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replying to H. Murua et al. Nature https://doi.org/10.1038/s41586-021-03396-4 (2021)

Our previously published paper1 provided global fine-scale spati-
otemporal estimates (1° × 1°; monthly) of overlap and fishing exposure 
risk (FEI) between satellite-tracked shark space use and automatic 
identification system (AIS) longline fishing effort. We did not assess 
shark mortality directly, but in addition to replying to the Comment 
by Murua et al.2, we confirm—using regression analysis of spatially 
matched data—that fishing-induced pelagic shark mortality (catch 
per unit effort (CPUE)) is greater where FEI is higher.

We focused on assessing shark horizontal spatiotemporal overlap 
and exposure risk with fisheries because spatial overlap is a major 
driver of fishing capture susceptibility and previous shark ecologi-
cal risk assessments (ERAs) assumed a homogenous shark density 
within species-range distributions3–5 or used coarse-scale modelled 

occurrence data, rather than more ecologically realistic risk estimates 
in heterogeneous habitats that were selected by sharks over time. Fur-
thermore, our shark spatial exposure risk implicitly accounts for other 
susceptibility factors with equal or similar probabilities to those com-
monly used in shark ERAs3,5.

First, actual depth distributions are seldom incorporated in shark 
ERAs and full vertical overlap with an encounterability probability 
of one is often applied3,5. This is an implicit assumption in our FEI as 
the pelagic species that we tracked exhibit vertical movements that 
overlap with depths of pelagic longlines (for example, 18–267 m)6 
during both the day and night7. Second, we account for selectivity 
by focusing our fisheries-independent spatial estimates directly 
on individuals that were actually caught by the focal fisheries.  
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The majority of the 1,804 sharks tagged were caught on commercial-type 
longline hooks before release. This is equivalent to a selectivity prob-
ability of around one as used in shark ERAs5. Third, the commercially val-
uable sharks that we tracked are seldom discarded by major high-seas 
longlining fleets8, indicating that an implicit assumption of a fishing 
mortality probability of one does not substantially overestimate the 
mortality that occurs. Murua et al.2 overlook that fact that although 
some species with fishing prohibitions (such as silky and great hammer-
head sharks) may be released alive, reported hooking mortalities are 
high (for example, 56% for silky sharks and 96% for great hammerhead 
sharks)9,10 in addition to at least around 50% post-release mortality11,12. 
Collectively, this indicates 78–98% total mortality even of prohibited 
species. The similar assumptions between our analyses and previous 
assessments result in comparable susceptibility estimates that will 
not alter our FEI. For example, we estimated that shortfin mako, blue 
and porbeagle sharks as the highest exposure risk species in the North 
Atlantic, which were also the shark species with the highest estimated 
susceptibilities to longline fishing in a recent Atlantic shark ERA4.

Regarding FEI being related to fishing-induced shark mortality, we 
stated1 that the significant positive relationship between Food and Agri-
culture Organization (FAO) fishery landings data and individual-species 
mean FEI “implies that the index reflects fishing-induced shark mortal-
ity”. Our conclusion was appropriately cautious because we recognized 
that FAO landings data were limited in quality, aggregated at regional 
scales and subject to high levels of unreported or underreported data13, 
and are potentially unrelated to shark relative abundances. Murua et al.2 
confirm the result presented in our paper and also show nine further 
data combinations that we did not test resulting in eight non-significant 
positive relationships. However, having few data points (n = 8 species 
per test) when comparing the spatial complexity of FEI (1° × 1° grid) to 
non-spatially explicit FAO datasets—given the high variability in the 
quality of landings data—biases results towards non-significance. To 
address this, we tested linear-regression models for spatially matched 

data, including longline CPUE (a relative measure of abundance) of 
pelagic sharks as the response variable and FEI, fishing effort and num-
ber of longline sets as explanatory variables, including interactions 
with year or month (Supplementary Information). The best model 
when testing interactions with month was for fishing effort (Akaike 
information criterion weights (wAIC) = 1), but the deviance explained 
was similar between this model (46%) and those models that included 
FEI (42%) or the number of sets (43%). When testing interactions with 
year, the best model was FEI (wAIC = 0.89), showing a significant and 
positive relationship with CPUE (n = 523, r2 = 0.11, F9,513 = 7.17, P < 0.0001). 
Bootstrapping tests randomly by removing 1–25% of data confirmed 
that the best model alternates between fishing effort and FEI as an 
explanatory variable of shark CPUE. For spatially matched data, there-
fore, pelagic shark CPUE is significantly greater in areas in which FEI is 
higher and is as good an explanatory variable of CPUE as fishing effort 
itself, corroborating our previously published result1 that FEI reflects 
fishing-induced shark mortality.

