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Preface 

Rogue waves have repeatedly been damaging offshore oil and gas production 
facilities for the last decades as severely as they have been sinking ships and 
taking a hard tribute of human lives ever since man has been going to sea. 
Whether they should be called Rogue waves, Freak waves, or Extreme Storm 
Waves is sometimes a subject of discussion between scientists who have different 
views on their generating mechanisms, but damage to offshore structures and 
ship losses are a clear evidence of the existence of such waves. It has, thus, become 
urgent that more measurements, more studies and an active co-operation of all 
implied parties should be developed and put together in order to reach the 
ability to understand, predict and forecast such unexpected, giant waves, and 
thus, ensuring safer conditions for those who work and sail at sea. 

Several accidents, that have recently occurred at offshore platforms and 
FPSOs, triggered discussions in the International Ship and Offshore Structure 
Congress 1997, and motivated research on the subject of waves which are uncom-
monly high and severe with respect to sea state conditions prevailing at the time 
of incident. At the present stage, application of this research to the prediction 
and the forecasting of the associated risks can be envisioned. In this connec-
tion, and after discussing the matter with a number of scientists and engineers 
who were to become members of the Scientific Committee, we decided to hold a 
workshop on the subject. The goal of this workshop is to assess the state of the 
art concerning the conditions of occurrence of waves or groups of waves of unex-
pected severity, and to establish a “road map” concerning the research actions 
and collaborations needed to improve the prediction and forecasting abilities in 
this domain. 

The sessions of this workshop have been organized as a sequence of questions, 
as follows: 

1. What problems are rogue waves facing us with ? 
2. What would we have been expecting from the State of the Art ? 
3. What do we actually observe ? 
4. How could we explain these observations ? 
5. How can we model and numerically simulate rogue waves ? 
6. Can we reproduce them in testing tanks ? 
7. What are our statistical prediction and our detection abilities ? 
8. Where should we go from now ? 

The participants have partly answered these questions, and indicated promis-
ing directions to work on. We hope that the material included in the present 
Proceedings will be useful to those who need and/or want to improve further 
our knowledge and understanding on this important and demanding subject. 
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The workshop brought together a large group of willing persons, from the 
academia and the industry of many nations. Whether we will now sail forward 
only a cable’s length or many a mile, we cannot say. Yet we know for sure 
that, together, we cannot but make some progress towards the avoidance of the 
casualties provoked by rogue waves. 

This volume contains most of the papers presented in the workshop, that 
is, all papers sent by the authors to the editors up to March 2001. The papers 
appear in the volume according to the order of presentation in the workshop. 
An author index can be found in page 377. 

At the end of the volume we have added a collective list of references appear-
ing in all papers included herewith, and an additional list of recently published 
(mainly after the workshop) works on rogue waves. 

All figures in the main part of the volume are in black-and-white (b&w), 
although many authors submitted coloured versions of them. The transformation 
to b&w proved to be successful in some cases and deteriorating in other cases. To 
cope with the latter problem, an Appendix has been prepared containing some 
of the figures/photos in their original coloured version. The reader is informed 
that a (b&w) figure in the main part of the volume appears also as a coloured 
plate at the end of the volume (in the Appendix), by the declaration: [See also 
Appendix CP], which is added in figure’s legend. 

September 2001 Michel Olagnon & Gerassimos Athanassoulis 
Editors of the Proceedings 

on behalf of the Scientific Committee 
ROGUE WAVES 2000 
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Session 1 

Design and Operation Problems Related with Rare 
or Unexpected Wave Events 



Rogue Waves - Defining Their Characteristics for 
Marine Design 

Keynote address by Douglas Faulkner 

Emeritus Professor of Naval Architecture and Ocean Engineering, 
University of Glasgow, Glasgow, Scotland, UK 

Fax: ++44(141)9565071 

Abstract. A brief history of the increasing awareness of freak (rogue) waves 
includes their proposed use for survival design and for forensic investigations of 
marine accidents. In particular, extreme wave heights which have elevated steep 
faced crests have been shown to be much more damaging than present design 
rules and codes allow for. The market and technical trends in trading ships and 
in offshore installations are outlined. The nature of such extreme abnormal seas 
is illustrated, including their effect on trading ships and on FPSO/FSU vessels. 
Design to provide some capability to survive such wave actions is then 
discussed and some critical operational conditions are suggested for further 
study. Provisional design criteria are suggested. 

1 Introduction 

This paper introduces the need for a paradigm shift in thinking for the design of ships 
and offshore installations to include a Survival Design approach [1,2] additional to 
current design requirements. At present ship primary structure is designed to 
withstand length dependent linear waves not exceeding 10.75 m high which are meant 
to represent a lifetime extreme in North Atlantic winter conditions [3], Green water 
pressure loads from class society rules lie in the range 26 to 60 kN/mm2. 

Service experience, advanced analyses and experiments show that these are quite 
inadequate standards to withstand the actions of realistic large steep elevated waves. 
Moreover, it seems that most mariners feel that weather routing does not provide 
adequate protection to cargo ships from these extreme storms by issuing effective 
weather avoidance actions. Too often decisions are governed by charter dates rather 
than by ship safety. 

1.1 BriefHistory 

Draper first aroused my interest in exceptionally high freak waves [4] by suggesting 
these were not curious and unexplained quirks of nature. He added, their occurrence 
can be calculated with an acceptable degree of precision, and he identified two aspects 
of their statistics. 
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But it was an aircraft engineer, Buckley, who first suggested that ship hull girder 
design required a new approach [5]. Further research work for the US Navy identified 
extreme and climatic wave spectra for use in ship structural design [6] followed by his 
first application of survivability design using first principles [1] because present rules 
and criteria were inadequate. He was doing no more than transferring aircraft design 
principles to ships. 

These publications, together with the analytical work undertaken for Lord 
Donaldson’s Assessment of the loss of the m.v. DERBYSHIRE led me to postulate [6] 
that a steep elevated abnormal wave probably collapsed the forward hatch covers 
during typhoon ORCHID. This was followed by a more technical paper covering all 
possible loss scenarios in the light of the final underwater survey of the wreckage [7] 
and by experiments. The Honourable Mr. Justice Colman’s report [8] confirmed the 
quite inadequate strength requirements of cargo ship hatch covers (which go back to 
1966). He also criticised IACS’ recent 1998 rules and suggested they too were 
inadequate. He suggested they should be based on extreme steep elevated waves and 
ultimate strength criteria, that is, on survival design. 

In September 1998 a WMO Conference was held in UNESCO, Paris [9] at which 
Keynote papers were presented by myself for ships (based on my DERBYSHIRE 
experience) and by C. Grant for offshore installations. The need to characterise 
abnormal/freak waves for design and operation was accepted and a whitepaper report 
by the COST 714 Management Committee outlined research needs to achieve this. 
This was worked up in detail and presented to the European Commission who 
authorised it as the “MaxWave” Project which was approved and announced at a 
recent conference in Brest [10]. 

1.2 Market and Technical Trends 

Trading Ships. Recent market projections suggest that by 2012 ship freight may 
double to about 13 billion tonnes carried over 20% longer voyages of about 5000 
nautical miles. Technically, this suggests more larger ships to meet the economies of 
scale are needed to meet the increasing demands from developing countries. Some of 
the shorter shipping routes are likely to include faster freight carriers. 

Given the present difficulties in finding/producing well trained crew, and in 
providing effective inspection, maintenance and ship traffic control, it seems 
reasonable to expect perhaps a three-fold increase in marine accidents and losses. 

Offshore Developments. Oil and gas demands will continue to increase, mainly 
because of increasing living standards in developing countries. Nuclear power is 
unpopular, we cannot depend on Middle East supplies and other land based 
exploitation is limited. Inevitably the increased demand is likely to be met mainly 
from offshore oil and gas installations, much of them in harsher deeper water 
environments. Again, the risks will become greater even though the industry is 
generally rapid in responding to increased knowledge. 
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Safety. The new environmental knowledge arising from MaxWave and other studies 
could hardly have come at a better time to provide more realistic environmental data 
for survival design loads. At the same time the use of better fatigue and ultimate 
strength modelling (which is now available) should ensure the best prospect of 
limiting severe damage and losses in both industries. 

2 The Cruel Sea 

Lord Nelson said “I can commend men and ships, but I cannot command the wind and 
sea”. Adlard Coles likened some extremely chaotic seas to a witche’s caldron. Most 
of the illustrations are from his excellent book [11]. The challenge now is to model 
them sufficiently well so that designers can begin to design marine structures having 
some capability to survive such seas. 

