
1.  Introduction
The rotating shallow water (RSW) equations are the perfect framework to test concepts, methods, and ideas for 
later applications to more sophisticated atmospheric or oceanic models. When it comes to numerical mode-
ling, two goals are particularly important: speed and accuracy. They are rather antagonistic for accuracy comes 
with higher order schemes, which are computationally more expensive than low order ones, therefore penalizing 
speed. In this paper, we show how the WENO reconstruction (Jiang & Shu, 1996), a highly computationally 
demanding scheme, can be used in a RSW model on both the continuity and the momentum equations to provide 
high accuracy, while still allowing a very fast code. The merits are such that this numerical method opens the way 
for a new class of sub-grid-scale closure.

Having a code running fast is a very valuable quality. For a given amount of computational resources, it allows 
for a longer time integration or a greater spatial resolution. Achieving speed involves many design choices, rather 
than one, that include the programming language, the algorithms implementation, and the code design in general. 
When measured in terms of floating point operations (Flops) per second, the speed issue is intrinsically connect-
ed to the hardware architecture. The maximum speed is given by the clock frequency but, if the code involves too 
much data transfer between the memory and the CPU, the effective speed can be far from this maximum. Indeed, 
according to the roof-line model (Williams et al., 2009), the speed might be memory-bound or compute-bound, 
and that depends on the arithmetic intensity, which is the ratio of the number of Flops per float exchanged be-
tween the memory and the core. To achieve the optimal speed, a code should be in the compute-bound region, 
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namely it should have a large enough arithmetic intensity, which means to perform as many Flops on the data, 
once the data have been transferred to the core. This issue is often overlooked in atmosphere and ocean models.

Increasing the arithmetic intensity is not so easy. In this paper we combine two techniques. The first one is to 
use numerical discretizations that require more Flops per grid point. A very good example of such demanding 
computation is a high order WENO reconstruction (Shu, 1999), which loops back on the question of accuracy. 
Indeed, replacing linear schemes with high-order nonlinear schemes not only increases the arithmetic intensity, 
but it also increases the model accuracy. This is the main point of this paper. The second technique is to simply 
reduce the number of Flops and the associated data transfer. This might sound odd but there is actually an ob-
vious way, though neglected: strip down the RSW equations to a minimal covariant form. The discretized RSW 
equations, when written either in curvilinear coordinates or on non-rectangular grids, are usually cluttered with a 
lot of grid scale factors multiplications (lengths, inverse of lengths, and areas). In this paper, we show how these 
scale factors can be removed almost everywhere in the vector invariant form of the RSW equations. The price 
is to slightly change the objects the code manipulates. Without further explanations, the changes are as follows: 
use the array indices (i, j) as spatial coordinates, use finite volume quantities carrying their area, and replace the 
velocity components with the pairs of covariant and contravariant components. These changes arise naturally 
from the discrete differential geometry (Cotter & Thuburn, 2014; Desbrun et al., 2006; Thuburn & Cotter, 2012), 
which identifies the basic objects such as scalars, vectors, vorticity, as differential forms and which connects them 
with the grid features, respectively cells, edges and vertices, while emphasizing the crucial difference between the 
primal and the dual mesh. To avoid burying the ideas into an overwhelming formalism, we will start from known 
grounds and make the concepts emerge naturally. For the reader tempted to know more we may suggest this very 
tutorial paper (Perot & Zusi, 2014). The obtained simplified form of the RSW equations has many advantages. It 
is light, in terms of operations involved; it is fully adapted to a discretization on a quadrilateral C-grid; and, last 
but not least, it is covariant, in the sense that the form is invariant under a change of coordinates. Thanks to the 
covariance the space is really seen as an array of cells, even on the continuous equations.

As already mentioned, the programming language is central. Until recently the climate-atmospheric-ocean com-
munity mostly relied on Fortran and MPI. Fortran has long been considered as the ultimate language for HPC. 
Things are changing. New codes in Cython or Julia (Ramadhan et al., 2020) are now popping up quite regularly. 
But pure Python codes remain rare, mostly because Python is an interpreted language. This can now be overcome 
thanks to the Numba module (Lam et al., 2015) that allows to compile Python. This paper proves that all the ideas 
presented so far can be implemented in a pure Python code, while reaching 2.0 GFlops per second on a 2.5 GHz 
core, and 2.0 TFlops per second on the same architecture with a thousand cores.

Finally, another possibility to increase the speed is to trade it with accuracy by using single precision floats, or 
even a blend of a single precision and BFloats (two bytes floats), which de facto reduces the memory traffic and 
the time of each Flop. This approach has been recently tested quite thoroughly (Klöwer et al., 2020).

Let us now turn on the accuracy aspect. Accuracy encompasses several properties. In this paper, we are par-
ticularly interested in the ability: (a) to have minimal energy dissipation, (b) to materially conserve the potential 
vorticity (PV), (c) to maintain noise-free PV, (d) to separate vortical motions from wave motions, and (e) to 
enforce clean lateral boundary conditions, either free or no-slip. We achieve these properties with essentially one 
key idea: use WENO reconstructions on the mass flux and the nonlinear Coriolis term, namely the two decisive 
terms that control these properties.

Using a WENO reconstruction on the nonlinear Coriolis term may seem odd because the upwinding breaks the 
invariance under the time reversal symmetry, which unavoidably introduces dissipation. The opposite strategy for 
accuracy is to seek a symplectic integrator (Brecht et al., 2019). There are in fact several good reasons for using 
WENO. First, a close inspection of the RSW equations written in vector-invariant form reveals the equal impor-
tance in the material conservation of PV of the mass flux and the nonlinear Coriolis term, which is a vorticity 
flux. So if one applies a WENO reconstruction on the mass flux, to provide mixing, it is appealing to proceed 
similarly on the nonlinear Coriolis term to have a consistent discretization of the PV and to ensure maximum 
symmetry between the two fluxes. We will show that this technique brings the aforementioned properties on the 
PV dynamics. Second, from the energy point of view, the nonlinear Coriolis term should have a vanishing work, 
but if we consider the filtered version of the RSW equations in vector-invariant form, following the large eddy 
simulation (LES) filter technique (Sagaut, 2006), then, once again, the nonlinear Coriolis term turns out to be the 
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key player. Indeed, the nonlinear Coriolis term turns out to be the term responsible for the exchange of energy 
between the resolved grid scales and the sub-grid scales, therefore advocating for using the WENO reconstruction 
to compute this term. The third and last reason was originally formulated by Mullen et al. (2011). If we let the 
differential geometry guide our numerical choices, then the transport of the momentum should be discretized in 
such way that it obeys the properties of the Lie derivative. This pleads for upwinding the vorticity in the nonlinear 
Coriolis term. If one also demands high order discretization and monotonicity, then a WENO reconstruction is a 
natural solution. Note that WENO reconstructions have already been tested for shallow water models (Gallerano 
& Cannata, 2011; Noelle et al., 2007; Xing & Shu, 2005) but it was on the flux form of the momentum equation. 
Applying it on the nonlinear Coriolis term is completely new to our knowledge.

From the more general perspective of LES models, the idea stems from the Monotonic Integrated LES (MILES) 
approach (Boris et al., 1992). MILES was designed for three-dimensional models as an alternative to physically 
based explicit closures, typically the Smagorinsky closure or one of its variant. The MILES approach belongs 
to the general class of Implicit LES (ILES) (Margolin et al., 2006), also coined numerical LES by Pope (2004), 
because the sub-grid scale closure is numerical, as opposed to being physical, for which there is a physical model 
supporting the closure. The use of a monotonic discretization on the nonlinear Coriolis term rather than on the 
momentum flux can be seen as a variant of the MILES approach. This paper adds up to the list of closures for 
LES models solving the RSW equations (Graham & Ringler, 2013).

This paper is organized as follows. In Section 2, we show how the continuous RSW equations can be stripped 
down to a very simple form while still handling general curvilinear coordinates and being fully covariant. We dis-
cuss the material conservation of PV to motivate the discretization, which is presented in Section 3. In Section 4, 
implementation choices are described and the code speed is assessed. In Section 5, the accuracy of the code is 
tested with four experiments, each assessing one aspect. A summary is given in Section 6.

2.  A Fresh Look at the Rotating Shallow Water Equations
The goal of this section is to present the RSW equations in the form that it is well suited for having a fast and 
accurate numerical model, namely

𝜕𝜕𝐮𝐮
𝜕𝜕𝜕𝜕

= −(𝜁𝜁⋆ + 𝑓𝑓⋆)𝐔𝐔⟂ − ∇ (𝑔𝑔(ℎ + 𝑏𝑏) + 𝑘𝑘)� (1)

𝜕𝜕𝜕⋆

𝜕𝜕𝜕𝜕
= −∇ ⋅ (ℎ⋆ 𝐔𝐔)� (2)

𝜁𝜁⋆ = ∇ × 𝐮𝐮� (3)

𝑘𝑘 = 1
2
𝐮𝐮 ⋅ 𝐔𝐔� (4)

which is the vector invariant form slightly in disguise. Indeed, at this stage only four terms have their classical 
definition: h, the layer depth, g is the acceleration due to gravity, b the bottom topography, and k the kinetic en-
ergy density. The other terms require more context before being fully defined. In particular, the meaning of the 
⋆ decorator and the use of two different terms u and U for the velocity, will be explained. The superscript ⊥ on 
U⊥ indicates that U is rotated through π/2 in the anticlockwise direction: U⊥ = k × U, where k is the unit vertical 
vector.

