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Abstract14

This paper presents a new discretization of the rotating shallow water equations and a15

set of decisions, ranging from a simplification of the continuous equations down to the16

implementation level, yielding a code that is fast and accurate. Accuracy is reached by17

using WENO reconstructions on the mass flux and on the nonlinear Coriolis term. The18

results show that the build-in mixing and dissipation, provided by the discretization, al-19

low a very good material conservation of potential vorticity and a minimal energy dis-20

sipation. Numerical experiments are presented to assess the accuracy, which include a21

resolution convergence, a sensitivity on the the free-slip vs. no-slip boundary conditions,22

a study on the separation of waves from vortical motions. Speed is achieved by a series23

of choices rather than a single recipe. The main choice is to discretize the covariant form24

written in index coordinates. This form, rooted in the discrete differential geometry, re-25

moves most of the grid scale terms from the equations, and keep them only where they26

should be. The model objects appearing in resulting continuous equations have a nat-27

ural correspondence with the grid cell features. The other choices are guided by the max-28

imization of the arithmetic intensity. Finally this paper also proves that a pure Python29

implementation is not only possible but also very fast, thanks to the possibility of hav-30

ing compiled Python. As a result, the code performs 2 TFlop per second using thousand31

cores.32

Plain Language Summary33

Using a simplified model of the ocean and atmosphere dynamics, this paper presents34

a set of numerical and programming decisions that yields a code that is both fast and35

accurate. The accuracy is assessed in terms of capacity of the code to maintain dynamic36

structures over long periods of time while avoiding the emergence of numerical noise in37

the solution. Accuracy is achieved by using a very accurate discretization on two deci-38

sive terms of the model equations. Speed is achieved by a series of choices ranging from39

a simplification of the continuous equations down to the implementation level. This pa-40

per also proves that a pure Python code is a viable alternative to perform simulations41

on high performance computing centers with as much as 2 TFlop per second using thou-42

sand cores.43
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1 Introduction44

The rotating shallow water (RSW) equations are the perfect framework to test con-45

cepts, methods and ideas for later applications to more sophisticated atmospheric or oceanic46

models. When it comes to numerical modeling, two goals are particularly important: speed47

and accuracy. They are rather antagonistic for accuracy comes with higher order schemes,48

which are computationally more expensive than low order ones, therefore penalizing speed.49

However things are more subtle because a higher order discretization in time may allow50

a larger time step, whereas a higher order discretization in space may increase the ef-51

fective resolution, allowing to use a coarser grid. The price of having high-order discretiza-52

tions may thus be largely compensated. In this paper we show how the WENO recon-53

struction (Jiang & Shu, 1996), a highly computationally demanding scheme, can be used54

in a RSW model on both the continuity and the momentum equations to provide high55

accuracy, while still allowing a very fast code. The merits are such that this numerical56

method opens the way for a new class of sub-grid-scale closure.57

Having a code running fast is a very valuable quality. For a given amount of com-58

putational resources, it allows for a longer time integration or a greater spatial resolu-59

tion. Achieving speed involves many design choices, rather than one, that include the60

programming language, the algorithms implementation and the code design in general.61

When measured in terms of floating point operations (Flop) per second, the speed is-62

sue rapidly touches to the hardware architecture. The question should be, for a given63

computer, how close is the code speed to the maximum speed achievable on this com-64

puter. The maximum speed is given by the clock frequency but, if the code involves too65

much data transfer between the memory and the CPU, the effective speed can be far from66

this maximum. Indeed, according to the roof-line model (Williams et al., 2009), the speed67

might be memory-bound or compute-bound, and that depends on the arithmetic inten-68

sity, which is the ratio of the number of Flop per float exchanged between the memory69

and the core. To achieve the optimal speed, a code should be in the compute-bound re-70

gion, namely it should have a large enough arithmetic intensity, which means to perform71

as many Flop on the data, once the data have been transfered to the core. This issue72

is often overlook in atmosphere and ocean models.73

Increasing the arithmetic intensity is not so easy. We are aware of at least three74

techniques. First, this can be done by blending many operations into a few large loops,75
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as opposed to having many loops each doing one operation. A typical example of code76

following this approach is ROMS (Shchepetkin & McWilliams, 2005). This technique comes77

at the expend of code readability and modularity, which makes code evolutions harder,78

e.g. changing the time stepping. The second possibility is to use numerical discretiza-79

tions that require more Flop per grid point. A very good example of such demanding80

computation is a a high order WENO reconstruction (Shu, 1999), which loops back on81

the question of accuracy. Indeed, replacing linear schemes with high-order non-linear schemes82

not only increases the arithmetic intensity, but it also increases the model accuracy. This83

is the main point of this paper. We elaborate on the benefits of WENO reconstruction84

below.85

The third technique is to simply reduce the number of Flop, and the associated data86

transfer. This might sound odd but there is actually an obvious way, though neglected:87

strip down the RSW equations to a minimal covariant form. The discretized RSW equa-88

tions, when written either in curvilinear coordinates or on non rectangular grids, are usu-89

ally cluttered with a lot of grid scale factors multiplications (lengths, inverse of lengths90

and areas). In this paper we show how these scale factors can be removed almost every-91

where in the vector invariant form of the RSW equations. The price is to slightly change92

the objects the code manipulates. Without further explanations yet, the changes are the93

following: use the array indices (i, j) as spatial coordinates, use finite volume quantities94

carrying their area, replace the velocity components with the pairs of covariant and con-95

travariant components. These changes arise naturally from the discrete differential ge-96

ometry (Desbrun et al., 2006; Cotter & Thuburn, 2014), which identifies the basic ob-97

jects such as scalars, vectors, vorticity, as differential forms and which connects them with98

the grid features, respectively cells, edges and vertices, while emphasizing the crucial dif-99

ference between the primal and the dual mesh. To avoid burying the ideas into an over-100

whelming formalism, we will start from known grounds and make the concepts emerge101

naturally. For the reader tempted to know more we may suggest this very tutorial pa-102

per (Perot & Zusi, 2014). The obtained simplified form of the RSW equations has many103

advantages. It is light, in terms of operations involved ; it is fully adapted to a discretiza-104

tion on a logically rectangular C-grid ; and, last but not least, it is covariant, in the sense105

that the form is invariant under a change of coordinates. Thanks to the covariance the106

space is really seen as an array of cells, even on the continuous equations.107

–4–

ESSOAr | https://doi.org/10.1002/essoar.10507325.1 | CC_BY_4.0 | First posted online: Thu, 17 Jun 2021 08:56:22 | This content has not been peer reviewed. 



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

As already mentioned, the programming language is central. Until recently the climate-108

atmospheric-ocean community mostly relied on Fortran and MPI. Fortran has long been109

considered as the ultimate language for HPC. Things are changing. New codes in Cython110

or Julia (Ramadhan et al., 2020) are now popping up quite regularly. But pure Python111

codes remain rare, mostly because Python is an interpreted language. This can now be112

overcome thanks to the numba module (Lam et al., 2015) that allows to compile Python.113

This paper proves that all the ideas presented so far can be implemented in a pure Python114

code, while reaching 2.0 GFlop per second on a 2.5 GHz core, and 2.0 TFlop per sec-115

ond on the same architecture with a thousand cores.116

Finally another possibility to increase the speed is to trade it with accuracy by us-117

ing single precision floats, or even a blend of a single precision and BFloats (two bytes118

floats), which de facto reduces the memory traffic and the time of each Flop. This ap-119

proach has been recently tested quite thoroughly (Klöwer et al., 2020).120

Let us now turn on the accuracy aspect. Accuracy encompasses several properties.121

