deploy pCO2 instruments in 
the Indian Ocean to learn the most with limited resources. This study addresses this question with inverse 
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modeling techniques. The study finds that the existing moorings of the Indian Ocean are capable of 
hosting pCO2 sensors, and data from those are useful to reduce the uncertainty in the surface sea-to-air 
CO2 flux estimation by a quarter magnitude. In contrast, the Bio-Argo floats with pH sensors, and the ship 
of opportunity underway sampling of pCO2 may benefit from reducing the same up to 50% and 62%, 
respectively. 
 
 

Highlights 

► OSSE is done for Indian Ocean (IO) pCO2 using RAMA + OMNI moorings, Bio-Argo floats and SOOP 
ship-tracks. ► pCO2 data from moorings and ship-tracks are tested for air-sea CO2 flux inversions. ► 
The maximum CO2 flux uncertainty reduction (UR) with potential pCO2 data is found. ► IO-UR with pCO2 
data from moorings and ship-tracks are 30% and 62%, respectively. ► Ship-track pCO2 is more efficient 
than the mooring pCO2 data in CO2 flux inversion. 

 

Keywords : Observing System Simulation Experiment, (OSSE), RAMA mooring, OMNI mooring-Ship of 
Opportunity (SOOP) 
 
 

 

 



1. Introduction 72 

 The ocean plays a vital role in mitigating global climate change by sequestering  73 

~30% of anthropogenically emitted carbondioxide (CO2) per year (Sabine et al., 2004; Valsala 74 

and Maksyutov, 2010; Le Quéré et al., 2018; Friedlingstein et al., 2019; Gruber et al., 2019). 75 

In the absence of this sink, the accumulation of human-made CO2 in the atmosphere could 76 

have been amplified by a corresponding magnitude, and global warming would have been much 77 

more accelerated. The global ocean has taken up nearly 165 ± 20 petagrams of carbon (PgC) 78 

emitted since the pre-industrial era (Le Quéré et al., 2018). The contemporary global ocean CO2 79 

sink is estimated to be 2.5 ± 0.6 Pg C yr-1 (Friedlingstein et al., 2019). 80 

 81 

 Tropical Indian Ocean (IO) alone contributed to sinking 16.6 ± 5.1 petagrams 82 

anthropogenic carbon, amounting a 16% of the global total ocean sink (Sabine et al., 2004). The 83 

recent synthesis of the Indian Ocean (north of 40oS) sea-to-air CO2 flux suggests an annual mean 84 

(median) CO2 uptake of -0.37 ± 0.06 Pg C yr-1 based on models and a sink of -0.24 ± 0.12 PgC yr-1 85 

based on observational estimates, for a period of 1990-2010 (Table-3, Sarma et al., 2013). Observation-86 

based estimates of sea-to-air CO2 fluxes show that the Indian Ocean (from 40oS to 30oN) is a 87 

carbon sink of -0.17 ± 0.12 Pg C yr-1 as constructed from 1980-2014 neural network-based 88 

data product of Landschutzer et al. (2016). On the other hand, variational data assimilation of 89 

available surface ocean partial pressure of CO2 (pCO2) observations into a biogeochemical 90 

model suggests a sink of -0.28 ± 0.18 Pg C yr-1 for the same region as constructed from 1980-91 

2009 (Valsala and Maksyutov, 2010).  92 



The divergence among various observational estimates of the Indian Ocean sea-to-air 93 

CO2 fluxes mostly arises from the l a c k  of p C O 2  d a t a  n e e d  f o r  t h e  CO2 flux 94 

calculations. Although the Surface Ocean CO2 Atlas (SOCATv3-2020) database consists of 95 

28 million quality controlled surface ocean pCO2 measurements available from 1970 to 2019, 96 

the Indian Ocean (30oE-130oE, 40oS-30oN) shares only 0.8 million, hardly representing 2.8% of 97 

the total quality-controlled global pCO2 data, especially for north of 30oS (Pfeil et al., 2013, 98 

Bakker et al., 2016, Rödenbeck et al., 2015, Bakker et al., 2020). Despite being the third-largest 99 

global ocean, the inadequate data coverage of the Indian Ocean hampers the accurate renditions 100 

and budgeting of its carbon cycle. It is perhaps not much felt in the seasonal cycle (Takahashi et 101 

al., 2009, 2014). Indeed, it affects deducing the subtle interannual and decadal variability (Bates 102 

et al., 2006, Rödenbeck et al., 2015, Landschutzer et al., 2016, Sarma et al., 2013, Valsala et al., 103 

2012, 2020). There has been no effort made to sample pCO2 by underway sampling using 104 

volunteer commercial ships in the Indian Ocean, unlike in the n orth Pacific and Atlantic 105 

(Zeng et al., 2014). It leaves a significant data gap in the Indian Ocean, especially north of 30°S 106 

