
1.  Introduction
Accurately determining the carbon exchange between the atmosphere, land, and ocean over preindustrial 
and industrial times is critical for understanding how humans have perturbed the Earth’s carbon cycle (Re-
splandy et al., 2018). The prevailing understanding of the global carbon cycle suggests that in preindustrial 
times about 0.9 GtC/yr was transferred from land to the ocean (Cole et al., 2007; Meybeck, 1993), of which 
0.2 GtC/yr was buried in marine sediments (Sarmiento & Sundquist, 1992) and 0.7 GtC/yr outgassed to 
the atmosphere (Ciais et al., 2013). Superimposed on these preindustrial carbon fluxes are anthropogenic 
perturbations consisting of a 0.1 GtC/yr increase in the carbon flux from land to ocean via rivers (Regnier 
et al., 2013) and the oceanic uptake of anthropogenic CO2 of 2.3 ± 0.7 GtC/yr as of the 2000s (Sarmiento 
& Gruber, 2006). Taken together, the inferred net oceanic CO2 uptake of 1.6 ± 0.7 GtC/yr (consisting of 0.7 
GtC/yr outgassing of natural CO2 and 2.3 ± 0.7 Gt/yr anthropogenic CO2 uptake) is considered to be in 
agreement with estimates of the contemporary air-sea CO2 flux derived from the observed oceanic partial 
pressure of CO2 (pCO2) (1.4 ± 0.5 GtC/yr as of 2000) (Landschützer et al., 2017) and ocean inverse models 
(1.7  ±  0.4 GtC/yr as of 1995–2000) (Gruber et  al.,  2009). However, this understanding of carbon fluxes 
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is based on limited observations at the world’s major river mouths (Cole et al., 2007) and in the coastal 
ocean (Laruelle et al., 2013, 2014), and therefore potentially misses carbon fluxes occurring in the world’s 
coastal oceans away from major river mouths and in poorly sampled coastal regions (Bauer et al., 2013; 
Duarte, 2017).

Along the coastal margins, carbon is exported laterally from estuaries, mangroves, salt marshes, and intertid-
al freshwater forests (Abril et al., 2013; Alongi & Mukhopadhyay, 2014; Bauer et al., 2013; Chen et al., 2018; 
Cole et al., 2007; Maher et al., 2013; Moore, 2010; Rosentreter et al., 2018; Szymczycha et al., 2014). These 
coastal ecosystems can fix CO2 from the atmosphere, and supply carbon to the ocean either by direct export 
of organic materials (Duarte, 2017) or through submarine groundwater discharge (SGD) (Chen et al., 2018). 
A large fraction of SGD is driven by tides, waves, and density-driven pressure gradients that pump seawa-
ter into coastal aquifers and sediments, where the mixture of meteoric and saline groundwater loads both 
organic and inorganic carbon derived from soils and vegetation in coastal areas (Moore, 2010). Previous 
studies estimated SGD-driven export of 0.19–0.84 GtC/yr (Cole et al., 2007; Szymczycha et al., 2014) and the 
export from coastal vegetation of 0.1–1.9 GtC/yr (Duarte, 2017). The large uncertainties in these estimates 
reflect challenges associated with scaling regional assessments of carbon fluxes in the highly complex and 
heterogeneous coastal margins to the global scale. Reconciling these potentially large coastal margin carbon 
fluxes with the balanced carbon budget is a significant challenge for the global carbon cycle community, 
and new sources of information are needed that can shed light on the global magnitude of carbon fluxes 
from land into the ocean.

Stable carbon isotopes potentially provide a strong geochemical constraint on terrestrial carbon fluxes to the 
ocean. Carbon derived from terrestrial plants is highly depleted in 13C (δ13C values ranging from −34‰ to 
−10‰) (Marwick et al., 2015; Peterson & Fry, 1987) compared to seawater (δ13C values ranging from −1‰ 
to 2‰) (Schmittner et al., 2017), where δ13C is defined as δ13C= ((13C/12C)sample/(13C/12C)standard −1)×103 with 
the Vienna Pee Dee Belemnite standard. Previous studies have used the isotopic signature of organic and 
inorganic carbon in seawater to determine terrestrial carbon fluxes to the ocean on regional scales (Hedges 
et al., 1997). Once exported to the ocean, terrestrial organic carbon is respired by heterotrophic organisms, 
converting it to dissolved inorganic carbon (DIC) with low δ13C values on timescales spanning from a few 
years (Anderson et al., 2019; Manizza et al., 2009) to a century (Meybeck, 1993). DIC derived from terrestrial 
sources is also depleted in 13C because a large fraction of it originates from the respiration of land plant ma-
terial in terrestrial water reservoirs, rivers, and soils (Marwick et al., 2015; Peterson & Fry, 1987). The strong 
imprint of terrestrial carbon fluxes on the global oceanic 13C/12C distributions (Quay et al., 2003; Sonnerup 
& Quay, 2012), together with the long air-sea δ13C equilibrium timescale of a decade (Galbraith et al., 2015) 
that exceeds the coast-open ocean water exchange timescales of days to years (Liu et al., 2019), can serve as a 
constraint on the magnitude of land-to-ocean carbon fluxes on basin to global scales. However, constraining 
the land-derived carbon export requires accounting for the convolved effects of ocean circulation, marine 
biological cycling, and air-sea exchange (Jahn et al., 2015; Krakauer et al., 2006; Lynch-Stieglitz et al., 1995; 
Schmittner et al., 2013), all of which are integrated over multi-millennial timescales and superimposed by 
the anthropogenic input of low δ13C carbon dioxide from fossil fuels (Eide et al., 2017; Gruber et al., 1999; 
Sonnerup et al., 2007).

Here, we develop a numerical model of the global oceanic cycling of stable carbon isotopes, and use avail-
able observations of DIC (Lauvset et al., 2016) and the δ13C of DIC (Schmittner et al., 2017) to estimate the 
total flux of terrestrial carbon to the ocean. The total flux of terrestrial carbon includes prescribed riverine 
and airborne carbon inputs (Lamarque et al., 2010; Mayorga et al., 2010; Meybeck & Ragu, 2012) and addi-
tional sources of terrestrial carbon to the ocean through SGD and from coastal vegetation, which collective-
ly we refer to as “coastal margin” inputs. We simultaneously optimize the magnitude and δ13C value of the 
globally integrated coastal margin inputs, and the model parameters controlling air-sea CO2 exchange and 
inorganic carbon burial into marine sediments, to determine the global input of terrestrial carbon to the 
ocean that is consistent with stable carbon isotope observations. We furthermore explore the uncertainty 
associated with our estimates using a series of sensitivity experiments and Monte Carlo simulations that 
address several key model assumptions and uncertainties.

Although we provide a first global estimate for the terrestrial carbon inputs and the δ13C signature of the 
coastal margin inputs, our estimates come with several caveats. First, since the global database of DIC and 
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the δ13C of DIC only constrains total terrestrial carbon inputs, any uncertainties in the prescribed riverine 
and airborne carbon inputs can propagate into the estimated coastal margin inputs. Therefore, the total 
terrestrial carbon inputs have a lower uncertainty than the estimates for the coastal margin inputs alone. 
Second, our estimate for terrestrial carbon inputs is based on the amount of land-originated carbon that best 
explains the large-scale (>200 km) distributions of carbon isotopes in the ocean. The model does not fully 
resolve coastal or shelf processes, nor does it include a portion of land-derived organic carbon that is buried 
in coastal sediments (Bianchi et al., 2017; Cai, 2011) without affecting large-scale carbon isotope distribu-
tions. Finally, our model assumes a preindustrial steady-state carbon cycle, and thus any imbalanced fluxes 
(e.g., transient carbon burial in marine sediments due to slow adjustment to sea level changes) (Cartapanis 
et al., 2018; Milliman, 1993) are not captured in our estimates.

This study is organized as follows: In Section 2, we describe the ocean carbon isotope model and the model 
parameters to be optimized. In Section 3, we describe the optimization methods and the carbon isotope 
observations used for the optimization. In Section 4, we present our optimal estimates for the carbon flux-
es, and show how the optimal model is consistent or inconsistent with previous estimates of the air-sea 
δ13C disequilibrium of CO2 and the globally integrated air-sea CO2 exchange in the open ocean and coastal 
ocean. In Section 5, we discuss the uncertainties of the model and the estimated carbon fluxes. In Section 6, 
we summarize our results and offer concluding remarks.

2.  The Ocean Carbon Cycle Model
2.1.  The Ocean Circulation and Biogeochemistry Model

We use the observationally constrained circulation inverse model (OCIM) of DeVries  (2014) as a basis 
for building our stable carbon isotope model. The OCIM is based on a simplified version of the primitive 
equations using hydrostatic, rigid lid, and Boussinesq approximations (DeVries & Primeau, 2011). Nonlin-
ear momentum advection is ignored, following the large-scale geostrophic approximation (Maier-Reimer 
et al., 1993), but its effects are parameterized by optimized corrections to the horizontal momentum equa-
tions. The horizontal resolution of the model is 2° × 2° and the vertical resolution ranges from 36 m near the 
top to 633 m near the bottom with a total of 24 vertical layers. Sub-grid scale mixing processes are param-
eterized with the isopycnal and diapycnal diffusivities of 103 m2 s−1 and 10−5 m2 s−1, respectively. The KPP 
scheme (Large et al., 1994) is used to parameterize vertical mixing in the surface mixed layer. The dynamical 
model assimilates observations of temperature, salinity, CFC-11 and radiocarbon, as well as reanalysis data 
of heat and freshwater fluxes, sea-surface height and wind stress to produce ocean transport estimates that 
are optimally consistent with the observations. The circulation model was previously used to simulate the 
oceanic uptake and storage of anthropogenic carbon, which was shown to be consistent with previous in-
dependent estimates (DeVries, 2014).

We embed a simple ocean biogeochemistry model into the OCIM. The biogeochemistry model is based on 
the OCMIP-II protocol (Najjar et al., 2007) and is similar to the one used in Kwon et al. (2012) and Kwon and 
Primeau (2008). There are six prognostic biogeochemical tracers, which include phosphate (PO4), semi-la-
bile dissolved organic phosphorus (DOP), alkalinity, DI12C, DI13C, and semi-labile dissolved organic carbon 
(DOC) (Note that DO12C is linearly scaled with DOP with a constant stoichiometric ratio of C:P and hence is 
not a prognostic tracer in the model whereas DO13C is a prognostic tracer). The isotope fractionation factors 
used in this study are from previous lab- and field-based studies that determined the fractionation during 
air-sea gas exchange (Zhang et al., 1995) and during marine photosynthesis (Goericke & Fry, 1994). Full 
model equations are provided in Text S1.

The circulation and biogeochemistry models are all based on the annually averaged climatological fields 
and fluxes. The lack of explicit representation of the seasonal cycle is an important caveat of this study, 
because the annual mean ocean circulation model that best fits the observations inevitably accompanies 
sea surface temperatures (SST) that are biased toward the seasons where deep and intermediate water form 
and subduct into the ocean’s interior (DeVries, 2014; DeVries & Primeau, 2011). To address this issue, our 
“Standard” model (Table S1) replaces the modeled SST field with the annual mean SST from the Met Of-
fice Hadley Center’s sea surface temperature data set (HadISST) (Rayner et  al.,  2003) when calculating 
the equilibrium fractionation factors for carbon isotopes, but retains the model SST when calculating CO2 

KWON ET AL.

10.1029/2020GB006684

3 of 25



Global Biogeochemical Cycles

solubility. The reasoning behind this is that the equilibrium fractionations for the δ13C of DIC are likely to 
be influenced by the annual mean SST due to the long (∼10 years) air-sea equilibrium timescales of δ13C-
DIC (Galbraith et al., 2015). On the other hand, the solubility of CO2 is more heavily influenced by the SST 
averaged over the water mass subduction period (winter), due to the shorter air-sea equilibrium timescales 
of ∼6 months for 12C. We explore the influence of these assumptions with sensitivity experiments using 
different SST fields in the model (Text S2 for further details).