2.1 Survival Seas 

Pyramidal waves are usually generated as standing waves which are non-translatory. 
They usually occur within the circle of maximum wind speed in revolving tropical 
storms. Figure 1 shows a prize winning photograph of such a wave off south Japan. It 
is not dissimilar to Hokusai’s painting “The Wave” of 1830. 

Figure 2 shows breaking interactions between several steep waves. It looks as if it 
comes from another world with extreme chaos and a near vertical wave crest rising 
against the background sky. Figure 3 is also from the North Atlantic and shows the 
sort of near breaking wave front which nearly capsized the QUEEN MARY when 
carrying 15,000 American troops in WWII. Note the freak wave coming up astern. 

Figure 4 shows a deep water wave front breaking without interruption from 200 m 
to nearly 350 m. Figure 5 shows a boiling following sea which would be bad news 
from any small ships or boats. 

I could not resist including Fig. 6 which is taken from the front cover of Ochi’s 
book [12] which nevertheless deals almost entirely with Gaussian linear waves! A 
better book for dealing with high asymmetrical waves by Tucker and Pitts is to appear 
shortly [13], For recent insights into wave generation physics the book by Komen et al 
[14] can be recommended. From a bibliography of freak wave observations by 
mariners and others I select three by Nickersen [15,16,17]. 

2.2 Effects on Ships 

The bibliography of the occurrence of rogue waves and their effect on ships and 
yachts is extensive. A sample has been given in references [2,6,18], 

Fig. 7 is a sketch of a 256,000 dwt VLCC in 1977 meeting an elevated wave 
generated in the southerly Agulhas current which opposes the prevailing sea. The crest 
height above the deck could be accurately judged from the bridge as the foremast was 
totally submerged, and the crows-nest reinforced windows were smashed in. The 



6 

estimated wave height was about 30 m, and had the vessel been a bulk carrier laden in 
dense ore she would not have survived. 

Fig. 8 shows a distressed fishing boat struggling to remain hove to in seas 
described as 40-50 ft. high accompanied by 60-65 knot winds. Fig. 9 also shows a 
cargo vessel about to encounter a long spilling breaker. Fig. 10 is a remarkable picture 
of a Great Lakes bulk carrier deluged on the beam by a wide rogue wave. Had her 
hatches been designed to just meet the 1966 LC requirements this wave would have 
breached the ship in several holds. 

Figs. 11 to 14 show container ships in distress. In Fig. 11 the ship is experiencing 
fore end slamming and loss of freeboard. The ship is approaching a wall of water at 
mast height in Fig. 12 and Fig. 13 shows dislodged and smashed containers. In Fig. 14 
the large APL China lost 400 containers with 700 or more damaged and a complete 
hold flooded. Three other 4500 TEU container ships were caught and damaged in the 
same storm in November 1998 in the NE Pacific. They limped into Seattle and other 
ports and eventually the total loss of cargo and damage to containers and ships was 
reported as being about $3 billion. 

2.3 Abnormal Waves 

Reports of extreme sea states in deep and shallow water frequently refer to a single 
high wave, or the “wave from nowhere” or sometimes there are several successive 
high waves, for example, the “Three Sisters”. Summaries of observed freak waves are 
provided by Nickersen [15,16,17]. These include very steep “walls of water” and long 
generally shallower troughs. Another phrase used by mariners is “holes in the sea”. 
These could well be unusually deep troughs, or perhaps a shallow trough which 
appears to be deep. For example, as seen from a ship which has mounted a high crest 
with a steep back face dropping into what might well appear to be a “hole in the sea” 
even though the trough is shallow. 

Abnormal (Freak or Rogue) waves are individual waves of exceptional height 
and/or abnormal shape. Some put exceptional as > 2 Hs, but there are many waves 
which exceed this. I prefer a value > 2.4 H

s
 (2.5 was used in refs. [2,6]). Although we 

do not yet know enough about their generation physics they are generally transient 
and we can perhaps begin to classify them as follows: 

A. Extreme waves in stationary seas arising from different lfequencies getting into 
step, as Draper puts it [4], or indeed from non linear superposition and phasing of 
many wave frequencies. 

B. Steep elevated waves which arise from: 
a) wave and opposing current interactions 
b) focussed wave groups and their interactions 
c) refraction around shoals or from inclined seabeds (beach effects) 
d) wave caustics from diffraction at coastlines and around islands 
e) young waves are steep, especially in intensifying winds. 
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C. Episodic waves in deep water from outlying events. These too can have very 
steep elevated crests and include the Three Sisters group generally intruding at 30° 
to 50° from the predominant wave system. 

D. Breaking waves (progressive open orbits); it is claimed that high velocity very 
steep crests which arise are generated from energy overshoot actions. The two 
categories are spilling and plunging breakers, but the latter can be ignored in 
deepwater. 

E. Standing waves (no progression) which arise from: 
(a) opposing wave trains 
(b) crossing wave systems 
(c) rapid changes in wind direction, for example, the pyramidal waves which occur 

within tropical cyclones 
(d) coastline diffraction which may lead to wave interference actions. 

Previously I have included as a separate category revolving tropical storms (RTS) 
because the seas generated are significantly different from those observed in other 
storms. This is because the input energy is rotational which restricts the fetch and at 
the same time it is advancing at a speed of 5 to 12 knots initially and up to 25 to 30 
knots as the RTS recurves northwards (in northem hemispheres). Moreover, the rate 
of change of wind speeds is generally faster than in other storms and the waves are 
young and generally very steep, with pyramidal waves inside the radius of maximum 
wind, as described above. When added to any existing swell and longer fetch wind 
waves the maximum wave height may well exceed 30 m. 

Steep elevated waves with crest amplitudes as high as 0.74 x wave height have 
been recorded. The crest kinematics are complex, but toward the top of the crest the 
forward velocity can be twice that at the mean waterline. Weather expert Houghton 
and wave scientist Judi Wolf [20], in describing the devastation in the 1998 Sydney to 
Hobart Race, which claimed six lives and sank five boats, recalls: seas of 15 m were 
common and 20 m waves were encountered with considerable regularity. Boats were 
encountering waves of double the expected height and a 300% increase in steepness -
lethal by any standards. 

Finally, we should note that real sea is usually 3-dimensional. Although new 
physics is tackling this it will be some while before it can be reasonably modelled. 
However, improved 1-dimensional and 2-dimensional models of the sea will surely 
provide a major step forward even for Survival Sea modelling. 

3 Survival Design 

This subject was introduced in 1.1. The underlying thinking is that when one 
examines serious ship damages and losses, as Buckley has done, it becomes clear that 
in many cases they could not be caused by the normal extreme sea conditions used in 
present design. We need to look at the effects of individual waves, or sequence of 
waves, of exceptional height and/or abnormal shape. Then, modelling the actions of 
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such waves would provide inputs to critical ship conditions (e.g. excessive water on 
deck, rolling, etc.) for which some relatively low safety factor should be applied in 
design so the ship has some capability to survive these conditions. This is the essence 
of survival design [1,2] which would then become a necessary addition to or 
replacement of present design rules. 

3.1 The Survivability Envelope 

NOAA has built up an extensive database of hourly wave buoy measurements over an 
effective measurement period of about 10 years from a wide range of wave climates 
around the USA coast and trading waters. Buckley has used this to define operability 
and extreme survivability envelopes from climatic wave spectra (long term averages) 
from a wide range of significant wave heights H

s
 and peak periods Tp. These are 

shown in Fig. 15 [21], The upper part of the survivability envelope from points S1 to 
S2 was mainly defined by data from the category 5 hurricane CAMILLE of 1969. 

Buckley then went on to include the worldwide data of Hogben et al [22] as shown 
in Fig. 16. The top of the survivability envelope is split into the northem (1) and 
southem (2) hemispheres. The southem envelope is more severe because of the 
severity of the southem seas and the SW Pacific in particular. Its peak value of Hs = 
18 m is actually being used by the offshore industry for operations West of Shetland. 

Buckley was delighted to find that his left hand envelope of waves of limiting 
steepness of Fig. 15 corresponded within about 2% with Hogben et al’s data. In 1979 
Hogben recommended to the ISSC that waves of limiting steepness be defined by: 

T2 = 13H 
P s 

It may be noted that in fetch Iimited storms Buckley found the JONSWAP 
spectrum with shape parameters between 1 to 3 gave good spectral modelling. A value 
of 3.3 is widely used in the North Sea. 

Regarding the operability envelopes, the lower regions may be said to 
approximately correspond to normal extreme design for ships. However, the upper 
bound points O1

, O2 and correspond to occurrence levels of H
s
 of about once a year 

(according to Buckley). These substantially exceed the maximum wave heights and 
risk of once in 20 years implicit in ship design - see next section. 

