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Abstract :   
 
Wave mode of spaceborne synthetic aperture radar (SAR) is designed for the global ocean wave 
observations. Despite the fact that the significant wave height inferred from SAR measurements has been 
validated against model output and in-situ data, SAR's primary and unique capability for operational 2-
dimensional spectral description of sea state remains to be fully evaluated. In this study, we extended the 
previous assessment approaches by introducing a new SAR image spectral parameter, the Mean rAnge 
Cross-Spectrum (MACS) that focuses on the isolated wave scales along the radar line-of-sight direction. 
MACS is an efficient variable in that it characterizes the local wave spectra properties without need of the 
non-linear wave inversion procedure. The assessment is based on the multiple-year data acquired by 
Envisat/ASAR wave mode, along with the collocated WaveWatch III (WW3) hindcast and the in-situ buoy-
observed wave spectra, for which the SAR forward transformation is systematically performed to obtain 
the simulated image spectra. Inter-comparison between SAR-measured and WW3-simulated MACS 
demonstrates that the consistency is wavelength (or wavenumber) dependent. Three typical wavelengths, 
around 62 m for windsea, 168 m for intermediate waves and 342 m for swell, are selected to present the 
MACS comparison in detail. Comparable magnitude of SAR-measured and the simulated MACS is 
observed for the intermediate waves and swell, while larger simulation values are predicted for the 
windsea waves. Spatial distribution of MACS agrees well between these two data sets for all wavelengths 
with high correlation coefficients (>0.8) in most of the global ocean. One exception is in the extratropics 
where the quantitative difference is particularly notable. In the contrary, when comparing SAR-measured 
and buoys-simulated MACS, the agreement increases towards the shorter (<100 m) wavelengths. We 
also found that the large-scale atmospheric/oceanic features persistent on SAR images lead to the 
overestimate of SAR MACS at long wavelengths, which is expected to bias the wave inversion. The wave 
spectra retrieval performance shall advance as long as such impact is properly resolved. 
 
 

 

 

https://doi.org/10.1016/j.rse.2021.112614
https://archimer.ifremer.fr/doc/00709/82117/
http://archimer.ifremer.fr/
file:///C:/birt/First_Page_Generation/Exports/huimin.li@nuist.edu.cn


2  

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive 
publisher-authenticated version is available on the publisher Web site.  

Highlights 

► A novel assessment approach of SAR wave measurement is proposed using MACS. ► The long-time 
Envisat/ASAR observations is compared with model outputs and buoy. ► The MACS comparison shows 
the consistency is wavelength dependent. ► MACS shall validate the capability of SAR in resolving wave 
spectral information. 

 

Keywords : Envisat/ASAR wave mode observations, SAR image spectral parameter, Spectral 
assessment 
 
 

 

 



long wavelengths, which biases the wave inversion. The wave spectra retrieval performance shall

advance as long as such impact is properly resolved.

Keywords: Envisat/ASAR wave mode observations; SAR image spectral parameter; Spectral8

assessment;9

1. Introduction10

Sea state information is crucial to managing ocean resources and safe operations for ocean11

going activities. Global wave information has been paramount in understanding wind and wave12

patterns including regional variability (Young, 1999). Significant wave heights are accurately mea-13

sured by satellite altimetry within a precision of 10-20 cm with regard to in-situ buoy observations14

(Queffeulou, 2004; Zieger et al., 2009). These data have greatly helped the development, cali-15

bration, and validation of numerical spectral wave models with improved predictability (Ardhuin16

et al., 2010; Stopa et al., 2016b). While this information is important to monitor regional change17

(Young et al., 2011), they are not sufficient to fully represent the wave conditions, particularly for18

multimodal wave systems. Active radars, such as real aperture radars (RAR) and synthetic aper-19

ture radars (SAR) are the operational spaceborne sensors to measure both wavelength and wave20

directions on global scales. Of which, SAR is advantageous owing to its high spatial resolution21

that allows to resolve the wind waves as well as the long-time series since the 1990s.22

A SAR emits microwave pulses and precisely measure their Doppler-shifted returns. Since the23

ocean surface is in continuous motion, the radar returns are often misplaced when converting from24

Doppler-frequency to geo-referenced images in space. The misplacement leads to nonlinear dis-25

tortions of wave signatures in the along-track direction referred to as the azimuth cutoff (Kerbaol26

et al., 1998). When the local wind forcing is calm to moderate, the azimuth cutoff wavelength is27

usually shorter than the swell components, enabling to uniquely estimate both wavelength, direc-28

tion and spectral energy of swell systems with SAR (Collard et al., 2009; Ardhuin et al., 2017).29

On the other hand, the high frequency waves are often distorted. This has motivated several empir-30

ical studies to directly estimate significant wave height (SWH) from SAR images using statistical31

methods (Schulz-Stellenfleth et al., 2007; Stopa and Mouche, 2017; Quach et al., 2020). However,32

the direction and wavelength information is lost especially for waves smaller than the azimuth33
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cutoff which is typically 150-200 m. (Li and Saulter, 2012) compared the subrange SWH inte-34

grated over distinct wave scales, rather than the overall SWH of advanced-SAR (ASAR) aboard35

Envisat satellite relative to buoys and models. Their approach in (Li and Saulter, 2012) validates36