2.1.  Index Coordinates

We start by endowing the space with a mapping system. The most general way is to use curvilinear coordinates 
(η1, η2). They might be Cartesian (x, y), spherical (ϕ, θ), cylindrical (r, θ), or any other. Among the other pos-
sibilities are the index coordinates (i, j), associated with a quadrilateral grid. These coordinates, which are grid 
resolution dependent, are natural to locate grid cell features such as centers, edges, and vertices because all the 
variables are mapped with only integers or half integers indices, depending on the variable staggering. But their 
most interesting property is that two adjacent points of the same feature in the direction either i or j are separated 
by either di = 1 or dj = 1. Thus, the partial derivative ∂ϕ/∂i of a field ϕ(i, j) is naturally discretized as
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

→ 𝜙𝜙[𝑖𝑖 + 1, 𝑗𝑗] − 𝜙𝜙[𝑖𝑖𝑖𝑖𝑖 ],� (5)

with no division, because di = 1. By using index coordinates, a spatial derivative boils down to one subtraction. 
This is the first optimization and simplification of this paper. For the rest of this paper, we will use the index 
coordinates, therefore using (i, j) instead of (η1, η2). The consequence is that the ∇ operator reads

∇ =
(

𝜕𝜕
𝜕𝜕𝜕𝜕
, 𝜕𝜕
𝜕𝜕𝜕𝜕

)

,� (6)

and its discretized version only involves the two points differences (Equation 5).

Once the coordinates system is defined, the space must be equipped with a metric to measure the distance be-
tween two nearby points, say P1 at (i, j) and P2 at (i + di, j + dj). This is achieved with the first fundamental form

𝑑𝑑𝑑𝑑2 = 𝑒𝑒21 𝑑𝑑𝑑𝑑
2 + 𝑒𝑒22 𝑑𝑑𝑑𝑑

2� (7)

where e1(i, j) and e2(i, j) describe the metric of the space. For the index coordinates system, (e1, e2) are the ele-
mentary distances between two points separated either by (1, 0) in the direction i, or by (0, 1) in the direction j. In 
other words, (e1, e2) are the grid cell lengths and they carry the length dimension. For other coordinate systems, 
e1 and e2 may not have the dimensions of a length, for example, in the Cartesian coordinate case (e1, e2) = (1, 1), 
or not have the same dimension, for example, in the cylindrical coordinate case (e1, e2) = (1, r).

2.2.  Finite Volumes and Contravariant Components

To present the second optimization and simplification, let us recall how the equations in curvilinear coordinates 
are usually written. In particular, the continuity equation 𝐴𝐴 𝐴𝐴𝐴∕𝜕𝜕𝜕𝜕 = −∇ ⋅ (ℎ𝐮̃𝐮) , where 𝐴𝐴 𝐮̃𝐮 = (𝑢̃𝑢𝑢 𝑢𝑢𝑢) is the velocity, 
reads

𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= − 1
𝑒𝑒1𝑒𝑒2

(

𝜕𝜕
𝜕𝜕𝜕𝜕
(ℎ 𝑢̃𝑢 𝑢𝑢2) +

𝜕𝜕
𝜕𝜕𝜕𝜕

(ℎ 𝑣̃𝑣 𝑣𝑣1)
)

.� (8)

This equation, though absolutely correct, is unnecessarily cluttered. The drawbacks are many. Beyond the code 
readability, it harms the code speed because it requires unnecessary multiplications and unnecessary data transfer 
from the memory to the CPU, as e1 and e2 are also bidimensional arrays in the general case. It also makes the 
interpolation of model variables more involved. Equation 8 can be simplified into Equation 2, viz.

𝜕𝜕𝜕∗

𝜕𝜕𝜕𝜕
= − 𝜕𝜕

𝜕𝜕𝜕𝜕
(ℎ∗ 𝑈𝑈 ) − 𝜕𝜕

𝜕𝜕𝜕𝜕
(ℎ∗ 𝑉𝑉 )� (9)

with no sacrifice, by simply defining

ℎ∗ = ℎ 𝑒𝑒1𝑒𝑒2 , and 𝐔𝐔 = (𝑈𝑈𝑈 𝑈𝑈 ) = (𝑢̃𝑢∕𝑒𝑒1, 𝑣̃𝑣∕𝑒𝑒2).� (10)

Equation 9 now involves only two multiplications that correspond to a genuine nonlinearity of the RSW equa-
tions, and three additions/subtractions. The grid scale factors are gone. The price to pay is to accept working 
with the less intuitive variables (h⋆, U) rather than the usual “physical” 𝐴𝐴 (ℎ, 𝐮̃𝐮) . The benefits are considerable: 
computationally, implementation wise, and even conceptually. The simplification neither comes by chance nor 
is a mathematical trick. Equation 9 exposes the geometric nature of the objects we should manipulate. Let us 
comment on these two variables.

The first realization is that the velocity which fluxes the mass is U, whose dimensions are T−1. U turns out to be 
the contravariant form of the velocity in the index coordinates system. The second realization is the use of h⋆. 
As the product of h with the area A = e1e2, h

⋆ is naturally the amount of h, that is, the finite volume version of h. 
The discretized version of h⋆ should be natural for every numerical modeler but its continuous version might be 
a bit more mysterious. It is worth an explanation. In the continuous equations, A is an infinitesimal surface area. 
In Cartesian coordinates, A would be dx dy and h⋆ would be h dx dy. This might look awkward, but it is not, for 
there is a solid underlying mathematical theory: the differential geometry. In this paper we have decided to not use 
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the artillery of differential geometry because it would overwhelm the discussion with too many concepts. How-
ever, it is with these concepts in mind that this work has been carried out. The reader interested in the connection 
with the differential geometry may look at these papers (Brecht et al., 2019; Cotter & Thuburn, 2014; Desbrun 
et al., 2006; Perot & Zusi, 2014). The present paper is really aimed at numerical modelers. A consequence of h⋆ 
carrying its infinitesimal area is that it can be used as is in a domain integration. For instance, the total volume 
is V = ∫h⋆.

2.3.  Covariant Components

Similarly the momentum equations in curvilinear coordinates vector-invariant form usually read

𝜕𝜕 𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= (𝜁𝜁 + 𝑓𝑓 )𝑣̃𝑣 − 1
𝑒𝑒1

𝜕𝜕
𝜕𝜕𝜕𝜕

(

𝑔𝑔(ℎ + 𝑏𝑏) + 1
2
|𝐮̃𝐮|2

)

� (11)

𝜕𝜕 𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −(𝜁𝜁 + 𝑓𝑓 )𝑢̃𝑢 − 1
𝑒𝑒2

𝜕𝜕
𝜕𝜕𝜕𝜕

(

𝑔𝑔(ℎ + 𝑏𝑏) + 1
2
|𝐮̃𝐮|2

)

,� (12)

where f is the Coriolis parameter and ζ is the vorticity

𝜁𝜁 = 1
𝑒𝑒1𝑒𝑒2

(

𝜕𝜕
𝜕𝜕𝜕𝜕
(𝑒𝑒2𝑣𝑣) −

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑒𝑒1𝑢𝑢)
)

.� (13)

Equation 12 can be transformed into Equation 1, viz.

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= (𝜁𝜁⋆ + 𝑓𝑓⋆)𝑉𝑉 − 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑔𝑔(ℎ + 𝑏𝑏) + 𝑘𝑘)� (14)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −(𝜁𝜁⋆ + 𝑓𝑓⋆)𝑈𝑈 − 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑔𝑔(ℎ + 𝑏𝑏) + 𝑘𝑘)� (15)

by defining

𝐮𝐮 = (𝑢𝑢𝑢 𝑢𝑢) = (𝑢̃𝑢 𝑢𝑢1, 𝑣̃𝑣𝑣𝑣 2),� (16)

and

𝑓𝑓⋆ = 𝑓𝑓 𝑓𝑓1𝑒𝑒2 , 𝜁𝜁⋆ = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

and 𝑘𝑘 = 1
2
𝐮𝐮 ⋅ 𝐔𝐔.� (17)

As in the continuity equation, no grid lengths are involved in either the gradient or the curl. The vector u has two 
interpretations: it is both a circulation element and the covariant form of the velocity in the index coordinates 
system. By combining the definitions of u and U we have 𝐴𝐴 (𝑢𝑢𝑢 𝑢𝑢) = (𝑈𝑈 𝑈𝑈21, 𝑉𝑉 𝑉𝑉22) . This relation can be written in 
tensor notation u = g U, with

𝐠𝐠 =

⎛

⎜

⎜

⎜

⎝

𝑒𝑒21 0

0 𝑒𝑒22

⎞

⎟

⎟

⎟

⎠

� (18)

the metric tensor. The dimensions of the covariant components are L2 T−1. Therefore neither u nor U have the 
dimensions L T−1 of a speed. The distinction between u and U may seem quite artificial and formal at first. It 
turns out that they correspond to two very different substances: u is the momentum, the dynamical quantity that is 
transported and that obeys a conservation law, whereas U is the flux, the kinematic quantity that transports things. 
ζ⋆ has the same dimensions as u and satisfies ζ⋆ = ζ e1e2. Consequently, ζ⋆ can be seen either as an elementary 
circulation along a closed loop, or as the usual vorticity times the area element, that is, the finite volume version 
of ζ. Likewise, f⋆ is the finite volume version of the planetary vorticity f. At this stage, (9–10 and 14–17) are in 
the form we use for the discretization.
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2.4.  Potential Vorticity

