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The future Surface Water Ocean Topography (SWOT) mission due to be launched in
2022 will extend the capability of existing nadir altimeters to enable two-dimensional
mapping at a much higher effective resolution. A significant challenge will be to assimilate
this kind of data in high-resolution models. In this context, Observing System Simulation
Experiments (OSSEs) have been performed to assess the impact of SWOT on the
Mercator Ocean and Copernicus Marine Environment Monitoring Service (CMEMS)
global, high-resolution analysis and forecasting system. This paper focusses on the
design of these OSSEs, in terms of simulated observations and assimilation systems
(ocean model and data assimilation schemes). The main results are discussed in a
companion paper. Two main updates of the current Mercator Ocean data assimilation
scheme have been made to improve the assimilation of information from SWOT data.
The first one is related to a different parametrisation of the model error covariance, and
the second to the use of a four-dimensional (4D) version of the data assimilation scheme.
These improvements are described in detail and their contribution is quantified. The
Nature Run (NR) used to represent the “truth ocean” is validated by comparing it with
altimeter observations, and is then used to simulate pseudo-observations required for
the OSSEs. Finally, the design of the OSSEs is evaluated by ensuring that the differences
between the assimilation system and the NR are statistically consistent with the misfits
between real ocean observations and real-time operational systems.

Keywords: data assimilation, satellite altimetry, OSSE (Observing System Simulation Experiment), SWOT (Surface
Water Ocean Topography), forecasting system

INTRODUCTION

Nadir altimeter Sea Level Anomaly (SLA) measurements have made major contributions to our
understanding of ocean circulation. While along-track SLA data can observe wavelengths as small
as 50–70 km (Dufau et al., 2016), the global mesoscale resolution is strongly limited by the space
(distance between neighbouring tracks) and time (repeat period) samplings of a given altimeter
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mission. Multiple altimeters are needed to provide global maps
of mesoscale variability. Various studies have been carried out to
quantify the capability of altimeter constellations (e.g., Pascual
et al., 2006; Dibarboure et al., 2011). They showed that at least
three to four altimeters are required to reconstruct the global
ocean surface topography at a mesoscale resolution. However, the
merging of data from multiple altimeter missions cannot resolve
wavelengths smaller than 150–200 km (e.g., Ducet et al., 2000;
Le Traon, 2013).

The future Surface Water Ocean Topography (SWOT)
mission, due to be launched in 2022 as a joint collaboration
between NASA, CNES (the French Space Agency), the Canadian
Space Agency and the UK Space Agency will extend the capability
of existing nadir altimeters to enable two-dimensional mapping
at a much higher effective resolution, down to wavelengths
as small as 20 km (e.g., Fu and Ferrari, 2008; Fu et al.,
2009). The surface topography measurement will be based on
both a nadir altimeter and a Ka-band Radar Interferometer
(KaRIn). With a 120 km wide swath, the spatial coverage will
be nearly global every 21 days. SWOT will provide very high
and unique resolution observations along its swaths, but it will
not be able to observe the evolution of high-frequency signals
(with periods of less than 21 days). A significant challenge will
thus be to combine SWOT data and that from conventional
along-track altimeters (e.g., Pujol et al., 2012) with very high-
resolution models (resolution of a few kilometres) to allow the
dynamic interpolation of SWOT data, thus providing a detailed
description and forecast of the ocean state at a high resolution.

A common approach to studying the impact of new
observations on analysis and forecasting systems is the Observing
System Simulation Experiment (OSSE; Halliwell et al., 2014). This
consists of simulating the “true” ocean by a numerical model,
and then determining instrument sampling and errors using
prescribed parameters. With this kind of technique, one may
study how future measurements could improve existing analyses
and forecasts based on assimilation systems, and also how the
observation network should be designed to enhance the sampling
of the ocean state at given spatial and temporal scales.

There is not a great deal of literature on OSSE data assimilation
using SWOT observations and Primitive Equation (PE) ocean
models. Most of the time, simplified models such as Quasi-
Geostrophic and Surface Quasi-Geostrophic models have been
successfully used to study SWOT observability and to estimate
critical features of the ocean state such as vertical velocity fields
(e.g., Klein et al., 2009; Qiu et al., 2016). These models have
the advantage of being conceptually simpler than PE models,
and they are thus handy for assessing the improvements enabled
by assimilating SWOT observations to estimate the ocean state
under some precise hypotheses.

Since these simplified models do not cover the full spectra
of oceanic regimes, it therefore seems to be very important to
be prepared to use SWOT observations with more complex
ocean models. Recently, Carrier et al. (2016) conducted an OSSE
exercise using SWOT observations and a PE model of the Gulf
of Mexico. D’Addezio et al. (2019) and Souopgui et al. (2020)
have found that assimilating SWOT observations improved
the forecast scores and the representation of the mesoscale

features, compared to the assimilation of data from conventional
altimeters. Bonaduce et al. (2018) conducted an OSSE study for
the Iberian-Biscay-Irish region (Maraldi et al., 2013). In their
study, the authors tested the effect of having one or two large
swath altimeters but with an instrumental error two to four
times greater than the error prescribed for the KaRIn instrument
to be flown on the SWOT mission. The authors found that
the degree of improvement is highly dependent on the time
sampling (i.e., the number of satellites) and the amplitude of the
observation error.

All the previously-mentioned studies were performed at a
regional scale. The objective here is to perform, for the first time,
such a study on a PE model at the global scale. This paper focuses
on the design of the OSSEs, in terms of simulated observations
and an assimilation system (ocean model and data assimilation
schemes). More specifically, a four-dimensional (4D) version
of the current Mercator Ocean data assimilation scheme and a
new parametrisation of the model error covariance are proposed
to improve information extraction from SWOT data. These
improvements are described in detail and their contribution is
quantified. The Nature Run (NR) used to represent the “truth
ocean” is validated by comparing it with altimeter observations,
and is then used to simulate the pseudo-observations required
for the OSSEs. Finally, the design of the OSSEs is evaluated by
ensuring that the differences between the assimilation system and
the NR are statistically consistent with the misfits between real
ocean observations and real-time operational systems. The main
results of the performed OSSEs are discussed in a companion
paper (Tchonang et al., 2021).

The paper is structured as follows. Following the introduction,
section “Nature Run and Simulated Observations” is devoted
to the validation of the NR, and the simulation of the pseudo-
observations. Section “The Assimilation System” presents the
OSSE assimilation system with a focus on the changes made
to the data assimilation scheme currently used in Mercator
Ocean operational systems. In section “Impact of the Updates
of the Assimilation Scheme,” we evaluate the impact of the
main upgrades in the assimilation system and in section “Final
Validation of OSSE Design” we focus on the OSSE calibration.
Section “Conclusion” draws some conclusions about the design
of these OSSEs. The results are discussed in a companion paper
(Tchonang et al., 2021).