SAR observations in terms of the subrange wave height, but relies on the operational quasi-linear37

inversion scheme employed by ESA since ERS (Krogstad et al., 1994). It is worth noting that such38

a scheme is not able to fully recover the nonlinear distortions (Krogstad et al., 1994). So far, the39

validations of SAR observations regarding ocean wave spectral retrieval are based on either total40

or effective SWH. The inversed wave spectra has not yet been assessed in terms of their spectral41

features relative to the reference data.42

In the cross-track direction (range) of SAR image coordinate, the distortion is less strong and43

the mapping could be approximated as a quasi-linear process. The Mean RAnge Cross-Spectra44

(MACS) introduced by (Li et al., 2019) has shown its reliability in describing up to 20 m range-45

traveling waves Sentinel-1 (S-1) C-band SAR. MACS offers opportunities to investigate the wave46

information of isolated wave scale in the range direction without going through a non-linear SAR47

inversion scheme or performing the hypothesis of a quasi-linear imaging mechanism. As a com-48

plementary study to the SWH assessment (Li and Saulter, 2012), we attempt to evaluate the wave49

spectral signatures through MACS of ASAR observations with respect to wave spectral model50

output and in-situ buoy measurements. Using this approach can potentially lead to a better under-51

standing of the wave dynamics while assessing the SAR and spectral wave model, WAVEWATCH352

(WW3) (The WAVEWATCH III R© Development Group). In order to carry out the comparison of53

MACS between SAR and WW3/buoy, we implement the nonlinear forward SAR mapping trans-54

formation in (Engen and Johnsen, 1995) for given ocean wave spectra and SAR configurations55

to obtain the simulated SAR image spectra. In this study, following the general assessment strat-56

egy of integral wave height (Young, 1999; Li and Saulter, 2012), the quantitative relationship of57

MACS parameter for various wavelengths is examined between WW3-simulation and SAR mea-58

surements. The global signatures of SAR MACS relative to the simulation is also investigated and59

discussed to highlight their spatial consistency. An independent comparison with buoy observa-60

tions is invoked to further interpret the inter-comparison results between ASAR and the collocated61

WW3-simulation.62
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Specifically in this study we use the two-dimensional wave spectra simulated from a hindcast63

(Stopa et al., 2019) and measured by buoys to derive equivalent MACS values to compare with64

Envisat/ASAR observations from 2002-2012. We take benefit of this entire decade of SAR data to65

statistically compare MACS obtained at various wavelengths and at global scale. The manuscript66

is organized as follows. In section 2 we describe the data sets and methodology: forward SAR67

transformation and MACS definition. In section 3, we present the MACS comparison between68

ASAR measurements and the simulation from the WW3 hindcast and buoy ocean wave spectra.69

Discussions and conclusions follow in Sections 4 and 5, respectively.70

2. Data and MACS definition71

In this section, we first describe the Envisat/ASAR data and wave spectra from the numerical72

wave model. Next we describe the forward SAR transformation used to map wave spectra into an73

equivalent image cross-spectra. Lastly we describe the estimation of MACS from the SAR image74

cross-spectra.75

2.1. Envisat/ASAR wave mode76

Envisat/ASAR operated for nearly a decade from November 2002 to April 2012. It is a C-77

band radar (center frequency of 5.4 GHz), collecting SAR images in various modes. Wave mode78

is dedicated to observing global ocean waves (Hasselmann et al., 2012). SAR images are acquired79

every 100 km along the track, having spatial footprint of 10×7 km (azimuth by range) with spatial80

resolution of 9×6 m. In this work, we use wave mode images at incidence angle of 23◦ in VV81

polarization. Envisat is a polar orbit satellite, with both ascending (flying from South Pole to82

the North Pole) and descending trajectories. To concentrate on a consistent wave direction and83

monitor its global feature, only the data acquisitions from the ascending passes are included in this84

study with a total number of SAR images around 3×106.85

The Level-1B products of SAR image cross-spectrum are systematically processed from the86

single look complex (SLC) SAR images. Each image spectrum is composed of 24 discrete87

wavenumbers ranging from 0.008 rad·m−1 to 0.2 rad·m−1 and 36 direction (Johnsen, 2005). The88

images acquired between January 2007 and April 2012 are collocated with the operational ECMWF89
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(European Centre for Medium-Range Weather Forecasts) analysis wind vectors (Nagarajan and90

Aiyyer, 2004). The reanalysis product is available at spatial resolution of 0.5◦ every 6h (0h,6h,12h,18h).91

The wind vector at the nearest spatial and temporal point to the SAR passing time is taken as the92

reference wind of each SAR image.93

2.2. Hindcast ocean wave spectra94

The wave spectra are generated from version 5.16 of the spectral wave model WAVEWATCH3,95

hereinafter WW3 (The WAVEWATCH III R© Development Group). We use the parameterizations96

of wave generation and dissipation proposed by (Ardhuin et al., 2010) and the non-linear Discrete97

Interaction Approximation by (Hasselmann and Hasselmann, 1985). It has been shown that this98

model configuration works well for Hs and swell partitions in comparison to other parameteriza-99

tion packages (Stopa et al., 2016a). The global model is implemented at latitude and longitude100

grid of 0.5◦ with a spectral bin composed of 24 directions and 32 frequencies that are exponen-101

tially spaced from 0.037 Hz to 0.7 Hz at an increment of 10%. The wind and ice fields at spatial102

resolution of 0.2◦ (22 km) from the Climate Forecast System Reanalysis (CFSR) (Saha et al.,103

