
1.  Introduction
The Indo-Pacific Warm Pool (IPWP) has the warmest sea surface temperatures (SSTs) in the tropics and 
some of the highest annual precipitation on the planet. The IPWP sits under the ascending branch of two 
Walker Circulation cells, where converging surface winds and warm SSTs supply large amounts of water 
vapor to the atmosphere. Today, rainfall gradients in the IPWP follow the seasonal position of the Inter-
tropical Convergence Zone (ITCZ), which is in the Northern Hemisphere (NH) during boreal summer and 
shifts to the Southern Hemisphere during boreal winter (Aldrian & Dwi Susanto, 2003; Schott et al., 2009). 
Accordingly, some studies suggest that tropical precipitation changes on geological timescales primarily re-
spond to the 23- and 19-ky precession cycles in Earth's orbit (Clement et al., 2004; Jalihal et al., 2019; Merlis 
et al., 2013), which control the seasonal amount of incoming solar radiation (insolation). The precession 
theory posits that when NH summer insolation is high, average ITCZ position is farther north, resulting 
in wetter conditions over northern IPWP and eastern China. Precessional signals in atmospheric methane 
reconstructions from ice cores have been used to support this theory, that is, high NH insolation leads to in-
creased monsoon intensity and tropical methane production (Guo et al., 2012; Ruddiman & Raymo, 2003), 
although the tropical control on these records has recently come into question (Thirumalai et al., 2020). Al-
ternatively, other studies suggest that IPWP precipitation is more sensitive to changes in ice sheets and sea 
level over glacial-interglacial time scales, where exposure of the Sunda and Sahul Shelves altered moisture 
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fluxes and pathways (DiNezio et al., 2018; Griffiths et al., 2009). Glacial 
cycles have a 100 ky pacing over the late Pleistocene, related to the rhyth-
mic timing of high latitude ice-volume growth and termination (Lisiecki 
& Raymo, 2005).

Speleothem  18 18
O O( )speleo  and leaf wax  D D( )

wax
 from sediment 

cores are powerful hydrologic tracers and are commonly used to re-
construct hydroclimate in the IPWP (Ayliffe et  al.,  2013; Niedermeyer 
et al., 2014), the Indian- (Kathayat et al., 2016; McGrath et al., 2021), and 
the East Asian-monsoon regions (Liu et al., 2014; Wang et al., 2001). Pre-
cipitation isotopes vary with moisture transport, rainfall, and convective 
processes (Conroy et al., 2013; Kurita, 2013; Midhun et al., 2018; Moore 
et al., 2014), thus complicating interpretations of  18

Ospeleo and D
wax

. For 
instance,  18

Ospeleo in eastern China show strong precessional variabili-
ty and are thought to indicate changes in East Asian summer monsoon 
(EAM) intensity in accordance with NH insolation (Cheng et al., 2016; 
Liu et al., 2014; Wang et al., 2001); however, this remains highly debat-
ed since other regional proxies conflict with the cave spectral signature 
and suggest that the EAM is more sensitive to 100 ky variability in high 
latitude ice sheets and greenhouse gases (Beck et  al.,  2018; Clemens 
et al., 2010, 2018; Sun et al., 2015).

Similarly, Borneo  18
Ospeleo—the longest precipitation isotope record in 

the IPWP—has been used to argue that precessional changes in NH inso-
lation are the primary influence on IPWP precipitation for the last ∼560 ky (Carolin et al., 2016); however, 
other proxy records from the IPWP suggest otherwise. Southern IPWP leaf wax  13C data indicate that drier 
conditions varied in connection with NH ice volume, rather than insolation (Russell et al., 2014; Windler 
et al., 2019) and leaf wax-derived precipitation  D D

precip  from southern Sumatra suggests that glacial-in-
terglacial cycles dominate IPWP circulation for the last 450 ky (Windler et al., 2020). SSTs from the IPWP 
have also been found to vary with glacial cycles since ∼500 ka (Lea, 2004; Windler et al., 2019).