(Bakker et al., 2020). 107 

 108 

The surface ocean pCO2 can be measured by instruments mounted to moorings or 109 

attached to the hull of ships in case of underway sampling (Pierrot et al., 2009; Takeshita et al., 110 

2018). Considering the spatiotemporal diversity of the Indian Ocean physical and 111 

biogeochemical characteristics (Schott and McCreary, 2001; Prasanna Kumar et al., 2001; 2007; 112 

Wiggert et al., 2005; 2006; Levy et al., 2007; Murtugudde et al., 2007; McCreary et al., 2009; 113 

Sarma, 2002; 2013) and limited availability of resources to make direct observations, 114 

consideration must be given to determine: (a) which existing moorings in the Indian Ocean 115 



where instruments can be installed to make pCO2 measurements most cost-effectively? (b) which 116 

ship-track should be selected for the underway sampling under the voluntary ship of opportunity 117 

programs (SOOP) so that the data obtained are optimal to constrain the Indian Ocean sea-to-air 118 

CO2 fluxes in inversion based estimates (Jacobson et al., 2007; Valsala and Maksyutov, 2010; 119 

Mukherjee et al., 2011; Khatiwala et al., 2013; Steinkamp and Gruber, 2013, 2015; Sreeush et 120 

al., 2019). Intensive ocean observations of pCO2 and more atmospheric tower observations are 121 

required to improve the models (Sarma et al., 2013, Wanninkhof et al., 2019, Nalini et al., 2019). 122 

 123 

Indian Ocean Observing System (IndOOS) is the sustained observing system for the 124 

Indian Ocean, a network operated and supported by various national agencies and coordinated 125 

internationally under the Global Ocean Observing System framework by the CLIVAR/IOC-126 

GOOS Indian Ocean Region Panel. A detailed observing system simulation experiment (OSSE) 127 

has been done for the physical variables of the Indian Ocean as part of IndOOS.1 programs in the 128 

early 2000s (a group of publications in the special issue of J. Climate, Vol.50, 2007). The net 129 

result of this effort is the installation of Research Moored Array for African-Asian-Australian 130 

Monsoon Analysis and Prediction (RAMA) in the Indian Ocean (Vecchi and Harrison, 2005; 131 

Ballabrera-Poy et al., 2007; Sakov and Oke, 2008; Oke and Schiller, 2007; McPhaden et al., 132 

2009). IndOOS has updated its priorities into actionable recommendations for future observing 133 

system components and has put forwarded recommendations for an effective observational 134 

program of the Indian Ocean (Beal et al., 2020a,b). 135 

 136 

Among the IndOOS.2 recommendations for the 2020-30 frameworks, the Bio-Argos are 137 

expected to be increased by 200 in number (Beal et al., 2019 and their Figure ES.1, Hood et al., 138 



2020, Wanninkhof et al., 2019). Other two notable recommendations are: (a) to initiate Moored 139 

Autonomous pCO2 systems (MAPCO2) and biogeochemical measurements at RAMA locations 140 

and (b) to establish SOOP-CO2 measurements in the southern Indian Ocean (IX21, Hood, et al., 141 

2020). Therefore an OSSE for Indian Ocean pCO2 measurements based on RAMA moorings and 142 

based on various ship tracks of the Indian Ocean (Tournadre 2004) and thereby to substantiate 143 

the IndOOS.2 recommendations are the need of the hour. This topic has not been attempted in 144 

any previous studies to the best of our knowledge, except for the extreme southern part of the 145 

Indian Ocean (Majkut et al., 2014). In another notable study, Ford (2021) tested the proposed 146 

Bio-Argo arrays (Gray et al., 2018) in improving the simulated pCO2 of the global oceans. 147 

 148 

Despite the strong recommendations under IndOOS.2 in place, only one of the existing 149 

RAMA moorings in the entire array is equipped with sensors for making surface ocean pCO2 150 

measurements (located at 90oE and 15oN) in the central Bay of Bengal popularly known as the 151 

Bay of Bengal Ocean Acidification Mooring (BOBOA; Sutton et al. 2016, 2017). BOBOA 152 

quality controlled pCO2 is available from 2013 to the present but with data gaps in 2014-15 and 153 

2017-18.  It is to be noted that this observation system had been installed considering logistical 154 

convenience. However, BOBOA data's benefits in constraining the Bay of Bengal sea-to-air CO2 155 

fluxes as a basin have not been evaluated. Ye et al. (2019) utilized this data to study the high-156 

frequency variability in pCO2 and the role of Bay of Bengal cyclones in surface ocean carbon 157 

fluxes.  158 

 159 

In addition to RAMA mooring, another major Indian Ocean mooring program initiated 160 

by the Government of India is the Ocean Moored buoy Network for the Northern Indian Ocean, 161 



popularly known as OMNI buoy network (Venkatesan et al., 2013). Under this program, seven 162 

moorings are operational in the Bay of Bengal, and another five are operational in the Arabian 163 