2010, 2014) are used to force the model runs. The hindcast was calibrated and corrected in time104

to match a homogenized satellite altimetry database of (Queffeulou and Croizen-Fillon) (Stopa,105

2018; Stopa et al., 2019).106

We output the wave spectra directly for each longitude, latitude, and time corresponding to the107

Envisat/ASAR acquisition. The minimum wavelength of WW3 wave spectra is 3.2 m (0.7 Hz),108

smaller than the wave mode resolution (9 m). This would ensure that all wavelengths resolved by109

SAR are comparable with WW3 wave spectra.110

2.3. Buoy observations111

The wave measurements from National Data Buoy Center (NDBC) are used in this study as112

complementary to SAR observations and model outputs. A triple collocation data set is created by113

limiting the spatial distance between the center of SAR images within 100 km and the temporal114

window shorter than 30 mins. It ends up with 1263 collocation pairs.115

The wave spectra measured by NDBC buoys, is composed of frequency from 0.04 Hz up116

to 0.4850 Hz (Vandemark et al., 2005). We employed the Maximum Entropy Method (MEM)117
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proposed in (Lygre and Krogstad, 1986) to reconstruct the two-dimensional wave spectra from118

estimates of the Fourier coefficients. In specifics, this includes α1 that represents the mean wave119

direction, α2 that denotes the dominant wave direction, and r1 and r2 that describe the directional120

spreading relative to the main direction. The directional bin for buoy wave directional spectral121

reconstruction is set to be 10 ◦ throughout rest of this paper unless otherwise stated.122

2.4. SAR forward transformation123

Figure 1: Examples of ENVISAT/ASAR wave mode images for definition of range MACS profile. The row (a1)-(a4)
shows the SAR backscattering image. Real component of the SAR cross-spectra is given in the second row (b1)-(b4)
and the corresponding simulated cross-spectra using WW3 wave spectra and the forward SAR transformation is in
the third row (c1)-(c4). The polar plots of the cross spectra show the wavelength in circles from inner to the outer are
400 m, 200 m and 100 m, respectively. The bottom row (d1)-(d4) shows the MACS profile representing the energy
for wavenumbers along the range direction.

The SAR forward transformation maps the wave spectra into SAR image cross-spectra, which124

is calculated using two sub-looks during the SAR integration time. The imaginary component is125

associated to wave motion within the time difference between the two sub-looks. It is therefore126
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widely used to reduce the 180◦ direction ambiguity of the swell propagation (Engen and Johnsen,127

1995). In addition, the cross spectra helps filter non-coherent signals typically improving the128

signal-to-noise ratio of ocean waves.129

(Engen and Johnsen, 1995) presented detailed derivation of SAR image cross-spectra using the130

general formula for nonlinear mapping:131

Pmn
S (~k,∆t) =

∫
d~x e−i~k·~x ek2

x[ρaa(~x,t)−ρdd(~0,0)][1 + ρII(~x, t)] (1)

where the subscript a and I in ρaa denote the velocity bunching and real aperture radar (RAR)132

modulation, respectively. kx is the wavenumber along the azimuth direction. The correlation133

function defined in Eq. (1) is related to the ocean wave spectrum S (~k) through134

ρaa(~x,∆t) =
1

(2π)2

∫
d~k ei~k·~x ·

1
2

[∣∣∣∣Ma(~k)
∣∣∣∣2 e−iω∆tS (~k) +

∣∣∣∣Ma(−~k)
∣∣∣∣2 eiω∆tS (−~k)

]
(2)

where Ma represents the modulation transfer function (MTF) for RAR or velocity bunching. The135

detailed formulation of MTF can be found in (Engen and Johnsen, 1995; Li et al., 2019). In this136

study, we use the real component of SAR image cross-spectra for MACS.137

Four SAR roughness images acquired by Envisat/ASAR wave mode are shown in Figure 1138

(a1)-(a4). Real component of the measured SAR and simulated WW3 cross spectra are then139

accordingly given in (b1)-(b4) and (c1)-(c4). In general, the most energetic wave systems appear140

to agree between SAR and WW3 image spectra. Despite the matched spectral pattern, WW3 has141

overall larger values for the dominant waves. Note that in panel (b3)&(c3), a wave system along142

SAR azimuh direction is predict by WW3, but not well resolved by SAR observations. Also,143

though it is likely that the non-ocean waves patterns inducing large-scale modulation as observed144

in panel (a4) impacts the cross-spectral analysis, its quantitative influence still needs to be further145

investigated.146
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2.5. MACS profile extraction147

In this manuscript, we follow the procedure of (Li et al., 2019) to compute MACS from both

observations and simulations by

MACS (k) =
1
N

∫
A

Ps(k, φ), A ∈ [φra − 10◦ < φ < φra + 10◦] (3)

where Ps(k, φ) represents the cross-spectrum in polar coordinate. φra is SAR range direction. In148

this study, we extend our range of wave scales from 47 m to 800 m. The smallest wavelength is149

47 m because ASAR range spatial resolution is about 9 m and we use a factor of ≈5 to ensure150

the waves are properly resolved by the Fourier Transform. The range profile (±15◦ relative to the151

line-of-sight) of SAR image cross-spectra is thus extracted, denoted as MACS profile hereinafter.152

Figure 1 bottom row shows the MACS profiles for these four representative cases. The overall153