NATURE RUN AND SIMULATED
OBSERVATIONS

Nature Run Ocean Model Configuration
The NR is a global, high-resolution free simulation (without
any data assimilation) using version 3.6 of the NEMO ocean
model (Madec et al., 2017). The configuration is based on
the tripolar ORCA12 grid type (Madec and Imbard, 1996)
with a horizontal resolution of 9 km at the equator, 7 km at
Cape Hatteras (mid-latitudes) and 2 km toward the Ross and
Weddell seas. Z-coordinates were used on the vertical and the
75-level vertical discretisation retained for this simulation has
a decreasing resolution from 1 m at the surface to 200 m
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at the bottom and 24 levels within the upper 100 m. The
atmospheric field forcing the ocean model was taken from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA-Interim reanalysis (Dee et al., 2011) with 3-
h resolution for momentum and 24 h for the flux. A bulk
formulation was derived from the Integrated Forecast System
(IFS) model (Brodeau et al., 2017) and atmospheric pressure
forcing was used. The surface currents were not taken into
account in the stress computation (absolute wind). Concerning
the main parameterisations, special attention was paid to
favour the representation of fast ocean signals and also the
representation of the fine scales to be observed by SWOT. The
simulation thus used an explicit barotropic mode solved by a
split-explicit approach (Shchepetkin and McWilliams, 2005), a
variable volume (Adcroft and Campin, 2004) for the calculation
of the sea level, a 2nd order vertical mixing (k-espilon; Rodi,
1987) and a UBS scheme (Shchepetkin and McWilliams, 2008)
for computing the horizontal momentum advection without
addition of an explicit diffusion.

Validation of the Nature Run
It is important to validate the NR when carrying out OSSEs
(see discussion in Halliwell et al., 2014) since it enables the
identification of ocean processes and scales that have been
realistically represented in the simulated observations from the
NR. OSSEs can then be assessed regarding their capacity to
reconstruct those signals.

The NR simulation was started from rest using WOA13
temperature and salinity climatology. It covered a period of 24
years between 1992 and 2015. This long spin up made it possible
to obtain a good level of energy in the whole ocean. The validation
of the NR simulation described here is limited to the year 2015
because all OSSEs were studied over this period.

To evaluate the realism of the NR simulation, we compared it
to real ocean observations and to CMEMS GLORYS12 reanalysis
(G12). The G12 numerical simulation without data assimilation is
described later in Section 3 (Table 1). This is called Free Run (FR).

Figure 1 shows the Kinetic Energy (KE) spectrum in three
different boxes [(A): Kuroshio Current (130–140◦E; 15–25◦N);
(B): Gulf Stream Current (75–65◦E; 25–35◦N); and (C): Tropical
area (22–11◦E; 7◦S–7◦N)] averaged over the year 2015. For these
three regions, NR (black curve) shows more energy at all scales
compared to both the other estimates (FR, blue curve and G12,
red curve). This difference is more evident in the Gulf Stream and
the tropical boxes than in the Kuroshio box. It is also interesting
to note that in NR the smallest scales (lower than 100 km),
that will be observed by SWOT, exhibit a higher level of energy.
These energy differences are mainly due to the numerical choices
made for NR: less diffusive, absolute wind, and momentum
advection scheme.

Figure 2 shows the comparison of the 2015 annual SLAs Root
Mean Square (RMS) between the NR (panel A), DUACS product
(panel B, Ducet et al., 2000; Dibarboure et al., 2011) and G12
(panel C). NR and G12 SLAs were derived by removing the
mean sea surface height from the hourly field for each model.
All three datasets have comparable magnitudes. The maximum
RMS value points in each dataset are located mainly along the

TABLE 1 | Differences in model parameterisation between (NatRun) NR and
(Free Run model) FR.

Nature run Free run

Nemo version NEMO3.6 NEMO3.1

vertical levels 75 50

Forcing flux ERA-Interim reanalysis (3 h
for dynamic, 24 h for flux)
(Dee et al., 2011)

ECMWF IFS-operational analysis
(3 h for all variables)

Bulk formulae IFS implemented in
Aerobulk package (Brodeau
et al., 2017)

NCAR (Large and Yeager, 2009)

Ocean stress
computation

Absolute wind 50% of ocean velocity are taken
into account (Bidlot, 2012)

Atmospheric
pressure

Apply though Inverse
barometer force.

No

Free surface
formulation

Explicit barotropic and
baroclinic modes solved by
a split-explicit method
(Shchepetkin and
McWilliams, 2005)

Filtered free surface (Roullet and
Madec, 2000)

Sea level Variable volume (Adcroft
and Campin, 2004)

Fixed ocean volumes

horizontal
momentum
advection

UBS scheme (Shchepetkin
and McWilliams, 2008)
without explicit diffusion

Centered advection scheme with
an explicit biharmonic diffusion
(−1.5 × 10−9m3 s−3)

Vertical mixing k-espilon (Rodi, 1987) TKE (Blanke and Delécluse, 1993)

fairly well-known major currents (Gulf Stream, Kuroshio, etc.).
It is worth noting that the El-Nino signature (present in 2015)
is well marked in the three databases. NR does not produce
local maxima at exactly the same locations as those observed or
simulated with the G12 system, but the global magnitude and
the general spatial pattern are consistent with the observations.
Otherwise, the Gulf Stream and Kuroshio currents in NR are
more spread out where they separate from the continent as
compared to the G12 system which assimilates SLA, SST and T/S
in-situ profiles.

Figure 3 shows the evolution over time of the mean
temperature between the surface and 100 m in depth. The
seasonal cycle of the three fields is in good agreement. The NR
(black curve) has a lower temperature compared to FR (red
curve) and G12 (blue curve). The difference is stable between NR
and G12 (around 0.15◦C). On average, FR falls between the other
two estimates but with a seasonal variation of the difference: FR
is closer to G12 in winter but becomes closer to NR in summer.

In Figures 4, 5, the mean and standard deviation of the
mixed layer depth (MLD) are compared for two different seasons
(March and September). Both in spring and in autumn, NR
represents the same signatures as G12, which assimilates realistic
data. For example, in March, the NR has a mean MLD of
over 250 m in the North Atlantic sub-polar gyre, with strong
variability. In September, the mean MLD and its variability are
in all respects comparable in the circumpolar current between
NR and G12. This is in contrast to FR, which has a MLD that
is too deep. This proves the good behaviour of NR, especially
with regards to the representation of vertical processes. We can
note that the MLD of the NR and G12 are closer to each other
than to that of FR.
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FIGURE 1 | Surface KE (Kinetic Energy, 2015 mean) Spectrum in three panels
(A) Kuroshio Current (130–140◦E; 15–25◦N), (B) Gulf Stream Current
(75–65◦E; 25–35◦N), and (C) Tropic area (22–11◦E; 7◦S–7◦N). Blue curve for
FR, red curve for G12, and black curve for NR.

Simulation of Observations and Noise
All simulated observations were extracted from the NR
simulation and these observations were collected over a period of
15 months (from October 1, 2014 to December 31, 2015) which
includes the period covered by the OSSEs.