Using spatial exposure risk plots between overlap and FEI to indicate 
higher or lower than average exposure risk (that is, potential capture 
susceptibility) is not misleading because the categorization relates spe-
cifically to areas in which shark species were tracked and overlap with 
fishing effort occurred. We previously showed1 the FEI maps alongside 
the exposure risk plots to make this point clear. Higher exposure risk 
can be driven by high FEI when it occurs in specific space-use areas, 
even if spatial overlap appears relatively low in a region (for example, 
for white sharks in Oceania). Correct interpretation of our exposure 
risk estimates requires reference to the areas over which shark hotspots 
and fishing effort occurred.

FEI hotspots driven by shark hotspots in large-scale ocean ecosys-
tems (for example, the Gulf Stream) led us to conclude that high levels 
of fishing effort are focused on extensive hotspots of shark space use1. 
Murua et al.2 generate a new metric (fishing effort hotspots, >75th per-
centile) to conclude that shark hotspots are not related to main fishing 
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Fig. 1 | Spatial distributions and overlap of sharks and longline fishing 
vessels. a, Shark relative density hotspots (>75th percentile) and FEI hotspots 
(>75th percentile) overlaid on high longline fishing effort (higher than average; 
>50th percentile) at the 1° × 1° grid size to illustrate the degree of overlap 
between the different drivers of FEI hotspots. Higher than average fishing 

effort is used here to reflect a major driver of FEI hotspots as FEI hotspots do 
not arise solely as a result of shark density hotspots overlapping with fishing 
effort hotspots (>75th percentile), the metric used by Murua et al.2.  
b–e, Relative density hotspots (b, c) and FEI hotspots (d, e) for six shark species 
overlaid on high longline fishing effort. Data are from our original paper1.
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effort areas. However, we did not calculate fishing effort hotspots nor 
relate them to shark density hotspots or FEI hotspots because this 
approach ignores key drivers of FEI hotspots (see below) and is selective 
of available data. We did not equate high levels of fishing effort solely to 
fishing effort hotspots because sharks are often caught and retained by 

fishing vessels that did not specifically target sharks, so shark relative 
density or FEI hotspots should not be expected to correctly predict 
fishing effort hotspots in the majority of cases. Rather, we showed that 
FEI hotspots arise from shark relative density hotspots, high fishing 
effort levels (not only the highest fishing effort levels considered by 
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Fig. 2 | Effect of scale on the position and extent of FEI hotspots and areas 
free from AIS longline fishing effort. a, b, The position and extent of FEI 
hotspots at the >90th percentile (a) and >75th percentile (b) of the mean FEI do 
not substantially change across four grid cell sizes from 1° × 1° to 0.1° × 0.1°.  
c, d, Global distribution of the shark relative density hotspots estimated from 

satellite locations (c) and the shark hotspots where there was no recorded AIS 
longline fishing effort (2012–2016) in ABNJs, the high seas (d). d, Data from 
Global Fishing Watch (https://globalfishingwatch.org/). This supports our 
original conclusion that pelagic sharks have limited spatial refuge from the 
current levels of fishing effort in ABNJs.

https://globalfishingwatch.org/
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Murua et al.2), a combination of both, and some (<2%) are driven by 
lower shark densities or fishing intensities (Extended Data Table 1).

Consistent with our conclusion, vast areas with higher-than-average 
fishing effort extend across major shark density and FEI hotspots 
(Fig. 1). For example, FEI hotspots overlap with shark density hotspots 
in 56% of grid cells globally, and overlap with higher-than-average fish-
ing effort in 81% of grid cells (Fig. 1). That shark density hotspots and 
higher-than-average fishing effort together drive 39% of FEI hotspots 
supports our original conclusion. This is even more clearly seen for 
individual species (Fig. 1b–e and Extended Data Table 2). For example, 
globally, blue shark hotspots and high fishing effort together drive 
50% of blue shark FEI hotspots (Fig. 1b, d) and, regionally, white shark 
hotspots and high fishing effort in the northeast Pacific together drive 
67% of FEI hotspots (Fig. 1c, e). The claim by Murua et al.2 that shark 
hotspots are not related to main fishing effort areas is not supported 
when all drivers of FEI hotspots are considered.