MACS wavenumber distributions generally match, but there are noticeable differences in magni-154

tude. In panel (d1) and (d2), simulated MACS profiles have larger values than observations. In155

panel (d3), the SAR exhibits higher MACS energy for wavelengths longer than 400 m. While in156

panel (d4), SAR MACS is constantly larger for the wavelengths longer than 150 m. This is clearly157

due to the presence of the large-scale phenomenon as observed in the SAR image. MACS can be158

computed for any wavelength between 30 m and 800 m with ASAR. Hereinafter, we denote as159

MACSλ where λ is the wavelength. For example MACS62, represents MACS for wavelengths of160

62 m.161

3. Results162

In this section, we examine the consistency of MACS profile between SAR-observations and163

WW3-simulations. Taking advantage of the versatility of MACS, we analyze the statistical rela-164

tionship as well as the global patterns of MACS for three different wavelengths of 62.5 m, 168.4 m165

and 342.0 m. We also carried out MACS comparisons with external wave measurements by buoys166

as an attempt of interpreting the differences found between SAR and WW3-simulation.167
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Figure 2: Box plot of MACS profile from (a) SAR-observation; (b) WW3-simulation with respect to wavelength. For
MACS at given wavelength, each rectangle spans the first quartile to the third quartile (the interquartile range, IQR).
The red segment inside rectangles denotes the median. The upper whisker extends to the largest data value within
1.5 × IQR above the third quartile and the lower to the smallest value within 1.5 × IQR below the first quartile. The
blue curve represents the mean for each wave scale.

3.1. MACS profile168

MACS profile of SAR-observation and WW3-simulations between January 2007 and April169

2012 is presented in box plot relative to wavelength in Figure 2. The central box represents the170

likely range of variation : the interquartile range, IQR. The whisker extends to the largest and171

smallest data value within 1.5 × IQR from the lower and upper quartile, respectively. MACS172

profile of SAR shares a couple of commonality with that of WW3-simulation. First, for most of173

the wavelengths, MACS is not normally distributed as the distance of the median to the upper174

quartile is much larger than that to the lower quartile. In other words, MACS is generally right-175

skewed with smaller median (red segment) than the mean (blue curve). The mean and median176

are largely apart except over shorter wavelengths (<62.5 m) where these two are almost identical.177

The profile peak also differs as the mean locates at 223.6 m and the median at 95.6 m. The178

maximum IQR locates at wavelength of 168.4 m, different from both the median and the mean.179

Despite the resembling distributions of MACS for each wave scales between SAR and WW3,180

they also differ in several aspects. SAR MACS profile in Figure 2(a) has a clear increase towards181

longer wavelengths beyond 523.0 m for mean, median and IQR. While WW3-simulation shows182

consistent MACS decrease towards both longer and shorter wavelengths from the peak. Both data183

sets have comparable mean MACS except for the very long wavelengths. It is not the case for the184
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median and IQR. For wavelengths shorter than 250 m, the WW3-simulated IQR is larger than185

SAR-observations. As for the median, the WW3 exceeds at wavelength shorter than 146 m. The186

distribution of WW3-simulated MACS at one particular wavelength roughly follows a negative187

exponential function, while the SAR-observed is a log-normal curve (not shown). In any case,188

smaller IQR suggests a less spread distribution. On the other hand, for wavelengths longer than189

250 m, the slow variation of SAR MACS might result from the impact of large-scale oceanic and190

atmospheric phenomena as displayed in Figure 1(a4)-(d4). This also possibly results in the large191

spread of SAR MACS than the WW3-simulation.192

Figure 3: Q-Q plot of MACS comparison between SAR and WW3-simulation for three wavelengths (a)62.5 m;
(b)168.4 M; (c)342.0 m. The dashed lines are the mean curve and the error bar stands for the one standard deviation.
Color denotes data count in log scale.

Going further, we now focus on observed and simulated MACS for short (62.5 m), intermediate193

(168.4 m) and long (342.0 m) waves. Wavelength of 168.4 m has both comparable mean and194

median between SAR and WW3. MACS of 62.5 m exhibits smaller values in SAR observations195

than WW3 simulations, while it is the opposite trend for MACS of 342.0 m. The Q-Q plots of196

SAR MACS relative to the simulated MACS for these three selected wavelengths are presented in197

Figure 3. For 62.5 m as shown in Figure 3(a), WW3-simulation is consistently higher than that of198

SAR with data points well above the one-to-one line. If we neglect the saturation of SAR MACS199

beyond 4 m2 · rad−2, slope of the linear fit to these points approximates 2. It means that for most of200

SAR acquisitions, the predicted MACS by WW3 is twice larger than the SAR observations. With201

wavelength of 168.4 m shown in Figure 3(b), the agreement improves as most of the data points202
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scatter around the one-to-one line. It should be noted that the mean curve (dashed line) slightly203

deviates from a linear variation. While for wavelength of 342.0 m in Figure 3(c), the mean curve is204

indeed well following the one-to-one curve. However, the MACS relationship is largely dispersed205

as represented by the larger standard deviation. For the MACS342.0, its standard deviation gradually206

increases with MACS342.0 values. For the other two wavelengths, the standard deviation is almost207

constant from small to large MACS values. In particular, very small MACS values are predicted208

by WW3-simulation as shown by the large number of data points clustered close to the horizontal209

axis in Figure 3(c). The spatial consistency between these two data sets is yet to be confirmed.210

As such, the comparison of global MACS for these three selected wavelengths are analyzed in the211

following.212

3.2. Spatial analyses of MACS213

Figure 4: Global average of MACS from (left) SAR and (right) WW3-simulation for (top) 62.5 m; (middle) 168.4 m
and (bottom) 342.0 m. Both latitude and longitude are binned into 2.5◦ by 2.5◦. The bins located 50 km from the
closest land are masked by blank space. Color denotes magnitude of MACS and note that the color bar dynamics
differ in the three panels.