Here, we reexamine orbital influences on IPWP precipitation isotopes and their connection to sub-tropical 
monsoon regions to the north using singular spectrum analysis (SSA) of five long proxy records (Figure 1). 
These records are of sufficient length and resolution to reveal the major orbital frequencies, including the 
100 ky glacial-interglacial cycle, 41 ky obliquity cycle, and 23- and 19-ky precession cycles. SSA is a well-es-
tablished nonparametric technique used to decompose time series into trends and oscillations that col-
lectively contribute to variability in the original data (Allen & Smith, 1997; Ghil & Vautard, 1991; Vautard 
et al., 1992). SSA provides an empirical filter for examining variability and is useful for paleoclimate recon-
structions as it allows isolation of signals within noisy time series (Ghil et al., 2002). Here, we use SSA to fil-
ter the proxy data, identify, and interpret leading modes of variability, and examine their frequency spectra 
to evaluate the relative contribution of orbital influences.

2.  Materials and Methods
2.1.  Paleoclimate Data

Southern Sumatra D
precip

 is derived from leaf waxes extracted from MD98-2152 (6.33°S, 103.88°E) (Win-
dler et al., 2020) and spans 450–0 ka with an average resolution of ∼2,500 years (Figure 2a). Due to the miss-
ing interval from 42 to 30 ka (Figure 2a), we focus our SSA on the continuous part of the record before 42 ka. 
The Bay of Bengal record is from the International Ocean Discovery Program Site U1446 (19.08°N, 85.73°E) 
(McGrath et al., 2021). This record covers 640–0 ka with an average resolution of ∼2,000 years (Figure 2d). 
The D

precip
 values were calculated from D

wax
 using leaf wax  13C values in the same core to account for 

vegetation shifts over time, following the methodology of Windler et al. (2020).
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Figure 1.  Locations discussed in this text.
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Borneo (4.17°N, 114.91°E)  18
Ospeleo has a substantial interval of missing time (211–162 ka), so we analyze 

the data before and after this hiatus separately. The youngest portion (hereafter Borneo1) extends from 
162 to 0 ka with an average resolution of 100 years (Carolin et al., 2016) and the older portion (hereafter 
Borneo2) covers 565–211 ka (Figure 2b). Borneo2 consists of compiled data from stalagmites analyzed in 
Meckler et al. (2012) with an average resolution of ∼460 years.

South China Sea Dwax is from Ocean Drilling Project Site 1146 (19.45°N, 116.27°E) (Thomas et al., 2014). 
This record spans 350–67 ka with an average resolution of ∼1,100 years (Figure 2c). No leaf wax  13C data is 
available for this core, so we run our analysis on the raw Dwax values. The composite  18

Ospeleo from China 
consists of data from Hulu (32.5°N, 119.17°E), Sanbao (31.67°N, 110.43°E, and Dongge (25.28°N, 108.08°E 
Caves (Figure 1). This record extends to 640 ka with an average resolution of ∼77 years (Figure 2e) (Cheng 
et al., 2016). All  D O

18
speleo  values are reported in ‰ notation versus Vienna Standard Mean Ocean 

Water (Vienna Pee Dee Belemnite).

WINDLER ET AL.

10.1029/2021GL093339

3 of 10

Figure 2.  Paleoclimate data used in this study. (a) Sumatra D
precip

 (Windler et al., 2020). (b) Borneo1  18
Ospeleo (Carolin et al., 2016) and Borneo2 (Meckler 

et al., 2012). (c) South China Sea D
wax

 (Thomas et al., 2014). (d) Bay of Bengal D
precip

 (McGrath et al., 2021). (e) Composite China  18
Ospeleo (Cheng 

et al., 2016). All y-axes are reversed except panel (c).
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SSA is performed on data with a consistent time step (Ghil et al., 2002), so we resample each record prior 
to analysis. Cave records (Borneo1, Borneo2, and China) are resampled to an even time step of 1,000 years. 
The marine records are lower in resolution and resampled as follows: Sumatra and the Bay of Bengal to 
2,500 years and South China Sea to 1,500 years. The resampled time series retain the structure of the origi-
nal data and are high enough in resolution to detect Earth's orbital cycles (Figure S1).