2.2.  River and Aerosol Carbon Inputs

The model includes the air-borne deposition of organic and black carbon (Lamarque et al., 2010) and the es-
timates of riverine transport of organic and inorganic carbon (Mayorga et al., 2010; Meybeck & Ragu, 2012). 
Three forms of carbon are exported from land to ocean via rivers and through aerosol deposition: DOC 
and DIC by rivers, and particulate organic carbon (POC) by rivers and aerosols. The riverine DOC and 
POC exports are obtained from the second phase of the Global Nutrient Export from Watersheds (NEWS2) 
model (Mayorga et al., 2010) which integrate to 0.17 GtC/yr and 0.14 GtC/yr, respectively. The riverine DIC 
flux is computed using the GEMS-GLORI database (Meybeck & Ragu, 2012) that contains DIC measure-
ments for 251 major rivers. For rivers that have no DIC measurements (n = 1,162 rivers total), we assume 
a DIC concentration of 770 mmol/m3, based on the log-transformed average of DIC measurements in the 
GEMS-GLORI database. This simplification does not account for spatial dependency of DIC fluxes on rock 
types (Lacroix et  al.,  2020), but yields a globally integrated riverine DIC flux of 0.30 GtC/yr, similar to 
0.32 GtC/yr obtained when accounting for this factor (Ludwig et al., 1996). The riverine carbon sources 
are assumed to be time-invariant and occur in the ocean grids adjacent to river mouths at the sea surface 
(Figure S1). The atmospheric deposition of organic and black carbon follows Lamarque et al. (2010) which 
varies spatially and temporally. The globally integrated airborne fluxes are considerably smaller than the 
riverine fluxes, amounting to only 0.01 GtC/yr as of 1780 and 0.02 GtC/yr as of 2016.

The isotopic compositions (δ13C) and oceanic cycling of the different forms of terrestrial carbon are dis-
tinct in the model. The isotopic signatures of riverine carbon fluxes are globally uniform and fixed at 
δ13C = −27‰ for DOC, δ13C = −30‰ for POC, and δ13C = −15‰ for DIC following Marwick et al. (2015) 
and Peterson and Fry (1987) (see Text S2 for the model sensitivity to the prescribed δ13C values). Once ex-
ported to the ocean from river mouths, riverine DOC is transported by ocean circulation and decomposed 
back to DIC with an e-folding time of 8 years (Manizza et al., 2009). Discharged riverine POC is assumed 
to be deposited in the bottom layers at river mouths and completely decomposed to DIC there. Due to this 
assumption, refractory POC that is exported to the open ocean and buried in marine sediments (Blair & 
Aller, 2012; Galy et al., 2015) is not represented in the model. The cycling of airborne POC (δ13C = −30‰) 
is highly uncertain, so we make an assumption that the airborne POC flux sinks vertically to the bottom 
layer of the ocean where it is remineralized completely. Riverine DIC is mixed with oceanic DIC as soon 
as it is discharged, and is then subject to biological cycling, air-sea gas exchange, chemical reactions, and 
sedimentary burial. We do not consider spatial variability in the δ13C values of river-derived carbon, which 
could vary depending on the vegetation and rock types in river catchments and the influence of petrogenic 
organic carbon (Galy et al., 2015; Ludwig et al., 1996; Murgulet et al., 2018). These variations are likely im-
portant for local-scale carbon isotope budgets, but are less important for the global and basin-scale budgets 
considered in our study.

2.3.  Coastal Margin Carbon Inputs

Relative to the riverine and airborne inputs to the ocean, the magnitude and geographic distributions of 
coastal margin carbon inputs are highly uncertain. Because SGD-driven carbon inputs and the lateral car-
bon export from coastal vegetation are not independent of each other, we lump these two carbon sources 
together as a single carbon source, collectively called “coastal margin” carbon inputs. The depth range for 
SGD has been previously constrained as the top ∼200 m of the water column (Kwon et al., 2014), consist-
ent with the fact that most of coastal aquifers outcrop within the continental shelf (Taniguchi et al., 2002). 
Moreover, the coastal margin carbon inputs are likely to be in a form of DIC or easily degradable organic 
carbon (Abril et al., 2013; Cai, 2011; Chen et al., 2018; Dorsett et al., 2011; Maher et al., 2013). Therefore, 
we assume that coastal margin carbon inputs occur as DIC within the top 217 m (top five vertical layers) in 
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model ocean grid cells adjacent to the land grid cells, excluding those around Antarctica. The coastal mar-
gin-derived DIC is then assumed to undergo the same physical and biogeochemical processes as riverine 
DIC, except that the coastal margin δ13C value is optimized instead of being prescribed in the model. Some 
of the assumptions made for the coastal margin inputs, as well as those for the riverine carbon inputs, are 
explored in Section 5.3 and in Text S2.

2.4.  Carbon Burial in Sediments

We implement a simple steady-state representation for the sedimentary burial of inorganic carbon. A uni-
form DIC flux is removed from the ocean bottom layer where waters are supersaturated with respect to cal-
cite. The saturation state with respect to calcite is determined using the GLobal Ocean Data Analysis Project 
(GLODAPv2) data (Lauvset et al., 2016), which shows continental shelves and the Atlantic mid ocean ridges 
as major regions of CaCO3 burial. This carbonate burial term is needed in order to balance the carbon export 
originating from weathering of carbonate minerals on land (Cartapanis et al., 2018; Milliman, 1993). The 
model does not explicitly represent the burial of organic carbon, but the potential effect of organic carbon 
burial on our estimates, as well as the uncertainty arising from the steady-state assumption, are discussed 
in Text S2.

2.5.  Other Considerations

No terrestrial sources of PO4 are assumed in the model except for an idealized experiment using riverine 
PO4 inputs (Mayorga et al., 2010) (see Text S2). The ocean alkalinity is not affected by the terrestrial carbon 
fluxes, but instead is fixed at the model solution optimized against the contemporary observations (Lauvset 
et al., 2016) throughout this study. Sub-aerial volcanism is also not explicitly simulated in the model, but 
its isotopic signature is implicitly accounted for in the atmospheric composition (which is imposed as a 
boundary condition). Because sub-aerial volcanism is mostly balanced by silicate rock weathering (Burton 
& Sawyer, 2013), whose isotopic signature imprints on the riverine DIC fluxes, the isotopic effects of these 
processes are implicitly included in the model.

2.6.  Model Simulations

A valuable feature of our model is that the ocean biogeochemistry model directly solves for a preindustrial 
steady-state solution using Newton’s method instead of taking a traditional time-stepping approach (Kwon 
& Primeau, 2008). With this technique, steady-state solutions for all biogeochemical tracers are obtained 
for a given ocean circulation field within a few minutes of computation using a single processor computer. 
Starting from this preindustrial steady-state solution, we integrate the model’s governing equations from 
1780 to 2016 using the historical atmospheric CO2 change (see Section 3.1), which takes several hours of 
computing time. This computational efficiency allows us to perform a formal optimization experiment that 
requires hundreds of iterations for an optimal solution, and to perform additional experiments to explore 
the sensitivity of our model to various assumptions (Section 5 and Text S2). The ocean circulation and bi-
ological source/sink are held fixed in all simulations at the present-day climatological-means. Hence, the 
model simulations should be compared with the climatological-mean values from observations.

2.7.  Model Parameters to be Optimized

We optimize all of the model parameters relevant to the coastal margin carbon input, and the carbon ex-
change between the ocean and atmosphere and between the ocean and marine sediments, which include: 
(i) a parameter representing the input of carbon to the ocean from coastal margins (excluding Antarctica), 
which together with the prescribed riverine and airborne fluxes, captures the total carbon fluxes from land 
to ocean during the preindustrial era, (ii) a scaling parameter for the temporal evolution of the coastal 
margin carbon fluxes to the ocean from 1780 to 2016, assumed to be linearly related to the atmospheric 
growth of CO2 (Keeling et al., 2005; MacFarling Meure et al., 2006), (iii) two parameters representing the 
preindustrial δ13C value for coastal margin fluxes and its temporal change during the industrial time, (iv) 
a linear scaling parameter to the air-sea CO2 transfer velocity formulated by Wanninkhof (1992), and (v) a 
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parameter, which dictates the rate of sedimentary burial fluxes of inorganic carbon in the ocean (see Text S1 
for model formulations with the parameters).

These parameters are optimized simultaneously. The simultaneous consideration of the key components 
of the carbon cycle is essential for this study, because the carbon fluxes and some of the model parameters 
are correlated to each other. Another advantage of the simultaneous consideration is that our optimized 
parameter values can be compared against estimates from previous independent studies to ensure that our 
optimization gives reasonable results, while at the same time allowing for more degrees of freedom in the 
optimization.

3.  Carbon Isotope Data and Model Optimization
3.1.  Observed Atmospheric CO2 and the δ13C of CO2

The atmospheric 12CO2 follows the industrial change, according to the spline fits to the ice core meas-
urements made at Law Dome, Antarctica from 1780 to 1958 (MacFarling Meure et al., 2006) and to the 
direct atmospheric measurements made at Mauna Loa observatory and South Pole from 1959 to 2016 (Keel-
ing et al., 2005). Annual means are calculated using the smoothed monthly mean atmospheric 12CO2 data 
from the two stations. We average the two annual-mean values to obtain the global-mean atmospheric CO2. 
For the isotopic composition of atmospheric CO2, we first compute the annual-mean δ13C values using 
the smoothed monthly mean data from Mauna Loa observatory and South Pole over the time period of 
1980–2016, and then we take the average of the two stations to represent the global-mean values. In order 
to interpolate the atmospheric δ13C observation to the times earlier than 1980, we combine the pairs of the 
atmospheric 12CO2 and the δ13C of atmospheric CO2 for the time period of 1980–2016 with preindustrial 
mean values of 12CO2

air = 280 ppm and δ13C = −6.5‰ (Rubino et al., 2013) for a year of 1780. The total 38 
pairs are used to determine the second order polynomial function relating the atmospheric δ13C with 12CO2, 
i.e., δ13Cair = 2.26–0.0417 × (12CO2

air) + 3.75 × 10−5 × (12CO2
air)2, where (12CO2

air) is atmospheric CO2 in ppm 
and δ13Cair is the δ13C of atmospheric CO2 in ‰, which fits the observations well with R2 > 0.99.

3.2.  Observations of the δ13C of DIC

We use a global database of the water-column δ13C of DIC compiled by Schmittner et al. (2017). The data 
covers major parts of the global ocean with a time span between 1972 and 2016. To facilitate the model-ob-
servation comparison, we map the observed δ13C of DIC onto our 2° × 2° model grid cells by averaging 
all data points within each grid cell at each year. This gridding process condenses the total number of 
observation points from n = 26,750 to n = 17,864. As a quality control, we remove the observation grid 
cells with a standard error exceeding 0.05‰, further reducing the number of observation grid cells by 11% 
to n = 15,932. With this exclusion, 75% of the observation points have standard errors less than 0.01‰. To 
obtain a climatological mean distribution, we average the gridded data over time such that each grid cell has 
an averaged year of data collection and an averaged δ13C value (Figures 1a and 1b). This temporal averaging, 
resulting in the number of grid cells n = 14,561, facilitates the comparison with the model that has no sea-
sonal variability. Finally, also due to the model’s inability to resolve the seasonal cycle, we exclude observa-
tions falling within the winter mixed layer, determined using the World Ocean Atlas 2013 (WOA) database 
(Garcia et al., 2014). The resulting subsurface grid cells (n = 12,635) are used for model optimization.

