FN Archimer Export Format PT J TI Global heat balance and heat uptake in potential temperature coordinates BT AF Hochet, Antoine Tailleux, Rémi Kuhlbrodt, Till Ferreira, David AS 1:1;2:2;3:2;4:2; FF 1:;2:;3:;4:; C1 CNRS, Ifremer, IRD, Laboratoire d’Océanographie Physique et Spatiale (LOPS, UMR 6523), Univ of Brest, IUEM, Brest, France Department of Meteorology, University of Reading, Reading, UK C2 CNRS, FRANCE UNIV READING, UK UM LOPS IN WOS Cotutelle UMR copubli-europe IF 4.901 TC 0 UR https://archimer.ifremer.fr/doc/00700/81211/85455.pdf LA English DT Article DE ;Heat uptake;Simple Climate Model AB The representation of ocean heat uptake in Simple Climate Models used for policy advice on climate change mitigation strategies is often based on variants of the one-dimensional Vertical Advection/Diffusion equation (VAD) for some averaged form of potential temperature. In such models, the effective advection and turbulent diffusion are usually tuned to emulate the behaviour of a given target climate model. However, because the statistical nature of such a “behavioural” calibration usually obscures the exact dependence of the effective diffusion and advection on the actual physical processes responsible for ocean heat uptake, it is difficult to understand its limitations and how to go about improving VADs. This paper proposes a physical calibration of the VAD that aims to provide explicit traceability of effective diffusion and advection to the processes responsible for ocean heat uptake. This construction relies on the coarse-graining of the full three-dimensional advection diffusion for potential temperature using potential temperature coordinates. The main advantage of this formulation is that the temporal evolution of the reference temperature profile is entirely due to the competition between effective diffusivity that is always positive definite, and the water mass transformation taking place at the surface, as in classical water mass analyses literature. These quantities are evaluated in numerical simulations of present day climate and global warming experiments. In this framework, the heat uptake in the global warming experiment is attributed to the increase of surface heat flux at low latitudes, its decrease at high latitudes and to the redistribution of heat toward cold temperatures made by diffusive flux. PY 2021 PD OCT SO Climate Dynamics SN 0930-7575 PU Springer Science and Business Media LLC VL 57 IS 7-8 UT 000661070400003 BP 2021 EP 2035 DI 10.1007/s00382-021-05832-7 ID 81211 ER EF