2.2.  Singular Spectrum Analysis

We use SSA to isolate leading oscillatory modes of variability in each record (Allen & Smith, 1996, 1997; 
Ghil et al., 2002). SSA is performed by constructing a “trajectory matrix” consisting of M lagged copies of a 
centered and evenly sampled time series, then calculating the empirical orthogonal functions (EOFs) from 
the covariance matrix of the lagged series (Ghil et al., 2002; Ghil & Vautard, 1991; Vautard et al., 1992). 
Here, we use an embedded dimension (window width) M that is approximately equivalent to 1/5 the length 
of each resampled proxy record to construct the trajectory matrix (Ghil et al., 2002), then calculate the sin-
gular value decomposition of the M M covariance matrix of the centered, evenly spaced data. We use the 
eigenvalues from the singular value decomposition to quantify the percent of variance explained by each 
eigenvector to identify the leading modes of variability in each time series. We then calculate the “recon-
structed components” (RCs) by projecting the time series onto each mode following Ghil et al. (2002):


 

    
1( ) ( 1) ( )

Ut

k k
k j Ltt

R t A t j j
M


� (1)

where the reconstruction is based on a set of modes  , Mt  is the embedded dimension, Ut and Lt are the 
upper and lower bounds of summation, Ak refers to the principal components, and k are the eigenvectors 
of the lagged covariance matrix. Combining RCs of the meaningful modes in the data emphasizes major 
patterns of variability that comprise the proxy record (Figure S2).

To assess how many leading modes might reflect actual physical processes in the Earth system (Monahan 
et al., 2009), we perform a series of nonparametric statistical tests using both heuristic and Monte Carlo red- 
and white-noise simulations (Allen & Smith, 1996, 1997; Jackson, 1993; Overland & Preisendorfer, 1982; 
Preisendorfer & Mobley, 1988). When generating red noise, we estimate the first order autoregressive corre-
lation, AR(1), from each record. Each centered random series is then analyzed as described above to calcu-
late null eigenvalues and their associated eigenvectors. We repeat this process 10,000 times for each location 
and test. To identify interpretable modes of variability from each SSA, we determine which combination of 
leading modes explains the majority of the variance in each record and estimate the dominant frequency of 
these modes using a smoothed periodogram (Bloomfield, 2004). We calculate the raw periodogram of the 
linearly detrended RC of each mode individually and smooth the spectra with a six-point Gaussian filter.

Although nonparametric statistical tests can suggest which modes exceed variability expected from some 
noise model, this does not guarantee that they reflect distinct deterministic processes in the Earth system 
(Monahan et al., 2009). Additionally, the missing time interval in Borneo limits the length of the data to two 
individual segments of 161 and 354 ky (Figure 2b) and makes assessing the significance of individual peaks 
near 100 ky highly sensitive to both window width M and the AR(1) coefficient. To determine whether the 
leading modes are indeed physically meaningful, we compare the combined RCs with independent time se-
ries known to record changes in Earth's orbital parameters or climate state:  18O from benthic foraminifera 
(Lisiecki & Raymo, 2005) and the astronomical precession solution (Laskar et al., 2004).

3.  Results
The leading six modes of Sumatra, four modes of Borneo1, six modes of Borneo2, six modes of South China 
Sea, nine modes (excluding mode 7) of the Bay of Bengal, and eight modes of the composite from China 
potentially reflect physical climatic processes. Each SSA has some modes that are in quadrature (having 
similar, but out-of-phase EOFs and the same frequency (Ghil et al., 2002)), so we combine these paired RCs 
for analysis (Figure 3). Spectral power and explained variance for the interpretable modes of variability are 
presented in Figure 3.
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For all locations except China, the leading mode (or pair) that explains the largest percentage of variance 
in the data shows peak spectral power corresponding to the 100 ky glacial-interglacial mode of variability 
(Figure 3). The leading mode in China  18

Ospeleo peaks at frequencies corresponding to the 23 ky precession 
cycle (Figure 3f). Modes explaining the second-most variance differ by location. Modes 3 & 4 of Borneo1 
and Borneo2 (24% and 16% of the variance, respectively) peak at frequencies corresponding to the 23 ky pre-
cessional cycle (Figures 3c and 3d). Similarly, modes 5 & 6 and 8 & 9 of the Bay of Bengal (18% of the total 
variance) correspond to the 23- and 19-ky precessional cycles, respectively (Figure 3e). Modes 3 & 4 explain 
12% of the variance in China and peak at 19 ky precessional frequency (Figure 3f). In contrast, modes 3 & 
4 in both Sumatra and South China Sea show peak spectral power at the 41 ky obliquity cycle (Figures 3a 
and 3b).