Although not used for constraining the model-based estimates, surface measurements of δ13C-DIC from 
the same global database (Schmittner et al., 2017) are used when estimating the isotopic disequilibrium of 
CO2. The preprocessing procedure for surface measurements is the same as the one for subsurface meas-
urements except that we do not remove the observation grid cells with a standard error exceeding 0.05 ‰ 
due to large seasonal variability in high-latitude surface δ13C values (Becker et al., 2018; Gruber et al., 1998; 
Quay et al., 2017; Racapé et al., 2010).

It is important to keep in mind that uncertainties on individual δ13C-DIC values are on the order of 0.1‰–
0.2‰ (Schmittner et al., 2013). The averaging and quality-control that we applied to the data can reduce 
but not eliminate these uncertainties, especially those that are due to intercalibration issues. Thus, the 
model-observations misfits of ∼0.19‰ (see below) could be partly due to observational errors, rather than 
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model errors. Nonetheless, for purposes of this study we assume that the observations, when suitably av-
eraged, can accurately capture the true large-scale distribution of δ13C-DIC in the ocean, and interpret the 
large-scale misfits between the model and observations as due to model imperfections.

3.3.  Model Optimization

Our optimization takes two steps. First, we use the globally gridded datasets of PO4, alkalinity and DI12C 
to optimize ocean biogeochemical model parameters following Kwon and Primeau (2008). The PO4 data is 
taken from the WOA (Garcia et al., 2014) and the alkalinity and DI12C data are adopted from the GLODAPv2 
(Lauvset et al., 2016). The gridded climatological mean data are linearly interpolated onto our model grid 
cells to allow direct comparisons with model solutions. We optimize all of the uncertain biogeochemistry 
model parameters simultaneously using a formal optimization algorithm implemented in FMINSEARCH 
in MATLAB (i.e., the unconstrained Nelder-Mead simplex direct search method of Lagarias et al., 1998). 
The resulting model solutions have volume-weighted root mean squared errors (RMSEs) of 0.18 μmolkg−1 
for PO4, 14 μmolkg−1 for alkalinity, and 20 μmolkg−1 for DI12C. We neglect terrestrial carbon inputs in this 
step because they have very small effects on the oceanic storage and gradients of DI12C, relative to biogeo-
chemical processes.

In the second step of our optimization, we fix the biogeochemical parameters at the optimal values found 
in the first step, and use the observations of DI12C (Lauvset et al., 2016) and the δ13C of DIC (Schmittner 
et al., 2017) to optimize the parameters listed in Section 2.7. The δ13C in DIC provides the strongest con-
straint on land-to-ocean carbon fluxes, because the diluting effect on the δ13C of DIC by terrestrial carbon 
inputs (Quay et al., 2003; Sonnerup & Quay, 2012) is largely balanced by the oceanic enrichment of δ13C 
during air-sea CO2 exchange (Lynch-Stieglitz et al., 1995; Schmittner et al., 2013). Stable carbon isotopes 
are also best suited to constrain the land-derived carbon fluxes to the ocean due to slow air-sea equilibrium 
timescales that allow its isotopic signature to be imprinted in the large-scale distribution of δ13C-DIC in 
the open ocean. On the other hand, DI12C provides a weak but complementary constraint on the terrestrial 
carbon inputs to the ocean and the oceanic carbon budget due to a relatively short air-sea equilibrium times-
cale (Galbraith et al., 2015) and missing isotopic fractionation effects.

The cost function, a function of the model parameters, is written as

 
 

 
 

 

 

     
 

     

2 213 mod 13 obs mod obs
DIC DIC

2 2
13 obs 13 obs obs obs

DIC DIC

vol vol DIC DIC
CF 0.5 0.5 ,

vol vol DIC DIC

C C

C C
� (1)

where vol is the volume of the model grid cells and the angle brackets represent the volume-weighted global 
averages for the tracers. The superscripts mod represents the model and obs represents the observations. 
While the modeled DIC is taken from a year of 2002 as in the observation (Lauvset et al., 2016), the modeled 
δ13C are subsampled from the same locations and times as in the observations before calculating the cost 
function. A formal optimization algorithm based on the unconstrained Nelder-Mead simplex direct search 
method (Lagarias et al., 1998) is used to find the optimal parameter values that minimize the cost function. 
Hence, no a priori assumptions nor bounds for the parameter values are imposed in this optimization. The 
optimization starts from an initial condition of no coastal margin carbon inputs. While simulations are 
iterated to reach an optimal solution, we save the evolving model input parameter values (chosen by the 
optimization algorithm) and associated model solutions for uncertainty estimation.
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Figure 1.  Observed and optimized δ13C in DIC. (a) and (b) Observations (Schmittner et al., 2017) gridded onto model grid cells showing (a) the horizonal 
distribution at 317 m and (b) the zonally averaged vertical section from the North Atlantic to the Southern Ocean and to the North Pacific. The observation 
period is 1972–2016. (c) and (d) The simulated δ13C of DIC from the optimized model for the corresponding years to the observations. (e) and (f) The simulated 
δ13C of DIC from the model that is identical to the optimized model except that coastal margin carbon inputs are set to zero (i.e., terrestrial carbon inputs 
include only riverine and airborne inputs). (g) and (h) Contribution from the coastal margin carbon input (i.e., the difference between the optimized model and 
the simulation without the coastal margin carbon input).
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3.4.  Uncertainty Estimation

We provide error estimates based on both the results of the optimization experiment, and based on a more 
comprehensive assessment of the uncertainty in a series of Monte Carlo simulations. Optimization-based 
uncertainties are calculated from the set of model solutions within the parameter space explored by the 
optimization that results in a 1% increase in the value of the cost function (Equation 1). This is a some-
what ad-hoc measure of uncertainty that tells how well-defined the cost function minimum is for the pa-
rameter space explored during the optimization procedure. We also attempt a more formal uncertainty 
estimate using a series of Monte Carlo simulations to explore the influence of various model assumptions 
and parameters on our results. These experiments address uncertainties in the preindustrial δ13C value for 
atmospheric CO2, the equilibrium fractionation factors for air-sea CO2 exchange, the δ13C values of riverine 
carbon inputs, the air-sea CO2 exchange rate, the sea surface temperature used in the calculation of air-sea 
CO2 exchange, the photosynthetic fractionation factor for δ13C, the ocean circulation model, and the carbon 
burial rate (Table 1; Section 5.2). We also perform sensitivity experiments to assess the effect of varying 
the isotopic composition and lability of the coastal margin carbon inputs (Section 5.3). We also address 
uncertainties related to the representation of carbon burial, the isotopic composition of riverine carbon, 
the formulation of air-sea CO2 gas exchange, and the representation of industrial changes in coastal margin 
inputs (Section 5.4; Text S2).
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Input parameters Standard model Monte Carlo simulations References

Globally averaged air-sea CO2 
transfer velocity (cm/hr)

15.1 ± 2.5 [14.0 17.0] (Graven et al., 2012; Naegler 
et al., 2006; Sweeney et al., 2007; 

Wanninkhof et al., 2013)

SST for the equilibrium fractionation 
of 13C/12C during air-sea CO2 
exchange

HadISST1 HadISST1 (Rayner et al., 2003)

ERSSTv5 (Huang et al., 2017)

COBE-SST2 (Hirahara et al., 2014)

Equilibrium fractionation factors 
during air-sea CO2 exchange

αDIC←g = 1.4 × 10−5·T·fCO3–1.05 × 
10−4·T + 1.01053

αDIC←g = 1.4 × 10−5·T·fCO3–1.05 × 
10−4·T + (1.01053 ± 0.00005)

(Zhang et al., 1995)

Photosynthetic fractionation factors αOC←aq = −0.00935·log10([CO2]) + 
0.99626

αOC←aq = −0.00935·log10([CO2]) + 
0.99626

(Goericke & Fry, 1994)

αOC←aq = −0.017·log10([CO2]) + 
1.0034

(Popp et al., 1989)

αOC←aq = −0.01203·log10([CO2]) + 
1.00119

(Freeman & Hayes, 1992)

The δ13C values for riverine carbon 
inputs (‰)

DOC: −27 DOC: −27 ± 2 (Marwick et al., 2015; Peterson & 
Fry, 1987)POC: −30 POC: −30 ± 2

DIC: −15 DIC: −15 ± 2

Sedimentary burial of inorganic 
carbon (GtC/yr)

0.2 ± 0.1 [0.1 0.3]a (Milliman, 1993; Sarmiento & 
Sundquist, 1992)

Preindustrial δ13C value for 
atmospheric CO2 (‰)

−6.5 [−6.5 −6.3]b (Rubino et al., 2013)

Ocean circulation modelc ω2 CTL, ω2, ω4, KI, 2000, KI,600, (DeVries, 2014)

KV,1.5, γ0.27, P1, P2, P3
aBecause our model assumes a steady-state during the preindustrial era, the inorganic carbon burial implemented in the model is a portion that is balanced by 
terrestrial carbon inputs. Therefore, the previously reported range of 0.2–0.4 GtC/yr is adjusted to a balanced sink of 0.1–0.3 GtC/yr. bThe range is bracketed by 
a preindustrial mean value and a value as of 1780, both of which are constrained by Rubino et al. (2013). cThe suite of ocean circulation models have slightly 
different temperature and salinity as well as different ocean mixing, leading to different surface productivity and carbonate chemistry in seawater.

Table 1 
Input Parameter Values Used for Monte Carlo Simulations and the Comparison With Those for the Standard Model (Red Fonts Indicate Values Obtained From 
Optimization)
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4.  Carbon Fluxes in the Optimized Model
4.1.  Overview of Results from the Optimized Model

Optimizing the parameters of our model (Figures 1 and 2) yields a globally integrated terrestrial carbon 
input to the ocean of 1.4 ± 0.2 GtC/yr for the preindustrial and industrial era, where the uncertainty is 
based on the cost function criterion defined in Section 3.4. The terrestrial carbon source of 1.4 ± 0.2 GtC/yr 
exceeds the prescribed riverine carbon inputs of 0.61 GtC/yr (Mayorga et al., 2010; Meybeck & Ragu, 2012), 
as well as previous estimates of the total terrestrial carbon input to the ocean which average around 0.9 GtC/
yr (Cole et al., 2007). The estimated coastal margin carbon input of 0.8 ± 0.2 GtC/yr (the difference between 
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Figure 2.  Observed and simulated DI12C from the optimized model. (a) and (b) Observations (Lauvset et al., 2016) gridded onto model grid cells showing (a) 
the horizontal distribution at 317 m and (b) the zonally averaged vertical section from the North Atlantic to the Southern Ocean and to the North Pacific. The 
observation is referenced to 2002. (c) and (d) DIC simulated from the optimized model as of 2002. (e) and (f) Differences between the model and observations, 
that is, (c) minus (a) is shown in (e), and (d) minus (b) is shown in (f).
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total carbon inputs and prescribed riverine inputs) is also higher than estimates based on meteoric ground-
water fluxes and uncertainties in the prescribed riverine carbon inputs (Raymond, 2007), which together 
may account for up to 0.4 GtC/yr (Cole et al., 2007). The excess is likely driven by lateral export of carbon 
from estuaries, mangroves, salt marshes, and intertidal freshwater forests (Abril et al., 2013; Alongi & Muk-
hopadhyay, 2014; Bauer et al., 2013; Chen et al., 2018; Cole et al., 2007; Maher et al., 2013; Moore, 2010; 
Rosentreter et al., 2018; Szymczycha et al., 2014). In fact, the optimized δ13C value for the coastal margin 
input of −(26 ± 5)‰ falls within the observed δ13C of groundwater-driven carbon fluxes from coastal wet-
lands, which span −(14–30)‰ (Abril et al., 2013; Maher et al., 2013). These 13C-depleted coastal margin 
inputs are necessary to match the observed δ13C of DIC, which in the model would be 0.2‰–0.3‰ higher 
than observed throughout the global ocean without the coastal margin input (Figures 1g and 1f; see also the 
discussion in Section 5.1).