We also compute global maps of the three representative MACS62.5, MACS168.4, and MACS342.0214

to describe short, intermediate and long wavelengths. In qualitative terms, the global patterns of215
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SAR-observed and WW3-simulated MACS are similar. Average of global MACS at wavelength216

of 62.5 m from SAR-observations (left) and WW3-simulations (right) is given in top panel of217

Figure 4. The spatial features both mimic that of the overall wind field (Young, 1999) as these218

short waves are closely coupled with moderate wind speeds around 7 m · s−1 (Hasselmann et al.,219

1973). Smaller MACS62.5 are observed over the Inter Tropical Convergence Zone (ITCZ) corre-220

sponding to the low wind speed throughout the year (Z̆agar et al., 2011). Over the extratropics,221

larger MACS62.5 is caused by the high wind events associated to the frequent low-pressure storm222

activities. However, the SAR-observed MACS is systematically smaller than the WW3-simulated223

values across the globe, consistently with Figures 2 and 3(a). For example, in the Southern Ocean,224

WW3-simulated MACS62.5 is around 6 m2 · rad−2 , which is twice as large as the SAR-observed225

MACS62.5. Such trend of smaller SAR-observed MACS exists for all the wavelengths up to 150 m226

(not shown here for brevity). MACS of these two data sets becomes gradually closer as the wave-227

length increases to approximately 170 m (see Figure 2).228

We show MACS168.4 in the middle panel of Figure 4. Overall, WW3-simulated and SAR-229

observed MACS168.4 are in good agreement in terms of the global pattern. Similar to MACS62.5,230

MACS168.4 is also consistently high (around 25 m2 · rad−2) throughout the year in the southern231

extratropics. The trade wind regions have reduced MACS in comparison to the extra-tropical232

regions. Yet, quantitative differences remain. Overestimates of the simulated MACS mainly locate233

in the extratropics, contrast to the global trend of MACS62.5. Note that over the Arabian Sea,234

this overestimate is also evident during the monsoon season (seasonality not shown). It is thus235

speculated that WW3-simulation tends to predict larger spectral energy for 168.4 m waves at236

relatively high wind conditions. At low to median wind speed, the relative magnitude depends237

on geographic loctions. For example, SAR-observed MACS168.4 generally exceeds the simulation238

in the East Equatorial Pacific Ocean. While in the Tropics, SAR-observed MACS168.4 has larger239

values. This spatial pattern well corresponds to the feature presented in Figure 3(b). Larger WW3-240

simulated MACS168.4 is mostly observed at larger MACS values, in other words at high sea state,241

like in the extratropics. While the larger SAR-observed MACS168.4 mostly occurs at smaller MACS242

values as depicted by the blue cluster in Figure 3(b).243

At last, global average of MACS342.0 is displayed in the bottom panel of Figure 4. It is ex-244
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pected that this longer wavelength relates to wind speeds approximately equivalent to 18 ms−1
245

(Hasselmann et al., 1973). Large MACS342.0 values are mostly located in the extratropics, partic-246

ularly in the Southern Hemisphere. Given the duration and fetch needed for the long waves to247

grow, MACS342.0 are mostly observed in the east part of the Pacific and Atlantic Ocean, distin-248

guished from the spatially distributed MACS for short wavelengths. The South America shelters249

the MACS342.0 in the South Atlantic. In the trade wind regions, the WW3-simulations have similar250

regional patterns as the SAR observations but with much lower magnitude. While in the extratrop-251

ics, WW3-simulation exhibit larger MACS values throughout the year. This results in the scattered252

comparison and large standard deviation in Figure 3(c).253

Figure 5: Global magnitude difference of MACS (simulation-SAR) for (a)62.5 m; (b) 168.4 m; (c) 342.0 m . The
latitude/longitude bin of 2.5◦ is used in this figure.

To further assess the difference in the geographical pattern, we first computed the MACS mag-254

nitude difference (WW3-SAR) as shown in Figure 5. The magnitude difference is uniformly posi-255

tive for MACS62.5 across the globe in Figure 5(a). This corresponds to the constantly larger WW3-256

simulation as presented in both Figure 3 (left panel) and Figure 4 (top panel). With increasing257

wavelength, MACS difference shows significant spatial variability. For example, both MACS168.4258

and MACS342.0 have much higher positive values in the southern extratropics than the rest of the259
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global surface in Figure 5(b) and (c), respectively. In the contrary, MACS342.0 difference is nega-260

tive in the trade winds regions due to the smaller WW3-simulation as observed in Figure 4 bottom261

panel. It is worth noting that the straight boundary line at latitude of 45◦S in both Figure 5(b) and262

(c) are present throughout the year. Investigations of this abrupt alignment change will be further263

addressed.264

Figure 6: Global correlation coefficients of MACS between SAR measurements and WW3-simulation for (a) 62.5 m;
(b) 168.4 m; (c) 342.0 m. The latitude/longitude bin of 2.5◦ is used in this figure. The three black rectangle indicate
the areas selected for detailed correlation analysis in the following.