3.2 Critical Ship Conditions 

A provisional but not comprehensive list of ship design related subjects which have 
been suggested for Survival Design considerations includes: 

(a) Primary hull strength 
(b) Hatch cover and coaming strength 
(c) Fore end protection 
(d) Wave impact on hull and deck stmcture and fittings, and on bridge fronts 
(e) Capsize, especially of small vessels 
(f) Cargo shift, cargo damage 
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(g) Pooping damage 
(h) Steering when hove to (inadequate rudder size) 
(i) Hatchless container ships 
The recommendations from the frnal DERBYSHIRE proceedings [8] should take 

care of (b) for forward hatch covers in large ships, because the principles of survival 
design are being applied. But, all hatch covers and coamings are vulnerable, and 
smaller cargo ships must be included Of the remainder (a) and (d) are perhaps the 
most important and are now briefly discussed. 

Primary Hull Strength. Two independent dynamic simulations for the m.v. 
DERBYSHIRE and for an offshore FPSO typical of those now operating in the 
northem North Sea and West of Shetland have shown that maximum realistic wave 
induced bending moments in the hull girder could well exceed present requirements 
[3], perhaps by as much as: 

- 40% in the hogging mode 
- 80% in the sagging mode. 

This is clearly serious and should be investigated further. In the last four years a 
large container ship and a medium size bulk carrier have broken their backs, both 
were maintained in reasonable condition. Two badly maintained tankers broke their 
backs - the ERICA caused considerable pollution damage off the Brittany coast in 
October 1999. It is not unreasonable to assume that a first principles survival design 
approach, of the type illustrated above, would have provided an additional safety 
margin to minimise if not eliminate such risks. 

Wave Impact. A recent FPSP/FSU study for the HSE has shown that whereas present 
green water design pressures range from 25 to 60 kN/mm2, whereas those derived 
from bow damage experienced on SHIEHALLION, operating West of Shetland, have 
been estimated as being of the order: 

- 750 to 1000 kN/m2 locally 
about 200 kN/m2 globally. 

My own analyses using survival design principles yield values about twice as 
large. Either way, these results are an order of magnitude greater than present design 
rules, and the same conclusion was reached from a similar recent study for the HSE 
[23], Clearly ship rules need to be changed. Fortunately, the HSE has substantially 
increased its requirements for offshore installations. 

3.3 Provisional Design Suggestions 

Engineers are often faced with insufficient data from which to make decisions, for 
example, relating to design equations. But, designs have to proceed so the best 
present information should be used, with the hope that the resulting equations are truly 
provisional until better data and/or analyses can improve them. With this in mind I 
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have made some survival design suggestions arising from my DERBYSHIRE work, as 
follows: 

A. For many ship structural applications the choice of survival Hs should be length 
dependent, for example I have provisionally suggested: 

H
S

=16-(4-L/\00)2\ 
for 150m < L < 400m 

(2) 

For L < 120 , H
s
 = L/12 is suggested, which I believe are/were USCG rules. 

B. The associated Tp range to examine should be close to equation (1), and associated 
wave lengths suggested are: 

λ =\6 H
s
 to 20 H

s
 , L > 150m 

= 1 I H
s
 to 16 H

s
 , L < 100m J (3) 

C. Critical extreme waves for a notional a = 0.01 probability of exceedance assuming 
12 hour exposure and p

e
 = 0.4 times Longuet-Higgins are: 

H
a

 = 2.4 Hs 

A
c
 = 0.65 H

s crest amplitude 
m = 0.5 mean crest slope 

(4) 

D. Pressures for horizontal wave impacts: 

P
i
 =0.5 C

p
 pv2 

where v = 2λ / T crest velocity 

C
p
 = 9 locally (A < 1m2 ) 

= 3 globally (A < 6.25m2 ) 

(5) 

E. Structural survival design should use ultimate strength modelling with suggested 
load factors of 1.0 for plate elements and 1.5 for grillages. 

Finally, using derived survival loads and load combinations, a properly validated large 
amplitude nonlinear motion program, such as LAMP [24], should be used to evaluate 
motions and intemal forces in the ship or structure for component and system design. 
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5 Figures 

Fig.l. Pyramidal wave off south Japan 

Fig. 2. North Atlantic Chaos 
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Fig. 3. The ultimate North Atlantic storm 

Fig.4. South Pacific breaking wave t'ront 

Fig. 5. A boiling following sea 
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Fig. 6. Very steep breaking wave crest 

Fig. 7. VLCC ATHENE and a 30 m wave off Port Elizabeth in 1977 
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Fig. 8. Distressed fishing boat in seas described as 40-50 ft. high 

Fig. 9. Cargo ship about to encounter a wall of water 
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Fig. 10. MV SELKIRK SETTLER encounters a beam on rogue wave in 1977 [See also 
Appendix CP] 

Fig. 11. Container ship plunging into moderate seas [See also Appendix CP] 
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Fig. 12. Container ship about to encounter a wall of water 

Fig. 13. Dislodged and smashed containers 
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Fig. 14. The APL China with lost and damaged containers 

Fig. 15. NOAA baseline Survivability and Operability envelopes for Northem and Southem 
hemispheres 
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A Sudden Disaster - in Extreme Waves 
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Abstract. This paper describes establishment of a world data bank related to 
ship accidents caused by freak waves and rogue waves. Basic relevant defini-
tions for such waves are given together with examples of ship accidents. 
Laboratory experiments with wave-current interactions leading to coalescing 
wave groups containing deep water plunging breakers are described. Further 
experience obtained from capsizing experiments in such waves is given. 

1 Introduction 

Loss of a large norwegian ship with the entire crew in the middle of the North Atlan-
tic is not a common event. However at a special occasion two large norwegian bulk 
ships M/S “NORSE VARIANT” and M/S “ANITA” disappeared at the same time at 
the same location. Both ships passed Cape Henry with only one-hour interval in time 
on voyages from the U.S.A. to Europe. Both ships came right into the center of a very 
extreme weather event with a strong low pressure giving 15 m significant wave 
heights and mean wave periods close to 10 seconds and strong northerly winds with 
wind velocities near 60 knots. “NORSE VARIANT” had deck cargo that was dam-
aged and moved by water on deck with the result that a hatch cover was broken and 
left open. The ship took in large amounts of water and sank before an organised 
evacuation was fmished. Only one member of the crew was rescued on a float. 

“ANITA” disappeared completely at sea with the whole crew and no emergency 
call was ever given. The Court of Inquiry then concluded that the loss can be ex-
plained by an event in which a very large wave suddenly broke several hatch covers 
on deck, and the ship was filled with water and sank before any emergency call was 
given. 

2 New Basic Definitions 

The wave that caused the loss of’’ANITA” was probably a freak or rogue wave. In 
our research we have defined a freak wave as a wave with a zero-downcross wave 
height that exceed 2 times the significant wave height. A crucial question is then: 

Will the freak or rogue wave that hits the ship be a breaking wave? 

19 
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It is not possible to characterise the severeness of a particular sea state containing 
large random waves some of them even breaking using only traditional parameters 
height and period of the individual waves. Experiences show that accidents occur if 
there is a quite unique exceedance of critical threshold values for several parameters 
simultaneously. Wave steepness seems to be a parameter at least as important as wave 
height, under some special circumstances even more important. Traditionally wave 
steepness of a random wave has been introduced as a ratio between total wave height 
and total wave length. However, in a random sea many waves can occur with the 
same total steepness but different asymmetry, and thus some of them will be breaking 
others not. The random waves in a severe directional wind generated sea are clearly 
asymmetric both in the wind direction and in the vertical direction. In order to obtain 
a better description of freak waves and rogue waves, and in particular to distinguish if 
they are breaking or not a DATUM and 4 new wave parameters were introduced. 
Then the mean water level is taken as reference DATUM and crest height, crest front 
steepness, crest rear steepness and horizontal and vertical wave asymmetries are in-
troduced see [4] and [3]. 

A freak wave or rogue wave is essentially an abnormal 3-dimensional wave crest 
and we need some new definitions, that also takes the 3-dimensional aspects of such a 
wave into account, see Fig. 1. At the top here is shown a photograph by Fukumi Kuri-
yama of such a wave together with thc new defmitions we have to introduced. 