Although our result is based only on achieving maximal consistency with observed oceanic DIC and the sub-
surface δ13C in DIC, the model solution is also consistent with other independent observational constraints. 
The model matches with observation-based estimates for the isotopic disequilibrium of CO2 (Figure 3; see 
Section  4.2) and for open-ocean air-sea CO2 fluxes (Figure  4; see Section  4.3). The model also captures 
the anthropogenic perturbations in the oceanic storage of anthropogenic carbon and in the surface-aver-
aged δ13C of DIC (Figure 5). The optimization results in a globally averaged air-sea CO2 transfer velocity 
of 15.1 ± 2.5 cm/hr, which compares well with previous estimates of 14–17 cm/hr (Sweeney et al., 2007; 
Wanninkhof et al., 2013), and a globally integrated sedimentary carbonate burial flux of 0.22 ± 0.06 GtC/
yr, which is within the range of 0.2–0.4 GtC/yr from previous estimates (Milliman, 1993; Sarmiento & Sun-
dquist, 1992). Our optimal model also infers negligible anthropogenic perturbations in terrestrial carbon 
inputs within the uncertainty range of ±0.2 GtC/yr, and also negligible anthropogenic perturbations in the 
δ13C value of the coastal margin input within ±5‰ (see a further discussion in Text S2). These results are in 
accord with previous analyses suggesting that opposing effects from climate change, land use change, dam 
constructions, and sea level rise have resulted in net near-zero perturbations to terrestrial carbon fluxes on 
a global scale (Duarte, 2017; Moore, 2010; Regnier et al., 2013). The overall consistency of our results with 
all of these independent constraints provides support for the realism of the model.

4.2.  The Isotopic Disequilibrium of CO2

The isotopic disequilibrium of gaseous CO2 is an important constraint on the oceanic carbon isotope budget 
(Quay et al., 2003; Sonnerup & Quay, 2012; Tans et al., 1993). The isotopic disequilibrium of CO2 is defined 
as the difference between the observed δ13C of atmospheric CO2 and the δ13C value that the atmospheric 
CO2 would have if the atmosphere were in equilibrium with the surface ocean (Gruber & Keeling, 2001; 
Quay et al., 2003). This isotopic disequilibrium of CO2 can be computed as “δ13C disequilibrium = δ13C in 
surface DIC - (εDIC−g)- δ13C in atmospheric CO2” where (εDIC−g) is the fractionation factor from gaseous CO2 
to DIC in ‰ (Quay et al., 2017). During the preindustrial era, 13C-depleted terrestrial carbon inputs to the 
ocean were balanced with 13C-enrichments at the sea surface, which set the isotopic disequilibrium of CO2 
(the δ13C disequilibrium hereinafter). During the industrial era, the δ13C disequilibrium has increased be-
cause the 13C-depletion in the atmospheric CO2 has outpaced the 13C-depletion in the oceanic surface DIC. 
Since the surface δ13C of DIC is not used as a constraint for the optimization (Section 3.2), the fidelity of our 
model results can be tested by comparing the simulated δ13C disequilibrium to previous observation-based 
estimates.

Our estimate for the globally averaged δ13C disequilibrium with area-weighting is 0.86 ± 0.06‰ as of 1995, 
which compares well with a previous estimate of 0.88 ± 0.1‰ (Quay et al., 2003) and an estimate using 
the global database of 0.88‰ (Schmittner et al., 2017) (Figure 3e). The comparison between the model and 
previous estimates becomes more challenging when we compare the globally averaged δ13C disequilibrium 
weighted by gross CO2 fluxes. Indeed, previous studies suggested globally averaged δ13C disequilibrium 
values ranging from 0.43‰ (Tans et al., 1993) to 0.60 ± 0.1‰ (Quay et al., 2003), and as high as 0.75 ± 0.1‰ 
(Quay et al., 2017), where the latter two estimates are referenced to the same time period of the 1990s. The 
large spread partly stems from the sensitivity of the estimate to the formulations of air-sea CO2 transfer 
rates and wind speed data used for the estimates. Using our optimized gross CO2 fluxes, our estimate of 
0.79 ± 0.06‰ as of 1995 agrees with the latest estimate of 0.75 ± 0.1‰ for the 1990s (Quay et al., 2017). 
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Figure 3.  The δ13C disequilibrium (δ13C disequilibrium = δ13C in surface DIC - (εDIC − g)- δ13C in atmospheric CO2 where (εDIC−g) is the fractionation factor 
from gaseous CO2 to DIC in ‰) estimated from the optimized model and observations. (a) The global averages weighted by gross air-to-sea CO2 fluxes. The 
model estimate (blue line) is compared with an estimate from Gruber and Keeling (2001) and Quay et al. (2003) (black diamond) and an estimate based 
on the observations (Schmittner et al., 2017) (red cross). (b)–(d) The gross CO2 flux-weighted averages for the Atlantic, Pacific, and Indian Oceans. (e) The 
global averages weighted by area. (f)–(h) The area-weighted averages for the Atlantic, Pacific, and Indian Oceans. (i)–(k) The zonally averaged air-sea δ13C 
disequilibrium for the Atlantic, Pacific, and Indian Oceans. The model estimates (blue squares) are compared with the estimates based on the observations 
(Schmittner et al., 2017) (red crosses). The global and basin-scale averages are made by subsampling the model at the locations where the observations 
(Schmittner et al., 2017) are available.
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Furthermore, our model-based estimate of 0.75 ± 0.06‰ as of 1990 also matches precisely with an estimate 
of 0.75 ± 0.1‰, a value estimated by Quay et al. (2003) by reassessing results of Gruber and Keeling (2001) 
with an updated δ13C value of atmospheric CO2 (Figure 3a). The consistencies in the globally averaged δ13C 
disequilibrium between this study and the independent observation-based estimates provides strong sup-
port for the results of the optimized model.

In addition to the agreement at the global scale, the optimized model also captures the general latitudinal 
patterns of the δ13C disequilibrium estimated using the global database (Schmittner et al., 2017) (Figures 3i–
3k) and those estimated in previous studies (Gruber & Keeling, 2001; Quay et al., 2003, 2017). There is a 
slight tendency for the model to overestimate δ13C disequilibrium in the low latitudes and underestimate 
it in the high latitudes, which could be due to the lack of seasonality in the model. Nonetheless, when the 
simulated δ13C disequilibrium is globally averaged with area-weighting or gross-flux-weighting, these small 
latitudinal biases are offset (Figures 3a and 3e). Thus, there is no indication of any systematic global bias 
arising from the lack of seasonality in the model.

4.3.  Air-Sea CO2 Exchange in the Open Ocean

The 1.2 ± 0.2 GtC/yr outgassing of natural CO2 estimated in the optimized model implies a net oceanic 
uptake of atmospheric CO2 of 1.1 ± 0.2 GtC/yr as of 2000, given our estimated anthropogenic CO2 uptake of 

KWON ET AL.

10.1029/2020GB006684

13 of 25

Figure 4.  Air-sea CO2 fluxes. (a) Globally integrated air-sea CO2 flux from the optimized model (green dashed line) is divided into the flux integrated over the 
data mask (blue dashed line) and the no-data mask (red dashed line). The black solid line shows the interannually varying estimate (Landschützer et al., 2017) 
based on oceanic pCO2 observations from 1982 to 2015 and the black circle shows the 1985–2015 climatological-mean value of the Landschützer et al. (2017) 
data set. The cyan dashed line shows the flux integrated over the no-data mask between 20°S and 20°N. Negative fluxes represent a CO2 uptake by the ocean 
while positive fluxes represent an outgassing to the atmosphere. The uncertainty shown in the color shading is equivalent to a 1% increase in the cost function 
value. (b) The plot from 1980 to 2016 in (a) is zoomed in. (c) The data (white) and no-data (red) masks used for the spatial integration in (a) and (b).
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2.3 GtC/yr (Figure 4). This global oceanic CO2 uptake is below previous estimates derived from the observed 
oceanic pCO2 (1.4 ± 0.5 GtC/yr as of 2000) (Landschützer et al., 2017) and ocean inverse models (1.7 ± 0.4 
GtC/yr as of 1995–2000) (Gruber et al., 2009). The discrepancy would be even larger if we compare our 
estimates with Watson et al. (2020) who suggested an upward revision of a previous estimate of 1.4 ± 0.5 
GtC/yr by 0.8–0.9 GtC/yr. Much of this difference can be attributed to the fact that the global integrations 
were made over different spatial areas. To demonstrate this, we compare the air-sea CO2 fluxes from our 
optimal model to that from a pCO2-based reconstruction of oceanic CO2 uptake (Landschützer et al., 2017) 
over the ocean area covered by the pCO2-based product. For this comparison, we linearly interpolated the 
1° × 1° data mask from Landschützer et al. (2017) to our 2° × 2° model grid cells (Figure 4c). We refer to 
the interpolated data mask as the "open ocean" mask, whereas the remaining ocean grid cells are referred to 
as the "coastal ocean" mask (which includes coastal margins and most of the Arctic Ocean). Over the open 
ocean, a preindustrial efflux of 0.7 ± 0.2 GtC/yr is superimposed by an anthropogenic CO2 uptake of 2.1 
GtC/yr to yield a net uptake of 1.4 ± 0.2 GtC/yr as of 2000. This agrees well with the pCO2-based estimate of 
a 1.4 ± 0.5 GtC/yr uptake averaged over 1985–2015 (Landschützer et al., 2017) (Figure 4b). Our open-ocean 
estimate of the preindustrial CO2 outgassing (0.7 ± 0.2 GtC/yr) also agrees with an estimated efflux of 0.78 
GtC/yr that is consistent with interhemispheric ocean heat and carbon transports (Resplandy et al., 2018).

This agreement between the air-sea fluxes in the optimized model and those from independent estimates 
occurs despite the lack of seasonal cycle in the model, which leads to winter-like surface properties (e.g., 
DIC and SST) at the sea surface where deep and intermediate waters form and subduct (DeVries & Prime-
au, 2011; DeVries, 2014). These winter-like surface properties accompany outgassing-favorable pCO2 and 
air-sea CO2 fluxes in upwelling regions, and opposing uptake-favorable pCO2 and air-sea CO2 fluxes in the 
high-latitude North Atlantic and mid-latitude surface regions where winter cooling leads to CO2 uptake 
(Figure S3). When globally integrated or averaged, these opposing spatial biases largely offset, resulting in 
a net air-sea CO2 flux similar to the ones obtained either from observations or seasonally resolved models 
(Figure  4). As a further indication that the lack of seasonality is not biasing the ocean ventilation and 
CO2 uptake, the simulated oceanic uptake of anthropogenic CO2 in the optimized model agrees well with 
previous observation-based estimates (DeVries,  2014; Gruber et  al.,  2019; Khatiwala et  al.,  2013; Sabine 
et al., 2004) (Figure 5).