Sea Surface Temperature, Vertical Profiles of
Temperature, Salinity, and Ice Concentration
The calculated pseudo surface temperature observations mimic
the CMEMS space-time sampling of CMEMS L3S-GLOB-
ODYSSEA products. This product merges the collection of sea
surface temperature (SST) from multiple satellite sources onto
a 0.1◦ resolution grid over the global ocean. The hourly mean
temperature of NR is used to simulate the sea surface temperature
observation value. The average SST error is 0.5◦C. Finally, it
is worth mentioning that the observation errors only depend
on the geographical position and not on time. We used the

FIGURE 2 | Root Mean Square (RMS) of the sea level anomalies (cm) over
2015: NR (A), Duacs (B), and G12 (C).

same observation error as the one used in the G12 system (see
Lellouche et al., 2013; Lellouche et al., 2018).

The temperature and salinity (T/S) profiles were extracted at
the same points and dates as the real in situ profiles observed in
2015 and found in the CORA4.1 database stored in the Coriolis
and CMEMS in situ data centre (Cabanes et al., 2013). 3D daily
mean temperature and salinity fields from the NR were used to
simulate this in situ data. To mimic the instrumental error, the
data were perturbed as a function of depth and geographical
position with white noise of the order of the standard deviation
of the G12 temperature and salinity errors (see Lellouche et al.,
2013; Lellouche et al., 2018).

Ice concentration in the Arctic and Antarctic was simulated
from NR daily outputs. This pseudo-data respect the spatial-
temporal sampling of the CERSAT (Ezraty et al., 2007) products.
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FIGURE 3 | Time evolution of mean temperature between Surface and 100m (◦C) area-averaged (black: NR, red: FR, blue: G12).

FIGURE 4 | Mean and Standard deviation of the mixed layer depth (MLD, m, March 2015); Mean: NR (A), FR (B), and G12 (C). Standard deviation: NR (D), FR (E),
and G12 (F).
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FIGURE 5 | Mean and Standard deviation of the MLD (September 2015); Mean: NR (A), FR (B), and G12 (C); Standard deviation: NR (D), FR (E), and G12 (F).

Our goal was to achieve an OSSE that would be fairly close in
terms of observation coverage to our operational systems.

Altimetry Data
Nadir data
The nadir altimetry constellation simulated consists of Jason-3,
Sentinel 3A, and Sentinel 3B. The counterparts of the along-
track nadir altimeter data were extracted from NR at the 1 Hz
frequency corresponding to a spatial resolution of 6–7 km from
hourly mean fields of the NR.

Figure 6A shows a snapshot of the NR’s sea surface height
(SSH) for the Gulf Stream area, and Figure6B an example of data
coverage along the tracks of the three nadir altimeters over 7 days.
The coverage appears to be homogeneous over one analysis cycle.
This is typical of real-time altimetry sampling.

We assumed that the SSH data error does not depend on the
distance from the coast. There was no masking of the data in
shallow seas. We perturbed the data along the track with white
noise of 3 cm standard deviation and did not add any bias.

SWOT data
Surface Water Ocean Topography will provide global SLA
observations under a 120 km wide-swath with a middle gap
of 20 km. In this study we considered the SWOT data
as two-dimensional fields under the swath with a regular
along-track and across-track resolution. The pseudo-SWOT
observations were simulated from hourly outputs of the NR
using the “SWOT Simulator” developed at the Jet Propulsion
Laboratory (Gaultier et al., 2016), which is used to generate
observations with the expected SWOT sampling and error
budget. Along-track and cross-track data extraction depend
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FIGURE 6 | (A) SSH from Truth Run (NR) on January 4, 2015, (B) simulated
along-track data from Jason3, Sentinel3A and Sentinel3B for seven days
assimilation cycle, and (C) simulated SWOT data (01/01/2015-08/01/2015).

on both the time position in the along-track direction and
the spatial location of the measurement in the cross-track
direction. Associated errors were also obtained using the “SWOT
simulator” software. The simulator constructs a regular grid
based on the baseline orbit parameters of the satellite, namely
a 20.86-day repeat cycle, an inclination of 77.6◦ and an
altitude of 891 km and on the characteristics of the radar
interferometer on board. In this study, the data were simulated
with a resolution of 6 km in both cross-track and along-track
directions, which corresponds to the NR and assimilation model
grid resolution. Figure 6C shows an example of SWOT data
coverage over 7 days.

The SWOT simulator models the most significant errors that
are expected to affect the SWOT data, i.e., the KaRIn noise,
roll errors, phase errors, baseline dilation errors, and timing

errors. It produces random realisations of uncorrelated noise
and correlated errors following the spectral descriptions of the
SWOT error budget document (Esteban-Fernandez et al., 2017).
In our experiments, we only used the KaRIn noise for two
reasons: (i) the simulator models the worst expected case and
(ii) the observation distribution centres are planning to filter
the data from most of these errors. Consequently, as the final
error budget is still uncertain and as this was our first effort to
assimilate such data in a global model, we preferred to use a more
optimistic error budget. The same simulator was used to simulate
the nadir data of SWOT.

With a 6 km spatial resolution, the KaRIn noise ranges from
0.2 cm standard deviation in the inner part of the swath to
about 0.35 cm on the outer edges of the swath. The standard
deviation of the KaRIn noise also depends on the significant
wave height (SWH) parameter which is a value between 0 and
8 m. In our study, the simulator was set up with a constant
SWH = 2 m. An example of simulated data along a swath is shown
in Figure 7. Panel A shows the “truth” and panel B the “truth”
corrupted by the KaRIn noise. Finally, panel C shows the spatial
structure of the noise and the standard deviation of the errors
is shown in panel D. Figure 7E shows the standard deviation
of the KaRin random error considering across-swath resolutions
of 1 km (solid line) and 6 km (dashed line) as a function of the
cross-track distance in km.

Observation Operator and Error Variances
In the data assimilation scheme, the computation of the
innovation requires defining an observation operator to compute
the model counterpart which is equivalent to the observations.
We describe here the observation operators used for the OSSEs
that assimilate the pseudo-observation simulated from the NR.

The model equivalent to SSH and SST observations was
calculated by interpolating the model fields onto the observation
space using a bi-linear interpolation in space, and a linear
interpolation between the nearest model time steps. For the T/S
profiles, the model was interpolated at the observation locations,
and then a spline was adjusted to the observed profile to calculate
the innovations (observations minus model forecast) at the level
of the vertical grid of the assimilation model.

In the data assimilation system, the observation error
covariance matrix was assumed to be diagonal. It is prescribed
a priori as a sum of an “instrumental” error, depending only on
the observation type and location, added to a representativity
error. The latter represents the part of the observed signal in
the observations that the model is not able to represent, due
to its resolution or because of missing processes in the model
equations. Since the model configuration chosen for the OSSE
differed from the NR configuration, from which the pseudo-
observations were extracted, a representativity error was also
taken into account in observation errors for the OSSEs.

The instrumental errors specified in the assimilation scheme
are consistent with the simulated noise for each data set extracted
from the NR. For SSH observations, an error of 3 cm for the
nadir was prescribed, for SWOT the error (KaRin) is shown in
Figure 7C and for SST an error equal to 0.5◦C was prescribed.