Sea. They are also potential sites for pCO2 observations in the north Indian Ocean. 164 

 165 

The Indian Ocean is also home to major global commercial shipping routes. It hosts two 166 

major shipping channels: Malacca Strait in the east and Suez Canal in the west. Estimated global 167 

energy transportation is about 2.4 million barrels of oil per day, representing 5.5% of world oil 168 

transport, taken through these channels (Valsala and Roy, 2014). Tournadre (2014) and Figure 1 169 

there show the significant ship-routes in the Indian Ocean as inferred from altimetry data sensed 170 

by instruments mounted onboard satellites by NASA. Therefore, the Indian Ocean has the 171 

potential to host a SOOP for the underway sampling of pCO2. In this context, the emerging 172 

question is ‘what is the best track to start SOOP in the Indian Ocean? We note here that in 173 

IndOOS.2, one of its recommendations includes establishing SOOP-CO2 measurements in the 174 

southern Indian Ocean (IX21) repeat track (Beal et al., 2020), whereas other potential SOOP 175 

tracks remain unexplored. 176 

 177 

The present study addresses the gap mentioned in the above areas by answering the 178 

following key questions: (a) what are the optimal mooring locations of RAMA and OMNI arrays 179 

for making pCO2 measurements? (b) what is the potential of Bio-Argo floats (including pH 180 

sensors) in replacing moored buoy sensors in the future, and (c) what are the potential SOOP 181 

ship-tracks in the Indian Ocean for measurements of surface ocean pCO2? These measurements 182 

will lead to a better estimate of sea-to-air CO2 fluxes for the Indian Ocean. The remaining part of 183 

the paper is organized as follows. Section-2 introduces the model and methodology adopted. 184 



Section-3 discusses each mooring's ranking in the RAMA and OMNI array to initiate surface 185 

ocean pCO2 measurements and discuss the OSSE done for various ship-tracks to find optimal 186 

SOOP tracks in the Indian Ocean. The significant recommendations are made in Section-4. 187 

 188 

2. Model, Data, and Methodology   189 

2.1. Physical and Biogeochemical model and Data 190 

The study utilizes the Ocean Tracer Transport Model (OTTM; Valsala et al., 2008) coupled 191 

with the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-II) biogeochemistry 192 

(Najjar and Orr, 1998) and with a modified biological parameterization for net community 193 

compensation depth (Sreeush et al., 2018). More details of physical design, ocean re-analysis 194 

data used to run OTTM, the coupled OCMIP-II biogeochemistry modules with modified 195 

parameterization, and the model carbon cycle validation are given in Sreeush et al. (2018, 2019) 196 

therefore will not be repeated here. 197 

2.2. Methodology 198 

We use the Bayesian inversion method to identify the best locations for making 199 

observations of surface ocean pCO2. In this case, we are minimizing the following cost function 200 

constructed with sea-to-air CO2 flux errors and mismatches in dissolved inorganic carbon (DIC) 201 

between model and observations: 202 

� = ���� − �	
������� − �	 + �� − ��	
���
��� − ��	                      (1) 203 

GSo is the model response vector corresponding to the observation, 'D,' taken as DIC in the 204 

model. ��� represents prior sea-to-air flux uncertainty of CO2. �� contains a combination of both 205 

observational (Cobs) and model (Cmod) errors. S0 and S are the prior and posterior sea-air CO2 206 



fluxes, respectively. Here the observed pCO2 is converted to DIC using abiotic pump routines of 207 

OCMIP-II (Najjar and Orr, 1998), and the corresponding errors in the conversions are embedded 208 

into Cd (see section 2.2.2). The Bayesian theory states that the above cost function is minimum if 209 

the flux vector S0 assumes the optimized form (Tarantola, 2004; Lewis et al., 2006); 210 

 211 

� = �� + ��
���� + ���
����
����� − ���	                       (2) 212 

 213 

Here we note that the DIC, pCO2, and sea-to-air CO2 fluxes behave differently in 214 

carbonate chemistry routines (Sarmiento and Gruber, 2006). In the model, the prognostic 215 

variable is DIC and pCO2 is diagnostic to that. Therefore, to constrain the model with 216 

observations, we opt to convert pCO2 data into DIC using abiotic routines of OCMIP-II. It is an 217 

effective method and has proven capacity in reducing surface ocean pCO2 biases in variational 218 

assimilation (Valsala and Maksyutov, 2010). The errors we expect in this conversion are mainly 219 

arising from temperature, salinity, and Alkalinity (ALK). Here we note that the temperature and 220 

salinity data are utilized from the re-analysis of ocean data, which have been used to run this 221 

model; therefore, the errors are expected to be minimal. The past studies (Sreeush et al., 2018, 222 