A central diagnostic quantity of the RSW equations is q = (ζ⋆ + f⋆)/h⋆, the PV, abbreviated PV throughout this 
paper. PV plays a central role in rotating flows for it allows to split the dynamics into a balanced part, captured 
by the PV evolution, and the unbalanced, the gravity waves that propagate with vanishing net PV transport. 
Being a ratio of two finite volume quantities, q is a density, as opposed to a finite volume quantity. It obeys  
∂q/∂t + U ⋅∇q = 0, which expresses the material conservation on fluid parcels. This conservation law is highly 
desirable at the numerical level. It should be emphasized that the material conservation is much more demanding 
numerically than a global conservation. In practice, it means that the probability density function of q remains 
stationary in time. Ensuring exact material conservation of this derived quantity is possible on steady flows, for 
example, the cases 2 and 3 of (Williamson et al., 1992), but it is impossible on arbitrary flows, for a fundamental 
reason. Indeed, the material conservation holds as long as there is no dissipation nor mixing, viz. for inviscid 
flows but, sooner or later, mixing of PV kicks in. This is because of the tendency for the PV to develop filaments 
that, under the flow deformation, elongate and get thinner with time, a process known as the direct cascade of 
enstrophy. For RSW equations, the enstrophy density is q2 h and for inviscid flows, the total enstrophy, integrated 
over the domain, Z = ∫q2 h⋆ should be conserved. In a numerical model the direct cascade of enstrophy should 
proceed as inviscidly as possible across the resolved scales until it reaches the grid scale, at which point the nu-
merics should be helped to parameterize the unresolved cascade continuation. This parameterization usually boils 
down to dissipate the enstrophy at the grid scale. In this paper, we adopt the MILES approach consisting in using 
monotonic upwinded reconstructions to provide the required dissipation of enstrophy. But the tricky point is that 
q is essentially a by-product of the equations, there is no direct handle on the PV evolution. The PV dynamics is 
controlled only through the dynamics of h⋆ and ω⋆ = ζ⋆ + f⋆, the finite volume absolute vorticity. To complicate 
matters further, ω⋆ is also a derived quantity, but fortunately, the vector invariant form exposes the ω⋆ dynamics 
in plain sight offering a way to consistently handle h⋆ and ω⋆.

The numerical discretization we propose aims at having a PV material conservation as good as possible. The 
material conservation is not a mere coincidence, it corresponds to a hidden symmetry of the equations: the invari-
ance of the equations under a relabeling of the parcels. Enforcing material conservation discretely is thus a way to 
satisfy this hidden symmetry of the equations. For that we adopt a slight change of perspective on the role of q in 
the numerical integration. Instead of focusing on q, we focus on ω⋆. Indeed, in practice, the material conservation 
of PV derives from a subtle cancellation in the momentum and the continuity equation between the vorticity flux 
ω⋆U and the mass flux h⋆U. We will carefully examine how this cancellation works for this and suggest a new 
way to discretize the RSW equations.

To derive the material conservation of PV we apply the chain rule on

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1
ℎ⋆2

(

ℎ⋆ 𝜕𝜕𝜕𝜕⋆

𝜕𝜕𝜕𝜕
− 𝜔𝜔⋆ 𝜕𝜕𝜕⋆

𝜕𝜕𝜕𝜕

)

� (19)

that reveals the very symmetrical role between the continuity equation and the equation for the absolute vorticity. 
The latter is derived by taking the curl of Equation 1, namely

𝜕𝜕𝜕𝜕⋆

𝜕𝜕𝜕𝜕
= −∇ ⋅ (𝜔𝜔⋆ 𝐔𝐔),� (20)

which indicates that the vorticity obeys a conservation law in flux form, exactly like h⋆. Substituting Equation 20 
in Equation 19 yields

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1
ℎ⋆2

(

−ℎ⋆∇ ⋅ (𝜔𝜔⋆ 𝐔𝐔) + 𝜔𝜔⋆∇ ⋅ (ℎ⋆𝐔𝐔)
)

� (21)

= − 1
ℎ⋆2

⎡

⎢

⎢

⎣

ℎ⋆𝐔𝐔 ⋅ ∇𝜔𝜔⋆ − 𝜔𝜔⋆𝐔𝐔 ⋅ ∇ℎ⋆ + ℎ⋆𝜔𝜔⋆∇ ⋅ 𝐔𝐔 − ℎ⋆𝜔𝜔⋆∇ ⋅ 𝐔𝐔
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

⎤

⎥

⎥

⎦

� (22)

= −𝐔𝐔 ⋅ ∇𝑞𝑞𝑞� (23)
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We see that the material conservation arises because of the cancellation of 
the two terms in Equation 22, which follows from the identity

∇ ⋅ (𝜙𝜙⋆ 𝐔𝐔) = 𝐔𝐔 ⋅ ∇𝜙𝜙⋆ + 𝜙𝜙⋆∇ ⋅ 𝐔𝐔,� (24)

where ϕ⋆ is either h⋆ or ω⋆. On a C-grid, the discrete version of this identity 
can be made exact provided the quantity ϕ⋆, in the flux ϕ⋆ U, is interpolated 
at velocity point.

The discretization we propose is now clear: use monotonic high-order biased 
reconstructions for ω⋆, in the nonlinear Coriolis term ω⋆U⊥, and for h⋆, in the 
mass flux term h⋆U of the continuity equation. Both h⋆ and ω⋆ require two 
reconstructions: one along the i-direction for the terms h⋆U and ω⋆U respec-
tively, one along the j-direction for the terms h⋆V and ω⋆V. The upwinding 
of ω⋆ is the main originality of this paper. It prevents the nonlinear Coriolis 
term to be energy preserving, which goes against the usual recommendations 
(Thuburn et al., 2009). The rationale is that the nonlinear Coriolis term trans-
forms into a vorticity flux in the vorticity equation and, as a flux, its associ-
ated transported quantity ω⋆ should be upwinded in the direction of that flux.

3.  Discretization
We now present the model discretization by going through three aspects: the 
space and time discretizations; and the handling of the boundary conditions.

3.1.  Space Discretization

The model equations are discretized on a quadrilateral C-grid. In the C-grid 
there is a natural distinction between the primal grid and the dual grid (Fig-
ure 1a). In this paper, we chose to map the primal grid centers with integer 

indices and the dual grid centers with half integer indices. The velocity components, both covariant and contra-
variant, are defined on the edges of the dual grid, h⋆ is defined at cell centers of the primal grid and the vorticity 
terms ζ⋆ and f⋆ are defined at cell centers of the dual grid, which are also the vertices of the primal grid. The 
rotated U⊥ is defined on the edges of the primal grid, which implies that its components are staggered compared 
to the components of U (Figure 1a). Following the C-grid terminology, we denote “u-point” and “v-point” the 
place where u and v are discretized.

Because we use the index coordinates (i, j), the model equations are completely oblivious to e1 and e2, the grid 
scale factors, which means that for u, v, and h⋆ the space is seen as an array of regular indices, regardless of the 
underlying metric. Consequently, the grid cells are truly squares, of size 1 × 1 in the index units. This also means 
that spatial interpolations, involved in the evaluation at nonnative locations, should be done on the regular grid of 
indices, not on the irregular grid of spatial locations.

Before giving the discretized equations we define three spatial operators, each acting in either the i or the j direc-
tion, as indicated by the index. The first one is the finite difference operator

𝛿𝛿𝑖𝑖+1∕2[𝜙𝜙] = 𝜙𝜙𝑖𝑖+1 − 𝜙𝜙𝑖𝑖� (25)

estimating the along i partial derivative of ϕ at location i + 1/2 assuming ϕ is discretized at integer locations 
along i. The converse is also needed δi[ϕ] = ϕi+1/2 − ϕi−1/2 to estimate a partial derivative at location i using a 
quantity discretized at half integer locations. To designate an along j partial derivative we should use either δj[ϕ] 
or δj+1/2[ϕ].