In this paper we are particularly interested in the ability: i) to have minimal energy dis-122

sipation, ii) to materially conserve the potential vorticity (PV), iii) to maintain noise-123

free PV, iv) to separate vortical motions from wave motions and v) to enforce clean lat-124

eral boundary conditions, either free or no-slip. We achieve these properties with essen-125

tially one key idea: use WENO reconstructions on the mass flux and the nonlinear Cori-126

olis term, namely the two decisive terms that control these properties.127

Using a WENO reconstruction on the nonlinear Coriolis term may seem odd be-128

cause the upwinding breaks the invariance under the time reversal symmetry, which un-129

avoidably introduces dissipation. The opposite strategy for accuracy is to seek a sym-130

plectic integrator (Brecht et al., 2019). There are in fact several good reasons for using131

WENO. First, a close inspection of the RSW equations written in vector-invariant form132

reveals the equal importance in the material conservation of PV of the mass flux and the133

nonlinear Coriolis term, which is a vorticity flux. So if one applies a WENO reconstruc-134

tion on the mass flux, to provide mixing, it is appealing to proceed similarly on the non-135

linear Coriolis term to have a consistent discretization of the PV and to ensure maxi-136

mum symmetry between the two fluxes. We will show that this technique brings the afore-137

mentioned properties on the PV dynamics. Second, from the energy point of view, the138

nonlinear Coriolis term should have a vanishing work, but if we consider the filtered ver-139
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sion of the RSW equations in vector-invariant form, following the LES filter technique140

(Sagaut, 2006), then, once again, the nonlinear Coriolis term turns out to be the key player.141

Indeed, the vector-invariant form transforms the momentum flux into the nonlinear Cori-142

olis term and the gradient of kinetic energy term. These two terms play a very differ-143

ent role on the energy equation. The gradient term becomes the divergence of the ki-144

netic energy flux whereas the nonlinear Coriolis term turns out to be the term respon-145

sible for the exchange of energy between the resolved grid scales and the sub-grid scales.146

Therefore advocating for using the WENO reconstruction to compute this term. The147

third, and last reason was originally formulated by Mullen et al. (2011). If we let the dif-148

ferential geometry guides our numerical choices, then the transport of the momentum149

should be discretized in such way that it obeys the properties of the Lie derivative. This150

pleads for upwinding the vorticity in the nonlinear Coriolis term. If one also demands151

high order discretization and monotonicity, then a WENO reconstruction is a natural152

solution. Note that WENO reconstructions have already been tested for shallow water153

models (Xing & Shu, 2005; Noelle et al., 2007; Gallerano & Cannata, 2011) but it was154

on the flux form of the momentum equation. Applying it on the nonlinear Coriolis term155

is completely new to our knowledge.156

From the more general perspective of large eddy simulations (LES) models, the idea157

stems from the MILES approach (Boris et al., 1992). MILES was designed for three di-158

mensional models as an alternative to physically based explicit closures, typically the Smagorin-159

sky closure or one of its variant. In ILES the closure takes the form of a monotonic dis-160

cretization of the mass and momentum fluxes. Such closure is coined implicit (Margolin161

et al., 2006) or numerical (Pope, 2004). A numerical closure is opposed to a physical or162

purely physical closure for which there is a physical model supporting the closure. The163

use a monotonic discretization on the nonlinear Coriolis term rather than on the momen-164

tum flux, can be seen as a variant of the MILES approach. This paper adds up to the165

list of closures for LES models solving the RSW equations (Graham & Ringler, 2013).166

This paper is organized as follows. In Section 2, we show how the continuous RSW167

equations can be strip down to a very simple form while still handling general curvilin-168

ear coordinates and being fully covariant. We discuss the material conservation of PV169

to motivate the discretization, which is presented in Section 3. In Section 4, implemen-170

tation choices are described and the code speed is assessed. In Section 5, the accuracy171
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of the code is tested with three experiments, each assessing one aspect. A summary is172

given in Section 6.173

2 A fresh look at the RSW equations174

The goal of this section is to present the RSW equations in the form that it is well175

suited for having a fast and accurate numerical model, namely176

∂u

∂t
= −(ζ? + f?)U⊥ −∇ (g(h+ b) + k) (1)177

∂h?

∂t
= −∇ · (h? U) (2)178

ζ? = ∇× u (3)179

k =
1

2
u ·U (4)180

which is the vector invariant form slightly in disguise. Indeed, at this stage only four terms181

have their classical definition: h, the layer depth, g is the acceleration due to gravity, b182

the bottom topography and k the kinetic energy density. The other terms require more183

context before being fully defined. In particular the meaning of the ? decorator and the184

use of two different terms u and U for the velocity will be explained. The ⊥ symbol on185

U⊥ has its usual meaning, it designates the quarter turn counterclockwise rotated U.186

2.1 Index coordinates187

We start by endowing the space with a mapping system. The most general way is188

to use curvilinear coordinates (η1, η2). They might be Cartesian (x, y), spherical (φ, θ),189

cylindrical (r, θ), or any other. Among the other possibilities are the index coordinates190

(i, j), associated with a logically rectangular grid. These coordinates, which are grid res-191

olution dependent, are natural to locate grid cell features such as centers, edges, and ver-192

tices because all the variables are mapped with only integers or half integers indices, de-193

pending on the variable staggering. But their most interesting property is that two ad-194

jacent points of the same feature in the direction either i or j are separated by either195

di = 1 or dj = 1. Thus, the partial derivative ∂φ/∂i of a field φ(i, j) is naturally dis-196

cretized as197

∂φ

∂i
→ φ[i+ 1, j]− φ[i, j] , (5)198

with no division, because di = 1. By using index coordinates, a spatial derivative boils199

down to one subtraction. This is the first optimization and simplification of this paper.200
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For the rest of this paper, we will use the index coordinates, therefore using (i, j) instead201

of (η1, η2). The consequence is that the ∇ operator reads202

∇ =

(
∂

∂i
,
∂

∂j

)
, (6)203

and its discretized version only involves the two points differences (5).204

Once the coordinates system is defined, the space must be equipped with a met-205

ric to measure the distance between two nearby points, say P1 at (i, j) and P2 at (i+206

di, j + dj). This is achieved with the first fundamental form207

ds2 = e21 di
2 + e22 dj

2 (7)208

where e1(i, j) and e2(i, j) describe the metric of the space. For the index coordinates sys-209

tem, (e1, e2) are the elementary distances between two points separated either by (1, 0)210

in the direction i, or by (0, 1) in the direction j. In other words, (e1, e2) are the grid cell211

lengths and they carry the length dimension. For other coordinates systems, e1 and e2212

may not have the dimensions of a length, e.g. in the Cartesian coordinate case (e1, e2) =213

(1, 1), or not have the same dimension, e.g. in the cylindrical coordinate case (e1, e2) =214

(1, r) .215

2.2 Finite volumes and contravariant components216

To present the second optimization and simplification, let us recall how the equa-217

tions in curvilinear coordinates are usually written. In particular, the continuity equa-218

tion ∂h/∂t = −∇ · (hũ), where ũ = (ũ, ṽ) is the velocity, reads219

∂h

∂t
= − 1

e1e2

(
∂

∂i
(h ũ e2) +

∂

∂j
(h ṽ e1)

)
. (8)220

This equation, though absolutely correct, is unnecessarily cluttered. The drawbacks are221

many. Beyond the code readability, it harms the code speed because it requires unnec-222

essary multiplications and unnecessary data transfer from the memory to the CPU, as223

e1 and e2 are also bi-dimensional arrays in the general case. It also makes the interpo-224

lation of model variables more involved. (8) can be simplified into (2), viz.225

∂h∗

∂t
= − ∂

∂i
(h∗ U)− ∂

∂j
(h∗ V ) (9)226

with no sacrifice, by simply defining227

h∗ = h e1e2 , and U = (U, V ) = (ũ/e1, ṽ/e2) . (10)228
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(9) now involves only two multiplications, that correspond to a genuine non-linearity of229

the RSW equations, and three additions/subtractions. The grid scale factors are gone.230