For the altimetry (nadir and SWOT), in addition to the
observation error, we used an SSH representativity error. Figure 8
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FIGURE 7 | Example of SSH pseudo-observation along a SWOT swath: (A) Pseudo-observation, (B) Pseudo-observation + noise (KaRin noise), (C) KaRIn noise
along swath, and (D) standard deviation of the KaRIn noise. (E) The curves displayed show the Swot instrumental error with SWH = 2 m (wave height), considering
across-swath horizontal resolution of 1 km (solid line) and 6 km (dash line).

FIGURE 8 | SSH representativity error (cm).
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shows this representativity error for the SSH observations that
were calculated from the standard deviation of the NR SSH for
scales smaller than 100 km. For SST, the representativity error
was prescribed as a map constant in time as in the global 1/12◦
system presented in Lellouche et al. (2018).

THE ASSIMILATION SYSTEM

The assimilation system is the system used to perform
the OSSEs. It consists of a physical ocean model and an
assimilation scheme which has been modified to serve the
OSSEs (see section “Data Assimilation Scheme”). The simulated
observations described in the previous section were assimilated in
this system.

Ocean Model Configuration
The FR ocean model configuration was also based on a global
1/12◦ resolution configuration but with only 50 vertical levels
(1 m at the surface to 450 m at the bottom). This configuration
was also based on an older NEMO version (version 3.1;
Madec, 2008). This assimilation model configuration shares
many parameters with the NR. Nevertheless, the two model
configurations differ in several respects, thus ensuring a level
of difference between simulations comparable to those between
the model and the observations. The main differences between
this ocean model configuration and the NR are summarised in
Table 1.

All these differences in model parameterisation led to the
simulation of two different ocean states and ensured that the
RMSE difference between the simulations was comparable to that
between the model and the observations. As shown in section
“Nature Run and Simulated Observations,” in most of the cases,
the choices made for NR simulation (absolute wind, UBS scheme,
split-explicit free surface, atmospheric pressure forcing) induced
a higher energetic level than in the OSSEs.

Data Assimilation Scheme
The data assimilation system (SAM: Système d’Assimilation
Mercator) used for current Mercator Ocean International (MOi)
operational systems has already been described in Lellouche
et al. (2013, 2018). It consists of a 3D-Var bias correction
for the slowly evolving large-scale biases in temperature and
salinity, and a local version of a reduced-order Kalman filter
based on the Singular Evolutive Extended Kalman Filter (SEEK)
formulation introduced by Pham et al. (1998). Several previous
OSSEs (Gasparin et al., 2018; Verrier et al., 2018; Hamon et al.,
2019) including some related to Swath observations (Bonaduce
et al., 2018), used this system.

In this section, we recall the main particularities of both the
SEEK and 3D-Var methods. The focus is on the changes made
to improve the SEEK’s performance in the OSSEs described here.
First, we present a 4D extension of the data assimilation method
described in Lellouche et al. (2013). It will be part of the future
global MOi operational system to be deployed in the CMEMS
portfolio (Le Traon et al., 2019) by the end of 2021. Second,
changes in the construction of the required background error

covariance matrix are described in detail along with some results
showing the impact of these changes.

To present the improvements made in our system, let us first
introduce the Kalman filter analysis step as:

δxa = PHT
(

HPHT
+ R

)−1
d (1)

where δxa is a vector of analysis increments (correction) of the
size of the state vector m, d is the innovation vector of size o
(observations minus forecasts in the observations space), P and R
are the background and observation error covariance matrices of
size m×m and o× o, respectively, and finally H is the so-called
observation operator mapping the state vector from the model
space to the observation space with ()T the transpose operator.

The specificity of the SEEK filter is the use a low-rank
approximation of the background error covariance matrix P. In
this case, we write P = SST , where the matrix S, also called the
anomaly matrix, has many more lines m–(size of the state vector)
than columns n. When n is much smaller than the number of
observations and R is diagonal, the Eq. 1 can be written in a
numerical efficient form as (Brankart et al., 2009):

δxa = Sw (2)

with the vector w given by:

w =
[

I+ YTR−1Y
]−1

YTR−1d (3)

where I is the identity matrix and Y = HS is the anomaly matrix
in the observation space.

Equation 2 reveals that the increment is a linear combination
of the columns of S. Therefore, the set-up of S is a critical point
to the system’s performance. For this reason, the next sections
give a detailed presentation of how this matrix in constructed in
MOi SAM system for 3D and 4D formulations of the assimilation
problem. Sections “Constructing the State Anomalies” details
how we construct the anomalies composing the columns of S
using a climatological run, and section “ From 3D-FGAT to 4D-
FGAT” provides a detailed description of the approximation of S
in the 3D and 4D formulations.

Before entering the details, it is worth citing two essential
aspects of the MOi analysis system: a localisation scheme and an
adaptativity technic. MOi system apply a local analysis scheme
(Ott et al., 2004; Hunt et al., 2007; Lellouche et al., 2013). It
means the Eqs 2 and 3 are solved independently for each model
point, and the analysis considers only observations lying within a
prescribed distance from the analysed point. A Gaussian function
weights the observations increasing their error as a function of
their distance from the analysed point.

The used distance in the analysis scheme is twice the
local spatial correlation scale estimated using a previous global
reanalysis (see details in Lellouche et al., 2013). In our global
configuration, the spatial correlation scale, defined as the distance
where the correlation coefficient equals 0.4, is about 100 km
(250 km at the equator). The size of the local region (i.e., the
correlation scale) is essential because (i) it reduces sampling
noise in the background covariance matrix and (ii) it controls
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the regularity of the increment by inserting more or fewer
observations in each local analysis. The degree of smoothness
of the analysis depends on the number of available observations,
the dimensionality of the sampled dynamics, and the rank of the
localised covariance matrix.

The adaptativity technic is based on the work of Desroziers
and Ivanov (2001) and aims to find a scalar α for each local
region, that multiplies the local restriction of P, so that the
following equation is satisfied for each local region and each
analysis cycle:

α × tr
(

HPHT
)
+ tr (R) = tr

(
ddT

)
(4)

where tr (A) is the trace of A. This step is crucial for our analysis
scheme since it compensates for the lack of information about
the variance of the forecast error in the construction of the
background covariance matrix.

The analysis increment is injected into the model using the so-
called Incremental Analysis Update (IAU) method (Bloom et al.,
1996; Benkiran and Greiner, 2008). This consists of adding at
each time step of the physical model the increment weighted by
a function. The weight is a piecewise function of time such as its
time integral over the DAw equals one (Lellouche et al., 2013).
The IAU in the 4D case (4D-IAU; Lei and Whitaker, 2016) uses a
time interpolation in between calculated increments and weights
the resulting increment at each model time step by a piecewise
function as in the 3D case. It should be noted that when only one
increment in the assimilation window is calculated, the 4D-IAU
is the same as the 3D-IAU.

In practice, the SAM system is a sequential scheme composed
of a forecast step, followed by an analysis step. Here, we use
a 7-day assimilation window because this set-up is used in
MOi operational systems. During the model integration, the
innovations are calculated at the right location and at the
right time. After each analysis, the data assimilation produces
increments of SSH, T, S, zonal velocity (U) and meridional
velocity (V). All these increments are applied progressively in the
hindcast run using the IAU method.