The two others are interpolation operators, interpolating along direction i (or along the j direction, with the j 
index). The first one is the linear second order, or two points averaging

𝜙̄𝜙𝑖𝑖+1∕2 = 1
2
(𝜙𝜙𝑖𝑖 + 𝜙𝜙𝑖𝑖+1) ,� (26)

Figure 1.  (a) The classical C-staggering with locations for scalars (orange 
circles), vector components (blue circles), and vorticity (purple circles). The 
features (vertices, edges, faces) are colored in purple for the primal grid and 
orange for the dual grid. (b) Illustration of the vorticity upwinding. Away 
from the boundaries, the vorticity flux (red arrow) at the v-point (red circle) 
is computed as the product of U (blue arrow), interpolated with a four points 
averaging (dotted blue arrows), and ω⋆ reconstructed along i using the five-
points stencil (L2, L1, L0, R0, R1). If cell A is masked, the stencil is shortened 
(L1, L0, R0); if both cell A and cell B are masked, the stencil is (L0). In that 
latter case, if U were to the left, the vorticity would be reconstructed with the 
stencil (R1, R0, L0).
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and the second is the WENO reconstruction

𝐼𝐼𝑖𝑖+1∕2[𝜙𝜙⋆, 𝑈𝑈 ] = 𝑈𝑈
∑

𝑠𝑠∈𝑆𝑆

𝑐𝑐𝑠𝑠 𝜙𝜙⋆
𝑖𝑖+𝑠𝑠,� (27)

where S is the stencil of the reconstruction and cs are the weights. In this paper, we use n-order WENO recon-
structions (Jiang & Shu, 1996; Shu, 1999), n ∈ {1, 3, 5}, whose stencils have n elements. The n = 1 case is the 
first order upwind interpolation and we have either c0 = 1 if U > 0, or c1 = 1 if U < 0. In the n = 3, 5 cases the re-
construction is nonlinear because the weights cs depend on {ϕi + s, s ∈ S}. In any case ∑s ∈ Scs = 1. Having an even 
number of points, the stencils are shifted in the upwind direction, which depends on the sign of U. In the 5thorder 
case, S = { −2, −1, 0, 1, 2} if U > 0, and S = { −1, 0, 1, 2, 3} if U < 0. As defined, the interpolation operators use 
quantities discretized at integer locations (ϕi + s) to estimate it at i + 1/2. The reverse is also needed: use quantities 
discretized at half integer locations to estimate it at i. In that case we would write either 𝐴𝐴 𝜙̄𝜙𝑖𝑖 or Ii[ϕ

⋆; U]. Note that 
Equation 27 assumes that U is discretized at the location where ϕ⋆ is reconstructed. This will always be the case. 
For the sake of completeness the WENO reconstruction is detailed in the Appendix A. Note that Equation 27 is 
referred to as a reconstruction rather than an interpolation. Reconstruction is the word used when the quantity to 
be interpolated is a finite volume quantity, and interpolation is usually reserved when the interpolated quantity is 
the density (e.g., h or ω), or equivalently the finite difference quantity. In this paper, the WENO scheme is applied 
to h⋆ and ω⋆, the finite volume quantities. We therefore exclusively use the WENO reconstruction.

With these notations defined, we can now give the discretized model equations. They read

𝑈𝑈 = 𝑢𝑢∕𝑒𝑒21, 𝑉𝑉 = 𝑣𝑣∕𝑒𝑒22, 𝐵𝐵 = 𝑔𝑔(𝑏𝑏 + ℎ⋆∕𝐴𝐴) + 𝑘𝑘𝑘� (28)

∇𝐵𝐵 → (𝛿𝛿𝑖𝑖+1∕2[𝐵𝐵], 𝛿𝛿𝑗𝑗+1∕2[𝐵𝐵])� (29)

∇ ⋅ (ℎ⋆𝐔𝐔) → 𝛿𝛿𝑖𝑖[𝐼𝐼𝑖𝑖+1∕2[ℎ⋆, 𝑈𝑈 ]] + 𝛿𝛿𝑗𝑗[𝐼𝐼𝑗𝑗+1∕2[ℎ⋆, 𝑉𝑉 ]]� (30)

𝜔𝜔⋆ = 𝑓𝑓⋆ + ∇ × 𝐮𝐮 → 𝑓𝑓⋆ + 𝛿𝛿𝑖𝑖+1∕2[𝑣𝑣] − 𝛿𝛿𝑗𝑗+1∕2[𝑢𝑢]� (31)

� = 1
2
𝐮𝐮 ⋅ 𝐔𝐔 →

1
2

(

��
�
+ ��

�)

� (32)

𝜔𝜔⋆ 𝐔𝐔⟂ → (𝐼𝐼𝑗𝑗[𝜔𝜔⋆, 𝑉𝑉𝑚𝑚] ,−𝐼𝐼𝑖𝑖[𝜔𝜔⋆,𝑈𝑈𝑚𝑚])� (33)

and

�� = �
�
�+1∕2

, �� = �
�
�+1∕2

.� (34)

The only place where the metric terms are used is in Equation 28. The required metric terms are (e1, e2), the edge 
lengths of the dual, at respectively, u-points and v-points, and A the primal cell area. In addition, and only during 
the initialization, Av, the dual cell area, is needed to define

𝑓𝑓⋆ = 𝐴𝐴𝑣𝑣 𝑓𝑓 𝑓� (35)

The components of U⊥ = (−V, U) should be evaluated, respectively, at locations (i + 1/2, j) and (i, j + 1/2), viz 
the u-point and the v-point. This requires to interpolate U at v-point and V at u-point. It is done with the four 
points averaging in Equation 34, as depicted by the blue dashed arrows in Figure 1b. This averaging is one of 
the decisive ingredients of the TRISK discretization (Thuburn et al., 2009), which ensures that the divergence 
that appears in the discrete vorticity equation is consistent with the divergence that appears in the discrete mass 
equation (Ringler et al., 2010).

The discretization (Equation 33) is the main originality of this paper. The WENO reconstruction is usually ap-
plied on conservation laws written in flux form. In the case of the momentum equation, this is on the flux of 
momentum. Here, because of the vector invariant form, there is no explicit term for the momentum flux. But, as 
discussed earlier the nonlinear Coriolis term is the vorticity flux and, as such, it can be computed with a WENO 
reconstruction.
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The idea of putting some kind of upwinding and monotonicity on the nonlinear Coriolis term is not new. In some 
aspect, the anticipated PV method (APVM) (Sadourny & Basdevant, 1985) implements it, although in a quite 
different fashion. APVM has been compared to other sub-grid closures (Graham & Ringler, 2013) in the context 
of RSW models. The APVM consists in making the PV explicit in the vorticity term (ω = qh) and in using a 
first order upwind interpolation of the PV in the local direction of the flow. In the APVM there is no directional 
splitting. The APVM can be seen as a semi-Lagrangian method where the PV is estimated at the place where 
it was a time step earlier. As being a first order interpolation, the APVM induces more enstrophy dissipation 
than the method presented in this paper, while being energy-conserving. Also, contrary to our method that is 
parameter free, the original APVM introduces a numerical parameter that must be tuned with respect to the grid 
size and time step. A parameter-free extension of the APVM has been proposed (Chen et al., 2011) for the small 
h deviations case, whose assumption our method does not require. To handle more general than quadrilateral 
meshes, other alternatives to the PV flux upwinding have been explored (Thuburn et al., 2014), later improved 
in (Thuburn & Cotter, 2015). In contrast with these methods, our method treats the nonlinear Coriolis term as a 
vorticity flux ω⋆U⊥, not as a PV flux q (h⋆U⊥). Doing so allows to discretize the mass flux and the vorticity flux 
in a similar way. With this in mind, the discretization we propose should now look quite natural, almost as self 
emerging from the equations, without ad-hoc choice and parameter-free.

For the kinetic energy term we use (Equation 32), which is a classical discretization. However, it is worth noting 
that the kinetic energy term could also be discretized with a WENO reconstruction, as follows

��
�
+ ��

�
→ �� ��[��, ��] + �� ��[�� , ��]� (36)

with �� = sign(�
�
) and �� = sign(�

�
) inside the operator, to keep track of the upwinding directions at the grid 

center, and as prefactors, to ensure positivity even if su < 0 or sv < 0. Doing so would seriously increase the num-
ber of Flops per time iteration (see Section 4). Given the lack of obvious immediate benefit, we did not pursue 
this idea further.

The use of WENO for the kinetic energy term may look surprising, at least for the reader not familiar with the 
differential geometry. The differential geometry identifies the spatial derivative in the flow direction of a quantity 
as the Lie derivative of its associated differential form (Frankel, 2011). The Cartan identity splits the Lie deriva-
tive in two terms, each one participating to the transport in a very specific way. For the momentum, the associated 
differential form is u, and these two terms are the nonlinear Coriolis term and the gradient of kinetic energy of 
the vector-invariant form. Each term can be seen as a composition of two basic operations of the differential 
geometry: the exterior derivative and the interior product, respectively, a generalization of the ∇ operator, and of 
the inner product. In the discretized equations we presented, the exterior derivative shows up as the finite differ-
ence operators δi[⋅] and δj[⋅], whereas the interior product shows up as the WENO reconstruction operators Ii[⋅] 
and Ij[⋅]. The idea of using Cartan identity to discretize the transport of a vector field was pioneered by Mullen 
et al. (2011), who also showed that a WENO reconstruction improves the accuracy, compared to the upwind first 
order reconstruction. Here, we generalize these results to the full RSW equations.

Lastly, it is important to emphasize that the WENO reconstruction, as it is presented, requires a smooth orthog-
onal quadrilateral grid, which excludes the cubed sphere for instance. But, it is expected that the method can be 
generalized to more arbitrary grids.