The Pearson correlation coefficients for MACS at 62.5 m, 168.4 m and 342.0 m are calculated265

from the monthly time series over each latitude/longitude bin of 2.5◦, and shown in Figure 6. As in266

Figure 6(a), MACS62.5 between the two data sets is highly correlated with correlation coefficient267

larger than 0.8 in most of the open ocean. Similarly, MACS168.4 has strong correlation on the268

global scale, except over a narrow band at the equator (±10◦) where the correlation coefficient269

decreases to 0.1 as in Figure 6(b). The low correlation along the equator extends to the entire trade270

winds region, reaching ±30◦for MACS342.0 as in Figure 6(c).271

To further analyze the location dependent correlations, three areas of each covering 5◦ in both272
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Figure 7: Time series for MACS over the three areas annotated in Figure 6, from left to right are R1, R2 and R3,
respectively. For each area, from top to bottom are 62.5 m, 168.4 m and 342.0 m. The correlation coefficient is
accordingly given in each plot.

latitude and longitude are selected and annotated by black rectangle in Figure 6(c). The monthly273

time series of MACS for 62.5 m, 168.4 m and 342.0 m over each area are then plotted in top,274

middle and bottom panel of Figure 7, respectively. The variation trend of temporal MACS62.5275

is found similar for both data sets except that WW3-simulation has consistently larger values.276

Despite that the simulated and observed MACS differentiate approximately by a factor of 2 over277

the time period, the co-variation results in the correlation coefficients higher than 0.70 for all these278

three areas. While for MACS168.4 in the middle row, both data sets show comparable variation279

trends as well as quantitative values. Ocean waves of 168.4 m is better resolved by wave mode280

than the 62.5 m because they are less subject to the accuracy of input winds. This produces the high281

correlations (>0.80) found for all three areas. Contrast to the shorter wavelength in Figure 7(a1),282

MACS in (a2) exhibits much stronger seasonal changes. In winter, long ocean waves are generated283

by the high wind events associated with the winter storms and the averaged MACS168.4 reaches up284

to 25 m−2·rad−2. As the winter storms recede, the winds lowers and MACS168.4 accordingly reaches285

the minimum values in summer close to zero. For the long waves of MACS342.0, both R1 and R3286

see consistent variation of SAR observation and WW3-simulation. Note that the WW3-simulation287

is greatly underestimated over R2 as shown in Figure 7(b3), resulting in the lower correlation288

coefficient of 0.097. This agrees well with the negative MACS difference in Figure 5(c). We289

15



attributed this discrepancy to the pollution of SAR-observed MACS by atmospheric or air-sea290

interaction features, including rain impact and wind streaks et al. In fact, high occurrence of such291

phenomena has been detected by the automatic classification of Sentinel-1 SAR wave mode data292

Wang et al. (2019) and particularly in the Tropics.293

3.3. Triple comparison with buoy measurements294

The global signatures of MACS strongly resemble for both data sets. Meanwhile it is found295

that the WW3-simulation is generally larger than the SAR MACS. This quantitative difference also296

depends on the spatial locations at the globe. Taking advantage of the numerous Envisat/ASAR297

acquisitions, a triple comparison between SAR, WW3 and buoy measurements is carried out to298

further diagnose the difference between these data sets.299

Figure 8: Comparison of triple collocation between SAR, buoy and WW3. (a) Position of NDBC buoys included in
this study. (b) Comparison of significant wave height between collocated WW3 and buoys. (c) One-dimensional wave
spectra from buoy and WW3. (d) The averaged MACS profile over all collocation pairs.

To extend the inter-comparison with in-situ measurements, the NDBC wave buoys that are300
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capable of obtaining two-dimensional wave spectra are collocated with the Envisat/ASAR wave301

mode data set. This ends up with 1218 collocated data points. The spatial positions of these302

collocated wave buoys are shown in Figure 8(a). Of which, 714 collocated data points are scattered303

in the Gulf of Mexico and 64 points off the west coast and the rest (443 points) are around the304

Hawaii. We first compared the significant wave height of both buoys and WW3, which are in good305

consistency with negligible biases. The averaged one-dimensional wave spectra from all buoys306

measurements with corresponding WW3 simulations are then given in Figure 8(b). Both data sets307

present high conformity for most of the wavelengths, except at the long waves of 350 m where308

buoy tends to measure slightly larger wave spectral density. The two wave peaks are well captured309

by WW3 and buoys. One is long swell (wavelength of 330 m) coming from remote storms in the310

Southern Ocean and the north extratropics. The other corresponds to locally generated wind sea311

at wavelength of 120 m. This comparison well evidences the capability of WW3 in accurately312

modelling the one-dimensional ocean wave spectra.313

However, the MACS spectra from SAR, WW3 and buoys show quite striking disagreement314

as shown in Figure 8(d). At low wavenumber, average of SAR MACS still displays the abrupt315

increase, while WW3 and buoy are in good agreement with weak spectral energy. Towards the316

higher wavenumber, all show a decreasing trend but with different spectral level. In particular,317