Constructing the State Anomalies
This section details the construction of the collection of
anomalies δx used to build the matrix S. The general idea is to
calculate an anomaly as the difference between a model field at a
given time and an averaged field mimicking an ensemble mean
(Lellouche et al., 2013). The anomalies generated by this method
must cover the forecast error subspace as well as possible. In the
current MOi analysis systems using the 3D scheme, the anomalies
come from a climatological run (without assimilation) that is long
enough to ensure the model has visited a large portion of the state
space. In this study, we use a sharper filtering in space and the
anomalies come from the reanalysis (with assimilation). Next, a
step-by-step recipe on the anomaly construction is given.

The anomalies are constructed in three steps:

(1) Each 24 h-average daily output of a long climatological run
is spatially smoothed using a Shapiro filter to cut-off scales
that are shorter than a prescribed wavelength ω−1

k . The

24h-average condition may be relaxed if the assimilation
is intended to correct high frequency signals.

(2) The spatially filtered time series produced in (1) is time
filtered using a low-pass Hanning filter with a cut-off
frequency of ωf .

(3) We subtract from each daily output generated in (1)
the corresponding low-passed field generated in (2). At
this step, we obtain a series of model states which are
characterised by periods longer than one day and shorter
than ω−1

f , and with spatial features with wavelengths

greater than ω−1
k . One should note that the time filtering

probably acts on the entire wavenumber domain, reducing
the energy for wavelengths that are longer than the cut-off
scale.

Therefore, for a given climatological run, two parameters
ωk and ωf , control the anomalies’ information content. The
first one reduces the energy contained in small wavelengths
that are not well observed by the observational network. The
second parameter selects the corresponding time scales of the
features corrected during the assimilation step. One important
aspect of this methodology is that most of the seasonal-to-
interannual signals are removed from our anomalies. This avoids
trying to correct forecast errors that are predominantly at
the mesoscale with inadequate anomalies. This procedure is
essential for the deep ocean, for which there are almost no
observations, and all corrections are based on the covariance
between the observed variables of the state vector and the non-
observed variables.

Some tests (not shown) were performed by varying ωk and
ωf to find a set of parameters maximising the spectral energy in
the band of 50-250 km. The retained values are 21 km for ω−1

k
and 48 days for ω−1

f . The values used by the current global high-
resolution CMEMS GLORYS12 reanalysis (Lellouche et al., 2021)
are 64 km and 24 days. As a consequence, the current CMEMS
system retains a narrower spectral band. Next, two different
anomaly bases were calculated to demonstrate the impact of
changing these parameters. These two bases use 8 years of the
CMEMS ocean reanalysis as the climatological run. We call “new
basis” the one using the couple (21 km, 48 days) and “old basis”
the one using (64 km, 24 days).

Figure 9 shows the power spectral density of the anomalies
calculated for the Sea Level in the Kuroshio region (150.0–
162.0◦W, 30.0–42.0◦N) for the new basis (red curve) and the old
basis (black curve). The new filtering parameters produce very
different repartition of energy. The new basis has more energy at
all scales compared to the old one. Its shape is also different, with
a flatter spectrum for the 250–50 km band. The cyan-coloured
curve in the figure represents the typical nadir observation
error (3 cm). In a Kalman filter scheme, the ratio between
background error and observation error determines the weight
given to each piece of information. The crossing point between
these spectra determines the wavelength for which background
and observations have the same weight in the analysis. In the
given example, large scales are more effectively constrained by
the observations. Using the crossing point as a reference to
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FIGURE 9 | The power spectral density of the anomalies calculated for the Sea Level (cm2/cpkm) in the Kuroshio region (150–162◦W, 30–42◦N, the black box in the
Figure 12A), for the new basis (red curve) and the old basis (black curve), cyan curve is observation error. Spectrum are average in time and space.

well-constrained wavelengths, we have a gain of about 50 km
compared to the old background error covariance.

It is worth recalling that before the assimilation step, Eq. 3
is used to inflate the covariance matrix. It is equivalent to
multiplying the spectrum in the figures by a scalar. Since
the large-scale signals dominate the variance, the inflation
is never sufficient to extend the impact of the assimilation
towards high wavenumbers, as much as one might desire this
in the case of high-resolution data. For example, one cannot
obtain the new spectrum by simply multiplying the old one
by a scalar. Thus, the most important change between the
old and the new versions is the shape and relatively higher
energy in the new version’s mesoscale range. In section “Impact
of the Improvements of the Background Error Covariances,”
we present data assimilation experiment results using both
bases to demonstrate how the new basis indeed improves the
assimilation scores.

From 3D-FGAT to 4D-FGAT
This section presents how the anomaly matrix S is constructed for
the 3D and 4D. The reader will find which anomalies are used in
each update step and how Eqs 2 and 3 are modified accordingly
to each formulation.

For both formulations, the MOi systems follow the First
Guess at Appropriate Time (FGAT) strategy to compute the
innovations d (observations minus model background) in the
data assimilation window (DAw):

d = vec
(

yj −Hjx
f
j j∈J

)
(5)

where J is the set of indexes for which observations are available
at time tj, for tj inside the DAw. yj is a vector composed by all

observations at time tj, Hjx
f
j is the so-called model equivalent at

the right time with Hj the operator that maps the state vector xj
from the model space to the observation one. The operator vec ()
gathers all vectors, thus preserving the number of columns.

3D-FGAT
The 3D scheme aims to identify the best model state, in the
Kalman sense (Gelb et al., 1974), at an instant in time, given all
observations in the DAw. In the MOi data assimilation system,
the analysis is done for xfc at the center of the assimilation window
and the associated matrix of anomalies Sc is constructed using a
collection of predefined daily anomalies (δx) corresponding to
a time window (L = ± 45 days) around the reference day tc.
The way these anomalies are constructed was described in the
previous section. To be more precise about which anomalies are
used by the analysis, let us define a set of indices I :

I =
{
i ∈ [−L; L] |mod (i, s) = 0

}
(6)

with s a sampling frequency and mod the modulo operation. For
each year k of the climatological simulation an anomaly matrix is
defined as:

Skc = mat
(
δxkc+ii∈I

)
(7)

with mat an operator gathering vectors or matrices and
preserving the number of lines. The matrix Skc has the dimension
of the state vector as the number of lines and the number of
columns equals the cardinality of the set I given by the Eq. 6. The
final anomaly matrix used in the analysis equation is written as:

Sc = mat
(

Skc k∈[1..K]

)
(8)

where K is the number of years in the climatological basis.
Therefore, Sc has the same number of lines as Skc and K times
its number of columns, i.e., K × card(I) columns. Figure 10
represents a simplified scheme about the construction of the
matrix Sc for the cases K = 1, L = 3, and s = 1. Note that
in this case Eq. 8 resumes to Eq. 7. In this simple case, I =
{−3,−2,−1, 0,+1,+2,+3} and the anomaly matrix has seven
columns (represented by red squares in the figure). Note that all
anomalies are considered to be at time c even though their time
stamp varies from c− 3 to c+ 3.
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FIGURE 10 | Schematic construction of the anomaly matrix S for the 3D and 4D analysis scheme. Colours represent the days within the DAw. Shaded ellipses
represent the anomaly matrices for days c-3, c and c+3. “Lagged sequence of anomalies” (dotted lines) were displaced in the vertical axis with respect to the
“sequence of anomalies” (full line) for visualisation purpose. The S4D covariance matrix corresponds to the S3D matrix augmented with past and future anomaly
matrices. Their number of columns is the same.