The price to pay is to accept working with the less intuitive variables (h?,U) rather than231

the usual “physical” (h, ũ). The benefits are considerable: computationally, implemen-232

tation wise and even conceptually. The simplification neither comes by chance or is a233

mathematical trick. (9) exposes the geometric nature of the objects we should manip-234

ulate. Let us comment on these two variables.235

The first realization is that the velocity which fluxes the mass is U, whose dimen-236

sions are T−1. U turns out to be the contravariant form of the velocity in the index co-237

ordinates system. The second realization is the use of h?. As the product of h with the238

area A = e1e2, h? is naturally the amount of h, i.e. the finite volume version of h. The239

discretized version of h? should be natural for every numerical modeler but its contin-240

uous version might be a bit more mysterious. It is worth an explanation. In the contin-241

uous equations, A is an infinitesimal surface area. In Cartesian coordinates, A would be242

dx dy and h? would be h dx dy. This might look awkward, but it is not, for there is a solid243

underlying mathematical theory: the differential geometry. In this paper we have decided244

to not use the artillery of differential geometry because it would overwhelm the discus-245

sion with too many concepts. However, it is with these concepts in mind that this work246

has been carried out. The reader interested in the connection with the differential ge-247

ometry may look at these papers. The present paper is really aimed at numerical mod-248

elers. A consequence of h? carrying its infinitesimal area is that it can be used as is in249

a domain integration. For instance, the total volume is V =
∫
h?.250

2.3 Covariant components251

Similarly the momentum equations in curvilinear coordinates vector-invariant form252

usually read253

∂ũ

∂t
= (ζ + f)ṽ − 1

e1

∂

∂i

(
g(h+ b) +

1

2
|ũ|2

)
(11)254

∂ṽ

∂t
= −(ζ + f)ũ− 1

e2

∂

∂j

(
g(h+ b) +

1

2
|ũ|2

)
, (12)255

where f is the Coriolis parameter and ζ is the vorticity256

ζ =
1

e1e2

(
∂

∂i
(e2v)− ∂

∂j
(e1u)

)
. (13)257
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(12) can be transformed into (1), viz.258

∂u

∂t
= (ζ? + f?)V − ∂

∂i
(g(h+ b) + k) (14)259

∂v

∂t
= −(ζ? + f?)U − ∂

∂j
(g(h+ b) + k) (15)260

by defining

u = (u, v) = (ũ e1, ṽ e2) , (16)

and261

f? = f e1e2 , ζ? =
∂v

∂i
− ∂u

∂j
and k =

1

2
u ·U . (17)262

As in the continuity equation, no grid lengths are involved in either the gradient or the263

curl. The vector u has two interpretations: it is both a circulation element, and the co-264

variant form of the velocity in the index coordinates system. By combining the defini-265

tions of u and U we have (u, v) = (U e21, V e
2
2). This relation can be written in tensor266

notation u = gU, with267

g =

e21 0

0 e22

 (18)268

the metric tensor. The dimensions of the covariant components are L2 T−1. Therefore269

neither u or U have the dimensions LT−1 of a speed. The distinction between u and270

U may seem quite artificial and formal at first. It turns out that they correspond to two271

very different substances: u is the momentum, the dynamical quantity that is transported272

and that obeys a conservation law, whereas U is the flux, the kinematic quantity that273

transports things. ζ? has the same dimensions as u and satisfies ζ? = ζ e1e2. Conse-274

quently ζ? can be seen either as an elementary circulation along a closed loop, or as the275

usual vorticity times the area element, i.e. the finite volume version of ζ. Likewise, f?276

is the finite volume version of the planetary vorticity f . At this stage, (9-10, 14-17) are277

in the form we use for the discretization.278

2.4 Potential vorticity279

A central diagnostic quantity of the RSW equations is q = (ζ?+f?)/h?, the po-280

tential vorticity, abbreviated PV throughout this paper. PV plays a central role in ro-281

tating flows for it allows to split the dynamics into a balanced part, captured by the PV282

evolution, and the unbalanced, the gravity waves, that propagate with vanishing net PV283

transport. Being a ratio of two finite volume quantities, q is a density, as opposed to a284
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finite volume quantity. It obeys ∂q/∂t+U·∇q = 0, which expresses the material con-285

servation on fluid parcels. This conservation law is highly desirable at the numerical level.286

It should be emphasized that the material conservation is much more demanding numer-287

ically than a global conservation. In practice, it means that the probability density func-288

tion of q remains stationary in time. Ensuring exact material conservation of this derived289

quantity is possible on steady flows, e.g. the cases 2 and 3 of (Williamson et al., 1992),290

but it is impossible on arbitrary flows, for a fundamental reason. Indeed, the material291

conservation holds as long as there is no dissipation nor mixing, viz. for inviscid flows292

but, sooner or later, mixing of PV kicks in. This is because of the tendency for the PV293

to develop filaments that, under the flow deformation, elongate and get thinner with time,294

a process known as the direct cascade of enstrophy. For RSW equations the enstrophy295

density is q2 h and for inviscid flows, the total enstrophy, integrated over the domain,296

Z =
∫
q2 h? should be conserved. In a numerical model the direct cascade of enstro-297

phy should proceed as inviscidly as possible across the resolved scales until it reaches the298

grid scale, at which point the numeric should be helped to parameterize the unresolved299

cascade continuation. This parameterization usually boils down to dissipate the enstro-300

phy at the grid scale. In this paper we adopt the MILES approach consisting in using301

monotonic upwinded reconstructions to provide the required dissipation of enstrophy.302

But the tricky point is that q is essentially a by-product of the equations, there is no di-303

rect handle on the PV evolution. The PV dynamics is controlled only through the dy-304

namics of h? and ω? = ζ?+f?, the finite volume absolute vorticity. To complicate even305

more, ω? is also a derived quantity, but fortunately, the vector invariant form exposes306

the ω? dynamics in plain sight offering a way to consistently handle h? and ω?.307

The numerical discretization we propose aims at having a PV material conserva-308

tion as good as possible. The material conservation is not a mere coincidence, it corre-309

sponds to a hidden symmetry of the equations: the invariance of the equations under a310

relabeling of the parcels. Enforcing material conservation discretely is thus a way to sat-311

isfy this hidden symmetry of the equations. For that we adopt a slight change of per-312

spective on the role of q in the numerical integration. Instead of focusing on q, we fo-313

cus on ω?. Indeed, in practice, the material conservation of PV derives from a subtle can-314

cellation in the momentum and the continuity equation between the vorticity flux ω?U315

and the mass flux h?U. Let us carefully examine how this cancellation works for this will316

suggest a new way to discretize the RSW equations.317
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To derive the material conservation of PV we apply the chain rule on318

∂q

∂t
=

1

h?2

(
h?
∂ω?

∂t
− ω? ∂h

?

∂t

)
(19)319

that reveals the very symmetrical role between the continuity equation and the the equa-320

tion for the absolute vorticity. The latter is derived by taking the curl of (1), namely321

∂ω?

∂t
= −∇ · (ω? U) , (20)322

which expresses that the vorticity obeys a conservation law in flux form, exactly like h?.323

Substituting (20) in (19) yields324

∂q

∂t
=

1

h?2
(−h?∇ · (ω? U) + ω?∇ · (h?U)) (21)325

= − 1

h?2

h?U ·∇ω? − ω?U ·∇h? + h?ω?∇ ·U− h?ω?∇ ·U︸ ︷︷ ︸
=0

 (22)326

= −U ·∇q . (23)327

We see that the material conservation arises because of the cancellation of the two terms328

in (22), which follows from the identity329

∇ · (φ? U) = U ·∇φ? + φ?∇ ·U , (24)330

where φ? is either h? or ω?. On a C-grid, the discrete version of this identity can be made331

exact provided the quantity φ?, in the flux φ? U, is interpolated at velocity point.332