RCs of interpretable modes of variability for each location are shown in Figure 4. Leading RCs for Sumatra, 
Borneo, South China Sea, and the Bay of Bengal generally align with the benthic  18O stack (Figures 4a–4d), 
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Figure 3.  Smoothed periodograms of leading modes for (a) Sumatra, (b) South China Sea, (c and d) Borneo, (e) Bay of Bengal, and (f) China. Modes that are in 
quadrature are listed as pairs. Explained variance for each mode are listed in each panel.
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which reflects deep ocean temperature and global ice volume (Lisiecki & Raymo, 2005). Specifically, RCs 
from Sumatra, Borneo, and the Bay of Bengal have maxima that correspond with the timing of glacial ma-
rine isotope stages (MIS) 2, 6, 8, 10, 12, and 14 (Figures 4a, 4b and 4d), whereas RCs from the South China 
Sea have minima during glacial MIS 6, 8, and 10 (Figure 4c). Leading RCs for China  18

Ospeleo track preces-
sion closely throughout the record (Figure 4e). Additionally, many of the minima in Sumatra, Borneo, and 
the Bay of Bengal, or maxima in South China Sea RCs occur roughly concurrently with either interglacial 
periods or minimal precession values (Figure 4).

4.  Discussion
The 100 ky glacial-interglacial cycle is the dominant mode of variability in Borneo and Sumatra, the two 
IPWP locations (Figure  3). This finding contrasts with previous, largely qualitative, claims that Borneo 
 18

Ospeleo is insensitive to glacial-interglacial climate changes and instead dominated by insolation over 
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Figure 4.  Reconstructed components (RCs) of meaningful modes of variability for (a) Sumatra: modes 1–6, (b) Borneo: modes 1–4 from Borneo1 and modes 
1–6 from Borneo2, (c) South China Sea: modes 1–6, (d) Bay of Bengal: modes 1–9 excluding mode 7, and (e) China: modes 1–4. RCs are plotted against either 
the LR04 benthic stack (Lisiecki & Raymo, 2005) (panels a–d), or precession (Laskar et al., 2004) (panel c). All y-axes are reversed except panel (c) Glacial 
marine isotope stages are highlighted in blue.
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precessional timescales (Carolin et al., 2013, 2016; Partin et al., 2007). A potential cause of the greater 100 ky 
sensitivity at Borneo in our analysis is the absence of an ice volume-correction. During glacial periods, the 
global deep ocean is isotopically enriched due to increased global ice volume (Duplessy et al., 2002) and 
precipitation isotope reconstructions are commonly corrected to attempt to account for this offset; however, 
doing so assumes that surface waters from which meteoric water is sourced experience the same net change 
as the deep ocean. In reality, surface waters may vary from the deep ocean offset, so assuming a homoge-
neous correction potentially obscures local and regional processes recorded in the isotope proxies (Windler 
et al., 2020). To preserve spatial differences between locations, we did not correct for global ice volume. 
To explore whether this affected our results, we performed an identical analysis on ice volume-corrected 
Borneo  18

Ospeleo. The ice volume-correction does reduce the variance associated with the 100 ky cycle and 
increase that of the precessional cycle; however, glacial-interglacial variability remains the dominant com-
ponent of the record (Figure S3).