3.2.  Time Stepping

The code clearly separates the time scheme in one generic module. The implementation of a time stepping 
scheme is very close to a textbook presentation. This is made possible because space and time discretizations 
are independent. The model state s = (ϕ, Φ) consists in two groups of variables: the prognostic variables ϕ = 
(u, v, h⋆), obeying an explicit time evolution equation, and the diagnostic variables Φ = (ζ⋆, U, V, k, p), with 

𝐴𝐴 𝐴𝐴 = 𝑔𝑔(ℎ⋆ + ℎ⋆
𝑏𝑏 )∕𝐴𝐴 , the pressure. They form a system of coupled equations

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝖱𝖱[𝜙𝜙𝜙 Φ]� (37)

Φ = 𝖣𝖣[𝜙𝜙],� (38)
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with 𝐴𝐴 𝖱𝖱 the right hand side for the prognostic variables and 𝐴𝐴 𝖣𝖣 the diagnostic relations for Φ. Currently the code pro-
poses two time schemes: the Leap-Frog Adams Moulton scheme (LFAM3) (Shchepetkin & McWilliams, 2005) 
and the 3rdorder strong stability preserving Runge Kutta scheme (Gottlieb et al., 2001) (RK3)

𝜙𝜙(1) = 𝜙𝜙𝑛𝑛 + Δ𝑡𝑡𝖱𝖱[𝑠𝑠𝑛𝑛] , Φ(1) = 𝖣𝖣[𝜙𝜙(1)],� (39)

𝜙𝜙(2) = 𝜙𝜙𝑛𝑛 + 1
4
Δ𝑡𝑡 (𝖱𝖱[𝑠𝑠𝑛𝑛] + 𝖱𝖱[𝑠𝑠(1)]) , Φ(2) = 𝖣𝖣[𝜙𝜙(2)],� (40)

𝜙𝜙𝑛𝑛+1 = 𝜙𝜙𝑛𝑛 + 1
6
Δ𝑡𝑡 (𝖱𝖱[𝑠𝑠𝑛𝑛] + 𝖱𝖱[𝑠𝑠(1)] + 4𝖱𝖱[𝑠𝑠(2)]) , Φ(𝑛𝑛+1) = 𝖣𝖣[𝜙𝜙(𝑛𝑛+1)],� (41)

where Δt is the time step, the superscripts n and n + 1 indicate the time step and the superscripts (1) and (2) are 
the intermediate stages of RK3. The LFAM3 is a 3rd predictor corrector scheme with only two calls to the right-
hand side per time iteration, whereas RK3 requires three calls to the right-hand side. RK3 is the model default 
choice.

3.3.  Boundary Conditions at Lateral Boundaries

Rotating shallow water models are quite often tested either in doubly periodic domains or on the whole sphere, 
more rarely in domains with lateral boundaries. For oceanic applications, handling the lateral boundaries is a 
necessity. The other reason to present the lateral boundary conditions is that they fit particularly well with the 
choice of upwinding the vorticity in the nonlinear Coriolis term. The no-flow is enforced at no cost thanks to the 
C-grid but interestingly, the free-slip and the no-slip boundary conditions appear very naturally as conditions on 
the vorticity, which directly impact the normal component of flux of vorticity at the boundary.

Solid boundaries can be either at the domain boundary or inside the domain. For the latter case, we use a mask 
system mi,j. A cell (of the primal grid) is solid if mi,j = 0, fluid if mi,j = 1. The no-flow boundary condition is im-
posed at each edge of the primal grid where one adjacent cell is solid. It simply consists in setting u = 0 or v = 0 at 
this edge. This is the standard technique, described for instance by Ketefian and Jacobson (2009). The real point 
of attention is on defining ζ⋆ at points sitting along the boundary. This is where our approach offers a radically 
different angle for the discretization. Instead of seeking a discretization near the boundary that is based on enstro-
phy and energy discrete conservations (Ketefian & Jacobson, 2009), we seek the best upwind reconstruction for 
the ζ⋆ term in the nonlinear Coriolis term on edges orthogonal to the boundary (Figure 1b). The curl expression 
(Equation 31) cannot be immediately used because the dual cell is not fully fluid. However, ζ⋆ conserves its phys-
ical meaning of being both the amount of vorticity in this partial cell and the circulation along the boundary of 
this partial cell. The latter offers the natural way to define ζ⋆, which completely depends on the slip condition. In 
the free-slip case, ζ* = 0 at points along the boundary. In the no-slip case, we keep compute ζ* with Equation 31 
but we set u = 0 and v = 0 for all edges, not fully in the fluid. For a straight boundary, say along i at j = 0 and 
the fluid being for j > 0, this definition yields 𝐴𝐴 𝐴𝐴⋆

𝑖𝑖𝑖0 = −𝑢𝑢𝑖𝑖𝑖1∕2 , which expresses that a right-going flow generates a 
negative vorticity. The use of the differential forms remove, once again, all the metric terms from the relation. 
The no-slip boundary condition behaves as a source of vorticity localized at the boundary. Interestingly, once 
this vorticity is generated, it might be transported into the fluid by the nonlinear Coriolis term. Let us see how.

For cell edges close to the boundary, the five points stencil of the WENO 5th does not fit in the domain. To 
overcome this issue, the code implements a varying stencil width with the following policy: use the widest biased 
stencil, that is, either one, three or five points, fitting within the fluid cells. The one point stencil is the upwind 
first order interpolation. For the three points stencil, we use the third order WENO reconstruction (Shu, 1999) 
(explicited in Appendix A). The consequence is that the outward vorticity flux at the edge next to the boundary is 
computed with a first upwind scheme that adds a little bit more of dissipation. In the free-slip case, since ζ⋆ = 0 
at the boundary there is no outward flux.

Instead of imposing the velocity at the boundary, and therefore the vorticity, we may want to impose the normal 
stress. In that case, it requires to introduce a viscosity to relate the stress to the velocity. We did not pursue this 
idea further as it is beyond the scope of the paper.
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4.  Speed
4.1.  Implementation Choices

Performances on both the quality of the solutions and the speed were the top priorities in the code design. To 
achieve speed, a compiled language is required. Until recently this imposed the use of Fortran or C or a blend of 
Python and C (Pressel et al., 2015). The Julia language is currently used on several projects (Klöwer et al., 2020; 
Ramadhan et al., 2020), whose chief advantage is to be a compiled language. Here, we chose another route. The 
code is entirely written in Python, without sacrificing speed. This is possible thanks to the Numba module. Num-
ba (Lam et al., 2015) uses the LLVM compiler (Lattner & Adve, 2004) to compile Python code. The bulk of the 
code is interpreted Python, but all the computational functions are compiled. In practice, to compile a function 
amounts in specifying its signature, namely the types of its inputs and outputs. Inside a function, and contrary to 
the pythonic policy, the loops can be explicitly developed; the compiler takes care of them. Note that since Julia 
also relies on the LLVM compiler, it might well be that Python codes compete in speed with Julia codes.

The second element of speed is to systematically duplicate all arrays. Arrays are thus stored in [k,j,i] and in [k,i,j] 
conventions, the k index being for the layer index. The motivation is to always do finite differences with the con-
vention where the data are contiguous in memory. Thus, the computation of the spatial derivative ∂/∂j or of the 
along j-interpolation is done with the [k,i,j] convention. Data contiguity allows a better usage of the L1-cache, 
which is the fastest memory. The price of duplicating is to perform transpose operations to exchange the data 
from one convention to the other. Fortunately, the transpose operation is very fast as it is highly optimized. In 
practice the transpose operation is done 20 times per time stage, which represents 16% of the total time. Another 
advantage of this approach is to easily guarantee the numerical isotropy. The two directions i and j are treated 
absolutely equivalently because there is only one function for both operations. This is particularly convenient for 
the WENO reconstruction. The WENO reconstruction, even though requiring many more operations than the 
linear interpolation, is not much slower.

A third element of speed is of course the use of the covariant equations with the index coordinates that turn spa-
tial differentiations into subtractions. The number of multiplications is minimal. The only computation involving 
many multiplications is the WENO reconstruction.

4.2.  Speed Assessment

With these choices, the code (Roullet, 2021) is very fast. With the default 5th order WENO, and the SSP-RK3 
time scheme, the code speed is about 0.3 μs per iteration per grid point (Figure 2). The performances have been 
measured on a notebook (Intel® Core™ i7-6600U at 2.6 GHz) and Rome (AMD® EPYC 7502 at 2.5 GHz) a 
supercomputer hosted at TGCC (Saclay, France). Timing has been averaged over thousand time iterations and 
excludes the I/O. The code weak scaling is presented in terms of T(N), the time per core per time iteration per 

Figure 2.  Wall time per time iteration T rescaled with N/(nxny). On the left for the mono-core case as a function of the 
domain size nxny and on the right the weak scaling, where the number of cores N is increased from N = 1 up to N = 1,024, 
while the domain size per core nxny = 104 is kept constant. In blue are the performances for the supercomputer and in orange 
for a notebook (see text for the CPU specs).
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grid point, as a function of N the number of cores (Figure 2b and Table 1). 
The parallel efficiency T(1)/T(N) drops quite a lot from single core (N = 1) to 
N = 16 but it is fairly constant from N = 64 to N = 1,024, once inter-chipsets 
communications are required. We may wonder how close is the code speed 
to the peak CPU performances. To answer it we need to determine how many 
floating operations are done per grid cell and per time iteration.

To estimate how far this speed is from the maximum peak performance of 
the CPU, we count all the floating point operations (Table 2). The current 
implementation uses 840 Flops per time step and per grid point. With the 
minimum time T = 400 ns on the Rome supercomputer, this gives 2.1 GFlops 
per second. To compare with, a basic Fortran code doing simple arithmetic 

operations, on three arrays of 8,000 elements each, runs at 10 GFlops per second. Interestingly, with 708 Flops, 
the WENO reconstruction is the major contributor, representing 84% of the total Flops. By using a linear in-
terpolation (upwind 5th), the reconstruction involves only 108 Flops (Corresponding to 3 stages, 2 functions, 2 
directions, 5 multiplications and 4 additions) and therefore only 240 Flops per time step. Naively we could expect 
the code to be 840:240 = 3.5 time faster. This is not the case. In practice the linear interpolation gives T ≈ 350 ns 
corresponding to 0.7 GFlops per second. The reason is clear. In this case the code speed is limited by the memory 
access, which makes the CPU waiting for data. By increasing the arithmetic intensity, the use of WENO puts the 
code into the compute-bound region, which maximizes the Flops per second.