WW3 has the highest MACS values and buoy has the lowest. SAR lies in the middle and has318

comparable MACS with buoy for waves shorter than 60 m. The differing MACS between WW3319

and buoy contrasts the alignment of one-dimensional wave spectra in Figure 8(a). This indicated320

that the directional pattern of both wave spectra might be different. To confirm, the mean wave321

direction as well as the spectral spread for both wind sea and swell part are calculated. The322

partition of wind sea from swell is based on the assumption of a fully developed sea state where323

the wind and waves are in equilibrium. The separation wavenumber ks is set as the wavenumber324

where its phase speed equates the local wind speed. The mean wave direction and the directional325

spread are then computed in terms of the following formulas (Herbers et al., 1999)326

tanφm =

∫ k1

k0

∫ π

−π
sinφS (k, φ)dkdφ∫ k1

k0

∫ π

−π
cosφS (k, φ)dkdφ

(4)
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and

σ2
φ =

∫ k1

k0

∫ π

−π
sin2(φ − φm)S (k, φ)dkdφ∫ k1

k0

∫ π

−π
S (k, φ)dkdφ

(5)

where k is the wavenumber and φ is the wave direction. For the wind sea, k0 = ks and for the327

swell part, k1 = ks. S (k, φ) is the two-dimensional wave spectra from WW3 hindcast or the buoy328

measurements.329

Figure 9: Comparison of mean wind sea in (a) and swell direction in (c) between WW3 outputs and buoy measure-
ments with the directional spread accordingly shown in (b) and (d). Metrics are annotated on the bottom right.

The calculated mean wave direction and directional spread for both wind sea and swell part are330

presented in Figure 9. As reflected by the metrics, WW3 and buoy wave spectra are well matched331

for the swell waves. The mean wave direction of both data sets scatter tightly around the one-to-332

one line as shown in Figure 9(a). While the swell direction spreads appears to loose relationship333

with large standard deviation in comparison to the magnitude. By comparison, bias of the mean334

wind sea direction in Figure 9(c) is -8.97◦, which is larger than that of the wave direction. Though335

bias of the spectral spread for wind sea is small of 1.16◦ (Figure 9(d)), the lower correlation336
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coefficient of 0.34 suggests that these two are not well related. In fact, the linear slope of least-337

squared fit to these points is 0.24, which is much smaller compared to the 0.71 for swell waves in338

Figure 9(b). The impact of wind sea on the simulated MACS profile is two-fold. One one hand,339

the slightly shifted wind sea direction might result in differing MACS magnitude along the range340

direction. On the other hand, the wind sea spread could cause the nonlinear velocity bunching to341

be different between buoy and WW3 cases. This would accordingly change the magnitude of SAR342

image spectra as well as the MACS.343

Figure 10: (a) The normalized directional wave spectrum for s = 2 (blue curve) and s = 8 (orange curve) in Eq. (6).
The contour lines give the 25% and 75% relative to the maximum spectral energy. The simulated SAR image cross-
spectrum is given in (b) s = 2 and (c) s = 8, respectively. (d) The accordingly extracted MACS profile.

To demonstrate this assumption, two SAR cross-spectra are simulated based on the JONSWAP

spectrum and the following directional spreading function (Mitsuyasu et al., 1975):

D(k, φ) =
∣∣∣cos[(φ − φ̄)/2]

∣∣∣(2s)
(6)

where φ is the wave direction and φ̄ denotes the dominant wave direction. The parameter s de-344

termines the concentration degree of the spreading function relative to the mean direction. For345

simplicity, two constant values of s = 2 and s = 8 are set to calculate the directional wave spectra346

as shown in Figure 10 (a). The contour lines represent the 25% and 75% of the maximum wave347

spectral energy, respectively. The mean wave direction is 45◦ from the azimuth, the wind speed is348

8m · s−1 and the wind fetch is 500 km. The wave spectrum of s = 2 (blue curve) displays wider349

spread compared to that of s = 8 (orange curve). The combination effect of wave direction devi-350

ation from the range axis and the wider spread function for s = 2 results in larger wave spectra351
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magnitude along the radar line-of-sight. In consequence, the simulated image spectra of s = 2352

shown in Figure 10 (c) is larger than that of s = 8 in Figure 10 (b) in the range direction. This353

corresponds to the higher MACS profile simulated based on the wide-spread wave spectrum (blue354

curve) as given in Figure (d). Note that the configuration of mean wave direction is similar to that355

of the mean wind sea direction in Figure 9. The results that larger direction spread yields higher356

MACS profile, in accordance with the slightly greater wind sea direction spread in Figure 9(d), to357

some extend explain the MACS comparison in Figure 8(d). Further in-depth and comprehensive358

evaluation of WW3 outputs relative to the buoy measurements in terms of the spectral perspective,359

rather than the integrated wave height should be devised.360

4. Discussion361

As a parameter defined relative to variable wavelengths, MACS offers new perspectives to362

make comparisons between SAR observations and the reference data produced by WW3. In363

general, the global patterns of SAR-observed MACS promisingly resemble that of the WW3-364

simulation. Yet the quantitative disagreements are noticeable. As demonstrated by the percentile365

analyses of MACS profile in Figure 2, SAR and WW3 have particularly marked difference for long366

waves (wavelength longer than 300 m) and wind sea (wavelength shorter than 100 m). The MACS367

overestimation of wind sea relative to the WW3-simulation is consistent on the globe as shown in368