The discretization we propose is now clear: use monotonic high-order biased re-333

construction of ω? and h? to estimate the terms ω?U⊥, in the momentum equation, and334

h?U, in the continuity equation. For the mass flux, this is the usual upwind interpola-335

tion. For the nonlinear Coriolis term the upwinding should be done in the direction of336

the flux, namely U⊥, not in the direction of the momentum on which it applies. This337

is the main originality of this paper.338

3 Discretization339

We now present the model discretization by going through three aspects: the space340

and time discretizations ; and the handling of the boundary conditions.341

3.1 Space discretization342

The model equations are discretized on a logically rectangular C-grid. In the C-343

grid there is a natural distinction between the primal grid and the dual grid (Figure 1a).344
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In this paper we chose to map the primal grid centers with integer indices and the dual345

grid centers with half integer indices. The velocity components, both covariant and con-346

travariant, are defined on the edges of the dual grid, h? is defined at cell centers of the347

primal grid and the vorticity terms ζ? and f? are defined at cell centers of the dual grid,348

which are also the vertices of the primal grid. The rotated U⊥ is defined on the edges349

of the primal grid, which implies that its components are staggered compared to the com-350

ponents of U (Figure 1a). Following the C-grid terminology, we denote “u-point” and351

“v-point” the place where u and v are discretized.352

Because we use the index coordinates (i, j), the model equations are completely obliv-353

ious to e1 and e2, the grid scale factors, which means that for u, v and h? the space is354

seen as an array of regular indices, regardless of the underlying metric. Consequently the355

grid cells are truly squares, of size 1×1 in the index units. This also means that spa-356

tial interpolations, involved in the evaluation at non native locations, should be done on357

the regular grid of indices, not on the irregular grid of spatial locations.358

Before giving the discretized equations we define three spatial operators. The first359

one is the finite difference operator360

δi+1/2[φ] = φi+1 − φi (25)361

estimating the along i partial derivative of φ at location i+1/2 assuming φ is discretized362

at integer locations along i. The converse is also needed δi[φ] = φi+1/2−φi−1/2 to es-363

timate a partial derivative at location i using a quantity discretized at half integer lo-364

cations. To designate an along j partial derivative we should use either δj [φ] or δj+1/2[φ].365

The two others are interpolation operators, interpolating along direction i (or along366

the j direction, with the j index). The first one is the linear second order, or two points367

averaging368

φ
i+1/2

=
1

2
(φi + φi+1) , (26)369

and the second is the WENO reconstruction370

Ii+1/2[φ?, U ] = U
∑
s∈S

cs φ
?
i+s , (27)371

where S is the stencil of the reconstruction and cs are the weights. In this paper we use372

n-order WENO reconstructions (Jiang & Shu, 1996; Shu, 1999), n ∈ {1, 3, 5}, whose373

stencils have n elements. The n = 1 case is the first order upwind interpolation and374
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we have either c0 = 1 if U > 0, or c1 = 1 if U < 0. In the n = 3, 5 cases the recon-375

struction is nonlinear because the weights cs depend on {φi+s, s ∈ S}. In any case
∑

s∈S cs =376

1. Having an even number of points, the stencils are shifted in the upwind direction, which377

depends on the sign of U . In the 5th order case, S = {−2,−1, 0, 1, 2} if U > 0, and378

S = {−1, 0, 1, 2, 3} if U < 0. As defined, the interpolation operators use quantities379

discretized at integer locations (φi+s) to estimate it at i+1/2. The reverse is also needed:380

use quantities discretized at half integer locations to estimate it at i. In that case we would381

write either φ
i

or Ii[φ
?;U ]. Note that (27) assumes that U is discretized at the location382

where φ? is reconstructed. This will always be the case. For sake of completeness the383

WENO reconstruction is detailed in the appendix. Note that (27) is referred as a recon-384

struction rather than an interpolation. Reconstruction is the word used when the quan-385

tity to be interpolated is a finite volume quantity, and interpolation is usually reserved386

when the interpolated quantity is the density (e.g. h or ω), or equivalently the finite dif-387

ference quantity. In this paper, the WENO scheme is applied to h? and ω?, the finite388

volume quantities. We therefore exclusively use the WENO reconstruction.389

With these notations defined, we can now give the discretized model equations. They390

read391

U = u/e21, V = v/e22, B = g(b+ h?/A) + k , (28)392

393

∇B → (δi+1/2[B], δj+1/2[B]) (29)394

∇ · (h?U) → δi[Ii+1/2[h?, U ]] + δj [Ij+1/2[h?, V ]] (30)395

ω? = f? + ∇× u → f? + δi+1/2[v]− δj+1/2[u] (31)396

k =
1

2
u ·U → 1

2

(
uU

i
+ vV

j
)

(32)397

ω? U⊥ → (Ij [ω
?, Vm] ,−Ii[ω?, Um]) (33)398

and399

Um = U
i
j+1/2

, Vm = V
j
i+1/2

. (34)400

The only place where the metric terms are used is in (28). The required metric terms401

are (e1, e2), the edge lengths of the dual, at respectively u-points and v-points, and A402

the primal cell area. In addition, and only during the initialization, Av, the dual cell area,403

is needed to define f? = Av f .404

Because of the rotation, the components of U⊥ = (−V,U) must be deduced from405

U through some averaging because U and V are discretized at (i+ 1/2, j) and (i, j +406
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1/2) whereas U⊥ requires flipped locations. This is done with the four points averag-407

ing in (34). This averaging is one of the decisive ingredient of the TRISK discretization408

(Thuburn et al., 2009; Ringler et al., 2010).409

The discretization (33) is the main originality of this paper. The WENO reconstruc-410

tion is usually applied on conservation laws written in flux form. In the case of the mo-411

mentum equation this is on the flux of momentum. Here, because of the vector invari-412

ant form, there is no momentum flux. But, as discussed earlier the nonlinear Coriolis term413

is the vorticity flux and, as such, it can be computed with a WENO reconstruction.414

The idea of putting some kind of upwinding and monotonicity on the nonlinear Cori-415

olis term is not new. In some aspect, the anticipated PV method (APVM) (Sadourny416

& Basdevant, 1985) implements it, although in a quite different fashion. APVM has been417

compared to other sub-grid closures (Graham & Ringler, 2013) in the context of RSW418

models. The APVM consists in expliciting the PV in the vorticity term (ω = qh) and419

in using a first order upwind interpolation of the PV in the local direction of the flow.420

In the APVM there is no directional splitting. The APVM can be seen as a semi-lagrangian421

method where the PV is estimated at the place where it was a time step earlier. As be-422

ing a first order interpolation, the APVM induces more enstrophy dissipation than the423

method presented in this paper, while being energy-conserving. Also, contrary to our method424

that is parameter free, the original APVM introduces a numerical parameter that must425

be tuned with respect to the grid size and time step. A parameter-free extension of the426

APVM has been proposed (Chen et al., 2011) for the small h deviations case, whose as-427

sumption our method does not require. Finally, the use of the finite volume ω? makes428

the APVM completely unnatural within the framework we propose. Indeed, it would re-429

quire to write ω?U⊥ as q (h?U⊥). We would then use a centered discretization for the430

mass flux h?U⊥ and have the upwinding on the q term. This would completely break431

the symmetry of treatment between the continuity and the momentum equation. With432

this in mind, the discretization we propose appears oppositely quite natural, almost as433

self emerging from the equations, without ad-hoc choice and parameter-free.434

For the kinetic energy term we use (32), which is a classical discretization. How-435

ever, it is worth noting that the kinetic energy term could also be discretized with a WENO436

reconstruction, as follows437

uU
i
+ vV

j → su Ii[uU, su] + sv Ij [vV, sv] (35)438
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with su = sign(U
i
) and sv = sign(V

j
) inside the operator, to keep track of the up-439

winding directions at the grid center, and as prefactors, to ensure positivity even if su <440

0 or sv < 0. Doing so would seriously increase the number of FLOP per time iteration441