The seaway is considered to be made up of an infinite sum of component waves 
from all directions and with all frequencies and the elevation ŋ(t) of the sea surface 
above a fixed point can then be expressed as: 

ŋ(t)= Oocos{2;rft + 0(f’a))\l2E{f’a) dfda . (2.1) 

Here E( f,a) is the directional wave spectrum, which might be the directional wave 
spectrum from a wind generated sea. However more common is a situation where the 
resulting directional spectrum is composed of several wave patterns both a wind gen-
erated sea from one direction and two or three swells from arbitrary directions. 

V E{f,a) (2.2) 

is then the amplitude, and 

0(f,a) (2.3) 

is the phase angle of the component waves coming from direction a with frequency 
/ and t is the time coordinate. 

If a freak wave occur it often happens that it comes from a direction that deviates 
significantly from the main wind direction. It thus suddenly strikes on the ship with 
another direction than the other waves and this makes the situation particular danger-
ous during storm conditions if the ship is in a head sea and suddenly goes into an 
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abnormal roll, because the freak wave strikes 40 degrees off the wind direction. The 
direction of a single wave is defined as the direction of the projection of the particle 
velocity vector on the sea surface as Fig. 1 shows. 

The crest elevation of the abnormal wave must be compared to the other waves in 
the sea state, and here is the first problem. Normally the significant wave height has 
been used as a measure of the severity of the sea state, but the significant wave height 
might be determined in several ways. We recommend that the moment m0 deter-
mined from the unidirectional wave spectrum is used instead as a reference: 

m
0
 = \

0
S(f)df ■ (2.4) 

The significant wave height H1/3 is then given by 

^1/3 ~ 4^/w^ . (2.5) 

2.1 First Basic Definition 

A freak wave can now be defined as a wave that satisfies the following condition: 

MAX(rji (t)) > 4jm\\ . (2.6) 

In order to define a true appearance of a unique single elevated wave crest, the fol-
lowing additional conditions can be used: 

MAX(rji_i (/)) < 4yfm\\ (2.7) 

MAX(nM(t))<4^ . (2.8) 

This implies that wave number (i-1) before the freak wave (i), and wave number 
(i+1 ) behind the freak wave (i) are both normal waves. 

The crest front steepness in space is then defmed in Fig. 1 as: 

c = MAX(r/i (+))/ L . (2.9) 

Experimental investigations [4] of spilling breakers and plunging breakers gener-
ated in deep water and analysed by digitalization of high speed films showed the 
following values for crest front steepness when the breaking inception started : 

0.32 < £ <0.78 . (2.10) 
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Spilling breakers entrained air at this point and plunging breakers appeared with a 
vertical front. The crest front angle © then becomes: 

© = Arctane (2.11) 

and we obtain : 

17.74 degrees < 0 < 37.95 degrees . (2.12) 

Stokes in [13] assumed that in the region near the crest the water surface could be 
approximated by two straight lines forming an angle α. Further if wave particle ve-
locity below the crest equals the nonlinear phase speed of the wave then the angle a 
becomes 120 degrees, and we have a symmetrical spilling breaker. The angle between 
the wave front and the vertical then becomes 60 degrees, and the angle between the 
front of the wave and a horizontal line becomes 30 degrees in the region very close to 
the crest in a spilling breaker. Values of epsilon as given by Eq. (2.10) when inception 
of breaking takes place are also confirmed by independent experiments performed by 
[1] and are in reasonable agreement with this theoretical result. 

The crest front steepness and the crest front angle can also be estimated from ob-
servations in the time domain. The simplest assumption will be that the wave travels 
with linear phase speed computed corresponding to the zero-downcross wave period. 
T ' is the time difference between the passage of the zero-upcross point ahead of the 
crest and the passage of the crest, (corresponding to L I in space. ): 

MAX(p(ty)) 271 

T'C
0
 ~ T1 g T

ZD 

(2.13) 

For steep waves we have used a nonlinear phase speed Cs and obtained a better 
estimation of the crest front steepness and the crest front angle: 

S=JC. 
T'C

S 

(2.14) 

The nonlinear phase speed itself depend on wave steepness and is given by [2] for 
Stokes waves using Padè approximations to 110th order: 

r -A 2kH 
- J ~r 

U^2 

\ 

/ 
(2.15) 

We have then used Cokelef s model to approximate non-linear transient waves be-
fore breaking takes place. Experiments presented by [12] confirms that the use of 
such a nonlinear phase speed is in agreement with observations. 
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Other experiments have shown that wave impacts on ships increase with increas-
ing crest front steepness. In some cases wave crest front steepness is a much more 
important parameter for a ship than wave height itself. 

Other wave asymmetry parameters are given in Fig. 1 and recommended by IAHR 
for use in research. Of particular interest is the length of the wave crest in a 3-
dimensional breaking wave. The ratio between wave crest length and ship length is 
one of the important parameters that determine the capsizing potential of such a wave. 

2.2 Second Basic Definition 

A freak wave can also be defined as a wave that satisfies the following condition: 

MAX(H,)>&yfc . (2.16) 

In this case it is important to check both the zero-downcross and the zero-upcross 
wave heights, and these will be different. Here we can also include the situation with 
a coalescing wave group in which 2 or 3 waves following each other all satisfy Eq. 
(2.16). That is a more dangerous situation for a ship and might in some cases lead to 
capsizing. If 3 abnormal waves occur together, such an event is called “ Three sisters 
“ by ship officers. 

2.3 Third Basic Definition 

In order to evaluate the risk for a capsizing it is necessary to evaluate if a wave is a 
freak wave and at the same time is a breaking wave. In order to obtain such a condi-
tion we must expect that the wave must be a high wave and at the same time a wave 
with a large crest ffont steepness. 

Here reference will be given to laboratory experiments developed in order to per-
form capsizing experiments with ships and platforms, [6], Steep plunging breakers 
were generated in deep water from highly nonlinear coalescing wave groups. In these 
experiments it was found that the wave broke when the nondimensional ratio between 
the zero-downcross wave height H

 zd
 and the zero-downcross wave period T zd be-

came: 

(2-17) 

corresponding to a value of crest front steepness computed from Eq. (2.13) as: 

(2.18) 

g is here the acceleration of gravity. The horizontal asymmetry parameter was: 
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(2.19) 

This particular parameter will be very nearly the same when it is measured in the 
space and in the time domain. 

Evaluation and proper analysis of a measured freak wave includes an analysis that 
indicates if the measured freak wave also could be a breaking wave. Such an evalua-
tion could be made using Eq. (2.18) or Eq. (2.19) as given above. The ratio between 
wave height and wave length (or period ) as in Eq. (2.17) is useless, as many irregu-
lar random waves can occur with the same ratio, some of them breaking others not. 

3 Summary of Research on Freak Waves Linked to Ship and Off-
shore Accidents 

Accidents including a large number of severe heavy weather damages on ships and 
offshore structures were collected in a WORLD DATA BANK from 3 sources: 

1. Cargo ships, fishing vessels and passenger liners 
2. NATO ships operating in the North Atlantic 
3. Experiences from the offshore industry with FPSO ships, steel jackets and 

semisubmersible platforms 

Ship capsizings caused by freak waves were mapped, however the actual waves 
that caused the accidents were normally not recorded. In some cases freak or rogue 
waves with a capsizing potential were also measured and analysed from some specific 
places of the world, see Fig. 2. One example is a freak wave measured on the FRIGG-
field in Norway Area No 5, see Fig. 3. For this wave the following data were re-
corded: 

crest height / (4 = 1.68 (3.1) 

(3.2) 

(3.3) 

(3.4) 
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The sea state had a significant wave height 4.27m. Based on the above it is rea-
sonable to expect that this wave developed further as a plunging breaker. A joint 
probability density distribution is computed for this case as shown in Fig 3. It is re-
markable that this particular wave has not only an abnormal crest height but at the 
same time an abnormal crest front steepness. This gives this particular wave a large 
capsizing potential. 

None of the available statistical models for crest front steepness can predict this 
observation. Only in a few unique cases photos of such freak waves have been taken. 
Fig 3 shows such a scenario with a large norwegian bulk ship heading into an abnor-

mal wave in the Bay of Biscay, Area No 8. 
Even more rare is the opportunity to have a ship with recording instruments run-

ning into a freak wave. Such a case happened unexpected in Area No 20 the 
Mediterranean Sea. A 100 m long monohull high speed vessel was running with 40 
knots in a sea state with significant wave height 3.5 - 4 m and was suddenly struck by 
a freak wave. Fig 4 shows the recorded bow acceleration 1.5 g ( 2.17 times the 10th 

value), and the recorded strain in the longitudinal beam that was 80 Mpa ( 5.28 times 
the 10thvalue.) 