4.4.  Air-Sea CO2 Exchange in the Coastal Ocean

The only area where the optimal model does not agree well with independent observational constraints is 
in the “coastal ocean” (Figure 4c). Over this region, CO2 efflux has weakened from 0.5 ± 0.1 GtC/yr during 
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Figure 5.  Oceanic storage of anthropogenic carbon and globally averaged δ13C-DIC at the sea-surface simulated from 
the optimized model. (a) Cumulative storage of anthropogenic carbon simulated by the model (blue line) is compared 
with the estimates by Sabine et al. (2004) (red), Gruber et al. (2019) (black), and Khatiwala et al. (2013) (green). (b) 
Anthropogenic change in globally averaged surface δ13C-DIC simulated by the model (blue line) is compared with the 
estimates by Schmittner et al. (2013) (black circle) and Sonnerup et al. (2007) (magenta). The blue shading around the 
blue line is equivalent to a 1% increase in the cost function value.
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preindustrial times to 0.3 ± 0.1 GtC/yr as of 2000 (Figure 4a). Our estimate for the 2000s is within the 
uncertainty range of an earlier estimate of a 0.06 ± 0.43 GtC/yr efflux (Laruelle et al., 2010), but contrasts 
with a 0.04 ± 0.05 GtC/yr uptake recently proposed for the global coastal regions, which include continental 
shelves and estuaries (Laruelle et al., 2013, 2014) (Figure S2b). The discrepancy becomes even larger if we 
compare our estimate with a 0.3 GtC/yr uptake suggested by Chen et al. (2013). A number of factors could 
contribute to the discrepancy between our optimal model and the observation-based estimates. Applying a 
different geographical definition for the coastal regions using the criterion of isobaths less than 1,000 m or 
distance from the coastline less than 300 km (which was proposed by Laruelle et al. (2017) in order to facil-
itate integration of coastal observations to global models), our model suggests a 0.2 ± 0.1 GtC/yr outgassing 
of CO2 as of 2000 (Figure S2b). The use of the Laruelle et al. (2017) definition thus narrows the gap with the 
observation-based estimates but still implies a larger CO2 efflux than previously estimated. An additional 
factor is the potential for increased productivity in coastal regions due to anthropogenic nutrient supplies 
(Laruelle et al., 2018; Mackenzie et al., 2011). An idealized experiment using our model suggests that an 
increased nutrient supply that leads to a 2% increase in the coastal surface PO4 concentrations could reduce 
the coastal CO2 efflux by 0.1 GtC/yr as of 2000, by exporting organic carbon to the open ocean (Figures S2d 
and S2e).

It is also possible that previous studies might have underestimated a low-latitude coastal CO2 efflux due to 
insufficient observations (Laruelle et al., 2013, 2014, 2017). In fact, our model shows that the poorly mon-
itored low-latitude coastal regions between 20°S and 20°N account for 70% of the total coastal efflux in a 
year of 1800 and 100% in a year of 2000 (Figure 4a). These low-latitude coastal regions are known to have 
low CO2 solubility and monsoon-driven upwelling (Cai, 2011; Laruelle et al., 2014, 2017). Moreover, these 
regions are densely populated by mangrove forests, which globally export 0.1–0.4 GtC/yr to the intertidal 
and coastal zones (Alongi & Mukhopadhyay, 2014; Chen et al., 2018; Rosentreter et al., 2018), supporting 
the potential need for an elevated outgassing of CO2 from surrounding seawater. Although a persistent 
outgassing of as much as 0.3 GtC/yr from the low-latitude (20°S-20°N) coastal regions remains to be con-
firmed or disproved by future observational studies, the low-latitude dominance in the coastal CO2 efflux 
is qualitatively consistent with previous studies (Cai, 2011; Laruelle et al., 2014, 2017). The reduced CO2 
efflux from 0.5 GtC/yr in 1780 to 0.3 GtC/yr in 2000, and hence the estimated anthropogenic CO2 uptake of 
0.2 GtC/yr over the coastal domain is consistent with a previous observation-based estimate of 0.17 GtC/yr 
(Borges, 2005), but is larger than a model-based estimate of 0.10 ± 0.01 GtC/yr for 1994–2012 (Bourgeois 
et al., 2016).

Imperfections in the model could also contribute to some of the discrepancies between our coastal ocean 
CO2 budget and that of previous studies. Our coarse-resolution model does not resolve the small-scale spa-
tial gradients in the coastal region, nor does it realistically represent the connectivity between the coastal 
regions and the open ocean. Given the long air-sea equilibration time of δ13C-CO2 compared to 12CO2, a 
portion of the terrestrial carbon inputs that are inferred here as necessary to balance the open-ocean δ13C 
budget could be balanced by CO2 outgassing further upstream along the land-ocean continuum, such as 
in estuaries and tidal wetlands. Furthermore, our model does not resolve all of the sedimentary burial of 
organic and inorganic carbon in shelves and estuaries, which could help to balance some of the carbon that 
is currently estimated to outgas in this region. These issues of scale preclude a perfect comparison between 
our results and those of previous studies, and point toward the need to better resolve coastal processes in the 
model in order to better constrain coastal ocean CO2 fluxes.

4.5.  Basin-Scale Distribution of Terrestrial Carbon Inputs

In the standard model, the coastal margin carbon fluxes are distributed uniformly across all continental 
margins, except for Antarctica. Although this is an obvious oversimplification of the spatial distribution 
of coastal margin carbon inputs, oceanic observations of carbon isotopes cannot be used to constrain the 
regional distributions of land-sourced carbon fluxes. This is because ocean circulation integrates and 
smooths the effects of regional sources and sinks, producing large-scale spatial gradients on the ocean 
basin to global scale. Hence, we here use our model to explore interbasin contrasts in coastal margin 
carbon inputs. To do so, we separately optimize the coastal margin carbon fluxes for the Arctic-Atlantic, 
Pacific, and Indian Oceans (the “Basin” experiment in Table S1; see Text S1), along with the other model 

KWON ET AL.

10.1029/2020GB006684

15 of 25



Global Biogeochemical Cycles

parameters. This model also yields a globally integrated coastal margin 
input of 0.8 ± 0.1 GtC/yr. This model further suggests that most of the 
coastal margin carbon inputs occur in the Pacific (52 ± 9%) and Indian 
Oceans (43 ± 16%) where the basin-integrated total carbon fluxes ex-
ceed the prescribed riverine fluxes by a factor of 3.3 ± 0.4 in the Pacific, 
and 3.5 ± 0.9 in the Indian Ocean (Figure 6). Combined with the pre-
scribed riverine carbon input, the Pacific and Indian Oceans contribute 
to 77 ± 6% of the terrestrial carbon inputs to the global ocean. The dom-
inance of coastal margin carbon fluxes in the Pacific and Indian Oceans 
is consistent with these basins having the largest spatial extent of coast-
al vegetation (Chen et al., 2018), and coincides with regions that have 
the lowest density of coastal pCO2 observations (Laruelle et al., 2017). 
In contrast, riverine fluxes dominate the total carbon flux in the Arc-
tic-Atlantic, accounting for 86 ± 33% of the total terrestrial carbon flux. 
This basin-wide contrast in coastal margin carbon inputs is similar to 
the basin-scale distribution of SGD-driven 228Ra fluxes, which is also 
dominated by the Indian and Pacific Ocean (Kwon et al., 2014). This 
makes sense, since the recirculation of seawater through coastal aqui-
fers may result in enhanced discharge of Ra as well as terrestrial carbon 
into the coastal ocean.

5.  Model Uncertainties and Impact on Estimated Carbon Fluxes
The optimized model provides an estimate of terrestrial carbon fluxes to the ocean that is optimally con-
sistent with the observed δ13C-DIC and DIC distributions in the ocean, and with numerous independent 
constraints on the open ocean air-sea CO2 fluxes and the air-sea δ13C disequilibrium fluxes (Section  4). 
However, the values of the terrestrial carbon flux found in this simulation may also be influenced by other 
assumptions and/or limitations in the model. Here, we explore some of these assumptions and limitations, 
in an attempt to gauge how well constrained the terrestrial carbon fluxes are in our model. First, we explore 
whether the model parameters could be adjusted such that additional coastal margin carbon inputs are not 
needed in order to match the observed carbon isotope constraints (Section 5.1). Then, we perform a series 
of Monte Carlo experiments to characterize the uncertainty arising from a realistic range of parameters and 
assumptions in the model (Section 5.2). Finally, we explore how our model results vary if we consider ad-
ditional uncertainties in the lability and isotopic composition of coastal margin carbon inputs to the ocean 
(Section 5.3). We summarize the overall uncertainty assessments in Section 5.4.

5.1.  Assessing Models With and Without Coastal Margin Carbon Inputs

We first explore whether there are any parameter combinations in the model that could yield a match 
between the modeled and observed oceanic carbon isotope composition, in the absence of coastal margin 
carbon inputs. For this, we vary the parameters and input data of our model within a wide range of plausi-
ble values, and run the model both with and without the coastal margin carbon inputs. For the simulations 
with coastal margin carbon inputs, we fix the magnitude and isotopic composition of the coastal margin 
source at the value obtained from the optimized model (0.8 GtC/yr and −26‰, respectively). Parameters 
and inputs of the model that are varied in these experiments include the preindustrial δ13C value for atmos-
pheric CO2, the equilibrium fractionation factors for air-sea CO2 exchange, the δ13C values of riverine car-
bon inputs, the air-sea CO2 exchange rate, the SST used for carbon isotope fractionation, the photosynthetic 
fractionation factors, the ocean circulation model, and the portion of terrestrial carbon inputs that is buried 
in marine sediments (see Table 1 for summary and references). For each simulation, we randomly select 
parameter values and model configurations from the ranges listed in Table 1, assuming they are uniformly 
distributed within their upper and lower bounds, and solve the model with the selected combination of 
parameters. We repeat this 800 times for each model (with and without coastal margin carbon inputs). We 
then compare the simulated to the observed mean ocean subsurface δ13C-DIC, and the global mean area- 
and flux-weighted air-sea δ13C disequilibrium.
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Figure 6.  Terrestrial carbon fluxes divided into three ocean basins (results 
from the “Basin” experiment). The sum of riverine and coastal margin 
carbon fluxes is integrated over the Arctic-Atlantic, Pacific, and Indian 
Ocean (blue bar). The sum is divided into the contribution from rivers 
(yellow bar) and from coastal margin fluxes (red bar). The uncertainty is 
equivalent to a 1% increase in the unexplained variance of the observed 
DIC and the δ13C of DIC, and takes into account intercorrelated errors 
among ocean basins.
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We find that the model with coastal margin inputs is consistent with the δ13C-DIC observational constraints 
even when these various aspects of model uncertainty are collectively considered (Figure 7a). The modeled 
subsurface δ13C of DIC is 0.43 ± 0.1‰, almost exactly matching the observed value of 0.41 ± 0.1‰ (Schmit-
tner et al., 2017). The area-weighted and flux-weighted DIC disequilibrium are 0.87 ± 0.04‰ as of 1995 and 
0.77 ± 0.04‰ as of 1990, respectively, almost exactly matching the observed values of 0.88 ± 0.1‰ (Quay 
et al., 2003) and 0.75 ± 0.1‰ (Gruber & Keeling, 2001; Quay et al., 2003) (Figure 7a). For comparison, the val-
ues derived from the optimized model have a similar mean and uncertainty (based on the cost function criteri-
on) as the Monte Carlo experiments with the coastal margin carbon inputs (Figure 7b). On the other hand, the 
model without coastal margin carbon inputs exhibits a globally averaged subsurface δ13C-DIC and air-sea δ13C 
disequilibrium that are both 0.2‰–0.3‰ higher than observed (Figure 7). This systematic and globally dis-
tributed 0.2‰–0.3‰ offset exceeds the observational uncertainty of ∼0.1‰, and exceeds the 95% confidence 
intervals derived from the Monte Carlo experiments (Figure 7a). The magnitude of the offset is quite large giv-
en the spatial variations of the observed δ13C-DIC, which have a standard deviation of 0.45‰ and a full range 
of −1‰ to 2‰ (Figure 1). Overall, these Monte Carlo simulations demonstrate that any combinations of the 
model parameters and inputs shown in Table 1 cannot produce δ13C values that match the observations within 
their uncertainties, without requiring additional δ13C-depleted coastal margin carbon inputs.