It is worth noting that there are L anomalies missing at the
beginning of the first year (k = 1) and at the end of the last year
(k = K). For years 1< k< K the used boundary conditions are:{

δxkc+1 = δxk−1
N−(c+i); ∀ i ∈ I, c ∈ [1,N] | c+ i < 1

δxkc+1 = δxk+1
c+i−N; ∀ i ∈ I, c ∈ [1,N] | c+ i > N

(9)

with N the number of available anomalies in one year. Eq. 9
ensures time continuity of the series of anomalies from one
year to another.

Then, with the background anomaly matrix at hand an
increment, or model correction, is calculated using Eqs 2 and 3:

δxac = Scw (10)

where:
w =

[
I+ YT

c R−1Yc

]−1
YT
c R−1d (11)

and Yc = vec
({

HjSc
}
j∈J

)
R = diag

({
Rj
}
j∈J

) (12)

with Yc the anomaly matrix in the observation space at the centre
of the DAw. The operator diag( ) creates a block diagonal matrix.
In our case, Rj∈J are all diagonal matrices and therefore diag( ),
concatenates all diagonal entries in the diagonal of R.

Hence, Eq. 10 explicitly shows that the increment is
indeed a linear combination of the columns of the anomaly
matrix, where the coefficients in w are a function of the
background error covariance matrix in the observation space
at time tc, the observation error covariance matrix, and of the
innovation vector.

It is essential to note that the H operator in Eq. 5 applies to
x at the same time instance tj while in Eq. 12 each H at time tj
applies to the same S at time tc. This means that the first operator
takes into account the time while the second takes into account
the spatial position of the observation. As a consequence, the
observed dynamics that evolve significantly within the DAw may

not project well onto Yc. As an example, a typical phase speed
of sea surface height signals at the equator is of the order of
1 m/s (Schouten et al., 2005). Consequently, in a 7-day DAw these
features may propagate over 600 km.

Three parameters control the number of anomalies used in the
analysis: the size of a local window L, the sampling frequency
s and the number of years in the climatological run K. In the
OSSE presented in this article, L = 45 days, and the sampling
frequency is s = 2 days. This set-up avoid taking the entire
sequence of anomalies (s = 1) because they may have a high
degree of collinearity. The number of years available from the
climatological run is K = 8. With this setting, the cardinality of
I is 45 and, hence, one analysis step uses K × I = 360 anomalies.

4D-FGAT
The 4D-FGAT scheme aims to identify the best model trajectory
in the assimilation window given all observations in the DAw.
This means that a collection of increments is now calculated. In
this case the innovations are still being calculated according to
Eq. 5 and in addition one anomaly matrix is specified for each
time an observation is available. The scheme is similar to the
asynchronous ensemble Kalman filter described in Hunt et al.
(2007). What is described next is how the 4D covariance matrix
is approximated in this case.

As described in the previous sections, the anomaly matrices
are constructed using Eqs 6–9. In the 4D scheme, Ndaw matrices
like Eq. 8 are used. Ndaw varies according to the catalogue of
anomalies previously constructed. If for example the catalogue
contains daily anomalies, as in our case, and DAw is seven
days length, then Ndaw = 7. Hence, the Eq. 8 is used to
build 7 anomaly matrices: Sc−3,Sc−2,Sc−1,Sc,Sc+1, Sc+2,Sc+3, the
subscript c recalling that c refers to the centre of the DAw. The
Figure 10 presents a schematic view of the anomalies used in the
3D and 4D scheme for the specific case where daily anomalies are
considered, and L = 3, s = 1, and K = 1. Each colour represents
one anomaly, i.e., one column of S. Shaded ellipses represent the
anomaly matrix for each day in the 4D scheme. The anomalies
in this case are time-lagged anomalies’ trajectories. Note, that at
time c the 4D and 3D matrices are the same.
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The 4D scheme allows a better approximation of the anomaly
matrix. The hypothesis is that this sequence of anomaly matrices
contains information about the model dynamics for the scales we
want to correct, such as for example the propagation of mesoscale
or wave features. The increments can be written as:

δxai = Siw, i ∈ INdaw (13)

where the set INdaw has Ndaw elements and defines the time
instances for which anomalies are available in the DAw. The
weights w given by:

w =
[

I+ YTR−1Y
]−1

YT R−1d (14)

Y = vec
(

ĤjSlj∈J,l∈Ndaw

)
(15)

where Ĥ = HT, with T interpolating S from the instant at
which anomalies are available inside the DAw to times when
observations are available. We see that now the observation
operator is applied to the anomaly matrix at the right time.
Note that each increment uses the same weight, i.e., w is
constant in the DAw.

The increments calculated at the centre of the DAw for the
3D and 4D methods lie in the same subspace; they are the
linear combination of the same set of anomalies. Differences are
due only to the weights given to each direction (or anomaly).
Therefore, this 4D method does not necessarily increase the rank
of error subspace. The advantage of this method is that the
information about the time evolution of the system contained
in the innovation vector d is projected into an ensemble of
model trajectories.

In this way, the weights in w reflect which anomaly
trajectories best explain the innovation trajectory weighted by the
observation error (matrix R).

The 4D method may, consequently, improve the ocean
dynamics with significant evolution in the DAw. They are notably
fast wave dynamics and the advection of mesoscale/submesoscale
features in high energetic regions. Of course, the efficiency
with which these dynamics are constrained by the assimilation
depends on the observation network and on the information
contained in the S matrix.

Bias Correction Scheme for Large-Scale
3D Temperature and Salinity
A 3D-Var bias correction (BC) has been applied for temperature
and salinity fields in MOi systems since 2009. It was first
described in Lellouche et al. (2013). It has been also used for
satellite sea surface salinity in Tranchant et al. (2019). The
aim of BC is to correct the large-scale, slowly-evolving errors
of the model, whereas the SEEK assimilation scheme is used
to correct the smaller scales of the model background error.
Spatial correlations are modelled by means of an anisotropic
Gaussian recursive filter (Wu et al., 1992; Purser et al., 2003;
Farina et al., 2015). This is applied separately to the model’s
prognostic temperature and salinity equations from in situ profile
innovations calculated over the preceding month on a 1◦ × 1◦
coarse grid. Finally, BC increments of temperature, salinity and

dynamic height are computed and interpolated on the model grid
and applied as tendencies in the model prognostic equations with
a 1-month timescale.