The LEWEX research programme was a large international effort initiated in Area 
No 1, The Newfoundland banks which are notorious for freak waves. The LEWEX 
programme had several scientific scopes one of them was to improve design of ships 
operating in the North Atlantic. Parallel seakeeping trials were here performed with 
two instrumented ships and directional wave buoys anchored in 4000 m water depth 
[8]. Fig 5 shows examples of two directional wave spectra measured here. The first 
one shows two wave pattems dispersing nearly perpendicular to each other. 

Analysis of the world data bank show that ffeak waves often appear in areas where 
wind waves meets opposing currents. Fig 5 shows also a directional spectrum meas-
ured in the Gulf Stream and shows a very complicated combination of several wave 
patterns refracted by the current. A freak wave was measured in this spectrum with a 
shipborne sensor. 

4 Experiments with Freak Waves on Opposing Currents 

Analysis of the data bank showed that freak waves often occur on locations with op-
posing ocean currents. For this reason a series of extensive model experiments were 
performed with nonlinear coalescing wave groups focusing into large giant waves on 
opposing currents. A kinematic model was also established in order to predict both 
wave kinematics and wave impact forces and global wave forces caused by the wave 
crests of such giant waves. These kinematic and wave force models were then con-
firmed by extensive model testing and full scale sea trials. 

The experiments with freak waves generated on opposing currents were performed 
in the large wave tank at the Canada Centre for Inland Waters. This wave flume is 
shown in Fig. 6. The tank is 100 m long and 4 m wide. It is not the surface elevation 
but the kinematics in the crests of the freak waves that is important for prediction of 
wave forces. 
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The particle velocities were measured with an acoustic Doppler current meter. Fig. 
6 shows development of plunging breakers in deep waters with and without an oppos-
ing current. It is seen that the plunging breaker on a weak opposing current appears 
with a larger crest height and a larger crest front steepness. Fig. 6 shows also meas-
ured horizontal velocities both in the crest above mean water level and below mean 
water level. 

The kinematics in the wave crests on currents was predicted with a new third order 
model, see [11], There is obviously a need to develop an international standard for 
laboratory experiments with freak waves and breaking waves. 

5 Capsizing Experiments 

Extensive series of capsizing experiments were performed at Norwegian Hydrody-
namic Laboratories in Trondheim. Steep plunging breakers were generated in deep 
water from highly nonlinear coalescing wave groups, see [6]. 

Fig. 5 shows an example of a 3-dimensional steep elevated wave crest generated 
from focusing of 100 individual wave components with different directions over a 
synoptic angle of 105 degrees. This lead to extreme steep shortcrested breaking 
waves, called “ Pyramidal Breakers “. The wave generated here is similar to the photo 
of such a wave taken by Fukuri Kuriyama and shown in Fig. 1. 

A capsizing experiment is difficult to perform. It is necessary to use high speed 
film technique in order not only to observe the very fast development of the unstable 
wave, but in particular to observe the fast ship-wave interaction. When the jet from a 
high wave crest strikes on the superstructure of the vessel, the ship performs a com-
bined motion in roll, heave and sway and during this the mass moment of inertia is 
influenced by a rapid changing added mass following the vessel in the capsizing. 

It was found that the angle of roll, rolling velocity and rolling acceleration of the 
ship at the moment the ffeak wave was striking, are important parameters to consider. 
Therefore a random wave train was generated with a prescribed wave spectrum and 
inside this was a coalescing wave group that developed a breaking freak wave. The 
position of this wave could be shifted slightly in order to hit the superstructure exactly 
on different positions. 

The capsizing event was found to depend on the following wave parameters: 

1. Zero-downcross wave height 
2. Wave crest height 
3. Crest front steepness 
4. Local particle velocities in the plunging jet 
5. Local particle accelerations in the wave crest 
6. The crest length of a breaking wave compared to ship length. 

It was also found that heeling forces from the wind on a large superstructure con-
tributed to the development of a capsizing. Thus the wind force including gust effects 
must always be considered. The dynamic stability of a ship depends on the displace-
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ment and the mass moment of inertia. Unfortunately the displacement is not yet in-
cluded in intemational mles regulating demands for dynamic stability of ships. 

There is thus an obvious need for development of an intemational standard regard-
ing capsizing experiments. 

A development of a numerical ocean basin is initiated [12] and this might also in-
clude a numerical simulation of capsizing. 

6 Learning from Ship Accidents 

The research work related to establishment and analysis of the WORLD DATA 
BANK, has shown certain pattems and risk elements that should be taken into ac-
count by: 

1. Ship officers 
2. Naval architects and designers. 

Good seakeeping has been a forgotten factor in many cases. For the ship officers there 
is a need for further education in particular in the following items: 

1. How to avoid the center of severe extra tropical cyclones, 
2. How to handle a damaged ship in severe waves, and 
3. What is the right time to evacuate a damaged ship ? 

For naval architects and designers the following items should be considered: 

1. Ship displacement and mass moment of inertia should be taken into account in 
criteria for dynamic stability 

2. High impact forces caused by extreme waves breaking on the superstructure 
should be considered. In particular large windows are weak points 

3. Pressure from large amounts of water on deck should be considered 
4. Hatch covers on bulk ships are weak points and should have the same strength 

as the ship hull 
5. Extreme freak weather events caused by change of climate, might lead to an 

increasing number of scenarios containing extreme waves and freak waves 

Thus, it is obvious that there is a great need for further research in this area. 

7 Conclusions 

- There is a need to increase survivability of modern ships, in such a way that a 
damaged ship with a heeling angle can sustain impacts from large waves and still 
maintain a marginal dynamic stability. 

- The rules and requirements of ship dynamic stability are clearly insufficient. 
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Not only the area below the GZ-curve should be taken into account but also the 
displacement of the ship and the mass moment of inertia given as the radius of gy-
ration. This applies both to intact stability criteria and to criteria for damaged 
stability. 

- High impact forces caused by extreme waves breaking on the superstructure of 
ships and should be considered. In particular large windows are weak points. 

- Dynamic pressures from large amounts of water on deck should be considered. 

Hatch covers on bulk ships are weak points and should have the same strength as 
the ship hull. 

- A world data bank is established indicating the areas where freak waves and rogue 
waves are measured or reported. The data bank contains also information of ship 
accidents caused by extreme waves in these areas. Measured freak waves in this 
data bank shows abnormal values of crest front steepness, clearly very different 
from the normal population of steep waves. None of the existing models for pre-
diction of joint probability of crest front steepness and wave height contain the 
potential to predict the steepness of these observed waves. 

- An intemational standard is needed for hydrodynamic laboratories performing 
capsizing experiments with ships and platforms in breaking waves and extreme 
non-breaking waves. This standard should be based on laboratory measurements 
of wave kinematics. Heeling moments caused by the action of wind forces should 
also be taken into account in capsizing experiments. 

- A better education of ship officers is needed. In particular we need a better educa-
tion in ship handling of intact and damaged ships in severe weather conditions. 
Better guidelines should be given to ship officers regarding the choice of the right 
time to evacuate a damaged ship, and the time needed to evacuate in severe wave 
conditions. 

- It is strongly recommended to use maximum expected wave height instead of 
significant wave height in forecasts to ship officers worldwide. In sea areas where 
it becomes possible to forecast a probability for freak waves or rogue waves, such 
a forecast should certainly be distributed. 

- The probability to encounter extreme waves, freak waves and rogue waves are 
linked to wave climate. Now we observe scenarios with extreme weather events 
on several places on the globe with short time intervals and a global heating is 
predicted and recorded. These freak weather events with strong winds in both 
tropical cyclones and in extra tropical cyclones might also lead to an increasing 
number of scenarios containing freak waves and rogue waves. 