2019) show that the model has reasonable pCO2 and sea-to-air CO2 fluxes across all the biomes 223 

considered in this study due to a fine-tuning in the OCMIP-II parameters, which further takes 224 

care of the simulated DIC and ALK. Therefore the total error in converting the pCO2 into DIC is 225 

expected to be minimal, and still, we encapsulate an equivalent error of ± 2.5 µatm expected as 226 

an upper bound in the conversion into our observational error matrix as detailed in Section 2.2.2. 227 

 228 

2.2.1. G-matrix 229 



The G-matrix represents the model response function in terms of DIC to a given 230 

perturbation in the So vector (i.e., sea-to-air CO2 fluxes in this case). The Indian Ocean was 231 

divided into eight important biomes, as in Sreeush et al. (2019). The area integrated sea-to-air 232 

CO2 fluxes of each of these regions are perturbed each month by a constant value of one Pg C yr-
233 

1 sink. Here we note that the magnitude of perturbation has little influence on the G-matrix's 234 

deduced elements because G-matrix normalizes DIC concentrations to the given flux 235 

perturbation of a particular region. The model was simulated from 1996 to 2005 (termed as 236 

SENS after this). The perturbations were given only for the month of interest but during all years 237 

of the simulation from 1996 to 2005. For eight oceanic regions and for 12 months (from January 238 

to December), there were a total of 96 SENS runs. The G-matrix consists of model state variable 239 

differences (here we kept as surface ocean DIC) between the control run (CTRL), and SENS 240 

runs sampled from the model at mooring locations for the last year of the simulation. Here we 241 

note that the period of simulation (1996-2005) is not sensitive in the inversion as it is only used 242 

to get the sensitivity of the model to a given perturbation flux in each oceanic region in each 243 

month. 244 

 245 

2.2.2. Cd matrix 246 

This matrix contains the sum of both observational (Cobs) and model (Cmod) DIC errors at 247 

the observation location. In this setup, the observed pCO2 is assumed as converted to DIC using 248 

the solubility pump routines of OCMIP-II. In this conversion, the Cobs includes an equivalent 249 

RMSE in DIC while converting an 'observational' pCO2 with a maximum assumed error of ± 2.5 250 

µatm. The conversion of pCO2 to DIC also encapsulates the errors in the dependent variables 251 

such as sea surface temperature, ALK, phosphate (PO4), silicate, and other minor ions. This 252 



calculation was done using model outputs spanning from 1960 to 2009, and the RMSE of 253 

reconstructed DIC is utilized for Cobs. 254 

 255 

2.2.3. ���matrix 256 

This matrix consists of flux variance-covariance of area integrated fluxes between each 257 

oceanic region and each month. It has been calculated from the monthly sea-to-air CO2 fluxes of 258 

assimilated data from 1980 to 2009 (Valsala and Maksyutov, 2010). The diagonal elements are 259 

the variances of the seasonal cycle of the regional (i.e., R1 to R8) integrated sea-to-air CO2 260 

fluxes, whereas the off-diagonal elements represent the co-variances of the seasonal cycle of 261 

fluxes between each oceanic region.  262 

The OSSE is based on the assumption that no real observations (D) are required to 263 

determine the utility of observation from a particular mooring location, Bio-Argo float, or ship-264 

track in reducing the estimated surface flux uncertainty in the inverse modeling. The first part in 265 

the second term of R.H.S. of Equation (2) is the posterior flux uncertainty (��) if the 266 

observations are available from given locations and for a given prior flux uncertainty of ��� . It is 267 

estimated as: 268 

    �� = ��
���� + ���
���

                            (3) 269 

Therefore the percentage uncertainty reduction (UR) in the flux estimation can be quantified as: 270 

                                      �� = ���� !��"	��� !��"��
��� !��"�� # × 100     (4) 271 

(in %) where 'trace' represents the sum of diagonal elements of the respective matrices. 272 

 273 



2.2.4. Incremental Optimization 274 

To rank all moorings of RAMA and OMNI array for installation of pCO2 sensor and 275 

evaluate the potential Bio-Argo floats and Indian Ocean ship tracks for SOOP, an incremental 276 

optimization method as described in Nalini et al. (2019) is utilized. Suppose there are 'n' 277 

moorings in RAMA and OMNI. They all are considered 'candidate set' suitable for installing 278 

pCO2 sensors, further assuming that observations from each of these 'candidate sets' as available, 279 

the UR of Indian Ocean sea-to-air CO2 flux individually contributed by each of these moorings is 280 

quantified. The mooring with maximum UR is then moved to a 'base set,' and the candidate set is 281 

reduced to ‘n – 1'. Further, a second mooring from the 'candidate set' is added to the 'base set,' 282 

and the UR due to a combination of two moorings is estimated. The candidate with maximum 283 

UR is then permanently moved to the 'base-set' so that 'candidate set' is reduced to ‘n – 2' and 284 

'base set' is grown to 2. The above process is repeated until all the 'candidate set' got added to the 285 