5.  Accuracy
The merits of the numerical choices are tested with four experiments, each testing one aspect: a single vortex, the 
merging of two vortices, the interaction of a dipole in an elliptical domain with free and no-slip condition, and a 

dam break experiment in an annulus. The experiments are set in quite intense 
nonlinear regimes, although not going up to either shock wave formation or 
dry bed emergence.

5.1.  Single Vortex

In this experiment we assess the model global order of accuracy. The domain 
is a unit square, with free-slip boundary. The grid size is 1/N. The resolution 
N is varied from 32 to 512. We set up an isolated vortex in cylo-geostrophic 
balance at the center of the domain, whose height is

ℎ(𝑥𝑥𝑥 𝑥𝑥) = 𝐻𝐻 + ℎ0 𝐺𝐺(𝑥𝑥𝑥 𝑥𝑥; 𝜎𝜎),� (42)

with h0 = −0.08, H = 1, G(x, y; σ) = exp[−(x2 + y2)/(2σ2)], and σ = 0.1. The 
amplitude h0 is chosen small enough to ensure that the initial flow remains 
steady. The Coriolis parameter f = 10 sets the vortex in the mesoscale regime, 
viz its width is comparable to the Rossby deformation radius. The solution 
is integrated in time up to t = 10. It is then compared to (Equation 42) for h 
and to

𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥) = 𝑦𝑦
𝑔𝑔𝑔

(𝑓𝑓0 + 𝜁𝜁𝑔𝑔) 𝜎𝜎2

[

1 −
𝑔𝑔𝑔

𝜎𝜎2 𝑓𝑓 2
0

(

1 −
𝑥𝑥2 + 𝑦𝑦2

𝜎𝜎2

)

]

,� (43)

the analytical expression for the cyclo-geostrophic velocity for u, with

𝜁𝜁𝑔𝑔 = −
𝑔𝑔𝑔
𝜎𝜎2𝑓𝑓0

(

2 −
𝑥𝑥2 + 𝑦𝑦2

𝜎𝜎2

)

,� (44)

the geostrophic vorticity. The error on both u and h are estimated with the L2 
and the L∞ norms (Figure 3). The error converges in N−2, evidencing a second 

Number of cores 1 4 16 64 256 1,024

Time T(N) (in μs) 0.374 0.448 0.495 0.559 0.571 0.582

Parallel efficiency 100% 84% 76% 67% 65% 64%

Note. Time T(N) per core per time iteration per grid point, for N subdomains 
of size 100 × 100 grid points each and N cores. The parallel efficiency is 
T(N)/T(1).

Table 1 
Parallel Efficiency of the Code

Function Term #M #A

Continuity WENO 5th 64 54

d(h⋆U) 2 4

Vorticity flux WENO 5th 64 54

U⊥ 2 4

Coriolis 2 4

ω⋆U⊥ 2 2

Bernoulli Grad 0 4

Diagnostics U 2 0

ζ⋆ 0 3

u ⋅ U/2 3 3

𝐴𝐴 𝐴𝐴(ℎ⋆ + ℎ⋆
𝑏𝑏 )∕𝐴𝐴 2 1

Total per stage 143 133

SSP RK3 Stage 1 1 1

Stage 2 2 2

Stage 3 3 3

Total per time step 435 405

Note. The numbers are given per grid point and per call to the function. For 
the RK3 time stepping, which is the default, the total number per time step is 
the three times the total per stage plus the operations in the time scheme itself.
aFloating point operations involve multiplications (#M) and additions/
subtractions (#A).

Table 2 
Number of Floating Operationsa Breakdown
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order accuracy. The order is two and not five, as the WENO schemes order may suggest, because except these 
WENO reconstructions, all the other terms use second order discretizations.

5.2.  Merging of Two Vortices

This second set of experiments tests the sensitivity of the conservation laws on the model resolution. The experi-
ments consist in the time evolution of two Gaussian vortices initially in geostrophic balance. The two vortices, of 
radius σ = 0.07, are separated by a distance d = 1.4 σ; specifically

ℎ(𝑥𝑥𝑥 𝑥𝑥) = 𝐻𝐻 + ℎ0 (𝐺𝐺(𝑥𝑥 − 𝑑𝑑∕2,𝑦𝑦 ; 𝜎𝜎) + 𝐺𝐺(𝑥𝑥 + 𝑑𝑑∕2,𝑦𝑦 ; 𝜎𝜎)) ,� (45)

with h0 = 0.2 and H = 1. The domain is square, with an edge length L = 1. We use the free-slip boundary condition. 
The two physical parameters are g = 1 and f = 5, which yield a Rossby deformation radius 𝐴𝐴 𝐴𝐴 =

√

𝑔𝑔𝑔𝑔∕𝑓𝑓 = 0.2 , 
that sets the vortices in the submesoscale range. The speed scale is gh0/(fσ), which yields a Rossby number of 
Ro = gh0/(fσ)2, namely Ro ≈ 1.6, again typical of the submesoscale regime. The vortices are anticyclones because 

h0 > 0. The flow is integrated up to time t = 10. The domain is meshed with 
N2 grid cells of uniform size. N is varied from N = 100 to N = 3, 200, by a 
succession of doubling.

The two vortices are close enough to merge, as revealed by the presence of 
single core of negative PV in the center at t = 10 (Figure 4), instead of two in-
itially. The details of the merging sequence depend on the resolution, among 
which the amount of filaments and the balancing time. But quite clearly, and 
fortunately, the solution converges with increasing N. The cases N = 1, 800 
and N = 3, 200 are almost indistinguishable by eye. A striking property is the 
absence of noise on the PV fields, for all resolutions. This is a consequence 
of the implicit dissipation and mixing provided by the MILES approach. A 
second striking feature is the capability for the code to produce and main-
tain very thin filaments. Of course the case N = 3, 200 is quite extreme for 
such a trivial flow but nevertheless it is worth emphasizing. Not only are the 
filaments thin, they can also be intense in terms of PV difference with the 
background state. This results in the shear instability of a few filaments, as 
seen on the N = 1, 800 case.

To better assess the convergence with the resolution we diagnosed the cumu-
lative global dissipation (Figures 5a and 5b) for both the energy ϵE = (E0 – E)/
E0 and the enstrophy ϵZ = (Z0 – Z)/Z0, where the superscript 0 denotes the 
value at t = 0. The global energy E is defined as

𝐸𝐸 = ∫
1
2
𝐮𝐮 ⋅ 𝐔𝐔ℎ⋆ + ∫

1
2
𝑔𝑔𝑔𝑔 ⋆ − 𝐸𝐸𝑏𝑏,� (46)

Figure 3.  L2 and L∞ norms of the error for both h and u as a function of N, the grid resolution.

Figure 4.  Snapshots of PV at t = 10, after the vortices merged, for four 
resolutions nxny = 1002, 2002, 8002, and 3, 2002. Only a quarter of each domain 
is displayed. The parameters are g = 1, H = 1, and f = 5. The anticyclones 
were initially Gaussian, in geostrophic balance, with a layer depth h = 1.3 at 
their center.
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where Eb = ∫(gH2/2) dxdy is the background potential energy. E is thus the sum of the kinetic and the available 
potential energy. Eb is removed from E to reduce the denominator in the cumulative energy dissipation ϵE. Still, 
the total amount of energy dissipated is fairly small: ϵE ∼ 2% for N = 100 and ϵE ∼ 4 × 10−5 for N = 3, 200, and 
interestingly it seems to have reached a plateau at N = 1, 800, which raises the theoretical question of whether, 
in the limit of infinite resolution, the energy dissipation should go to zero during the merging of two vortices. 
The present experiments do not suggest that but this would deserve a more thorough study, beyond the scope of 
this paper. The case of the enstrophy dissipation (Figure 5b) is very different. In all cases there is a finite amount 
of dissipation but the increase of resolution delays the time at which the dissipation really starts, as well as it 
increases the equilibration time. In the N = 100 case, the merging process is almost completed as indicated by 
the plateau, at the largest resolution, there is still a lot of enstrophy to be dissipated. It is not clear whether all 
resolutions yield the same amount of enstrophy dissipation. Again this requires a more thorough study that we 
postpone for a later paper.

Finally to assess the material conservation of PV we plot the probability density function of PV in the N = 3, 200 
case for t = 0, t = 2, and t = 10 (Figure 5c). At t = 2, the enstrophy dissipation has not yet started (Figure 5b) 
meaning the flow is still inviscid, even though the vortices are already producing filaments (not shown). The pdf 
of PV is remarkably close to its t = 0 value. Material conservation is very well ensured. At t = 1,0 the pdf departs 
from its initial value. This is due to the mixing at the grid-scale. Interestingly the PV on the cyclonic part (the 
initial vortices are slightly shielded with a ring of cyclonic PV) remains quite well conserved. This confirms the 
visual impression of the snapshot (Figure 4), the cyclonic PV does not filament, therefore it does not mix, and 
therefore its pdf should remain constant in time, as it does.