29 

8 Figures 

DEFINITION OF CREST LENGTH x AND 3 D CREST SHAPE FACTOR p 
IN SYNOPTIC DOMAIN : 

DEFINITION OF CREST FRONT STEEPNESS ex IN 
SYNOPTIC DOMAIN : 

Fig. 1. Basic definitions. Photo by Fukumi Kuriyama 
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World Data Bank 

1 Newfoundland Banks 12 The Sea near Cap Hom 
2 The Sea south of Greenland 13 Aghulhas current east of South Africa 
3 Coastal areas near Iceland 14 The Bengal Sea 
4 Coastal areas near Færø Islands 15 The South China Sea 
5 Coastal areason the norwegian coast 16 The Japan Sea 
6 The North sea 17 The Pacific Sea east of Japan 
7 The Baltic Sea 18 Coastal areas near Australia 
8 The Biscay Bay 19 Areas south of 40 degr. south 
9 Gulf Str on the east coast of USA. 20 Mediterranean Sea 

10 The Mexican Gulf 21 Great Lakes 
II The Sea west of British Columbia. 

Fig.2. Dangerous Areas that contain Freak Waves under certain Meteorological Condition 
(Copyright Peter Kjeldsen/TC. Trondh. Maritime vg. Skole) 
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Fig. 3. Above: A Norwegian bulk ship heading into an abnormal wave in area No 8. Below: 
Example of a freak wave and the corresponding joint probability distribution of wave height 
and crest front steepness measured in area No 3 
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Time history of the bow acceleration 

The same at a larger time scale 

Stress time history on a bottom longitudinal stiffener 

Fig. 4. Example of extreme bow acceleration and stress measured on a high speed ship in Area 
No 20. The significant wave height was 3.5 -4m 
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Fig. 5. Above left: A bimodal directional wave spectrum. Right: A directional spectrum show-
ing wave-current refraction in the Gulf Stream. 
Below: A 3-dimensional shortcrested freak wave generated in laboratory experiments in order 
to simulate the wave shown in Fig. 1 
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Fig. 6. Above: The CCIW wind wave flume. Below: Examples of surface elevations and hori-
zontal velocities with and without opposing currents. 
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Abstract. The Schiehallion FPSO was damaged by wave impact in November 
1998. Research undertaken to better understand the environment and to deter-
mine suitable design pressures is described. The research includes calculations, 
model experiments in the Glasgow wave/towing tank and full scale measure-
ments with a wave buoy and pressure transducers and strain gauges in the 
Schiehallion bow. Several projects, with UK government, industry and EU 
funding, are continuing to investigate this problem. 

1 Introduction 

The turret-moored Schiehallion FPSO is stationed in the Atlantic to the West of the 
Shetland Isles. A photograph of the vessel is shown in Figure 1: 

Particulars: 
Length 245 m 
Breadth 45 m 
Depth 27 m 
Lightship 42,425 mt 
Deadweight 152,360 mt (at 20m) 
Displacement 194,785 mt (at 20m) 
Storage Cap. 950,000 bbls 
Water Depth 395m 
Flexible Risers 
Wire/Chain Mooring Legs 
Suction Anchors 
180 BOPD Throughput Capacity 
Fig. 1. The Schiehallion FPSO 
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Fig. 2. The bow damage 

1.2 The wave impact incident 

During the night of the 9th November 1998, in a sea state estimated as: Hs = 14m, Tp 
= 15-16 sec, an area of forecastle plating, 20m above the mean water line and above 
the main deck level, was pushed in by 0.25m. See Figure 2. There was some associ-
ated minor plating deformation inside the forepeak (in the main hull below the main 
deck). There was no damage to the flare tower supports or to any process equipment. 

2 Strengthening and Research 

Following the damage it was necessary to undertake repairs and strengthening of the 
bow. This work, based on desk studies to estimate design pressures, was completed in 
the second quarter of 1999. The studies identified uncertainties in the loading caused 
both by the uncertainties in the probabilities of the waves that might cause severe 
impacts and the uncertainties in the impact pressure from a known wave. 

BP therefore started a program of follow on research comprising: 
Installation of a bow monitoring system (during December 1999 to January 
2000). 

Installation of a wave monitoring data buoy, in February 2001. 
Analysis of hull global bending and shear from wave impact (on both the bow & 
Forefoot). 
Model tests to evaluate slam loads / pressures. 
Encouraging and participating in the SAFEFLOW EU project/JIP, including more 
model tests and the analysis of the bow monitoring data. (Project started in Janu-
ary 2001) 
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3 Full Scale Measurements 

3.1 The Bow Monitoring System 

The bow monitoring system comprises pressure transducers and strain gauges as 
shown in Figure 3. The pressure transducers show individual local pressures. The 
array of pressure transducers and the strain-gauged structure will indicate the degree 
of correlation. The pressure sensors trigger data collection when the pressure exceeds 
3 bar. 

Data collection from the monitoring system commenced on the 19th January 2000. 
To 28th January 2001, twenty four data sets have been collected. These contain peak 
pressures from three to six bar, but a high pressure has only been found on one pres-
sure sensor in any incident and the strain gauges show small overall forces, so indicat-
ing that no significant slam events have occurred so far. 

3.2 The Wave Data Buoy 

A Triaxys wave monitoring buoy will collect both wave directional spectra and a time 
history of water surface elevation. The latter will be analyzed to determine probabili-
ties of steep, high waves. These will be used in the SAFEFLOW project and will be 
input to a bow slam residual risk assessment. 

Fig. 3. Bow instrumentation 
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4 The Model Tests 

Glasgow University were asked to investigate the bow loads by building a 1:80 in-
strumented bow model and testing it in the wave tank. Forces and pressures were 
measured in a range of waves with the bow fixed at various drafts and trims. (Addi-
tional tests with the complete vessel floating will be performed during 2001.) Froude 
scaling was used. This is required to obtain the correct waves and is expected to give 
good results for overall loads but may result in poor values for peak pressures where 
fluid compressibilty and local structural flexibilty may also be important but cannot be 
scaled properly (unless the more important Froude scaling is abandoned). 

4.1 The Bow Model 

The model was built at a scale of 1:80 and extended aft from the bow for 90m at full 
scale. The model was supported on substantial hollow box sections with a screw-jack 
to change draught and a hinge to change trim. The model is shown, out of the water in 
Figure 4. The model included pressure transducers, at approximately the same posi-
tions as in the prototype bow, and the bow was divided horizontally into three bow 
sections, each of which was separately supported on strain gauged bars, so allowing 
both local pressures and overall forces (longitudinal, vertical and moment about a 
transverse axis) to be measured. 

A problem with this type of model is the sealing between the sections. This was 
anticipated and so the model was designed to operate with or without seals. Initially 
thin rubber seals were used but the T joint between two bow sections and the aft sec-
tion was found to be too stiff so the initial work was done without seals. Later a jig 
was made for prefabricating flexible T joints and a successful low stiffness seal can 
was made. 

Fig. 4. The bow model (without seals and, in the tank, with seals) 
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4.2 The Model Waves 

A range of waves was required for test purposes. After some discussion it was decided 
to use frequency component focussing to obtain a variety of different waves. All the 
methods used linear theory to develop the signal for the wave paddle but included 
calibration in finite height waves, which made some allowance for the change in celer-
ity with wave height, which was important for focussing the different frequency com-
ponents at the bow of the ship. Several methods were adopted for generating the 
waves: 

1) High waves were produced using New Wave theory [2]. This provides an average 
highest wave form for any given Hs, Tz and spectrum shape. This is a wave in 
which the resultant of the frequency components in each narrow frequency band 
are proportional to the spectral ordinate and are in phase at the high crest. 

2) Steep waves were obtained by applying New Wave theory to a truncated steep-
ness spectrum and transforming the results back to water surface elevation. 
(Truncation was needed because from the theory the steepest waves have negligi-
ble height). 

3) In error waves were generated using the steepness spectrum but without the in-
tended transformation back to elevation. The result was a severe breaking wave at 
the target point. These waves were interesting because they produced very much 
higher loads than the waves intended to be used. 

4) A second type of steep wave was produced by taking the highest New Wave am-
plitude and frequency components but arranging the components to be in phase at 
a zero up-crossing. 

5) Combinations of high and steep waves were also used in the procedure, with 
phasing to obtain waves with a steep face above the mean water level. 

The various methods produced a wide range of waves. Figure 5 shows the theo-
retical average shapes of the highest waves most likely to be seen in the given sea 
states and of a typical steep wave. Notice the symmetry in the highest wave and the 
antisymmetry in the steep wave. 

A measured and theoretical (linear theory) highest wave and measured and theo-
retical breaking wave are shown in Figures 6a and 6b. 

As expected, the breaking wave departs significantly from the underlying linear 
theory than the highest wave. 
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Fig. 5a. Theoretical average shapes of highest and steep waves 

Fig. 5b. Theoretical time history of average highest and steep waves 

Fig. 6a. Measured highest wave (solid) and linear theory average highest wave (dotted) 

Fig. 6b. Measured breakmg wave (solid) and linear theory wave (dotted) 
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4.3 Model Test Results 

Some results from the tests are shown in Figures 7 (forces) and Figure 8 (pressures). 

Fig. 7. Force time histories for top (left) and middle (right) segment high waves (solid line), 
breaking waves (dashed line) 

Fig. 8. Pressure time history for breaking waves 

Qualitatively, breaking wave slams load large parts of the bow approximately simulta-
neously and result in much higher pressures, forces and dynamic responses than the 
‘progressive slam’ in a non breaking waves, where the impact moves across the bow. 