Furthermore, large reductions in grid cell size do not affect FEI hot-
spots. We previously provided results showing, as expected, that reduc-
tions from 2 × 2° to 0.1 × 0.1° lowers absolute overlap and FEI values but 
relative exposure–risk plots remain unchanged (extended data figure 
4 and supplementary figure 4 of ref. 1). It is possible that our results and 
conclusions could be affected if the spatial positions and extent of FEI 
hotspots—indicating potential changes in relative drivers that affect 
overlap and FEI estimates (see above)—were substantially altered as the 
size of the grid cells decreases. However, the position and extent of FEI 
hotspots remain largely unchanged as grid size decreases (Fig. 2a, b), 
indicating that the results and conclusions concerning FEI hotspots 
are highly unlikely to be affected.

Lastly, we disagree that our analyses do not support our conclusion 
of limited spatial refuge for pelagic sharks from current levels of fish-
ing effort in Areas Beyond National Jurisdictions (ABNJs). Globally, 
only about one third of ABNJ shark hotspot grid cells were free from 
AIS-tracked longline fishing effort, indicating that fishing effort over-
lapped with the majority of shark hotspots (Fig. 2c, d and Extended 
Data Table 3). Some heavily fished regions showed even lower levels 
of spatial refuge, only 13% and 20% of Indian Ocean and North Atlantic 
shark hotspot grid cells, respectively, were free from fishing effort. 
Hotspots are areas of preferred habitat where sharks spent most time1, 
thus it was justified to conclude that for the results presented there was 
limited spatial refuge in ABNJs. The percentage of spatial refuge for 
sharks in ABNJs decreases to <25% of shark relative density hotspots 
when additional AIS data that were not previously available are included 
(Extended Data Table 4), indicating that our original spatial refuges 
were actually overestimated.

In summary, we think that the arguments presented neither call into 
question our results and conclusions nor misdirect management efforts 
as our exposure risk estimates are spatially and temporally explicit. We 
do not dispute that regional fishery management organizations for 
tuna have put management measures in place; these were described 
in our paper1. Nevertheless, pelagic sharks have declined globally over 
many decades13–15, strongly indicating that additional measures are still 
required to conserve populations effectively, including more complete 
data reporting, catch quotas and greater enforcement13,15. The data and 
analyses in our paper1 contribute to this goal. Indeed, regional fishery 
management organizations for tuna state that data on biologically 
important areas, spatiotemporal distributions of shark stocks and 
interactions with fishing fleets8 are needed to aid management. We 
have provided a first step by making available fishery-independent 
data1 on shark spatial density and hotspot locations to complement 
current assessment approaches.

Reporting summary
Further information on experimental design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Data used in linear-regression modelling are available on GitHub 
(https://github.com/GlobalSharkMovement/GlobalSpatialRisk/tree/
master/derived_data). Data used to prepare the maps (shark relative 
spatial density, longline-fishing effort and shark–longline-fishing over-
lap and FEI) are available on GitHub (https://github.com/GlobalShark-
Movement/GlobalSpatialRisk).

Code availability
Code used to prepare the maps (shark relative spatial density, 
longline-fishing effort and shark–longline-fishing overlap and FEI) 
is available on GitHub (https://github.com/GlobalSharkMovement/
GlobalSpatialRisk).
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Extended Data Table 1 | Global and regional drivers of FEI hotspots

Values given in the first four columns are the percentages of grid cells of shark hotspots (>75th percentile of relative density) and/or high fishing effort (>50th percentile of mean fishing days) 
that contribute to FEI hotspots (>75th percentile of mean monthly FEI). The last two columns show the percentage of FEI hotspots that overlap shark hotspots and high fishing effort hotspots.
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Matters arising
Extended Data Table 2 | Examples of global and regional drivers of FEI hotspots for individual shark species

Values given in the first four columns are the percentages of grid cells of shark hotspots (>75th percentile of relative density) and/or high fishing effort (>50th percentile of mean fishing days) 
that contribute to FEI hotspots (>75th percentile of mean monthly FEI). The last two columns show the percentage of FEI hotspots that overlap shark hotspots and high fishing effort hotspots. 
Blue, blue shark (Prionace glauca); white, white shark (Carcharodon carcharias). No blue sharks were tracked in the southwest Indian Ocean.
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Extended Data Table 3 | Spatial refuge of pelagic sharks in ABNJs



E16 | Nature | Vol 595 | 8 July 2021

Matters arising
Extended Data Table 4 | Comparison of spatial refuge estimated with AIS data 2012–2016 and 2012–2018

The Global Fishing Watch 2012–2016 AIS longline fishing effort data we used in our paper1 have been further developed to include additional years (2017 and 2018) with a higher number of 
AIS satellites operating and vessels reporting, resulting in substantially more vessel locations for analysis (https://globalfishingwatch.org/). The percentage spatial refuge for sharks in ABNJs 
decreased to less than a quarter of shark relative density hotspots when more recent fishing effort data were included.

https://globalfishingwatch.org/
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