Age model uncertainties may affect the timing of variability in proxy records, potentially obscuring different 
orbital signals in the data. This is unlikely to be an issue in Borneo1, which has a tightly constrained chro-
nology (400 years average 2 ) (Carolin et al., 2013, 2016). Likewise, age uncertainties in Sumatra and 
China are low enough (each averaging under 2 ky 2 ) to be reasonably certain that precession, obliquity, 
and glacial-interglacial changes can be resolved (Cheng et al., 2016; Windler et al., 2019). Age uncertainties 
for the Bay of Bengal and South China Sea, while not explicitly quantified, are likely to be similar to Su-
matra, since they are also marine cores dated with tie points. Borneo2 age uncertainties are larger between 
550 and 320 ka (10 ky average 2 ) due to open-system exchange at one of the sites (Meckler et al., 2012). 
These age errors are large enough to potentially compromise the precessional resolution in Borneo2; how-
ever, this is not observed in our SSA results (i.e., Borneo2 and Borneo1 show comparable results, Figure 3).

The importance of glacial-interglacial variability at Borneo, Sumatra, and the South China Sea is consistent 
with the hypothesis that sea level changes are the primary drivers of IPWP hydroclimate during the late 
Pleistocene. Global changes in ice volume have a large impact on the sea level, affecting the land-sea distri-
bution over the Maritime Continent: during glacial periods the sea level was lower than today (Waelbroeck 
et al., 2002) and the Sunda and Sahul Shelves were exposed. Proxy-model comparisons have demonstrated 
that sea level and NH ice sheet albedo exert a first order control on rainfall (DiNezio et al., 2018; DiNezio 
& Tierney, 2013) and precipitation isotopes (Windler et al., 2020) in the IPWP during the Last Glacial Max-
imum (LGM). Specifically, it resulted in a decoupling of the Indian and Pacific Walker Circulation cells 
during the LGM leading to widespread drying across the exposed area and a spatially distinct precipitation 
isotope response with increased low-level moisture convergence (divergence) causing a lighter (heavier) 
isotope signal over the Pacific (Indian) Ocean side of the IPWP (Windler et al., 2020). Notably, the South 
China Sea Dwax becomes isotopically lighter during glacial periods (Figure 4c), which is consistent with the 
simulated precipitation isotope response to sea level and ice sheet albedo in Windler et al. (2020). Similarly, 
the secondary precession modes appear to influence the South China Sea and Sumatra/Bay of Bengal in 
opposite ways (Figure 4), following regional patterns of seasonal precipitation changes driven by insolation 
reported in Tierney et al. (2012). The SSA results here confirm that glaciation, as opposed to changes in sea-
sonal insolation, is the dominant process influencing circulation over the IPWP during the late Pleistocene.

In contrast to other locations, China  18
Ospeleo is overwhelmingly dominated by precession (Figure 3f). The 

spatial coherency and strong influence of precession in the Chinese caves is well known; however, the 
mechanisms governing  18

Ospeleo changes preserved there remain contested. Initially interpreted to reflect 
EAM strength (Cheng et al., 2016; Wang et al., 2001), subsequent studies have countered this idea, variously 
suggesting that winter temperatures, as well as precipitation isotopes in the winter and fall seasons, impact 
the  18

Ospeleo over China (Clemens et al., 2010), or that the records reflect upstream distillation from either 
the Indian monsoon (Battisti et al., 2014; Pausata et al., 2011), or the EAM (Liu et al., 2014) systems. Dom-
inant moisture sources of the EAM are the tropical eastern Indian and western Pacific Oceans and, follow-
ing NH insolation, higher land-sea temperature contrasts result in monsoon enhancement and isotopically 
lighter precipitation over eastern China (Liu et al., 2014). Our SSA results counter this theory. If China 
 18

Ospeleo represented EAM intensity, with water sourced from the tropical Indian and Pacific Oceans, then 
the spectral composition of eastern Chinese cave records would more closely resemble the IPWP and South 
China Sea. NH ice sheets may have restricted the northern extent of the ITCZ and EAM (Lu et al., 2013). 
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If this mechanism imprinted on regional precipitation isotopes, then the spectral composition of China 
 18

Ospeleo would more closely resemble the IPWP. Our SSA shows that they are spectrally distinct (Figure 3).