From the model tests a large table of pressures and forces for different steepness 
waves, was obtained and this was interpreted in conjunction with full scale wave data. 

5 Interpretation of Results 

The results were interpreted as follows: 
Determine the probability of occurrence of the different slam events. 
Determine the likely structural response to these loads, including dynamic effects, 
which may differ from the dynamic response of the model. 
Check local strength, by comparing equivalent static pressures against capacity of 
bow plating and scantlings. (The equivalent pressures are static pressures which 
have the same effect as the complicated spatial/time history of the actual dynamic 
load. The equivalent pressure varies according to the plate or area of stiffened 
plating being assessed.) 
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Check global strength by comparing the total equivalent load on the forecastle 
structure with its capacity. 

Wave ffont steepness is important for wave slam but there is much less data on 
wave front steepness than on wave height. The best source found was Myrhaug and 
Kjeldsen, [1]. They estimate crest front steepness using crest elevation, crest rise time 
and wave period from the following formulas, which is exact for a regular sinusoidal 
wave. 

(D 

Myrhaug and Kjeldsen, [1], give the joint probability of high and steep fronted 
waves within a sea state based on wave-rider buoy measurements. However it is clear 
that more data on extreme wave shapes is needed, owing to the following limitations 
in the wave front steepness data: 

Data based on wave rider buoy results which is thought to under-predict steepness 
of extremely steep frontcd waves. 
Limited amount of data (6,000 waves) offshore Norway. 
Poor statistical fit for extrapolation to steepness of tank test waves. 
Some reports from mariners suggest that steep faced waves may be more com-
mon. 

Also crest height, rather than overall wave height would be a more useful parameter. 
The probabilities of some of the highest and breaking waves, based on comparison 

with the Myrhaug and Kjeldsen data, [1], are given in Table 1. 

Table 1. Frequency of occurrence of highest and breaking waves 

Sea State Highest Wave Breaking Wave 

Steepness(1) Frequency(2) Steepness(l) Frequency(2) 

18.0m, 14.4s 1.80 680 3.79 16.6 x 106 

14.6m, 11.0s 2.10 9,000 3.76 13.8 x 106 

20.2m, 15.3s 1.74 460 5.50 8.7 x 1015 

22.0m, 15.9s 1.48 120 8.21 7.5 x 1031 

Notes: 1) Non-dimensional steepness [1]; 2)Frequency of exceedence once in number of waves 
shown.'(900 corresponds to about 1 in 3 hrs, 120 to about one every 25mins. Data 
based on extrapolated wave rider buoy records offshore Norway 

From the work it has been found that ‘progressive’ impacts, from non-breaking 
waves, have a relatively long duration compared with stiffener/plate natural periods 
and therefore result in a quasi-static response to the load. Breaking waves can lead to 
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a simultaneous loading over a large area during the impact event and this can cause a 
significant dynamic response. Fortunately the probability of large breaking waves 
appears to be very low. 

The tank tests included dynamic response, but the scaled natural frequencies were 
lower than estimated for the prototype. Correcting to the actual period showed that 
only a moderate dynamic amplification would be expected in likely progressive im-
pact events. 

The mass of water in contact with the structure increases natural periods signifi-
cantly, although the increase is mode shape dependent. 

Although waves were run for a number of model pitch angles the pressures were 
found to relatively insensitive to the angle. 

The model was fixed in the tank so the effect of ship motion was allowed for by 
calculation. The vessel motions were estimated in irregular waves. It was found that 
the bow motion was much less than wave particle velocities, so the effect of bow ve-
locity was relatively small. However the instantaneous bow draft, affects the relative 
crest elevation and hence the part of the bow subject to high loads. The bow tends to 
be pitched up for an impact in longer period, higher waves, but down for an impact in 
shorter period sea states. 

The results of the analysis are shown in Table 2. 

Table 2. Pressures on bow plating and scantlings 

Component Peak Pressure(1) Equivalent Static Pres-
sure(2) 

Design 
Pressure(2) 

Longitudinal 
Scantlings 
Plating 

110 te/m2 95 te/m2 100te/m2 

Upper Bow 
Stiffeners 110 te/m2 70 te/m2 75 te/m2 

Lower Bow 
Stiffeners 1 10 te/m2 60 tc/m2 55 te/m2 

Notes: 1 ) Peak pressures from progressive slam events; 2) Equivalent pressures over each 
component allowing for dynamic effects and movement of water surface across 
structure. (Pressures used when strengthening bow structure.). 

6 Further work 

Considerable further work is required to determine a methodology for the prediction 
of wave impact design pressures and loads. Vessel motion, green sea loading and 
impact are being considered by the on-going EPSRC and SAFEFLOW projects, with 
full floating models. For a moving ship, the average profde ‘New Wave’ approach is 
less useful than for the fixed bow modelled here because the characteristics of the 
particular sequence of random waves will affect the ship motion and the resulting 
loading. Therefore random wave time histories are being used instead. For the EPSRC 
work these time histories are constrained to have a specified extreme event at a speci-
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fïed position in the tank so that only short (nearly) random time histories should be 
required. The results from the EPSRC project will be made available to the SAFE-
FLOW project. The SAFEFLOW project will provide design guidance for bow and 
deck wave impact design. It has a duration of three years from January 2001, but an 
initial phase of project will be completed in one year. 
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Abstract. The presentation begins with a review of the 1998 Sydney-
Hobart Race in which it was reported that “yachts that experienced 
problems or encountered difficulties and even those that continued rac-
ing reported that exceptional waves were responsible for inflicting the 
damage or causing severe knockdowns. These waves were always a mini-
mum of 20% and up to 100% bigger than the prevailing seas and always 
came from a direction other than the prevailing wave pattern.” [21] 
The presentation discussed two capsize modes: 

1. Loss of waterplane area (hull form) stability on a wave crest in steep 
waves and/or spilling breakers, a high risk for improperly designed 
and or loaded vessels in storms and 

2. Wave impact capsize caused by a plunging extreme wave, a lower 
risk for stable vessels in storms, i.e. being in the wrong place at the 
wrong time during a low probability event. 

Short video clips of small vessel full-scale and model capsizes were in-
cluded in the presentation. 

1 Introduction 

The Society of Naval Architects and Marine Engineers (SNAME) is organizing 
a new ad-hoc panel on fishing vessel operations and safety whose goals include 
investigating the feasibility of establishing risk-based fishing vessel stability cri-
teria appropriate to the type of vessel and its operating area [11] [15]. 

1. Identify hazards associated with small vessel capsizes and sinkings and de-
velop guidelines to reduce wave impact damage and personal injuries. 

2. Work with NOAA and the international meteorological and oceanographic 
communities to improve predictions of dangerous local wave conditions 

3. Suggest ways to improve survivability for smaller vessels and their crews 
when they encounter extreme waves. 

The IMO voluntary fishing boat safety regulations for vessels > 79 feet (24 
m) in length are based on one-size-fits-all criteria derived from computer gen-
erated static stability righting-arm curves. The current version is known as the 
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1993 Torremolinos Protocol and can be found on the IMO web site. (For tech-
nical and historical details on its development see [2], [10], [15], [18] and [19]. 
The Torremolinos Protocol has been criticized 1) for lacking ’’rational criteria” 
([18], [19], [27], [11]) and 2) for promoting capsize resistance at the expense of 
operational safety conditions on board ([4],[5], [28] and [29]). 

Existing voluntary guidelines for fishing vessel stability are intended to pro-
vide significant capsize resistance for the vessel during storms that contain few 
rogue waves. Satisfying the voluntary IMO Torremolinos criteria for fishing ves-
sels longer than 24 meters, for example, does not provide the capability to sur-
vive a direct hit by rogue waves or by other extreme (breaking) waves. Capsize 
resistance criteria for fishing vessels generally do not address or insure crew sur-
vivability, which frequently involves escaping from a vessel that is stable while 
inverted. In addition crew members who abandon a vessel in a major storm can 
be in danger of life threatening capsizes in many types of life rafts. Of the six 
men who died in the 1998 Sydney-Hobart sailboat race, three were attempting 
to survive in a life raft that capsized repeatedly in extreme waves. 

2 Capsize and Extreme Wave Research on Smaller 
Vessels 

Most capsize research concerning vessels of all sizes has concentrated on loss 
of waterplane area (hull form) stability on a wave crest in steep waves and/or 
spilling breakers. ([16], [3], [11], [28] and [29]. See also an excellent review of the 
2000 Stability Conference in [1]). 