(see Section 4). Given the lack of obvious immediate benefit, we did not pursue this idea442

further.443

The use of WENO for the kinetic energy term may look surprising, at least for the444

reader not familiar with the differential geometry. The differential geometry identifies445

the spatial derivative in the flow direction of a quantity as the Lie derivative of its as-446

sociated differential form (Frankel, 2011). The Cartan identity splits the Lie derivative447

in two terms, each one participating to the transport in a very specific way. For the mo-448

mentum, the associated differential form is u, and these two terms are the nonlinear Cori-449

olis term and the gradient of kinetic energy of the vector-invariant form. Each term can450

be seen as a composition of two basic operations of the differential geometry: the exte-451

rior derivative and the interior product, respectively a generalization of the ∇ operator,452

and of the inner product. In the discretized equations we presented, the exterior deriva-453

tive shows up as the finite difference operators δi[·] and δj [·], whereas the interior prod-454

uct shows up as the WENO reconstruction operators Ii[·] and Ij [·]. The idea of using455

Cartan identity to discretize the transport of a vector field was pioneered by Mullen et456

al. (2011), who also showed that a WENO reconstruction improves the accuracy, com-457

pared to the upwind first order reconstruction. Here we somehow generalize these results458

to the full RSW equations.459

3.2 Time stepping460

The code clearly separates the time scheme in one generic module. The implemen-461

tation of a time scheme is very close to a textbook presentation. This is made possible462

because space and time discretizations are independent. The model variables are split463

into two groups: the prognostic variables φ = (u, v, h?), obeying an explicit time evo-464

lution equation, and the diagnostic variables Φ = (ζ?, U, V, p). Formally, the code han-465

dles s = (φ,Φ) the model state, as a collection of all variables, that obeys ∂s/∂t = L(s),466

with L the model operator. To better expose the prognostic and the diagnostic parts L467
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Figure 1. a) The classical C-staggering with locations for scalars (orange circles), vector

components (blue circles) and vorticity (purple circles). The features (vertices, edges, faces) are

colored in purple for the primal grid and orange for the dual grid. b) Illustration of the vorticity

upwinding. Away from the boundaries, the vorticity flux (red arrow) at the v-point (red circle)

is computed as the product of U (blue arrow), interpolated with a four points averaging (dotted

blue arrows), and ω? reconstructed along i using the five points stencil (L2, L1, L0, R0, R1). If

cell A is masked, the stencil is shortened (L1, L0, R0) ; if both cell A and cell B are masked, the

stencil is (L0). In that latter case, if U were to the left, the vorticity would be reconstructed with

the stencil (R1, R0, L0).

can be expanded into468

∂φ

∂t
= R[φ, Φ] (36)469

Φ = D[φ] , (37)470

with R the right hand side for the prognostic variables and D the diagnostic relations for471

Φ. Currently the code proposes two time schemes: the Leap-Frog Adams Moulton scheme472

(LFAM3) (Shchepetkin & McWilliams, 2005) and the 3rd order stably strongly preserv-473

ing Runge Kutta scheme (Gottlieb et al., 2001) (RK3)474

s(1) = sn + ∆t L[sn] (38)475

s(2) = sn +
1

4
∆t (L[sn] + L[s(1)]) (39)476

sn+1 = sn +
1

6
∆t (L[sn] + L[s(1)] + 4 L[s(2)]) , (40)477
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where ∆t is the time step and sk the model state at time step k. Both are third order478

in time. The LFAM3 is a predictor corrector scheme with only two calls to the right-hand479

side L per time iteration, whereas RK3 requires three calls to the right-hand side. RK3480

is the model default choice.481

3.3 Boundary conditions at lateral boundaries482

RSW models are quite often tested either in bi-periodic domains or on the whole483

sphere, more rarely in domains with lateral boundaries. For oceanic applications, han-484

dling the lateral boundaries is a necessity. The other reason to present the lateral bound-485

ary conditions is that they fit particularly well with the choice of upwinding the vortic-486

ity in the nonlinear Coriolis term. The no-flow is enforced at no cost thanks to the C-487

grid but interestingly, the free-slip and the no-slip boundary conditions appears very nat-488

urally as conditions on the vorticity, which directly impact the normal component of flux489

of vorticity at the boundary.490

Solid boundaries can be either at the domain boundary or inside the domain. For491

the latter case, we use a mask system mi,j . A cell (of the primal grid) is solid if mi,j =492

0, fluid if mi,j = 1. The no-flow boundary condition is imposed at each edge of the pri-493

mal grid where one adjacent cell is solid. It simply consists in setting u = 0 or v = 0494

at this edge. This is the standard technique. The real point of attention is on defining495

ζ? at points sitting along the boundary. The curl expression (31) cannot be immediately496

used because the dual cell is not fully fluid. However, ζ? conserves its physical mean-497

ing of being both the amount of vorticity in this partial cell, and the circulation along498

the boundary of this partial cell. The latter offers the natural way to define ζ?, which499

completely depends on the slip condition. In the free-slip case, ζ∗ = 0 at points along500

the boundary. In the no-slip case, we keep compute ζ∗ with (31) but we set u = 0 and501

v = 0 for all edges, not fully in the fluid. For a straight boundary, say along i at j =502

0 and the fluid being for j > 0, this definition yields ζ?i,0 = −ui,1/2, which expresses503

that a right-going flow generates a negative vorticity. The use of the differential forms504

remove, once again, all the metric terms from the relation. The no-slip boundary con-505

dition behaves as a source of vorticity localized at the boundary. Interestingly, once this506

vorticity is generated, it might be transported into the fluid by the nonlinear Coriolis507

term. Let us see how.508
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For cell edges close to the boundary, the five points stencil of the the WENO 5th509

does not fit in. To overcome this issue, the code implements a varying stencil width with510

the following policy: use the widest biased stencil, i.e. either one, three or five points,511

fitting within the fluid cells. The one point stencil is the upwind first order interpola-512

tion. For the three points stencil, we use the third order WENO reconstruction (Shu,513

1999) (explicited in Appendix A). The consequence is that the outward vorticity flux514

at the edge next to the boundary is computed with a first upwind scheme, that adds a515

little bit more of dissipation. In the free-slip case, since ζ? = 0 at the boundary there516

is no outward flux.517

Instead of imposing the velocity at the boundary, and therefore the vorticity, we518

may want to impose the normal stress. In that case, it requires to introduce a viscos-519

ity to relate the stress to the velocity. We did not pursue this idea further as it is be-520

yond the scope of the paper.521

4 Speed522

4.1 Implementation choices523

Performances on both the quality of the solutions and the speed were the top pri-524

orities in the code design. To achieve speed, a compiled language is required. Until re-525

cently this imposed the use of Fortran or C or a blend of Python and C (Pressel et al.,526

2015). The Julia language is currently used on several projects (Ramadhan et al., 2020;527

Klöwer et al., 2020), whose chief advantage is to be a compiled language. Here we chose528

another route. The code is entirely written in Python, without sacrificing speed. This529

is possible thanks to the numba module. Numba (Lam et al., 2015) uses the LLVM com-530

piler (Lattner & Adve, 2004) to compile Python code. The bulk of the code is interpreted531

Python, but all the computational functions are compiled. In practice, to compile a func-532

tion amounts in specifying its signature, namely the types of its inputs and outputs. In-533

side a function, and contrary to the pythonic policy, the loops can be explicitly devel-534

oped ; the compiler takes care of them. Note that since Julia’s compiler is also LLVM,535

it makes the use of Julia less decisive for HPC.536

The second element of speed is to systematically duplicate all arrays. Arrays are537

thus stored in [k,j,i] and in [k,i,j] conventions, the k index being for the layer in-538

dex. The motivation is to always do finite differences with the convention where the data539
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are contiguous in memory. Thus, the computation of the spatial derivative ∂/∂j or of540

the along j-interpolation is done with the [k,i,j] convention. Data contiguity allows541

a better usage of the L1-cache, which is the fastest. The price of duplicating is to per-542

form transpose operations to exchange the data from one convention to the other. For-543

tunately, the transpose operation is very fast as it is highly optimized. In practice the544

transpose operation is done 20 times per time stage, which represents 16% of the total545

time. Another advantage of this approach is to easily guarantee the numerical isotropy.546