5.3.  Vortex-Wall Interaction

In this set of experiments we test how the code performs on handling boundary conditions. The experiments con-
sist in the time evolution of a vortex dipole with either the free-slip or the no-slip boundary condition (Figure 6). 
The domain is elliptical, with the major and minor axis lengths being 2 and 1, respectively. The domain is defined 
on a 1, 600 × 800 Cartesian grid with square grid cells (e1 = e2). Grid cells whose center is outside the ellipsis 
are masked out. As a result, the domain boundary, passing along the edges of the primal grid, is step-like. The 
experiments are started at t = 0 with two Gaussian vortices initially in geostrophic balance at the center of the 
domain. The two vortices, of radius σ = 0.1, are separated by a distance d = 1.1 σ; specifically

ℎ(𝑥𝑥𝑥 𝑥𝑥) = 𝐻𝐻 + ℎ0 (𝐺𝐺(𝑥𝑥 − 𝑑𝑑∕2,𝑦𝑦 ; 𝜎𝜎) − 𝐺𝐺(𝑥𝑥 + 𝑑𝑑∕2,𝑦𝑦 ; 𝜎𝜎)) ,�

with h0 = 0.15 and H = 1. The two physical parameters are g = 1 and f = 5.

In either case, the dipole starts to move along the minor axis southward, while a weak trail of opposite PV, due to 
the vortex shield, moves northward. As the dipole approaches the wall, the dynamics start to differ between the 
free-slip and the no-slip boundary conditions. In the free-slip case, the dipole splits and each vortex continues 
its journey, following the wall, in an inviscid manner, according to the mirror rule (Figure 6a). The PV remains 
materially well conserved, even close to the boundary. In particular there is no spurious source or sink of PV near 

Figure 5.  Energy (a) and enstrophy (b) dissipated as a function of time and resolution (color) for the vortex merging experiment. The energy of the rest state gH2/2 has 
been removed from E and E0. (c) Probability density function of PV at t = 0 (blue), t = 2 (red), and t = 10 (orange) for the merging experiment at the 3, 2002 resolution.
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the wall. The no-slip case differs dramatically (Figure 6b). The phenomenology is well documented even though 
it is usually studied in the context of the two-dimensional Euler equations (Keetels et al., 2007; Nguyen van Yen 
et al., 2011). The dipole generates a thin ribbon of opposite PV along the wall. As the dipole splits, this ribbon 
detaches from the wall and gets entrained in the domain where it wraps around each vortex. This halts the vortex 
drift along the wall. Instead, the vortices describe a loop and hit the wall again, generating another ribbon of PV 
that is later detached. The rebonds continue causing the initial vortices to remain trapped near the collision point. 
The series of layer detachments seed the flow with PV ribbons. The ribbons width and the magnitude of their 
vorticity depend on the numerical resolution. For this experiment, the ribbons are strong enough to experience 
shear instability causing them to roll up into small vortices. The domain is thus progressively filled with a swarm 
of small-scale vortices (Figure 6c). The dipole-wall interaction is fundamentally dissipative. It dissipates energy 
but it creates enstrophy (Figure 6d). After the first collision (t = 8), the dissipated energy (E0 − E)/E0 ≈ 3 × 10−4, 
whereas the created enstrophy (Z − Z0)/Z0 ≈ 30%. During the following collisions, the dissipated energy in-
creases steadily up to 6 × 10−4 at t = 40. The enstrophy behaves differently: it globally increases with time but 
with oscillations. As the PV distribution becomes more and more random, the amount of created enstrophy 
plateaus at roughly 30%. In comparison, in the free slip case and at t = 40, (E0 − E)/E0 ≈ 3 × 10−6, and (Z − Z0)/
Z0 ≈ −2 × 10−3, which again shows the code ability to preserve global invariants, even though the numerics has 
a build-in mechanism for dissipation.

The solution at t = 40 has become quite turbulent (Figure 6c), suggesting a fairly large Reynolds number. Deter-
mining the Reynolds number is a challenging task because there is no explicit viscosity in the model. The dissi-
pation is solely handled by the WENO reconstructions, in a highly implicit manner. This is a classical issue with 
the implicit approach (Zhou et al., 2014). A possibility is to diagnose an effective numerical viscosity ν = Z−1 dE/
dt, based on the fact that for a true viscous operator the energy dissipation rate is related to Z by dE/dt = −ν Z. 
From this numerical viscosity we can form an equivalent Reynolds number Re = E1/2/(Hν). With this metric, the 
Reynolds number at t = 40 is Re ∼ 3.109.

Interestingly, while the free-slip case solution converges, the no-slip case solution does not converge as the res-
olution increases. The viscous boundary layer thickness shrinks as the resolution increases. Consequently the 
detached filaments are getting thinner and their magnitude in vorticity larger, causing the secondary vortices to 
be smaller and more intense. The issue here is not so much on the discretization but on the continuous equations 
themselves: does the solution of the Navier-Stokes equations converge to the solution of the inviscid equations 

Figure 6.  Potential vorticity snapshots of the dipole-wall interaction in the free-slip case at t = 12 (a) and no-slip case at t = 12 (b) and t = 40 (c). (d) Evolution of the 
energy and the enstrophy in the no-slip case. The resolution is 1,600 × 800. The initial position of the dipole center is at (1, 0.5).
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(a.k.a. the Euler equations) when the viscosity goes to zero and in the presence of boundary? The present numer-
ical model suggests no, a result already found experimentally by Nguyen van Yen et al. (2011).

5.4.  Dam-Break Problem

In this last experiment we focus on the gravity waves dynamics, and its relation with the PV, on a dam-break 
experiment. To illustrate the code ability to handle curved coordinates we use an annulus domain with inner 
radius r0 = 1 and outer radius r1 = 2. The coordinates (i, j) represent the radial and the orthoradial directions, 
respectively. The metric tensor reads g = diag(dr2, r2 dθ2), where dr and r dθ are the grid lengths in the i and j 
direction. The discretization is uniform in dr and dθ, with 200 grid points in i and 1,600 in j,respectively. Thanks 
to the covariant form of the discretized equations, switching from Cartesian to polar coordinates boils down to 
changing the metric tensor solely. In practice, it impacts Equations 28 and 35 via the grid lengths (e1, e2) and the 
grid cell areas (A, Av). Everywhere else the code is the same. Changing these geometric features is what is needed 
to make the equations consistent with polar coordinates. The initial state is h = H + h0 tanh(y/σ) and u = 0, with 
y = r sinθ, h0 = 0.15, H = 1, and σ = 0.05. The two physical parameters are g = 1 and f = 5.

The imbalance at t = 0 generates inertia-gravity waves and four Kelvin waves, two along each boundary. The 
Kelvin waves have a clear signature on h (Figure 7a), propagating along the boundaries with the boundary on 
their right (because f > 0), with a trapping width consistent with Rd = 0.1. Their propagation speed is close to 

𝐴𝐴 𝐴𝐴 =
√

𝑔𝑔𝑔𝑔 = 1 as a visual estimate suggests: at t = 1.5 the Kelvin waves propagating along the inner boundary 
have moved of roughly a quarter turn. The agreement is not perfect because the regime is nonlinear enough, in-
troducing nonlinear corrections in the wave speed. The structure of the inertia-gravity waves is more complicated. 
There is a net asymmetry between the waves propagating on the shallower part H − h0 and the deeper part H + h0. 
On the shallower part, the waves have clear nonlinear effects, as revealed by the series of small scales ripples and 
suggestive of shock wave dynamics. As there is no particular numerical treatment to handle the correct dissipa-
tion at shocks, there is no warranty that these ripples should be there, although they might be solitons. Having 
such small scales patterns on h is really due to the 5th order WENO reconstruction on the mass flux. Switching 
to a first order interpolation removes all these signals and makes h very smooth.

In contrast, the PV field has a very simple structure (Figure 7b). At t = 1.5, the geostrophic currents, resulting 
from the geostrophic adjustment and localized along the initial discontinuity, have started to transport PV. This 
is the reason for the PV jump to be deformed near the boundaries. The PV field is remarkably free of any wave 
signal, except at the shock wave places where the PV exhibits the same ripples structure than the wave. These 
ripples are indicative of dissipation in action, breaking the inviscid assumption and the material conservation. 
Interestingly, these PV ripples propagate with the waves so that their rectifying effect on the PV is much smaller. 

Figure 7.  Snapshot of layer depth (a) and PV (b) at t = 1.5 resulting from a dam-break located along y = 0, with amplitude Δh = 0.3. The other parameters are 
g = H = 1 and f = 5. Cylindrical coordinates are used to define the model metric. The resolution is 200 × 1,600.
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With this color scale the net effect is invisible but a magnified color scale reveals thin striations at few places. 
These small amplitude striations are the clear evidence that dissipation occurred which yielded local creation and 
destruction of PV. We will not go into more details as the study of wave-PV coupling is far beyond the scope of 
this paper. However, we believe the numeric we propose is very promising to study these questions.