5.2.  Assessing the Uncertainty of the Coastal Margin Carbon Source

The Monte Carlo experiments above (Figure 7) clearly demonstrate that some amount of coastal margin 
carbon inputs is necessary in our model in order to match the observed mean-ocean δ13C-DIC and air-sea 
δ13C disequilibrium. In order to better assess the uncertainty of the magnitude of coastal margin carbon in-
puts required in the model, we performed another set of Monte Carlo experiments like in Section 5.1, again 
randomly selecting parameters and model configurations from the list in Table 1, but this time also allowing 
the coastal margin carbon input to vary between 0 and 1.4 GtC/yr (a random selection assuming a uni-
form distribution). From 1000 ensemble members, we select those that match the observational constraints 
shown in Figure 7 (the global mean subsurface δ13C and air-sea δ13C disequilibrium) within their uncer-
tainty, while also ensuring that the resulting simulations reasonably capture the observed δ13C-DIC and 
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Figure 7.  Model-observation comparison of δ13C in DIC. The model values in Y-axis are compared with the 
respective observation-based estimates in X-axes. Open symbols (“noCM”) show the median values from the Monte 
Carlo experiment based on the model without the coastal margin input, and the error bars represent 95% confidence 
intervals from the Monte Carlo simulation. (a) Filled symbols (“CM”) show the median values from the Monte Carlo 
experiment based on the model with the coastal margin input, and the error bars represent 95% confidence intervals 
from the Monte Carlo simulation. Blue symbols show the globally averaged subsurface δ13C-DIC (“subsurface”), 
using an observational constraint from Schmittner et al. (2017) with an error bar of ±0.1‰. Red symbols show the 
globally averaged air-sea δ13C disequilibrium as of 1990 estimated with gross CO2 flux-weighting (“diseq-flux”), using 
observational constraints from Gruber and Keeling (2001) and Quay et al. (2003). Green symbols show the globally 
averaged δ13C disequilibrium as of 1995 calculated with area-weighting (“diseq-area”), using an observational constraint 
from Quay et al. (2003). (b) The same as (a) except that the filled symbols (“opt”) show the values from the optimized 
model with error bars determined based on a 1% increase in cost function value.
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DIC by selecting models that do not exceed the RMSEs of the optimized model by 0.1‰ and 10 μmol/
kg, respectively. Three hundred twenty-nine out of the 1,000 ensemble members meet these criteria. The 
probability distribution of terrestrial carbon inputs in this selection of models is shown in Figure 8a, which 
shows that a terrestrial carbon flux as low as 1.0 GtC/yr (a coastal margin carbon source of 0.4 GtC/yr) could 
be consistent with the observed δ13C-DIC and air-sea δ13C disequilibrium. Overall, this set of simulations 
has a highest probability in a terrestrial carbon source of 1.6 GtC/yr, falling within the upper bound of our 
optimized value of 1.4 ± 0.2 GtC/yr.

5.3.  Additional Uncertainties due to the Isotopic Composition and Lability of Terrestrial Carbon

The Monte Carlo simulations (Figure 8a) still potentially miss some important sources of uncertainty that 
could affect the inferred coastal margin carbon input. Two of the most important of these are the δ13C signa-
ture of coastal margin carbon inputs, which is fixed at a value of −26‰ from the optimized model, and the 
lability of this coastal margin carbon source, which is assumed to be in a form of DIC or easily degradable 
organic carbon. Observations suggest that the δ13C of carbon derived from SGD or coastal vegetation could 
range from −10‰ to −34‰ (Abril et al., 2013; Maher et al., 2013; Marwick et al., 2015; Peterson & Fry, 1987), 
while the lability of terrestrial organic carbon varies over a wide spectrum with lifetimes spanning from days 
to centuries for various fractions (Anderson et al., 2019; Polimene et al., 2018; Raymond, 2007). Any misspec-
ification of these parameters can propagate to errors in the magnitude of the coastal margin carbon inputs.

To explore the sensitivity of our model to these parameters and assumptions, we simultaneously vary the 
δ13C of coastal margin carbon inputs, the magnitude of coastal margin carbon inputs, and the e-folding 
lifetime of the coastal margin carbon inputs. Other model parameters are fixed at those determined in the 
optimized model, except that the e-folding lifetime of riverine DOC is assumed to be 2 years (Anderson 
et al., 2019) instead of 8 years. We vary the δ13C of the coastal margin carbon source from −1‰ to −41‰, 
encompassing the observed range, and we vary the coastal margin carbon input from 0 to 2.0 GtC/yr. For 
the lability of coastal margin carbon inputs, we assume that a half of the coastal margin carbon inputs are 
in organic form with a lifetime ranging from 0 to 50 years, while the other half is in the form of DIC (e.g., 
Maher et al. (2018)). The results show that a broad range of coastal margin carbon inputs could be reason-
ably consistent with the observed δ13C-DIC and DIC distributions (Figures 9a and 9b). The coastal margin 
δ13C values within the range of roughly −20‰ to −40‰ could be consistent with the coastal margin carbon 
inputs ranging from 0.4 to 1.2 GtC/yr (Figure 9a), whose upper bound appears to be better constrained by 
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Figure 8.  The probability distribution of the terrestrial carbon inputs to the global ocean in a series of model 
configurations that fit the observed carbon isotope constraints within their uncertainty (a) The probability distribution 
of terrestrial carbon inputs from a set of Monte Carlo experiments where the coastal margin input (assuming a uniform 
distribution between 0 and 1.4 GtC/yr) and the other model parameters in Table 1 are randomly selected. Note that 
the terrestrial carbon input on the X-axis is the sum of the prescribed riverine and aerosol-driven input of 0.6 GtC/
yr, and the additional coastal margin input. (b) The probability distribution in (a) is modified by incorporating the 
uncertainties arising from the δ13C value of the coastal margin input (assuming a uniform distribution between −16‰ 
and –36‰) and the e-folding lifetime (assuming a uniform distribution within 0–20 years) for the half of the coastal 
margin input.
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observed DIC than δ13C-DIC. Changing the lifetime of the coastal margin carbon inputs does not have as 
large an effect on the inferred coastal margin carbon source, but the results do demonstrate that a poten-
tial underestimation of the lifetime (an overestimation of the lability) of the coastal margin inputs would 
lead to an overestimation of the coastal margin input. Very long lifetimes of coastal margin carbon inputs 
combined with large magnitudes of coastal carbon inputs appear to yield unrealistic DIC distributions (Fig-
ure 9d). It is important to keep in mind that the uncertainties associated with the prescribed residence times 
of terrestrial organic carbon would be intertwined with the uncertainties in coastal-open ocean exchange 
rates of carbon (Liu et al., 2019), which are not well represented in our coarse-resolution model.

To incorporate the uncertainty of the coastal margin carbon source stemming from the isotopic composition 
and lability of coastal margin carbon inputs to our estimates, we compute the difference between the sim-
ulated δ13C-DIC and DIC from the perturbation simulations in Figure 9, and those of the optimized model. 
These differences were then added to the δ13C-DIC and DIC from the 1,000 Monte Carlo simulations de-
scribed in Section 5.2 (a subset of which are shown in Figure 8a), using random matching so that we obtain 
1,000 new fields of δ13C-DIC and DIC. Each of these fields is associated with a coastal margin carbon input 
that is equal to the coastal margin carbon input from the original Monte Carlo simulation, plus the coastal 
margin carbon input from the perturbation simulation (Figure 9) minus the coastal margin carbon input 
from the optimized model. These 1,000 new δ13C-DIC fields are then assessed against the same criteria used 
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Figure 9.  Sensitivity of model-observation misfits to model parameters. (a) The sensitivity of the RMSE for δ13C-DIC 
to the magnitude and δ13C value of the coastal margin input. The other model parameters are all fixed at those from 
the optimized model. The results from model simulations are marked as blue dots whereas the contours and shading 
are based on interpolations. (b) Same as (a) except that the RMSE for DIC is shown. (c) The sensitivity of the RMSE for 
δ13C-DIC to the coastal margin input and the e-folding lifetime (representing the lability of DOC) of half of the coastal 
margin carbon input. The other model parameters are all fixed at those from the optimized model except that the 
e-folding lifetime of riverine DOC is prescribed at 2 years instead of 8 years. (d) Same as (c) except that the RMSE for 
DIC is shown.
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to select the models in Figure 8a, to determine which are consistent with the observational constraints. This 
selection yields 263 out of 1,000 members that are consistent with the specified criteria. The resulting prob-
ability distribution of coastal margin carbon inputs in these models (Figure 8b) is slightly wider than when 
the uncertainties stemming from the isotopic composition and lability of coastal margin carbon inputs are 
not considered (Figure 8a). Considering these additional uncertainties, terrestrial carbon inputs as low as 
0.9 GtC/yr (a coastal margin carbon source of 0.3 GtC/yr) could be consistent with the carbon isotope ob-
servations (Figure 8b). Nonetheless, the magnitude of the terrestrial carbon inputs that corresponds to the 
highest probability remains nearly unchanged (Figure 8b).

5.4.  Summary of Uncertainty Assessments

All of the uncertainty assessments and sensitivity experiments performed here (Figures 7–9) do not appear 
to affect the mean terrestrial carbon source of 1.4 PgC/yr (coastal margin input of 0.8 GtC/yr) derived from 
the optimized model, but they do indicate a wide range of uncertainty, with terrestrial carbon inputs rang-
ing from ∼0.9 GtC/yr to ∼1.8 GtC/yr that could be consistent with the observed carbon isotope constraints. 
There are additional sources of uncertainty that were not fully explored above, including the influence of 
the SST (winter-like or annual average) used in the model due to its lack of seasonal cycle, the representa-
tion of organic carbon burial in the model, the potential for imbalances in the weathering and burial fluxes 
of organic and inorganic carbon, the formulation of the gas exchange parameterization for CO2, and the rep-
resentation of the industrial changes in coastal margin carbon inputs. We investigate these additional sourc-
es of uncertainty using a series of sensitivity experiments (see Text S2; Table S1), but none of these factors 
lead to inferred terrestrial carbon inputs outside the range already determined in the uncertainty analysis 
presented here. However, consideration of uncertainties in the model’s representation of carbon burial in 
coastal sediments, as well as the potential for imbalances in the weathering and burial fluxes (Text S2) lead 
us to increase the uncertainty on the carbon burial fluxes to ±0.3 GtC/yr. Based on all of these assessments, 
we estimate a global terrestrial carbon input to the ocean of 1.4 ± 0.5 GtC/yr, which is balanced in the pre-
industrial era by a carbon burial of 0.2 ± 0.3 GtC/yr and a CO2 outgassing of 1.2 ± 0.5 GtC/yr (Figure 10).

6.  Summary and Conclusions
We used a numerical inverse model to estimate the terrestrial carbon inputs to the global ocean that are 
most consistent with a global database of stable carbon isotopes (Schmittner et al., 2017). We estimate 
that terrestrial carbon inputs to the global ocean of 1.4 ± 0.5 GtC/yr are needed to obtain consistency with 
the observed δ13C of DIC (Figure 10). These inputs are larger than the prescribed riverine and airborne 
inputs of 0.6 GtC/yr, and also larger than the terrestrial carbon input of 0.9 GtC/yr adopted by the IPCC 
AR5 (Ciais et al., 2013). The excess carbon inputs of 0.8 ± 0.5 GtC/yr can be attributed to carbon export 
by SGD and from vegetation along coastal margins. These coastal margin carbon inputs have a δ13C value 
of −26 ± 10‰ and occur predominantly in the Indian and Pacific Oceans. Terrestrial carbon inputs are 
balanced by a sedimentary burial of 0.2 ± 0.3 GtC/yr, and an efflux to the atmosphere of 1.2 ± 0.5 GtC/
yr. Our model estimates a CO2 efflux of 0.7 ± 0.5 GtC/yr in the open ocean and an anthropogenic CO2 
uptake of 2.1 GtC/yr as of the year 2000, for a net contemporary open-ocean air-sea CO2 flux of 1.4 ± 0.5 
GtC/yr (Figure 10). This agrees with independent observation-based estimates of the contemporary air-
sea CO2 flux (Landschützer et al. (2017); Landschützer et al., 2014; Rödenbeck et al., 2015). An estimated 
0.5 ± 0.3 GtC/yr of CO2 efflux occurs in the poorly resolved coastal ocean in our model, which combined 
with an anthropogenic CO2 uptake of 0.2 GtC/yr gives a net efflux of 0.3 ± 0.3 GtC/yr as of 2000 (Fig-
ure 10). This CO2 efflux is larger than suggested in some of previous studies, and suggests the need to 
carefully examine current CO2 budgets in the land-ocean transition zone. In our model, 70% of the coastal 
efflux occurs in the tropics between 20°N and 20°S, particularly in the Indian and Pacific Oceans, which 
is precisely where observations are lacking in current data products (Laruelle et al., 2017). Nonetheless, 
we regard the carbon budget in the coastal zone as inconclusive due to the coarse model resolution and 
lack of representation of coastal processes.