The two directions i and j are treated absolutely equivalently because there is only one547

function for both operations. This is particularly convenient for the WENO reconstruc-548

tion. The WENO reconstruction, even though requiring many more operations than the549

linear interpolation, is not much slower.550

A third element of speed is of course the use of the covariant equations with the551

index coordinates that turn spatial differentiations into subtractions. The number of mul-552

tiplications is minimal. The only computation involving many multiplications is the WENO553

reconstruction.554

103 104 105

nx ny

0 s

500 ns

1 µs

1.5 µs

2 µs

2.5 µs

N
 T

 / 
n x

n y

N = 1

1 4 16 64 256 1024
N

nx ny = 104 N

Figure 2. Walltime per time iteration T rescaled with N/(nxny). On the left for the mono-

core case as a function of the domain size nxny and on the right the weak scaling, where the

number of cores N is increased from N=1 up to N=1024, while the domain size per core

nxny=104 is kept constant. In blue are the performances for the supercomputer and in orange for

a notebook (see text for the CPU specs).
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4.2 Speed assessment555

With these choices, the code (Roullet, 2021) is very fast. With the default 5th or-556

der WENO, and the SSP-RK3 time scheme, the code speed is about 0.3µs per iteration557

per grid point (Figure 2). The performances have been measured on a notebook (Intel®558

CoreTM i7-6600U at 2.6GHz) and Rome (AMD® EPYC 7502 at 2.5GHz) a supercom-559

puter hosted at TGCC (Saclay, France). Timing has been averaged over thousand time560

iterations and excludes the I/O. The code has an almost perfect weak scaling (Figure 2b).561

We may wonder how close is the code speed to the peak CPU performances. To answer562

it we need to determine how many floating operations are done per grid cell and per time563

iteration.564

To estimate how far this speed is from the maximum peak performance of the CPU,565

we count all the floating point operations (Table 1). The current implementation uses566

840 Flop per time step and per grid point. With the minimum time T = 400 ns on the567

Rome supercomputer, this gives 2.1 GFlop s−1, which corresponds to 84% of the CPU568

clock frequency. It is not overstated to say that this implementation is close to the max-569

imum hardware limits. Interestingly, with 708 Flop, the WENO reconstruction is the ma-570

jor contributor, representing 84% of the total Flop. By using a linear interpolation (up-571

wind 5th), the reconstruction involves only 108 Flop1 and therefore only 240 Flop per572

time step. Naively we could expect the code to be 840:240=3.5 time faster. This is not573

the case. In practice the linear interpolation gives T ≈ 350 ns corresponding to 0.7 GFlop s−1.574

The reason is clear. In this case the code speed is limited by the memory access, which575

makes the CPU waiting for data. By increasing the arithmetic intensity, the use of WENO576

puts the code into the compute-bound region, which maximizes the Flop per second.577

5 Accuracy578

The merits of the numerical choices are tested with three experiments, each test-579

ing one aspect: the merging of two vortices, the interaction of a dipole in an elliptical580

domain with free and no-slip condition, a dam break experiment in an annulus. The ex-581

periments are set in quite intense nonlinear regimes, although not going up to either shock582

wave formation or dry bed emergence.583

1 Corresponding to 3 stages, 2 functions, 2 directions, 5 multiplications and 4 additions.
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Table 1. Number of floating operationsa breakdown

Function Term #M #A

Continuity WENO 5th 64 54

d(h?U) 2 4

Vorticity flux WENO 5th 64 54

U⊥ 2 4

Coriolis 2 4

ω?U⊥ 2 2

Bernoulli grad 0 4

Diagnostics U 2 0

ζ? 0 3

u ·U/2 3 3

g(h? + h?b)/A 2 1

Total per stage 143 133

SSP RK3 stage 1 1 1

stage 2 2 2

stage 3 3 3

Total per time step 435 405

aFloating points operations involve multiplications

(#M) and additions/subtractions (#A). The numbers

are given per grid point and per call to the function.

For the RK3 time stepping, which is the default, the

total number per time step is the three times the to-

tal per stage plus the operations in the time scheme

itself.
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5.1 Merging of two vortices584

This first set of experiments tests the sensitivity of the conservation laws on the585

model resolution. The experiments consist in the time evolution of two Gaussian vor-586

tices initially in geostrophic balance. The two vortices, of radius σ = 0.07, are sepa-587

rated by a distance d = 1.4σ ; specifically588

h(x, y) = H + h0 (G(x− d/2, y;σ) +G(x+ d/2, y;σ)) ,589

with h0 = 0.2, H = 1 and G(x, y;σ) = exp[−(x2 + y2)/(2σ2)]. The domain is square,590

with an edge length L = 1. We use the free-slip boundary condition. The two physi-591

cal parameters are g = 1 and f = 5 which yield a Rossby deformation radius R =592

√
gH/f = 0.2, that sets the vortices in the submesoscale range. The speed scale is gh0/(fσ),593

which yields a Rossby number of Ro = gh0/(fσ)2, namely Ro ≈ 1.6, again typical of594

the submesoscale regime. The vortices are anticyclones because h0 > 0. The flow is in-595

tegrated up to time t = 10. The domain is meshed with N2 grid cells of uniform size.596

N is varied from N = 100 to N = 3,200, by a succession of doubling.597

The two vortices are close enough to merge, as revealed by the presence of single598

core of negative PV in the center at t = 10 (Figure 3), instead of two initially. The de-599

tails of the merging sequence depend on the resolution, among which the amount of fil-600

aments and the balancing time. But quite clearly, and fortunately, the solution converges601

with increasing N . The cases N = 1,800 and N = 3,200 are almost indistinguishable602

by eye. A striking property is the absence of noise on the PV fields, for all resolutions.603

This is a consequence of the implicit dissipation and mixing provided by the MILES ap-604

proach. A second striking feature is the capability for the code to produce and maintain605

very thin filaments. Of course the case N = 3,200 is quite extreme for such a trivial606

flow but nevertheless it is worth emphasizing. Not only are the filaments thin, they can607

also be intense in terms of PV difference with the background state. This results in the608

shear instability of a few filaments, as seen on the N = 1,800 case.609

To better assess the convergence with the resolution we diagnosed the cumulative610

global dissipation (Fig. 4a-b) for both the energy εE = (E0 − E)/E0 and the enstro-611

phy εZ = (Z0−Z)/Z0, where the superscript 0 denotes the value at t = 0. The global612

energy E is defined as E =
∫
eh? − Eb, with the energy density613

e =
1

2
u ·U +

1

2
gh , (41)614
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Figure 3. Snapshots of potential vorticity at t=10, after the vortices merged, for four resolu-

tions nxny= 1002, 2002, 8002, 3,2002. Only a quarter of each domain is displayed. The parame-

ters are g=1, H=1, f=5. The anticyclones were initially Gaussian, in geostrophic balance, with a

layer depth h=1.3 at their center.

and the background potential energy Eb =
∫

(gH2/2) dxdy. Eb is removed from
∫
eh?615

because it is the part of the energy that cannot be dissipated. This is the energy of the616

rest state. Still, the total amount of energy dissipated is fairly small: εE ∼ 2% for N =617

100 and εE ∼ 4.10−5 for N = 3,200, which is approaching perfect conservation. The618

code actually reaches the point where the question becomes theoritical: during a vor-619

tex merging event should the energy dissipation go to zero in the limit of infinite reso-620

lution? The present experiments suggest that not but this would deserve a more thor-621

ough study, beyond the scope of this paper. The case of the enstrophy dissipation (Fig. 4b)622

is very different. In all cases there is a finite amount of dissipation but the increase of623

resolution delays the time at which the dissipation really starts, as well as it increases624

the equilibration time. In the N = 100 case, the merging process is almost completed625

as indicated by the plateau, at the largest resolution, there is still a lot of enstrophy to626
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Figure 4. Energy (a) and enstrophy (b) dissipated as a function of time and resolution (color)

for the vortex merging experiment. The energy of the rest state gH2/2 has been removed from