6.  Conclusions
In this paper, we have presented a fast and accurate discretization for the RSW equations. Accuracy, measured in 
terms of PV dynamics and conservation laws, is achieved by adapting the MILES approach (Boris et al., 1992) 
to the vector-invariant form of the RSW equations. The decisive step is to use a 5th order WENO reconstruction 
on both the mass flux and the nonlinear Coriolis term. Currently the method requires a quadrilateral C-grid. The 
generalization to the cubed sphere is possible, the difficulty lies in handling the vorticity interpolation at the grid 
cells next the cube edges. The generalization to hexagonal grids is more challenging because the vorticity points 
are not immediately aligned with U⊥, but the recent developments on WENO reconstructions for unstructured 
grids (Tsoutsanis et al., 2011) pave the way to a clean solution. Speed is achieved with a series of choices rather 
than a single recipe, yet with a pure Python code. Though not the main point of this paper, we clearly proved that 
Python has become a serious option for HPC, rivaling with Fortran. In the perspective of using trained neural 
networks as parameterization for models, having a kernel in Python is an advantage. The code reaches typically 
2 GFlops per second per core on a classical CPU architecture. The choices are: a reformulation of the continuous 
equations, the use of the Numba module to compile the most demanding functions, and the duplication of all 
arrays in two memory layouts to increase the arithmetic intensity by ensuring data contiguity in all functions. The 
reformulation is based on the introduction of h⋆ and ω⋆, the finite volume version of h, and the vorticity ω; the 
use of index coordinates (i, j); and the introduction of u and U, respectively, the covariant and the contravariant 
velocity. The grid lengths are used at only two places, to compute U from u with the metric tensor g, and to relate 
h to h⋆. Everywhere else grid lengths are gone. Finite differences boil down to subtractions with no multiplica-
tion or division, which reduces the number of Flops and the amount of data transferred between the CPU and the 
memory.

With these choices, the Flops associated with the WENO reconstructions represent 85% of the total number of 
operations and, thanks to data contiguity, these operations are done at the CPU clock frequency, without being 
penalized by memory access. This particular combination of a large fraction of the total Flops with the data avail-
able in the fastest L1 cache is responsible for the overall code speed.

From the physical point of view, the numerical solutions show remarkable properties: the PV field does not 
exhibit any noise at the grid scale and the material conservation is excellent as long as the flow does not require 
enstrophy dissipation. The energy dissipation automatically adjusts to the resolution and to the flow. The code 
handles arbitrary shaped domains with both free-slip and no-slip condition. The boundary condition on momen-
tum is done quite naturally through the definition of the vorticity along the boundary, which is used to estimate 
the nonlinear Coriolis term. The no-slip boundary condition generates enstrophy, as expected, whereas it dissi-
pates energy. In that case, by interacting with the boundary, an initially smooth PV field continuously develops 
fine scale structures, causing the flow to become turbulent. Finally, we have shown on a dam-break experiment 
that the PV field remains very smooth even when small-scale waves propagate. The implicit numerical dissipa-
tion allows the code to handle shock waves without blow-up even though it remains to be proven that this implicit 
dissipation satisfies the proper entropy condition on shock waves. Note that, the amount of dissipation and mixing 
might be even reduced with the use of other WENO reconstructions (Zhao et al., 2014), for example, with the 
WENO-Z (Borges et al., 2008).

This paper has shown a new way of implementing the MILES approach in a RSW model. Several generalizations 
can be contemplated, some of them already mentioned earlier, but the real generalization is to adapt this idea 
to the full three-dimensional equations, in the non-hydrostatic regime. The extension is simple: use the WENO 
reconstruction to each sub-term of the vortex-force term. The hope is that it provides enough implicit dissipation 
to handle the direct cascades of both enstrophy and energy, and it acts as a substitute for an explicit subgrid-scale 
closure. This idea has already been turned into a real LES code that shows comparable performances to the code 
presented in this paper.
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Appendix A:  WENO Reconstruction
We now specify the Ii+1/2[ϕ, U] operator that computes the flux Uϕ at location i + 1/2. Because the operator is ap-
plied to finite volume quantities exclusively, it is strictly speaking a reconstruction, rather than an interpolation. 
We use the original WENO reconstruction (Jiang & Shu, 1996; Shu, 1999), also denoted WENO-JS. We express 
it in terms of Legendre polynomial (Balsara et al., 2016). We assume without loss of generality U > 0 and we start 
with the fifth order case, which is the general case.

A1. 5th Order Case

The fifth order reconstruction is based on the three stencils S1 = {i − 2, i − 1, i}, S2 = {i − 1, i, i + 1}, and S3 = {i, 
i + 1, i + 2} relative to cell index i. The reconstruction reads

𝐼𝐼𝑖𝑖+1∕2[𝜙𝜙𝜙𝜙𝜙 ] = 𝑈𝑈 (𝑤𝑤1𝜙̃𝜙1 +𝑤𝑤2𝜙̃𝜙2 +𝑤𝑤3𝜙̃𝜙3)� (A1)

with

𝜙̃𝜙𝑘𝑘 = 𝜙𝜙𝑖𝑖 + 𝜙𝜙(1)
𝑘𝑘 𝑃𝑃1(1∕2) + 𝜙𝜙(2)

𝑘𝑘 𝑃𝑃2(1∕2),� (A2)

𝑤𝑤𝑘𝑘 =
𝛼𝛼𝑘𝑘

𝛼𝛼1 + 𝛼𝛼2 + 𝛼𝛼3
and 𝛼𝛼𝑘𝑘 =

𝛾𝛾𝑘𝑘
(𝛽𝛽𝑘𝑘 + 𝜖𝜖)2� (A3)

where P1(x) = x, P2(x) = x2/2 − 1/24 are the Legendre polynomials on the [−1/2, 1/2] interval, wk are the nonlin-
ear weights associated with the stencils Sk and the subscript k designates the stencil index. The discretization is 
completed with the definitions of the smoothness indicator

𝛽𝛽𝑘𝑘 =
(

𝜙𝜙(1)
𝑘𝑘

)2
+ 13

12
(

𝜙𝜙(2)
𝑘𝑘

)2
,� (A4)

the value of first (𝐴𝐴 𝐴𝐴(1)
𝑘𝑘  ) and second (𝐴𝐴 𝐴𝐴(2)

𝑘𝑘  ) moments associated with the stencil Sk

𝜙𝜙(1)
1 = (𝜙𝜙𝑖𝑖−2 − 4𝜙𝜙𝑖𝑖−1 + 3𝜙𝜙𝑖𝑖)∕2 and 𝜙𝜙(2)

1 = (𝜙𝜙𝑖𝑖−2 − 2𝜙𝜙𝑖𝑖−1 + 𝜙𝜙𝑖𝑖),� (A5)

𝜙𝜙(1)
2 = (−𝜙𝜙𝑖𝑖−1 + 𝜙𝜙𝑖𝑖+1)∕2 and 𝜙𝜙(2)

2 = (𝜙𝜙𝑖𝑖−1 − 2𝜙𝜙𝑖𝑖 + 𝜙𝜙𝑖𝑖+1),� (A6)

𝜙𝜙(1)
3 = (−3𝜙𝜙𝑖𝑖 + 4𝜙𝜙𝑖𝑖+1 − 𝜙𝜙𝑖𝑖+2)∕2 and 𝜙𝜙(2)

3 = (𝜙𝜙𝑖𝑖 − 2𝜙𝜙𝑖𝑖+1 + 𝜙𝜙𝑖𝑖+2),� (A7)

and the linear weights

𝛾𝛾1 = 1∕10 , 𝛾𝛾2 = 3∕5 , 𝛾𝛾2 = 3∕10.� (A8)

The regularization factor is set to ϵ = 10−8. These linear weights are the original ones proposed by Shu. They are 
the ones that make the whole reconstruction fifth order at locations where ϕ is smooth.

The adaptation of this reconstruction to the case of the vorticity, namely Ii[ω, V], is straightforward. Because of 
the vorticity being discretized at half integers indices, the only change is to replace the ϕi terms with ωi−1/2 in the 
above formulas.

Close to boundary we use a 3rd order WENO reconstruction (Shu, 1999), if either {i − 2} or {i + 2} is outside 
of the domain but the {i − 1, i, i + 1} cells are inside the domain. We downgrade to the 1st order reconstruction 
if either {i − 1} or {i + 1} is outside the domain. For the sake of completeness we explicit the formula in these 
two cases.

A2. 3rd and 1st Order Cases

The third order case (Shu, 1999) reads

𝐼𝐼𝑖𝑖+1∕2[𝜙𝜙𝜙𝜙𝜙 ] = 𝑈𝑈 (𝑤𝑤1𝜙̃𝜙1 +𝑤𝑤2𝜙̃𝜙2)� (A9)
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with 𝐴𝐴 𝜙̃𝜙𝑘𝑘 = 𝜙𝜙𝑖𝑖 + 𝜙𝜙(1)
𝑘𝑘 𝑃𝑃1(1∕2) ,

𝑤𝑤𝑘𝑘 =
𝛼𝛼𝑘𝑘

𝛼𝛼1 + 𝛼𝛼2
, 𝛼𝛼𝑘𝑘 =

𝛾𝛾𝑘𝑘
(𝛽𝛽𝑘𝑘 + 𝜖𝜖)2

, 𝛽𝛽𝑘𝑘 =
(

𝜙𝜙(1)
𝑘𝑘

)2
,� (A10)

γ1 = 1/3, γ2 = 2/3, 𝐴𝐴 𝐴𝐴(1)
1 = 𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑖𝑖−1 and 𝐴𝐴 𝐴𝐴(1)

2 = 𝜙𝜙𝑖𝑖+1 − 𝜙𝜙𝑖𝑖 .

The first order case is simply

𝐼𝐼𝑖𝑖+1∕2[𝜙𝜙𝜙𝜙𝜙 ] = 𝑈𝑈𝑈𝑈𝑖𝑖.� (A11)

Data Availability Statement
The code is available at https://doi.org/10.5281/zenodo.4968737.
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