'base set.' The rank of each mooring is the same as the sequence it gets added to the ‘base set.’  286 

 287 

In this study total of 43 moorings (31 RAMA moorings and 12 OMNI moorings) are 288 

considered. Similarly, one Bio-Argo float per every 10ox10o region in the Indian Ocean is 289 

deployed in the model and carried out an incremental optimization for the floats just as done for 290 

the RAMA and OMNI buoys. A total of 38 Bio-Argo floats were distributed at equal distances 291 

from each other. We have considered data from a particular location (i.e., the center of each 292 

10ox10o box) as available via Bio-Argo for all 12 months in a year. Over a month scale, the 293 

Argos are not going to drift so much. However, it may drift over a year. Nevertheless, for a 294 

uniform deployment of Argo, they may replace the positions so that the frequency of data from a 295 

particular locality could be maintained over time to sample the relatively uniform open ocean 296 



conditions of the upper ocean carbon cycle. The choice of 38 floats is made as a case study 297 

targeting the expansion of Indian Ocean Bio-Argo with pH sensors in the next ten years. 298 

Although the recommendation of IndOOS.2 is to achieve 200 Bio-Argo floats in total by 2030 299 

(Hood et al., 2020), we assumed roughly 20% of them would have pH sensors in them. We note 300 

here that there is no other Bio-Argo in the Indian Ocean with pH sensors (except for recently 301 

launched in the sout-western Indian Ocean) and therefore anticipating a total of 200 Bio-Argos 302 

all with pH sensors in the next ten years is a bit too optimistic. To find the optimal ship-track for 303 

SOOP, a set of potential ship-routes of the Indian Ocean is selected based on Tournadre (2014). 304 

The UR by each of the ship-tracks is separately calculated (no incrementally), and all tracks are 305 

ranked accordingly. 306 

 307 

3. Results 308 

Figures 1 and 2 show the seasonal mean surface sea-to-air CO2 fluxes and surface DIC 309 

concentrations simulated by the model represented as a mean constructed from the simulation 310 

period of 1996-2005 (from CTRL). The essential seasonal features of surface ocean sea-to-air 311 

CO2 fluxes are reproduced well in the model compared to observational estimates of Takahashi 312 

et al. (2014). The perennial source of tropical Indian Ocean CO2 is reproduced in the model well 313 

with intense emissions from the western Arabian Sea during boreal summer (Poisson et al., 1993, 314 

Sabine et al., 2000, Valsala and Maksyutov, 2013). The seasonal DIC is also comparable with 315 

observations from Takahashi et al., (2014). 316 

 317 

3.1. Bioprovinces used for regional CO2 flux inversions 318 



Figure 3 shows the eight oceanic bio-provinces identified in Sreeush et al. (2019) based 319 

on the homogeneity in the seasonal variances of community compensation depth and the 320 

subsequent variability in net primary and export production. The variability in surface ocean 321 

pCO2 can cascade through the ocean's biological and solubility pumps and infer the community 322 

compensation depth, which is an integral part of these two pumps. Among these eight regions, 323 

R1 to R6 straddles most of the RAMA and OMNI array (Figure 3a). However, there are no 324 

moorings to represent R7 and R8 (Figure 3a). It will have implications in the inversion such that 325 

the UR for the region R7 and R8 will be minimal and affect the overall UR in the posterior 326 

fluxes of the basin. On the other hand, the major ship tracks cover all these oceanic regions 327 

(Figure 3b). Figure 4 shows the seasonality of the area integrated sea-to-air CO2 fluxes of eight 328 

oceanic regions used in this study and shown from the assimilated sea-to-air CO2 flux of Valsala 329 

and Maksyutov (2010). A detail of the seasonal evolution of area integrated sea-to-air CO2 fluxes 330 

in Figure 4 is given in Sreeush et al. (2019); therefore will not be repeated here. 331 

3.2. Elements of G-matrix, Model and Observational errors 332 

Figure 5 shows the total response in the surface ocean DIC (μmol kg-1) due to a given 333 

perturbation in each oceanic region of Figure 3 as in Section 2.2.1. The figure represents the 334 

RMSE of DIC difference between CTRL and SENS runs in the G-matrix simulations. This 335 

figure is produced using the last year of model-simulated data. The total response is spread 336 

widely in the Indian Ocean and reached a distance far away from the individual regions, albeit 337 

with much less spread in the case of R7 and R8. R1 has maximum sensitivity close to the 338 

northeast coast of the Arabian Sea, where the mixed layer is controlled by coastal currents, 339 

entrainment, and convective deepening (Shankar et al., 2016; Singh et al., 2019). R2 has the 340 

maximum surface signature in DIC due to weak mixing in the relatively fresh waters of the Bay 341 



of Bengal (Valsala et al., 2018). R7 and R8 also have significant signals in the surface ocean, 342 

implying weaker mixing in the oligotrophic part of the gyre where the solubility pump dominates 343 

the upper ocean's carbon cycle (Valsala et al., 2012). The other regions have moderate sensitivity 344 

in the surface ocean DIC. The maxima of RMSE in DIC in Figure 5 could indicate a potential 345 

location for observing the surface ocean pCO2. For instance, the R2 has maximum RMSE close 346 

to central BoB, where it tentatively matches with existing BOBOA pCO2 mooring (Sutton et al., 347 