E and E0. (c) probability density function of potential vorticity at t = 0 (blue), t = 2 (red) and

t = 10 (orange) for the merging experiment at the 3,2002 resolution.

be dissipated. It is not clear whether all resolutions yield the same amount of enstro-627

phy dissipation. Again this requires a more thorough study that we postpone for a later628

paper.629

Finally to assess the material conservation of PV we plot the probability density630

function of PV in the N = 3,200 case for t = 0, t = 2 and t = 10 (Fig. 4c). At t = 2631

the enstrophy dissipation has not yet started (Fig. 4b) meaning the flow is still inviscid,632

even though the vortices are already producing filaments (not shown). The pdf of PV633

is remarkably close to its t = 0 value. Material conservation is very well ensured. At634

t = 10 the pdf departs from its initial value. This is due to the mixing at the grid-scale.635

Interestingly the PV on the cyclonic part (the initial vortices are slightly shielded with636

a ring of cyclonic PV) remains quite well conserved. This confirms the visual impression637

of the snapshot (Fig. 3), the cyclonic PV does not filament, therefore it does not mix,638

therefore its pdf should remain constant in time, as it does.639

5.2 Vortex-wall interaction640

In this set of experiments we test how the code performs on handling boundary con-641

ditions. The experiments consist in the time evolution of a vortex dipole with either the642

free-slip or the no-slip boundary condition (Figure 5). In order to have a variety of bound-643

ary shapes at the grid scale, the domain is elliptical, whose major and minor axis lengths644

are respectively 2 and 1. The grid is 1,600×800 with square grid cells. The experiments645

are started at t = 0 with two Gaussian vortices initially in geostrophic balance at the646
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center of the domain. The two vortices, of radius σ = 0.1, are separated by a distance647

d = 1.1σ ; specifically648

h(x, y) = H + h0 (G(x− d/2, y;σ)−G(x+ d/2, y;σ)) ,649

with h0 = 0.15 and H = 1. The two physical parameters are g = 1 and f = 5.650

Figure 5. Potential vorticity snapshots of the dipole-wall interaction in the free-slip case at

t = 12 (a) and no-slip case at t = 12 (b) and t = 40 (c). (d) Evolution of the energy and the en-

strophy in the no-slip case. The resolution is 1,600×800. The initial position of the dipole center

is at (1, 0.5).

In either cases, the dipole starts to move along the minor axis Southward, while651

a weak trail of opposite PV, due to the vortex shield, moves Northward. As the dipole652

approaches the wall, the dynamics starts to differ between the free-slip and the no-slip653

boundary conditions. In the free-slip case, the dipole splits and each vortex continues654

its journey, following the wall, in an inviscid manner, according to the mirror rule (Fig. 5a).655

The PV remains materially well conserved, even close to the boundary. In particular there656

is no spurious source or sink of PV near the wall. The no-slip case differs dramatically657

(Fig. 5b). The phenomenology is well documented even though it is usually studied in658

the context of the two dimensional Euler equations (Keetels et al., 2007; Farge et al., 2011).659

The dipole generates a thin ribbon of opposite PV along the wall. As the dipole splits,660

this ribbon detaches from the wall and gets entrained in the domain where it wraps around661

each vortex. This halts the vortex drift along the wall. Instead, the vortices describe a662
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loop and hit the wall again, generating another ribbon of PV that is later detached. The663

rebonds continue causing the initial vortices to remain trapped near the collision point.664

The series of layer detachments seed the flow with PV ribbons. The ribbons width and665

the magnitude of their vorticity depend on the numerical resolution. For this experiment,666

the ribbons are strong enough to experience shear instability causing them to roll up into667

small vortices. The domain is thus progressively filled with a swarm of small scales vor-668

tices (Fig. 5c). The dipole-wall interaction is fundamentally dissipative. It dissipates en-669

ergy but it creates enstrophy (Fig. 5d). After the first collision (t = 8), the dissipated670

energy (E0 − E)/E0 ≈ 3 10−4, whereas the created enstrophy (Z − Z0)/Z0 ≈ 30%.671

During the following collisions, the dissipated energy increases steadily up to 6 10−4 at672

t = 40. The enstrophy behaves differently: it globally increases with time but with os-673

cillations. As the PV distribution becomes more and more random, the amount of cre-674

ated enstrophy plateaus at roughly 30%. In comparison, in the free slip case and at t =675

40, (E0 − E)/E0 ≈ 3 10−6, and (Z − Z0)/Z0 ≈ −2 10−3, which again shows the code676

ability to preserve global invariants, even though the numerics has a build-in mechanism677

for dissipation.678

The solution at t = 40 has become quite turbulent (Fig. 5c), suggesting a fairly679

large Reynolds number. Determining the Reynolds number is a challenging task because680

there is no explicit viscosity in the model. The dissipation is solely handled by the WENO681

reconstructions, in a highly implicit manner. This is a classical issue with the implicit682

approach (Zhou et al., 2014). A possibility is to diagnose an effective numerical viscos-683

ity ν = Z−1 dE/dt, based on the fact that for a true viscous operator the energy dis-684

sipation rate is related to Z by dE/dt = −ν Z. From this numerical viscosity we can685

form an equivalent Reynolds number Re = E1/2/(Hν). With this metric, the Reynolds686

number at t = 40 is Re ∼ 3.109.687

5.3 Dam-break problem688

In this last experiment we focus on the gravity waves dynamics, and its relation689

with the PV, on a dam-break experiment. To illustrate the code ability to handle curved690

coordinates we use an annulus domain with inner radius r0 = 1 and outer radius r1 =691

2. The coordinates (i, j) represent respectively the radial and the orthoradial directions.692

The metric tensor reads g = diag(dr2 r2 dθ2), where dr and r dθ are the grid lengths693

in the i and j direction. The discretization is uniform in dr and dθ , with respectively694
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and 200 grid points in i and 1,600 in j. The initial state is h = H+h0 tanh(y/σ) and695

u = 0, with y = r sin θ, h0 = 0.15, H = 1 and σ = 0.05. The two physical parame-696

ters are g = 1 and f = 5. The imbalance at t = 0 generates inertia-gravity waves and

Figure 6. Snapshot of layer depth (a) and potential vorticity (b) at t=1.5 resulting from a

dam-break located along y=0, with amplitude ∆h=0.3. The other parameters are g=H=1 and

f=5. Cylindrical coordinates are used to define the model metric. The resolution is 200×1,600.

697

four Kelvin waves, two along each boundary. The Kelvin waves have a clear signature698

on h (Fig. 6a), propagating along the boundaries with the boundary on their right (be-699

cause f > 0), with a trapping width consistent with Rd = 0.1. Their propagation speed700

is close to c =
√
gH = 1 as a visual estimate tells: at t = 1.5 the Kelvin waves prop-701

agating along the inner boundary have moved of roughly a quarter turn. The agreement702

is not perfect because the regime is nonlinear enough, introducing nonlinear corrections703

in the wave speed. The structure of the inertia-gravity waves is more complicated. There704

is a net asymmetry between the waves propagating on the shallower part H − h0 and705

the deeper part H+h0. On the shallower part, the waves have clear nonlinear effects,706

as revealed by the series of small scales ripples and suggestive of shock wave dynamics.707

As there is no particular numerical treatment to handle the correct dissipation at shocks,708

there is no warranty that these ripples should be there, although they might be solitons.709