Overall, this study suggests that coastal vegetated ecosystems, which are known to efficiently sequester a 
significant amount of atmospheric CO2 (Bauer et al., 2013; Duarte, 2017), also rival inland watersheds in 
their contributions to lateral carbon transfers from land to marine ecosystems. This finding implies previ-
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ously overlooked climate sensitivities in the global carbon cycle: in addition to climate and hydrogeological 
factors on land, various oceanic factors including sea level rise and tides, as well as human activities such as 
coastal development, can impact coastal margin carbon fluxes. As coastal environments respond to climate 
change, understanding and predicting changes in the global carbon cycle will require models that can cap-
ture the multiple scales of interaction between ocean physics, coastal ecosystems, and coastal communities. 
Stable carbon isotopes will serve as important geochemical constraint on our understanding of the chang-
ing nature of carbon cycling between the terrestrial environment, coastal ecosystems, and the open ocean.
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Figure 10.  Schematic of the global carbon cycle. (a) Fluxes based on the IPCC AR5 (Ciais et al., 2013) with riverine 
and groundwater driven fluxes from Cole et al. (2007). (b) Fluxes based on this study. Riverine fluxes are prescribed 
using global databases (Mayorga et al., 2010; Meybeck & Ragu, 2012). Blue arrows and numbers indicate fluxes that 
are time-invariant from the preindustrial to industrial era. Black arrows and numbers indicate preindustrial efflux to 
the atmosphere, while red arrows and numbers indicate anthropogenic CO2 uptake by the ocean as of the 2000s for 
(a) and 2000 for (b). The open ocean in (b) is defined as the open-ocean mask where the estimates based on oceanic 
pCO2 measurements (Landschützer et al., 2017) are available, while the coastal ocean is defined as the remaining 
ocean area. The flux-weighted average for the terrestrial carbon δ13C is shown in parenthesis next to the terrestrial 
carbon inputs.
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Data Availability Statement
The global database for the δ13C of DIC is available at https://www.ncdc.noaa.gov/paleo-search/study/21750. 
The global database for PO4 is available at https://www.nodc.noaa.gov/OC5/woa13/, and for alkalinity and 
DI12C at http://cdiac.ornl.gov/oceans/GLODAPv2/. The riverine carbon flux data used for model inputs 
are from http://staff.washington.edu/emiliom/globalnews/GlobalNEWS2ModeledExports_RH2000-ver-
sion1.0.1.zip for organic carbon and https://doi.org/10.1594/PANGAEA.804574 for DIC. The atmospheric 
CO2 and its isotopic composition data used for model forcing are from http://scrippsco2.ucsd.edu/data/
atmospheric_co2/. The sea surface temperature data used in this study are from https://www.metoffice.
gov.uk/hadobs/hadisst/data/download.html, https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.
v5.html, and https://www.esrl.noaa.gov/psd/data/gridded/data.cobe2.html. The wind data are from https://
apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/. Our model outputs will be made available at 
https://climatedata.ibs.re.kr/data/papers/kwon-et-al-2021-gbc.
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Laruelle, G. G., Dürr, H. H., Slomp, C. P., & Borges, A. V. (2010). Evaluation of sinks and sources of CO2 in the global coastal ocean 
using a spatially-explicit typology of estuaries and continental shelves. Geophysical Research Letters, 37, L15607. https://doi.
org/10.1029/2010gl043691

Laruelle, G. G., Landschutzer, P., Gruber, N., Tison, J.-L., Delille, B., & Regnier, P. (2017). Global high-resolution monthly pCO2 climatology 
for the coastal ocean derived from neural network interpolation. Biogeosciences, 14, 4545–4561. https://doi.org/10.5194/bg-14-4545-2017

Laruelle, G. G., Lauerwald, R., Pfeil, B., & Regnier, P. (2014). Regionalized global budget of the CO2 exchange at the air-water interface in 
continental shelf seas. Global Biogeochemical Cycles, 28, 1194–1214. https://doi.org/10.1002/2014gb004832

KWON ET AL.

10.1029/2020GB006684

23 of 25

https://doi.org/10.1002/2014gb004929
https://doi.org/10.1038/nature14400
https://doi.org/10.1029/93gb03272
https://doi.org/10.1029/2012jc008074
https://doi.org/10.1029/2012jc008074
https://doi.org/10.1126/science.aau5153
https://doi.org/10.1029/2008gb003349
https://doi.org/10.1029/2000gl011853
https://doi.org/10.1029/1999gb900019
https://doi.org/10.1016/s0967-0637(97)00098-8
https://doi.org/10.1016/s0146-6380(97)00066-1
https://doi.org/10.1175/jcli-d-12-00837.1
https://doi.org/10.1175/jcli-d-16-0836.1
https://doi.org/10.1175/jcli-d-16-0836.1
https://doi.org/10.5194/gmd-8-2419-2015
https://doi.org/10.5194/bg-10-2169-2013
https://doi.org/10.1111/j.1600-0889.2006.00223.x
https://doi.org/10.1029/2011pa002211
https://doi.org/10.1002/2014gl061574
https://doi.org/10.1002/2014gl061574
https://doi.org/10.1029/2007jc004520
https://doi.org/10.5194/bg-17-55-2020
https://doi.org/10.1137/s1052623496303470
https://doi.org/10.5194/acp-10-7017-2010
https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/SPCO2_1982_2015_ETH_SOM_FFN.html
https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/SPCO2_1982_2015_ETH_SOM_FFN.html
https://doi.org/10.1002/2014GB004853
https://doi.org/10.1029/94rg01872
https://doi.org/10.1038/s41467-017-02738-z
https://doi.org/10.5194/hess-17-2029-2013
https://doi.org/10.1029/2010gl043691
https://doi.org/10.1029/2010gl043691
https://doi.org/10.5194/bg-14-4545-2017
https://doi.org/10.1002/2014gb004832


Global Biogeochemical Cycles

Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X., et al. (2016). A new global interior ocean mapped climatology: The 
1°  × 1° GLODAP version 2. Earth System Science Data, 8(2), 325–340. https://doi.org/10.5194/essd-8-325-2016

Liu, X., Dunne, J. P., Stock, C. A., Harrison, M. J., Adcroft, A., & Resplandy, L. (2019). Simulating water residence time in the coastal ocean: 
A global perspective. Geophysical Research Letters, 46, 13910–13919. https://doi.org/10.1029/2019gl085097

Ludwig, W., Amiotte-Suchet, P., & Probst, J. L. (1996). River discharges of carbon to the world’s oceans: Determining local inputs of alka-
linity and of dissolved and particulate organic carbon. Sciences de la terre et des Planètes (Comptes Rendus de l'Académie des Sciences), 
323, 1007–1014.

Lynch-Stieglitz, J., Stocker, T. F., Broecker, W. S., & Fairbanks, R. G. (1995). The influence of air-sea exchange on the isotopic composition 
of oceanic carbon—observations and modeling. Global Biogeochemical Cycles, 9, 653–665. https://doi.org/10.1029/95gb02574

MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds, R., van Ommen, T., et al. (2006). Law Dome CO2, CH4, and N2O 
ice core records extended to 2000 years BP. Geophysical Research Letters, 33(14). https://doi.org/10.1029/2006gl026152

Mackenzie, F. T., Lerman, A., & DeCarlo, E. H. (2011). Coupled C, N P, and O biogeochemical cycling at the land-ocean interface. In J. 
Middleburg, & R. Laane (Eds.), Treatise on ocean and estuarine science. Elsevier.

Maher, D. T., Call, M., Santos, I. R., & Sanders, C. J. (2018). Beyond burial: lateral exchange is a significant atmospheric carbon sink in 
mangrove forests. Biology Letters, 14, 20180200. https://doi.org/10.1098/rsbl.2018.0200

Maher, D. T., Santos, I. R., Golsby-Smith, L., Gleeson, J., & Eyre, B. D. (2013). Groundwater-derived dissolved inorganic and organic car-
bon exports from a mangrove tidal creek: The missing mangrove carbon sink?. Limnology & Oceanography, 58, 475–488. https://doi.
org/10.4319/lo.2013.58.2.0475

Maier-Reimer, E., Mikolajewicz, U., & Hasselmann, K. (1993). Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermo-
haline surface forcing. Journal of Physical Oceanography, 23, 731–757. https://doi.org/10.1175/1520-0485(1993)023<0731:mcothl>2.0.co;2

Manizza, M., Follows, M. J., Dutkiewicz, S., McClelland, J. W., Menemenlis, D., Hill, C. N., et al. (2009). Modeling transport and fate of 
riverine dissolved organic carbon in the Arctic Ocean. Global Biogeochemical Cycles, 23, GB4006. https://doi.org/10.1029/2008gb003396

Marwick, T. R., Tamooh, F., Teodoru, C. R., Borges, A. V., Darchambeau, F., & Bouillon, S. (2015). The age of river-transported carbon: A 
global perspective. Global Biogeochemical Cycles, 29, 122–137. https://doi.org/10.1002/2014gb004911

Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., Bouwman, A. F., et al. (2010). Global nutrient export from 
waterSheds 2 (NEWS 2): Model development and implementation. Environmental Modelling & Software, 25, 837–853. https://doi.
org/10.1016/j.envsoft.2010.01.007

Meybeck, M. (1993). Riverine transport of atmospheric carbon: sources, global typology and budget. Water, Air, and Soil Pollution, 70, 
443–463. https://doi.org/10.1007/bf01105015

Meybeck, M., & Ragu, A. (2012). GEMS-GLORI world river discharge database. Laboratoire de Géologie Appliquée, Université Pierre et 
Marie Curie. https://doi.org/10.1594/PANGAEA.804574

Milliman, J. D. (1993). Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state. Global Biogeochemi-
cal Cycles, 7, 927–957. https://doi.org/10.1029/93gb02524

Moore, W. S. (2010). The effect of submarine groundwater discharge on the ocean. Annual Review Marine Science, 2, 59–88. https://doi.
org/10.1146/annurev-marine-120308-081019

Murgulet, D., Trevino, M., Douglas, A., Spalt, N., Hu, X., & Murgulet, V. (2018). Temporal and spatial fluctuations of groundwater-derived 
alkalinity fluxes to a semiarid coastal embayment. The Science of the Total Environment, 630, 1343–1359. https://doi.org/10.1016/j.
scitotenv.2018.02.333

Naegler, T., Ciais, P., Rodgers, K., & Levin, I. (2006). Excess radiocarbon constraints on air-sea gas exchange and the uptake of CO2 by the 
oceans. Geophysical Research Letters, 33, L11802. https://doi.org/10.1029/2005gl025408

Najjar, R. G., Jin, X., Louanchi, F., Aumont, O., Caldeira, K., Doney, S. C., et al. (2007). Impact of circulation on export production, dis-
solved organic matter, and dissolved oxygen in the ocean: Results from phase II of the ocean carbon-cycle model intercomparison 
project (OCMIP-2). Global Biogeochemical Cycles, 21(3). https://doi.org/10.1029/2006gb002857

Peterson, B. J., & Fry, B. (1987). Stable isotopes in eco-system studies. Annual Review of Ecology and Systematics, 18, 293–320. https://doi.
org/10.1146/annurev.es.18.110187.001453

Polimene, L., Rivkin, R. B., Luo, Y.-W., Kwon, E. Y., Gehlen, M., Pena, M. A., et al. (2018). Modelling marine DOC degradation time scales. 
National Science Review, 5, 468–474. https://doi.org/10.1093/nsr/nwy066