2017). However, all other such locations may not necessarily correspond to a RAMA or OMNI 348 

mooring location. Therefore, an inversion based on Equation 1-4 is apparent for retrieving the 349 

optimal number of RAMA and OMNI moorings to capture the maximum DIC signals of Figure 350 

5. 351 

Figure 6 shows the corresponding RMSE used for the Cmod calculations. Ideally, it is the 352 

same as Figure 5 except for the perturbations given in each oceanic region. The model error 353 

(Cmod) is calculated by 'propagating' the CO2 flux uncertainty of each oceanic region of each 354 

month to the mooring locations via simulation from 1996 to 2005. It is the same as we did for the 355 

G-matrix, but with perturbations given as standard deviations of CSo. The maximum value of 356 

Cmod is close to ±2 μmol kg-1.  357 

 358 

Figure 7 shows the Cobs seasonal cycle for the selected mooring location from the central 359 

Arabian Sea (65oE, 15oN), as an example. The seasonality in error is a function of the ocean's 360 

ambient surface state, which are involved in the calculations of abiotic OCMIP-II carbon 361 

solubility pump calculation. The error here implies the observational error for each month, which 362 

also encapsulates the conversion error from pCO2 to DIC in the model. Here the conversion of 363 



pCO2 to DIC depends on temperature, ALK, salinity, and other minor ions. The first three are 364 

highly seasonal, and the conversion error is also seasonal in this case (Broullón et al., 2019). It is 365 

ideal to have a broader error representation in the inversion so that we understand each station's 366 

limitation in providing ‘insightful’ pCO2, in this case, for constraining surface ocean sea-to-air 367 

CO2 fluxes. 368 

 369 

3.3. OSSE for RAMA and OMNI moorings 370 

The ranking of each RAMA and OMNI moorings in the total UR of the prior fluxes is 371 

calculated separately for four seasons: March-May (MAM), June-September (JJAS), October-372 

November (ON), and December-February (DJF). The seasons are identified following the known 373 

characteristics of the Indian monsoon, which has significant control over the Indian Ocean 374 

biogeochemistry (Wiggert et al., 2005). Figure 8 shows the seasonal rankings of RAMA and 375 

OMNI moorings for surface ocean pCO2 measurements in the Indian Ocean as obtained from our 376 

OSSE. The ranks are indicated as colors with deep blue (red) representing a highly (slightly) 377 

impactful mooring location as per this OSSE. Figure 10a shows the percentage of UR achieved 378 

by making use of all 43 moorings. The UR reaches saturation within the first 15 moorings. The 379 

UR varies with seasons under varying surface ocean dynamics and carbon pump strength in the 380 

Indian Ocean (Sreeush et al., 2018). A maximum UR of 30% is obtained during DJF, JJAS, and 381 

ON with 15 moorings, while 23% is obtained during MAM. It is noted that the rankings change 382 

the positions seasonally. However, a cluster of the first few ranks is relatively consistent among 383 

various seasons. This fact encourages us to proceed with pCO2 sensor installation in these 384 

moorings as they are consistent across various seasons. The heterogeneity of rankings among 385 

seasons indicates the complicated physical and dynamic biogeochemical nature of the Indian 386 



Ocean. We have also found a ranking of all RAMA moorings done with the annual mean 387 

response of 'G' matrices (figure not shown). In this case, the maximum UR is 25%, which is very 388 

close to the mean of all UR in four seasonal OSSE. The first six ranks' locations are reasonably 389 

consistent with those obtained for seasonal OSSE in Figure 8. 390 

 391 

3.4. OSSE for Bio-Argo floats 392 

Figure 9 shows a similar ranking obtained for the Bio-Argo floats. Bio-Argo floats are 393 

distributed equally at a 10o x10o resolution in the Indian Ocean; therefore, they are spread widely 394 

across various biomes. The total UR by Bio-Argo floats is as large as 50%, with a total number 395 

of floats less than 20 (Figure 10b). The regional patterns of ranks obtained with Bio-Argo floats 396 

are consistent with those of moorings. However, due to relative changes in the location of Bio-397 

Argo floats considered here compared to the moorings, the ranks are also relatively shifted. A 398 

significant consensus is that the equatorial Indian Ocean ranks are relatively weaker in both 399 

moorings and Bio-Argo floats in the present OSSE. Considering the relatively smooth operations 400 

and implimentaiton of Bio-Argo floats, one may consider that around 20 Bio-Argos are still the 401 

right choice over installing mooring based pCO2 sensors inferred in terms of UR (Figure 10a, b). 402 