Figure 5(a). While the difference for long waves is region dependent as in Figure 5(c). As illus-369

trated in Figure 1, the long waves derived from SAR images are subject to impact of atmospheric370

and/or oceanic features on the sea surface, which pollutes the wave signals in the MACS analyses.371

In fact, the influence of large-scale features on radar backscatter also depends on the local wind372

speed. As concluded in (Wang et al., 2019), the rain is hard to detect at high winds. As such, its373

impact on the spectra at long wavelength is negligible so that MACS342.0 has consistent values for374

both R1 and R3 regions in the Southern extratropics. While for R2 at low winds, SAR-observed375

MACS342.0 is much higher as shown in Figure 7(b3).376

A test is performed as a first attempt to illustrate the impact of other phenomena on MACS377

estimates. In general, SAR image spectra of these patterns have an unusually high tail at low378

wavenumber of MACS profile similar to that in Figure 1(d4). A simple criteria is employed to379
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Figure 11: Histogram of (a) SAR and (b)WW3-simulated MACS342.0 and MACS453.9 with (dashed curves) and without
(solid curves) potential impact of large-scale features on SAR images.

sort out the cases with such high-tail form. If the averaged MACS for wavelengths longer than380

342.0 m is larger than its counterpart for shorter wavelengths (<342.0 m), this case is assumed381

to be impacted by the large-scale features. Otherwise, ocean wave signatures are expected to be382

dominant in this case. The histogram of MACS for two wavelengths of 342.0 m and 453.9 m is383

presented in Figure 11. For SAR-measured MACS in Figure 11(a), all cases with large-scale fea-384

tures tend to have larger MACS magnitude in comparison to the dominant waves. The two curves385

of MACS342.0 (blue) are closer to each other in comparison to those of MACS453.9 (orange). This386

is indicative of the enlarging impact of these large-scale features with wavelengths. While WW3387

wave spectra are only able to predict surface wave properties, the MACS contrast between the388

pure waves (solid line) and potential large-scale (dashed) in Figure 11(b) is not as evident as that389

in Figure 11(a). Given the non-negligible different shown in Figure 11(a), processing procedure390

is essential to identify the presence of large-scale phenomena and filter out their contributions in391

the SAR image spectrum for a proper interpretation of the image cross-spectra. As a matter of392

fact, on-going efforts are being made to classify these features based on a deep learning tech-393

nique for Sentinel-1 observations. Valid algorithms are expected to be deployed and a consistent394

reprocessing from ASAR to Sentinel-1 shall then be feasible for improved wave measurements.395

5. Summary396

Spaceborne SAR has been proven to be an advantageous sensor in global wave observations397

(Hasselmann et al., 2012). Despite the previously extended study to evaluate SAR wave observa-398
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tions based on the subrange wave height (Li and Saulter, 2012), the capability of SAR mapping399

isolated wave component remains undisclosed. This study further advances the SAR wave vali-400

dation towards the image spectral level through the newly defined MACS parameter. One of its401

advantages is its versatility, allowing the comparison to be directly made for various wavelengths402

without the complicated SAR inversion scheme.403

The large volume of data acquired by Envisat/ASAR aids the examination of MACS relation-404

ships with respect to the collocated WW3 hindcast wave spectra. Both data sets show a couple405

of similarities in MACS signatures. First of all, MACS magnitudes of all wavelengths are com-406

parable between SAR observation and WW3-simulation. The global patterns of SAR and WW3407

derived MACS agree well with high correlations in the open ocean. However, the quantitative408

inconsistency between these two is not only wavelength variant, but also regionally dependent.409

WW3 appears to constantly predict larger MACS magnitude for short wavelength (<100 m) at410

global scale. For long waves (>300 m), such overestimate by WW3 only exhibits in the south-411

ern extratropics with opposite trend in the trade winds where WW3 predicts consistently smaller412

values. In contrast to the well aligned significant wave height (Li and Saulter, 2012; Stopa and413

Mouche, 2017), the difference observed by MACS of various wave scales is expected to offer new414

insights into the assessment approach of SAR observations.415

Even with the assumption that SAR forward transformation used in this paper is able to ac-416

curately reproduce the wave imaging process, several points still need to be addressed in order417

to better interpret the results of MACS comparison. On one hand, the large-scale impact should418

be further quantified as effort to isolate the MACS quantity that is associated with ocean surface419

waves. This will in turn help refine the SAR wave inversion and further enhance the utility of SAR420

measurements to infer the realistic ocean swell partitions. In addition, other geophysical appli-421

cations, such as air-sea interactions and sea ice monitoring shall also benefit. On the other hand,422

the spectral spread has been demonstrated to have impact on the MACS magnitude along with the423

mean wave direction. The inconsistency observed between buoy-based and WW3-based simula-424

tions also invokes the necessity of validating the numerical outputs in terms of the two-dimensional425

wave spectra rather than the integrated parameters.426

In this paper, we focused on the assessment of MACS profile from the Envisat/ASAR wave427
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mode observations. There are also multiple SAR sensors in orbit now, including Sentinel-1 con-428

stellation, Radarsat Constellation Mission, Gaofen-3 et al. Instrument characteristics, such as spa-429

tial resolution, swath and incidence angles, generally differ among these satellites. While the com-430

monly used validation procedure through significant wave height is limited to evaluate the SAR431

wave measurements. This MACS approach can be readily extended to grade the performance of432

SAR observations from the spectral point of view as well as to determine the consistency between433

sensors.434
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