Having such small scales patterns on h is really due to the 5th order WENO reconstruc-710

tion on the mass flux. Switching to a first order interpolation removes all these signals711

and makes h very smooth.712
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In contrast, the PV field has a very simple structure (Fig. 6b). At t = 1.5, the713

geostrophic currents, resulting from the geostrophic adjustment and localized along the714

initial discontinuity, have started to transport PV. This is the reason for the PV jump715

to be deformed near the boundaries. The PV field is remarkably free of any wave sig-716

nal, except at the shock waves places where the PV exhibits the same ripples structure717

than the wave. These ripples are indicative of dissipation in action, breaking the invis-718

cid assumption and the material conservation. Interestingly these PV ripples propagate719

with the waves so that their rectifying effect on the PV is much smaller. With this col-720

orscale the net effect is invisible but a magnified colorscale reveals thin striations at few721

places. These small amplitude striations are the clear evidence that dissipation occurred722

which yielded local creation and destruction of PV. We will not go into more details as723

the study of wave-PV coupling is far beyond the scope of this paper. However we be-724

lieve the numeric we propose is very promising to study these questions.725

6 Conclusions726

In this paper we have presented a fast and accurate discretization for the RSW equa-727

tions. Accuracy, measured in terms of potential vorticity dynamics and conservation laws,728

is achieved by adapting the MILES approach (Boris et al., 1992) to the vector-invariant729

form of the RSW equations. The decisive step is to use a 5th order WENO reconstruc-730

tion on both the mass flux and the nonlinear Coriolis term. Currently the method re-731

quires a logically rectangular C-grid. The generalization to the cubed sphere is possi-732

ble, the difficulty lays in handling the vorticity interpolation at the grid cells next the733

cube edges. The generalization to hexagonal grids is more challenging because the vor-734

ticity points are not immediately aligned with U⊥, but the recent developments on WENO735

reconstructions for unstructured grids (Tsoutsanis et al., 2011) pave the way to a clean736

solution. Speed is achieved with a series of choices rather than a single recipe, yet with737

a pure Python code. Though not the main point of this paper, we clearly proved that738

Python has become a serious option for HPC, rivaling with Fortran. In the perspective739

of using trained neural networks as parameterization for models, having a kernel in Python740

is an advantage. The code reaches typically 2 GFlop per second per core on a classical741

CPU architecture, which is above half the theoretical peak performance. The choices are:742

a reformulation of the continuous equations, the use of the Numba module to compile743

the most demanding functions, and the duplication of all arrays in two memory layouts744
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to increase the arithmetic intensity by ensuring data contiguity in all functions. The re-745

formulation is based on the introduction of h? and ω?, the finite volume version of h and746

the vorticity ω ; the use of index coordinates (i, j) ; and the introduction of u and U,747

respectively, the covariant and the contravariant velocity. The grid lengths are used at748

only two places, to compute U from u with the metric tensor g, and to relate h to h?.749

Everywhere else grid lengths are gone. Finite differences boil down to subtractions with750

no multiplication or division, which reduces the number of Flop and the amount of data751

transfered between the CPU and the memory.752

With these choices, the floating points operations associated with the WENO re-753

constructions represent 85% of the total number of operations and, thanks to data con-754

tiguity, these operations are done at the CPU clock frequency, without being penalized755

by memory access. This particular combination of a large fraction of the total Flop with756

the data available in the fastest L1 cache is responsible for the overall code speed.757

From the physical point of view, the numerical solutions show remarkable prop-758

erties: the PV field does not exhibit any noise at the grid scale, the material conserva-759

tion is excellent as far as the flow does not require enstrophy dissipation. The energy dis-760

sipation is vanishingly small with increasing resolution, even in the case where a finite761

amount of enstrophy is dissipated. The code handles arbitrary shaped domains with both762

free-slip and no-slip condition. The boundary condition on momentum is done quite nat-763

urally through the definition of the vorticity along the boundary, which is used to esti-764

mate the nonlinear Coriolis term. The no-slip boundary condition generates enstrophy,765

as expected, whereas it dissipates energy. In that case, by interacting with the bound-766

ary, an initially smooth PV field continuously develops fine scale structures, causing the767

flow to become turbulent. Finally we have shown on a dam-break experiment that the768

PV field remains very smooth even when small scale waves propagate. The build-in nu-769

merical dissipation allows the code to handle shock waves without blow-up even though770

it remains to be proven that this implicit dissipation satisfies the proper entropy con-771

dition on shock waves.772

This paper has shown a new way of implementing the MILES approach in a RSW773

model. Several generalizations can be contemplated, some of them already mentioned774

earlier, but the real generalization is to adapt this idea to the full three dimensional equa-775

tions, in the non-hydrostatic regime. The extension is simple: use the WENO reconstruc-776
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tion to each sub-term of the vortex-force term. The hope is that it provides enough build-777

in dissipation to handle the direct cascades of both enstrophy and energy, and it acts as778

a substitute for an explicit subgrid-scale closure. This idea has already been turned in779

a real LES code, that shows comparable performances to the code presented in this pa-780

per.781

Appendix A WENO reconstruction782

We now specify the Ii+1/2[φ,U ] operator, that computes the flux Uφ at location783

i+1/2. Because the operator is applied to finite volume quantities exclusively, it is strictly784

speaking a reconstruction, rather than an interpolation. We use the original WENO re-785

construction (Jiang & Shu, 1996; Shu, 1999), also denoted WENO-JS. We express it in786

terms of Legendre polynomial (Balsara et al., 2016). We assume without loss of gener-787

ality U > 0 and we start with the fifth order case, which is the general case.788

A1 5th order case789

The fifth order reconstruction is based on the three stencils S1 = {i−2, i−1, i},790

S2 = {i−1, i, i+1} and S3 = {i, i+1, i+2} relative to cell index i. The reconstruction791

reads792

Ii+1/2[φ,U ] = U (w1φ̃1 + w2φ̃2 + w3φ̃3) (A1)793

with794

φ̃k = φi + φ
(1)
k P1(1/2) + φ

(2)
k P2(1/2) , (A2)795

wk =
αk

α1 + α2 + α3
and αk =

γk
(βk + ε)2

(A3)796

797

where P1(x) = x, P2(x) = x2/2−1/24 are the Legendre polynomials on the [−1/2, 1/2]798

interval, and wk are the nonlinear weights associated with the stencils Sk. The discretiza-799

tion is completed with the definitions of the smoothness indicator800

βk =
(
φ
(1)
k

)2
+

13

12

(
φ
(2)
k

)2
, (A4)801

the value of first (φ
(1)
k ) and second (φ

(2)
k ) moments associated with the stencil Sk802

φ
(1)
1 = (φi−2 − 4φi−1 + 3φi)/2 and φ

(2)
1 = (φi−2 − 2φi−1 + φi) , (A5)803

φ
(1)
2 = (−φi−1 + φi+1)/2 and φ

(2)
2 = (φi−1 − 2φi + φi+1) , (A6)804

φ
(1)
3 = (−3φi + 4φi+1 − φi+2)/2 and φ

(2)
3 = (φi − 2φi+1 + φi+2) , (A7)805
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and the linear weights806

γ1 = 1/10 , γ2 = 3/5 , γ2 = 3/10 . (A8)807

The regularization factor is set to ε = 10−8. These linear weights are the original ones808

proposed by Shu. They are the ones that makes the whole reconstruction fifth order at809

locations where φ is smooth.810

The adaptation of this reconstruction to the case of the vorticity, namely Ii[ω, V ],811

is straightforward. Because of the vorticity being discretized at half integers indices, the812

only change is to replace the φi terms with ωi−1/2 in the above formulas.813

Close to boundary we use a 3rd order WENO reconstruction (Shu, 1999), if either814

{i−2} or {i+2} is outside of the domain but the {i−1, i, i+1} cells are inside the do-815

main. We downgrade to the 1st order reconstruction if either {i−1} or {i+1} is out-816

side the domain. For sake of completeness we explicit the formula in these two cases.817

A2 3rd and 1st order cases818

The third order case (Shu, 1999) reads819

Ii+1/2[φ,U ] = U (w1φ̃1 + w2φ̃2) (A9)820

with φ̃k = φi + φ
(1)
k P1(1/2),821

wk =
αk

α1 + α2
, αk =

γk
(βk + ε)2

, βk =
(
φ
(1)
k

)2
, (A10)822

823

γ1 = 1/3, γ2 = 2/3, φ
(1)
1 = φi − φi−1 and φ

(1)
2 = φi+1 − φi.824

The first order case is simply825

Ii+1/2[φ,U ] = Uφi . (A11)826
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