Popp, B. N., Takigiku, R., Hayes, J. M., Louda, J. W., & Baker, E. W. (1989). The post-Paleozoic chronology and mechanism of 13C depletion 
in primary marine organic matter. American Journal of Science, 289, 436–454. https://doi.org/10.2475/ajs.289.4.436

Quay, P., Sonnerup, R., Munro, D., & Sweeney, C. (2017). Anthropogenic CO2 accumulation and uptake rates in the Pacific ocean based on 
changes in the 13C/12C of dissolved inorganic carbon. Global Biogeochemical Cycles, 31, 59–80. https://doi.org/10.1002/2016gb005460

Quay, P., Sonnerup, R., Westby, T., Stutsman, J., & McNichol, A. (2003). Changes in the 13C/12C of dissolved inorganic carbon in the ocean 
as a tracer of anthropogenic CO2 uptake. Global Biogeochemical Cycles, 17(1004). https://doi.org/10.1029/2001gb001817

Racapé, V., Lo Monaco, C., Metzl, N., & Pierre, C. (2010). Summer and winter distribution of δ13C_DIC in surface waters of the south In-
dian ocean [20°S–60°S]. Tellus B: Chemical and Physical Meteorology, 62(5), 660–673. https://doi.org/10.1111/j.1600-0889.2010.00504.x

Raymond, P. A. (2007). Flux and age of dissolved organic carbon exported to the Arctic ocean: A carbon isotopic study of the five largest 
Arctic rivers. Global Biogeochemical Cycles, 21, GB4011. https://doi.org/10.1029/2007gb002934

Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., et al. (2003). Global analyses of sea surface tem-
perature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14). https://
doi.org/10.1029/2002JD002670

Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., et al. (2013). Anthropogenic perturbation of the carbon 
fluxes from land to ocean. Nature Geoscience, 9, 597–607.

Resplandy, L., Keeling, C. D., Rödenbeck, C. C., Stephens, B. B., Khatiwala, S., Rodgers, K., et  al. (2018). Revision of global carbon 
fluxes based on a reassessment of oceanic and riverine carbon transport. Nature Geoscience, 11, 504–509. https://doi.org/10.1038/
s41561-018-0151-3

Rödenbeck, C., Bakker, D. C. E., Gruber, N., Iida, Y., Jacobson, A. R., Jones, S., et al. (2015). Data-based estimates of the ocean carbon sink 
variability—first results of the surface ocean pCO2 Mapping intercomparison (SOCOM). Biogeosciences, 12(23), 7251–7278. https://doi.
org/10.5194/bg-12-7251-2015

Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R., & Eyre, B. D. (2018). Seasonal and temporal CO2 dynamics in three trop-
ical mangrove creeks—A revision of global mangrove CO2 emissions. Geochimica et Cosmochimica Acta, 222, 729–745. 
https://doi.org/10.1016/j.gca.2017.11.026

KWON ET AL.

10.1029/2020GB006684

24 of 25

https://doi.org/10.5194/essd-8-325-2016
https://doi.org/10.1029/2019gl085097
https://doi.org/10.1029/95gb02574
https://doi.org/10.1029/2006gl026152
https://doi.org/10.1098/rsbl.2018.0200
https://doi.org/10.4319/lo.2013.58.2.0475
https://doi.org/10.4319/lo.2013.58.2.0475
https://doi.org/10.1175/1520-0485(1993)023%3C0731:mcothl%3E2.0.co;2
https://doi.org/10.1029/2008gb003396
https://doi.org/10.1002/2014gb004911
https://doi.org/10.1016/j.envsoft.2010.01.007
https://doi.org/10.1016/j.envsoft.2010.01.007
https://doi.org/10.1007/bf01105015
https://doi.org/10.1594/PANGAEA.804574
https://doi.org/10.1029/93gb02524
https://doi.org/10.1146/annurev-marine-120308-081019
https://doi.org/10.1146/annurev-marine-120308-081019
https://doi.org/10.1016/j.scitotenv.2018.02.333
https://doi.org/10.1016/j.scitotenv.2018.02.333
https://doi.org/10.1029/2005gl025408
https://doi.org/10.1029/2006gb002857
https://doi.org/10.1146/annurev.es.18.110187.001453
https://doi.org/10.1146/annurev.es.18.110187.001453
https://doi.org/10.1093/nsr/nwy066
https://doi.org/10.2475/ajs.289.4.436
https://doi.org/10.1002/2016gb005460
https://doi.org/10.1029/2001gb001817
https://doi.org/10.1111/j.1600-0889.2010.00504.x
https://doi.org/10.1029/2007gb002934
https://doi.org/10.1029/2002JD002670
https://doi.org/10.1029/2002JD002670
https://doi.org/10.1038/s41561-018-0151-3
https://doi.org/10.1038/s41561-018-0151-3
https://doi.org/10.5194/bg-12-7251-2015
https://doi.org/10.5194/bg-12-7251-2015
https://doi.org/10.1016/j.gca.2017.11.026


Global Biogeochemical Cycles

Rubino, M., Etheridge, D. M., Trudinger, C. M., Allison, C. E., Battle, M. O., Langenfelds, R. L., et al. (2013). A revised 1000 year atmospher-
ic δ13C-CO2 record from Law Dome and south Pole, Antarctica. Journal of Geophysical Research: Atmospheres, 118, 8482–8499. https://
doi.org/10.1002/jgrd.50668

Sabine, C. L., Feely, R. A., Gruber, N., Key, R., Lee, K., Bullister, J. L., et al. (2004). The ocean sink for anthropogenic CO2. Science, 305, 
367–371. https://doi.org/10.1126/science.1097403

Sarmiento, J. L., & Gruber, N. (2006). Ocean biogeochemical dynamics. Princeton University Press.
Sarmiento, J. L., & Sundquist, E. T. (1992). Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature, 356, 589–593. 

https://doi.org/10.1038/356589a0
Schmittner, A., Bostock, H. C., Cartapanis, O., Curry, W. B., Filipsson, H. L., Galbraith, E. D., et al. (2017). Calibration of the carbon isotope 

composition (δ13C) of benthic foraminifera. Paleoceanography, 32, 512–530. https://doi.org/10.1002/2016pa003072
Schmittner, A., Gruber, N., Mix, A. C., Key, R. M., Tagliabue, A., & Westberry, T. K. (2013). Biology and air-sea gas exchange controls on 

the distribution of carbon isotope ratios (δ13C) in the ocean. Biogeosciences, 10, 5793–5816. https://doi.org/10.5194/bg-10-5793-2013
Sonnerup, R. E., McNichol, A. P., Quay, P., Gammon, R. H., Bullister, J. L., Sabine, C., & Slater, R. D. (2007). Anthropogenic δ13C 

changes in the north Pacific ocean reconstructed using a multiparameter mixing approach (MIX). Tellus, 59B, 303–317. https://doi.
org/10.1111/j.1600-0889.2007.00250.x

Sonnerup, R., & Quay, P. D. (2012). 13C constraints on ocean carbon cycle models. Global Bigeochem. Cycles, 26, GB2014. https://doi.
org/10.1029/2010gb003980

Sweeney, C., Gloor, E., Jacobson, A. R., Key, R. M., McKinley, G., Sarmiento, J. L., & Wanninkhof, R. (2007). Constraining global air-sea gas 
exchange for CO2 with recent bomb 14C measurements. Global Biogeochemical Cycles, 21, GB2015. https://doi.org/10.1029/2006gb002784

Szymczycha, B., Maciejewska, A., Winogradow, A., & Pempkowiak, J. (2014). Could submarine groundwater discharge be a significant 
carbon source to the southern Baltic Sea?. Oceanologia, 56, 327–347. https://doi.org/10.5697/oc.56-2.327

Taniguchi, M., Burnett, W. C., Cable, J. E., & Turner, J. V. (2002). Investigation of submarine groundwater discharge. Hydrological Processes, 
16, 2115–2129. https://doi.org/10.1002/hyp.1145

Tans, P. P., Berry, J. A., & Keeling, R. F. (1993). Oceanic 12C/13C observations: A new window on ocean CO2 uptake. Global Biogeochemical 
Cycles, 7(2), 353–368. https://doi.org/10.1029/93gb00053

Wanninkhof, R. (1992). Relationship between wind-speed and gas exchange over the ocean. Journal of Geophysical Research, 97, 7373–
7382. https://doi.org/10.1029/92jc00188

Wanninkhof, R., Park, G.-H., Tankahashi, T., Sweeney, C., Feely, R. A., Nojiri, Y., et al. (2013). Global ocean carbon uptake: Magnitude, 
variability and trends. Biogeosciences, 10, 1983–2000. https://doi.org/10.5194/bg-10-1983-2013

Watson, A. J., Schuster, U., Shutler, J. D., Holding, T., Ashton, I. G. C., Landschützer, P., et al. (2020). Revised estimates of ocean-atmosphere 
CO2 flux are consistent with ocean carbon inventory. Nature Communications, 11(4422). https://doi.org/10.1038/s41467-020-18203-3

Zhang, J., Quay, P. D., & Wilbur, D. O. (1995). Carbon-isotope fractionation during gas-water exchange and dissolution of CO2. Geochimica 
et Cosmochimica Acta, 59, 107–114. https://doi.org/10.1016/0016-7037(95)91550-d

KWON ET AL.

10.1029/2020GB006684

25 of 25

https://doi.org/10.1002/jgrd.50668
https://doi.org/10.1002/jgrd.50668
https://doi.org/10.1126/science.1097403
https://doi.org/10.1038/356589a0
https://doi.org/10.1002/2016pa003072
https://doi.org/10.5194/bg-10-5793-2013
https://doi.org/10.1111/j.1600-0889.2007.00250.x
https://doi.org/10.1111/j.1600-0889.2007.00250.x
https://doi.org/10.1029/2010gb003980
https://doi.org/10.1029/2010gb003980
https://doi.org/10.1029/2006gb002784
https://doi.org/10.5697/oc.56-2.327
https://doi.org/10.1002/hyp.1145
https://doi.org/10.1029/93gb00053
https://doi.org/10.1029/92jc00188
https://doi.org/10.5194/bg-10-1983-2013
https://doi.org/10.1038/s41467-020-18203-3
https://doi.org/10.1016/0016-7037(95)91550-d

	Stable Carbon Isotopes Suggest Large Terrestrial Carbon Inputs to the Global Ocean
	Abstract
	Plain Language Summary
	1. Introduction
	2. The Ocean Carbon Cycle Model
	2.1. The Ocean Circulation and Biogeochemistry Model
	2.2. River and Aerosol Carbon Inputs
	2.3. Coastal Margin Carbon Inputs
	2.4. Carbon Burial in Sediments
	2.5. Other Considerations
	2.6. Model Simulations
	2.7. Model Parameters to be Optimized

	3. Carbon Isotope Data and Model Optimization
	3.1. Observed Atmospheric CO2 and the δ13C of CO2
	3.2. Observations of the δ13C of DIC
	3.3. Model Optimization
	3.4. Uncertainty Estimation

	4. Carbon Fluxes in the Optimized Model
	4.1. Overview of Results from the Optimized Model
	4.2. The Isotopic Disequilibrium of CO2
	4.3. Air-Sea CO2 Exchange in the Open Ocean
	4.4. Air-Sea CO2 Exchange in the Coastal Ocean
	4.5. Basin-Scale Distribution of Terrestrial Carbon Inputs

	5. Model Uncertainties and Impact on Estimated Carbon Fluxes
	5.1. Assessing Models With and Without Coastal Margin Carbon Inputs
	5.2. Assessing the Uncertainty of the Coastal Margin Carbon Source
	5.3. Additional Uncertainties due to the Isotopic Composition and Lability of Terrestrial Carbon
	5.4. Summary of Uncertainty Assessments

	6. Summary and Conclusions
	Data Availability Statement
	References