A recent study similarly showed that  18
Ospeleo records from eastern China are spectrally distinct from pre-

cipitation isotope records in the Indian monsoon domain, including the Bay of Bengal record used here 
(McGrath et al., 2021). Our SSA results confirm the dominance of 100 ky variability in the Bay of Bengal as 
presented by McGrath et al. (2021), who conclude that the Indian monsoon and EAM are decoupled during 
the late Pleistocene. The distinct spectral configurations between these regions (Figures 3e and 3f) contra-
dicts the theory that eastern China  18

Ospeleo reflects upstream moisture sources from the Indian monsoon 
region (Pausata et al., 2011; Battisti et al., 2014). In addition to ice volume, McGrath et al. (2021) find that 
Bay of Bengal D

precip
 is in phase with greenhouse gas concentration maxima during the late Pleistocene; 

however, isotope-enabled simulations have shown that greenhouse gas forcing is expected to cause lighter 
precipitation isotope values across the entire IPWP and Bay of Bengal during glacial periods, whereas ice 
sheets/sea level result in the glacial enrichment visible in the Bay of Bengal, Borneo, and Sumatra (Windler 
et al., 2020).

Our SSA highlights that the Chinese cave isotopic signal is unique in the context of data from not only the 
Indian monsoon region (McGrath et al., 2021), but also the IPWP and South China Sea, which are dominat-
ed by 100 ky cycles (Figure 3). While a full diagnosis of the dynamics behind the nearly “pure” precessional 
signature of China  18

Ospeleo is outside the scope of this paper, we hypothesize that it must be related to a 
mid-latitude mechanism; otherwise, we would expect its tempo to more closely match that of tropical mois-
ture from the IPWP and Indian monsoon regions. Chiang et al. (2015) posited that China  18

Ospeleo reflects 
the seasonal position of the mid-latitude jet, which varies with insolation: when summer insolation is lower 
(higher) the jet is located farther south (north), and its position limits (allows) the transport of isotopically 
light tropical moisture over the Asian continental interior, leading to isotopically heavier (lighter) rainfall 
over China (Chiang et al., 2015). This mechanism explains the precessional beat of eastern China  18

Ospeleo, 
the abrupt transitions seen in the cave data as the jet position passes north or south of the Tibetan Plateau, 
and why China behaves so differently than the isotopic records from the Bay of Bengal, South China Sea, 
and IPWP.

Regardless of the precise mechanism causing precessional scale variability in China  18
Ospeleo, many inter-

pretations of these data assume that there is an implicit connection with deep tropical processes, such as 
remote moisture sources in the eastern Indian and western Pacific Oceans. While precessional signals are 
identified in the precipitation isotope records from these regions, they are secondary modes of variability. 
The different frequencies of the dominant modes between eastern China and the other locations (Figure 3) 
highlights that IPWP and Indian monsoon circulation are primarily driven by different mechanisms than 
 18

Ospeleo from China. Our SSA results indicate a strong connection between deep tropical IPWP circulation 
and high latitude processes, while seasonal insolation is a secondary control. Conversely, the strong preces-
sional power in China  18

Ospeleo suggests that seasonal insolation exerts a powerful influence on mid-lati-
tude dynamics.

5.  Conclusions
We have identified the major orbital forcing mechanisms influencing precipitation isotope records from 
southern Sumatra, northern Borneo, South China Sea, the Bay of Bengal, and eastern China over the late 
Pleistocene. We used SSA as an empirical filter to isolate leading modes of variability in each reconstruction 
and the orbital frequencies with which these modes vary. The 100 ky glacial-interglacial mode is dominant 
at every location except the caves in eastern China, where precessional cycles overwhelmingly dominate. 
Our SSA results contrast with previous reports that Borneo  18

Ospeleo is insensitive to glacial-interglacial cli-
mate changes and emphasize that mid-latitude processes over the Asian continent are not strongly coupled 
to circulation over the IPWP and Indian monsoon region through time. Furthermore, this study highlights 
the strong connections between high- and low-latitude processes and cautions against assuming that inso-
lation dominates tropical circulation during the late Pleistocene.
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Data Availability Statement
The data used in this study have been previously published and are available as follows: Borneo1  18O 
through Carolin et al. (2016), Borneo2  18O through Meckler et al. (2012), Sumatra D through Windler 
et  al.  (2020), Bay of Bengal D through (McGrath et  al.,  2021), South China Sea D through (Thomas 
et al., 2014), and the China composite  18O through Cheng et al. (2016).
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