However, a caveat is that the Bio-Argo floats can detect the pH while mooring can directly 403 

measure the pCO2. Calculating the surface ocean pCO2 from float pH has uncertainty 404 

contributions from the pH sensor, the alkalinity estimate, and carbonate system equilibrium 405 

constants, resulting in a relative standard uncertainty in pCO2 of 2.7% (or 11 µatm at pCO2 of 406 

400 µatm, Williams et al., 2017). 407 

 408 



3.5. OSSE for Ship tracks 409 

Figure 11a-b shows the ranking of ship tracks for January and July, respectively. Figure 11c-410 

d shows the UR during January and July for ten ship tracks considered in this study. Unlike 411 

moorings, the ship-track optimizations are done for individual ship-tracks separately (not the 412 

incremental optimization with one ship tracks over the other) with the view that SOOP cannot 413 

initiate in multiple tracks as it is not practical. It is assumed that the data collected within a 414 

month from each of these tracks represent the entire duration of the month, which is not a caveat 415 

because commercial ship takes less than ten days to cross the Indian Ocean in all major tracks 416 

used in the analysis. The maximum UR by a single track is somewhat close to 65%. The results 417 

are consistent among seasons and shown here for two contrasting months (i.e., January and July). 418 

Compared to the mooring, SOOP's advantage is that SOOP covers the entire ocean and 419 

contributes significantly to reducing UR from all identified oceanic regions considered in this 420 

study. Individually, the first and second ranked ship-tracks reduce the uncertainty closely by 421 

62%, and the first four ranked tracks are the same for both January and July. The result shows 422 

that SOOP is far more effective at reducing UR in this OSSE (~62%) than utilizing time-series 423 

stations (~30%). 424 

A consolidated diagram of moorings selected based on the ranks within the Arabian Sea, Bay 425 

of Bengal, equatorial Indian Ocean, and south subtropical Indian Ocean for all four seasons is 426 

provided as the 'best set' in Figure 12. The inner-circle (outer) circle shows whether the mooring 427 

belongs to a rank-range of 1-2 (3-4) as re-ordered for each sub-basin above. Different seasons are 428 

indicated in different colors. If the ranks are standard during multiple seasons, the circle shares 429 

the colors accordingly. 430 



In conclusion, based on OSSE, a total of 24 moorings and four ship-tracks are highly 431 

recommended as per this study (Figure 12). Locations important for the moorings are six 432 

each in the Arabian Sea and Bay of Bengal, while the moorings in the southwest equatorial 433 

Indian Ocean (i.e., close to Seychelles -Chagos thermocline ridge region) also rank high for 434 

pCO2 representativeness. Surprisingly, the moorings in the southwest equatorial Indian Ocean 435 

ranking high for pCO2 measurements (i.e., close to the Seychelles-Chagos thermocline ridge 436 

region). It could be because the south equatorial current (S.E.C.) passes and diverges at the 437 

western continental boundary through this dynamically significant region. 70% of the S.E.C. 438 

turns north at the western boundary (Valsala and Ikeda, 2007) and spreads through the north 439 

Indian Ocean. The seawater pCO2 measured from this region may have a higher value in 440 

constraining the north Indian Ocean CO2 fluxes due to the fast-flowing western boundary 441 

currents, potentially spreading through considerable distances before equilibrating with 442 

atmospheric pCO2 (Sarmiento and Gruber, 2006).  443 

The study also put forward four essential SOOP tracks based on the first two ranks in 444 

OSSE (shown as black stars in Figure 12) and also based on busy shipping routes but ranks 445 

within the first six in OSSE (shown as cyan stars in Figure 12). The ship traffic analysis shows a 446 

global fourfold growth between 1992 and 2012, the largest increase observed in the Indian 447 

Ocean and the Chinese seas reflecting the world trade change (Tournadre, 2014). Notably, the 448 

track starting from the South African coast also shares the track with the projected repeat track of 449 

IX21(until the south Madagascar Islands) as in the IndOOS.2 recommendations (Beal et al., 450 

2020a,b). 451 

 452 



4. Conclusion 453 

Using Bayesian inversion theory and incremental optimization technique and utilizing a 454 

global ocean biogeochemical model, for the first time, we have optimized the locations of 455 

RAMA and OMNI moorings, Bio-Argo floats, and commercial ship tracks for making 456 

measurements of pCO2 in the Indian Ocean that would improve the overall knowledge of carbon 457 

flux in this basin. The cost function is minimized in such a fashion that the observations of pCO2 458 

from these moorings, floats, or ship tracks are optimal for the maximum reduction in the CO2 459 

flux uncertainty of the Indian Ocean in an ocean inversion framework. The results show that due 460 

to the spatio-temporal variability of Indian Ocean physical and biogeochemical dynamics and its 461 

strong dependency on seasonality, multiple mooring locations must be equipped with pCO2 462 

sensors to capture its variability throughout the year.  463 

Ship-track measurements of underway pCO2 in SOOP are far more efficient in 464 

constraining Indian Ocean CO2 fluxes than time-series data from fixed moorings. The maximum 465 

flux uncertainty reduction achievable by installing pCO2 sensors in the existing RAMA and 466 