This early version had shortcomings. For instance, the
correlation radii were still constant for the whole area, at all
levels, with just an anisotropy of a ratio of 3 at the equator.
A study of the flaws of the system showed that the structure
of the estimated bias was too zonal near the equator. The
recent reanalysis at G12 covers the Argo period. It was therefore
possible to use an extended period (2004–2016) to estimate the
correlation radii. A first result was to reduce the anisotropy to
a ratio of 1.5 at the equator. It was also possible to estimate
constant but different zonal and meridional radii of correlation
per level. The G12 innovations were used to estimate the large-
scale radii of the bias. A common profile was deduced for
temperature and salinity.

The main difficulty of this task is to estimate regionally the
large-scale radius of the bias from the innovations in the system,
free from the observation error and mesoscale. We were only
interested in the radius of the large-scale bias, because SEEK takes
the mesoscale into account very well via the anomalies. We used
a revised version of Hollingworth and Lonnberg’s method (1986),
which seeks to represent the covariances as a function of the
separation distance by a Gaussian.

The sum of a Gaussian for the meso-scale (MS) and a cardinal
sinus [sinus(x/L)/x] for the large scale (LS) was therefore sought
in order to model the covariances. Figure 11 is typical of the
equator where there is no MS but equatorial waves: the MS
radius is ∼200 km and nearly 600 km for the LS radius, the bias
being important. The covariance as a function of the separation
distance is shown in black. The Gaussian in orange is the one
that best approximates the MS error. The decay beyond the MS
zone is much slower than a Gaussian shape (“fat tail”). This
decay is approached by a cardinal sine whose characteristic length

FIGURE 11 | The covariance as a function of the separation distance is
shown in black. The Gaussian in orange is the closest approximation to the
mesoscale error; the cardinal sine in blue is the approximation to the
large-scale error; the covariance approximation (the sum MS+LS) is in green.
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is ∼1,000 km. The bias is sharp enough to be identified and
modelled, and the approximation of the covariance (the sum
MS+ LS in green) is good.

This was done for the temperature and salinity of the model
at various levels for various periods of time. It is not always
possible to estimate a radius because the LS bias actually concerns
fairly few regions. The LS bias is especially pronounced in this
system around 1,000 m at mid-latitudes. As there is little seasonal
variability, a common mean profile for temperature and salinity
was chosen. The radius is 500 km above 400 m and below 1,300 m.
The maximum radius of 750 km is reached at 900 m.

An optimisation algorithm (PSO for Particle Swarm
Optimization; Kennedy and Eberhart, 1995) was implemented
in order to estimate the optimal parameters of the background
covariance matrix, namely zonal and meridional filtering, vertical
filtering and guess error. The data retention technique was used
to obtain robust results.

Particle Swarm Optimization is a parameter optimisation
technique based on the movement of a swarm. The particles
have a random motion around the overall movement. The group
velocity accelerates when the function to be minimised decreases.
We do not necessarily obtain a global minimum, but we find
a local minimum quite quickly, typically with several hundred
estimates of the criterion to be minimised. We therefore perform

several PSOs to obtain a set of parameters which has a good
chance of being a global optimum.

IMPACT OF THE UPDATES OF THE
ASSIMILATION SCHEME

Impact of 4D vs 3D
In this section, results that support the use of the 4D analysis
scheme are highlighted. We started with a global view and
then we focussed on the Atlantic equatorial region where we
expected to improve the fast dynamics typical of this region.
Two experiments are compared: one using the 3D scheme
and another using the 4D scheme. They assimilated the same
set of simulated observations described in section “Simulation
of Observations and Noise” for the SSH, the experiments
assimilated nadir altimeter data.

The most improved regions in terms of Root Mean Square
for the SSH are the western boundary currents (Gulf Stream,
Brazil-Malvinas confluence, Kuroshio and Agulhas retroflection),
the Antarctic Circumpolar Current and the equatorial band
Figures 12A,B. These are highly active regions with non-linear
eddy evolution. Therefore, eddy translation and deformation are
significant in seven-day windows. The mean RMSE reduction

FIGURE 12 | Root Mean Square of the SSH Error; 3D-IAU in the panel (A) and 4D-IAU in the panel (B) Gulf Stream (GS), Brazil-Malvinas confluence (MB), Kuroshio
(KS) and Agulhas (AG) retroflexion, the Antarctic Circumpolar Current (ACC), and the equatorial band (EQ). Root Mean Squared of the SSH error (C,D) and SST error
(E,F). (C–E) for the 3D-IAU and D-F for the 4D-IAU.
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in SSH for these high latitude regions (white boxes in
Figures 12A,B) is 6%.

Looking at the low latitudes, the spatial RMSE for SSH and
SST in the tropical Atlantic is shown in Figures 12C–F. SST
variations in the cold tongue may exceed 1 ◦C in one week. The
variability in the eastern-central region is influenced by intra-
seasonal Kelvin waves coming from the west. These waves have
periods of between 25 and 90 days and an estimated phase speed
of 2.1 m/s (≈1,270 km/week). The northern edge of the cold
tongue is influenced by Tropical Instability Waves (TIW). The 4D
scheme improves the estimation of the fields almost everywhere
for both variables. This illustrates the benefit of having seven
increments instead of one during the cycle. The improvement in
RMSE is also significant in the domain of 4◦N–9◦N and west of
25◦W. This region has very complex dynamics with Rossby wave
travelling in this region at 0.88 m/s for the first baroclinic mode
(Illig et al., 2004).

To better understand which spatial and temporal scales are
improved, we extended our analysis by looking at the spectral
coherence between the “truth” and the assimilated experiments.
For the SSH in the tropical Atlantic, the 4D experiment improves
spatial coherence for all calculated wavelengths (Figure 13A).
Enhancement is achieved mostly at scales greater than 100 km.
Taking 0.5 coherence as a reference value, the 4D approach
refines the wavelength resolution by 80km. As far as the
temporal coherence is concerned (Figure 13B), the 4D approach
increases coherence for periods greater than seven days. The most
improved spectral band corresponds to periods between 20 and
11 days. At these period bands, the ocean dynamics are governed
by local adjustment to change in winds and equatorial Kelvin
waves. Surprisingly, the 3D experiment produced somewhat
higher coherence for periods shorter than four days. We have two
non-mutually exclusives hypotheses for this behaviour: first is
that the observation network is not capable to inform about such
a dynamical process and hence the information in the increments
is not consistent with the true ocean state; second is that the 4D-
IAU is less effective in filtering the high frequency barotropic
dynamic present in the increments (Lei and Whitaker, 2016), and
thus the 4D method is contaminated by high frequency noise.

Impact of the Improvements of the
Background Error Covariances
Two identical simulations changing only the background error
covariance were performed over one year (2015). SSH (J3, S3A,
S3B), SST and temperature and salinity profiles were assimilated.
Figure 14 shows the global SSH error standard deviation (eStd).
An error reduction was observed almost everywhere, being
more pronounced in western boundary currents (regions rich in
mesoscale structures), Southern Ocean, and tropical regions.