OMNI mooring is limited to 30% in different seasons. However, a single track SOOP can reduce 467 

the current uncertainty by approximately 62%, albeit with OSSE has been conducted during 468 

January and July. SOOP covers a larger area, while mooring represents only selected stationary 469 

locations. Given that the equilibration time scale of surface ocean pCO2 with the atmosphere is 470 

few weeks to months, the pCO2 instruments attached to mooring may not capture the carbon 471 

information of far away distances. However, ships can measure all the Indian Ocean regions over 472 

a shorter timescale, providing invaluable knowledge. On the other hand, considering the 473 

relatively smooth operation and implementation of Bio-Argo floats, one may consider that 474 

around 20 Bio-Argos are still the right choice over installing mooring based pCO2 sensors. 475 



However, a caveat is that the Bio-Argo floats can detect the pH while mooring can directly 476 

measure the pCO2. While Bio-Argos can give a profile of pH up to 1000-2000m range in the 477 

ocean that is additional merit over SOOP. This study provides first-ever guidelines for initiating 478 

future pCO2 measurements in the Indian Ocean. 479 

 480 

 481 
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 798 

Figure 1: Seasonal mean sea-to-air CO2 fluxes from the model shown as mole m-2 yr-1. 799 
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 805 

Figure 2: Seasonal mean surface ocean dissolved inorganic carbon (DIC) from the model shown 806 

as mole m-3 807 
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 809 

Figure 3: Eight oceanic bio-provinces (R1-R8) are denoted with different colors, as in Sreeush 810 

et al. (2019) overlaid with (a) RAMA (red) + OMNI (cyan) mooring locations (b) selected 811 

potential SOOP tracks based on satellite data of Tournadre (2014). 812 
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 814 

 815 

Figure 4. The seasonal cycle of area integrated sea-to-air CO2 flux over eight bio-provinces 816 

calculated from the assimilated sea-to-air CO2 flux of Valsala and Maksyutov, (2010). The 817 

standard deviations are calculated from the interannual variability of each month of CO2 flux 818 

from 1980 to 2004. Units are in Pg C yr-1. 819 
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 833 

Figure 5. RMSE of dissolved inorganic carbon (DIC) for a given perturbation of 1 Pg C sink 834 

over each bio-provinces injected for all months and produced for the last year of the model 835 

output. Units are in μmol kg-1. 836 
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 862 

Figure 6. RMSE of dissolved inorganic carbon (DIC) for the given error perturbations in the 863 

fluxes over each bio-provinces (see text for details). The values at mooring locations are used to 864 

construct the observational error variances in the inversion. Error perturbation is given as the 865 

standard deviation of CO2 flux for each bio-provinces for each month. Units are in μmol kg-1. 866 
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 869 

 870 

Figure 7. The seasonal cycle of observational error variances implied in the inversion at a 871 

mooring location at the central Arabian Sea (65oE, 15oN) is shown as an example. Units are in 872 

(μmole kg-1)2. 873 
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 875 

Figure 8. (a-d) Rank of RAMA+OMNI moorings identified for each season for surface ocean 876 

pCO2 observation with deep blue (red) represents best (least) valued mooring for pCO2 877 

observations from this OSSE experiment. 878 
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 881 

Figure 9: Same as Figure 8 but for Bio-Argos deployed at regular 10ox10o intervals. 882 
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 895 

Figure 10: The percentage uncertainty reduction (UR) of (a) RAMA+OMNI moorings and (b) 896 

Bio-Argos. 897 
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 899 

Figure 11. (a-b) The ship tracks are indicated with star symbols. The colors are given for 900 

discerning various tracks. The rank of each track in total UR of sea-to-air CO2 fluxes during 901 

January and July are written close to the tracks. (c-d) Corresponding CO2 flux UR (in %) 902 

corresponding to each rank. 903 
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Figure 12: Locations of recommended RAMA+OMNI moorings and SOOP ship-tracks by the 907 

OSSE for the surface ocean pCO2 measurements. The moorings are selected based on the ranks 908 

within the Arabian Sea, Bay of Bengal, equatorial Indian Ocean, and south subtropical Indian 909 

Ocean for all four seasons. The black dot represents mooring location, the number of circles 910 

represents a range of ranks to which each mooring belongs as re-ordered within each basin, and 911 

different seasons are indicated in different colors. The star dots represent the recommended 912 

SOOP ship-tracks. 913 
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