Next, we focussed on the highly energetic Kuroshio region.
The new background error covariance improved the SSH eStd,
as shown in Figure 14. To highlight this improvement, Figure 15
shows the variance preserving spectra of the SSH error calculated
for the black box shown in Figure 14. This kind of spectrum
is useful to see how the error variance varies as a function of
wavelength. Note that the area under the curves represents the
total variance of the SSH error. The SSH error is concentrated
in the mesoscale band for both experiments. Using the new
background error covariance reduced the SSH error for almost
all wavelengths. This reduction is most pronounced in the 250–
150 km range with almost a 15% error reduction. For wavelengths
shorter than 50 km, both experiments had the same performance.

In this section, we have shown that a careful tuning of
the background error can significantly impact the assimilation
system’s performance. When constructing the anomaly matrix
in the same way described in section “Constructing the State
Anomalies,” one should keep in mind which scales need to be
constrained with the assimilation system. Of course, this is highly
dependent on the model uncertainties and the structure (time
and space) of the observational network.

FINAL VALIDATION OF OSSE DESIGN

As outlined by Hoffman and Atlas (2016) and Halliwell et al.
(2014), OSSEs must be carefully designed to produce quantitative
results. In particular, this requires a high-quality NR to represent
the “true” ocean, with realistic differences between the NR model
and the CR model used for assimilation. It also requires the

FIGURE 13 | (A) Spatial Spectral coherence between the NR SSH and the SSH from FR (orange line), 3D-IAU (blue line), and 4D-IAU (black line). The spatial domain
considered is the black box on the previous figure. (B) Time Spectral coherence on the same box.
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FIGURE 14 | Standard deviation of the SSH Error (NR-Model Forecast, 2015).
(A) With old background error covariance and (B) with the new background
error covariance. Standard deviation of the SSH. Error on Kuroshio region
(NR-Model Forecast, 2015). (C) With old background error covariance and (D)
with the new background error covariance.

realistic extraction of simulated observations. All these aspects
have been carefully analysed (see discussion in section “Nature
Run and Simulated Observations”).

The entire OSSE system must also be validated to ensure that
the impact of observing systems in the OSSEs is comparable to
the impact of the same observation systems in the real world.
This final verification of the OSSE configuration was carried
out with the MOi global ocean forecasting system assimilating
real observations (e.g., Copernicus Marine Service global ocean
system; Lellouche et al., 2018). The objective was to verify that the
innovation statistics with the pseudo-observations correspond to
the real innovations of the operational system. This ensures that
the OSSE design is representative of the real time system with
respect to current observations.

This validation was performed by comparing our OSSE
(Assimilation of data from 3 Nadir altimeters) with the G12
reanalysis which uses real data [SLA, SST, and in situ data (the

FIGURE 15 | Power spectra of the SSH error with respect to the NR; the
spectra are shown in the variance preserving form (cm2). The spatial domain
considered is the black box on the previous figure.

CORA4.0 base)]. The calibration was done over the year 2015 that
we were processing. In Supplementary Figure 1, we compare
the standard deviation of SLA innovations (forecast) along the
Jason tracks, in panel (A) for G12 and panel (B) for our OSSE.
In the two figures we find the same patterns of maximum SLA
forecast error as is often the case, with the error being larger in
regions with strong currents, especially the polar fronts. On the
other hand, our OSSE shows weaker errors all over the globe with
an average of the order of 3.08 cm instead of 4.12 cm as per the
G12. This reduction is quite clear in the tropical band and the
large gyres. Supplementary Figure 1C shows the scatter diagram
between the standard deviation of the SLA error between G12
and OSSE. In this figure the colour corresponds to the density
of the points. For OSSE, we have a maximum of points close
to 2 cm of STD error while OSE is mostly concentrated about
3 cm. Both systems have a correlation close to 82%. There are
active regions where the OSSE error is larger than in reality
(Gulf Stream), and others smaller (Malvinas, Kerguelen). In
quieter areas, the OSSE error is smaller because the OSSE has
not taken into account errors that are not directly related to
SWOT, and which it is hoped to reduce in the short term. These
include, for example, Mean Dynamic Topography, tidal, orbital
and tropospheric correction errors.

CONCLUSION

The new SWOT mission introduces the need for OSSEs that
fully exploit the capabilities of this new satellite, with increased
observing capacity for scales down to 20 km and above 21 days.
A global data assimilation system capable of assimilating SSH
data from wide swath altimeters has been developed. The system
is capable of assimilating a very large amount of data, as it also
takes into account the assimilation of L3 SST data at high spatial
and temporal resolutions. First, changes in the construction
of the background error covariance matrix were described in
detail Secondly, a 4D extension of the data assimilation method
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was presented. This will replace the old 3D FGAT system. We
found a set of parameters maximising the spectral energy in the
50–250 km band. The bias correction scheme used to correct for
large-scale and slowly evolving errors in the model has also been
revised. The anisotropy has been reduced to a ratio of 1.5 at the
equator. We have also estimated constant but different zonal and
meridian radii per level with G12 over the Argo period.

A new NR simulation that serves as “truth” was presented.
In NR, the smaller scales (below 100 km), which will be
observed by SWOT, have a high energy level. These energy
differences are mainly due to the numerical choices made for
NR: absolute wind and less diffusive momentum advection
scheme. NR has a realistic sea level variance and seasonal
cycle. This proves the good behaviour of NR, especially with
respect to the representation of vertical processes. The simulated
observations were extracted from the NR simulation. The multi-
sensor composites for SST, temperature and salinity profiles
were extracted at the same points and at the same date as
the real in-situ profiles. White noise of the order of the G12
standard deviation was added to the profiles, and 3 cm to the
Nadir altimetry.

Various experiments were performed to support the design of
our OSSE. The switch to the 4D SEEK improved the energetic
regions (boundary and circumpolar currents). There were also
clear improvements in the tropics, in the regions of tropical
instability waves, equatorial upwelling and counter-currents.
Basically, all areas with significant mesoscale activity and fast
waves were improved, typically by 6%. In the tropical Atlantic, the
switch to 4D brought an 80 km improvement in resolution. This
corresponds mainly to periods of 20–11 days. The use of the new
background error covariances brought a further improvement
of 15% of the boundary currents. This reduction was most
pronounced in the 250–150 km range. The tropics were also
improved. The 4D-IAU was perhaps less effective at filtering out
the high frequency dynamics present in the multiple increments
and this should be improved in the future.

Finally, the design of the OSSEs was evaluated by ensuring
that the differences between the assimilation system and the
Nature Run are statistically consistent with the misfits between
real ocean observations and the operational systems. The ocean
model used in the assimilation system is an older version than
the NR. There is as much difference between the new model
configuration (NR) and the old one (FR) as between the G12
reanalysis and the twin free simulation. The change in the data
assimilation scheme corresponds precisely to the evolution of the
model: the recent configuration is almost as good as a reanalysis.
There is less need to correct by assimilation for scales that are now
naturally resolved with the model. The optimised bias correction

parameters now match the biases of the current configurations
well. There are still uncertainties in SWOT and other errors
(mean dynamic topography). For this reason, the representativity
error of the OSSE was kept relatively simple. The validation of
our OSSE against G12 shows that our system is well calibrated
and ready to be used for impact studies of future swath altimetry
mission data. The results are presented in part 2 of this paper
(Tchonang et al., 2021).
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