On the other hand, much yacht capsizing research has concentrated on wave 
impact capsizes caused by extreme breaking waves, thought to be a primary 
cause during the 1979 Fastnet Race disaster. ([17], [25], [26], [9], [31]). These 
studies showed that in beam seas, the location of the vessel relative to the 
breaking position of the wave is critical. If the vessel is caught in the curl of 
a plunging breaker, or in the secondary wave created by the jet impact of the 
plunger, capsize is possible in waves as small as 1.2 times the beam of the vessel. 
The roll moment of inertia is also an important parameter because a vessel with 
a large value of this parameter will roll to a smaller angle on impact but expose 
the deckhouse and work area to the full impact of the plunging wave jet. More 
recently, experiments on multihull capsizing (Deakin 2001) and the re-righting 
of sailing yachts in waves ([24]) have been investigated. 

Part of the capsize research effort suggests that the experimenter attempt to 
characterize the asymmetry of the breaking wave by analyzing the wave param-
eters suggested by Kjeldsen ([22], [6], [7], [14], [32]). 

As discussed at the Rogue Wave 2000 Conference ([23]), open ocean rogue 
waves appear to be short-lived and the probability of measuring one from a 
single platform record is small. During the 1998 Sydney-Hobart race as reported 
in [13] from which the adjacent Figure 10 is taken, the Esso Kingfish-B platform 
located in the Bass Strait measured no waves more than twice the significant 
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Wav« data measured on 27-11-98 

Esso Kingfish-B platform 

Fig. 1. Wave height (significant and maximum) and direction in eastern Bass Strait 
[See also Appendix CP] 

wave height, even though the participants reported many very large breaking 
waves during the race (Note that the date is incorrect and should be 27-12-98). 

3 Future Work 

The long range goal is to create a fishing vessel research program to develop a 
new set of scalable non-dimensional parameters for designing and building safer 
fishing vessels ([3], [4], [8]). In order to experimentally determine fishing vessel 
design parameters, which improve survivability in a severe seaway, a new ’’free-
to-broach” towing rig will be developed. This rig will allow models of a series of 
existing and proposed new fishing boat designs to be investigated for capsizing 
resistance while towed under computer control to a region of the tank where 
computer-generated irregular waves are combined with deterministic steep waves 
produced by wave energy concentration ([25], [14], [8], [20] and several methods 
presented at the Rogue Wave 2000 conference). This technique avoids using 
radio-controlled models which are difficult to position precisely in capsizing wave 
conditions. It should also be useful for validating attempts to mathematically 
model the surf-riding phenomenon, [30]. Towing models in quartering seas should 
shed light on the dynamic stability characteristics of several classes of fishing 
vessels, improving on the zero-speed beam-sea capsize testing previously done 
at the Naval Academy on sailing yachts ([26], [31]) and the USCG 44 ft and 47 
ft Motor Life Boats, [32]. 

It is expected that the effects of variations in length, beam, draft, freeboard, 
sheer line, bulwark and deckhouse arrangements and loading conditions can be 
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correlated with a new set of design parameters for increasing fishing boat safety 
in a variety of situations, [4]. 
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Abstract. Walk-on discussion for the Rogue Waves 2000 Workshop - Brest, 
23-30/11/2000. This paper presents the OnStReAM Joint Industry Project and 
how it relates to Rogue Waves and to the need for a better knowledge and 
modelling of the environment. 

1 Presentation of the JIP 

Noble Denton Europe Ltd is about to launch the ONSTREAM JIP with the support of 
the Health and Safety Executive (HSE) in the UK. The aim of the JIP is to provide 
guidance on FPSO design Optimisation through Structural Reliability Analysis 
Methods. 

The project team will benefit from Noble Denton’s unique blend of actual floating 
production project experience (e.g. Roncador, Agbani, Banff, Foinhaven and 
Schiehallion) together with cutting edge risk, safety and reliability based research. 
The project team will also include external consultants in order to provide input on 
issues regarding overall FPSO design and operation, naval architecture and structural 
reliability analysis. 

At present the “fast track” nature of the FPSO developments have meant that 
“good practice” from a number of specialisms has been brought to bear on the 
complete system design without having the opportunity to integrate or balance the 
reliability levels of different sub-systems which combine to produce the FPSO. The 
ramifications of this lack of integration are amplified by the fact that there is a 
relatively large number of structural limit states present in FPSO design, when 
compared to fixed structures, leading to greater difficulty in understanding true safety 
levels. To name but a few, Hull Midship Section design, Station Keeping design, Bow 
Structure design against Slamming, Deck and Topsides design against Greenwater, 
etc. 

This lack of integration, at the design stage, and resulting problems are typified by 
the fact that a number of FPSOs currently operating in the UKCS were not completed 
either within budget or schedule. If this is not significant enough, even after coming 
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on stream a number of FPSOs have suffered from either falling short of expectations 
or experiencing structural damage during operation, leading to production downtime. 

As a result, the need has been identified to ascertain the reliability of each critical 
structural limit state relating to FPSO design and to evaluate the consequences of 
failure on personnel, environment, production and repair / replacement. This will 
make it possible to integrate the risks associated with each limit state, and therefore to 
calculate the overall system reliability of an FPSO and to pin-point the most critical 
limit states in order to optimise the whole system. 

Obvious benefits of this study include an optimisation of the system safety and 
reliability, together with the enhancement of the system performance and the 
achievement of a balanced risk throughout the field life of the development. This will 
induce capital and/or operating cost benefits on FPSO components leading to more 
efficient designs and a reduction in repair costs and their associated loss of production 
periods. 

2 Assessment of the Probability Distribution Function Associated 
to the Wave 

The reliability assessment of each limit state starts with the identification of all 
parameters involved in their design, in order to evaluate all possible sources of 
uncertainty. Major parameters are typically those which are environment related and 
in particular the wave. When conducting reliability analysis, probability distribution 
functions are associated to the different variables. Environment distributions are 
usually derived from metocean data deemed relevant to the locations under 
consideration. Hindcast environmental data may be supplied for this task. Where 
appropriate, joint probability models, e.g. linking wind, wave and current events, are 
developed and applied to the analysis in order to avoid conservatisms. In most cases, 
an FPSO is designed to withstand a 100-year retum environment, and the use of 
typical wave spectrum (JONSWAP, Pierson-Moskovitch) is a common practice. 
Nevertheless, exceptional storms and expected wave events are possible: how do they 
compare with the statistical 100-year return wave event? Are they still predictable 
using second order wave modelling? 

For illustration, let us focus first on hull midship section design. The evaluation of 
this limit state is a balance between the resistance - the hull midship section’s 
strength - and the load — still water and wave-induced bending moments and shear 
forces. 

For this limit state, the main relevant input parameters are: FPSO main 
characteristics (L, B, lightship displacement and Centre of Gravity), structural data 
(steel yield, scantling and stiffener distribution, welds, corrosion), wave data (Tp and 
Hs, spectrum, direction) and operational data (storage amount and distribution). 

Few of the International Rules are tailor-made for the FPSO. It therefore, often 
becomes necessary to refer to the Rules for Ships (sea-going vessels) or Mobile 
Offshore Units, which have a larger empirical / historical background and are broadly 
approved “mles of thumb” but are not always relevant for the issues encountered by 
FPSOs. They usually provide the engineers with several formulae for the evaluation 
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of design Wave Bending Moments (hog and sag) and Shear Forces and minimum 
required section modulus or strength, as a function of an effective wave height which 
is dependent on the vessel’s length only. The Rules also influence the choice of the 
hull scantling. They give some nominal indications on the plate thickness decreasing 
with time to make allowances for corrosion. Finally, permissible stresses have to 
satisfy the Rule requirements (safety factors). 

In the document HSE OTO 98164 (Faulkner, [1]), it is claimed that though IACS 
(Intemational Association of Classification Society) Unified Standard aims to unify 
the Rules’ requirements, there is still a large diversity in the design wave-induced 
bending loads and in their interpreted reliability. In that document, 8 rules have been 
compared (see Fig.). For a given probability of exceedance Pe, say 10-8/wave, the 
ratio of the highest calculated design wave-induced moment Mw to the lowest is 1.8. 
In addition, for a given Mw, Pe varies by 4 orders of magnitude in sag and 3 orders in 
hog. 

It is worth noticing however that the Rules now offer computer-based design (3D 
Finite Element Analysis) as an altemative. Use of this direct design in place of the 
usual mle of thumb, and provided the computer programs are accurately checked, is 
likely to improve the consistency in the reliability levels achieved through design. 

Nevertheless, the reliability level itself could be improved only if the 
environmental loading is better assessed. This is even more necessary for Bow 
Structure design against Slamming loads or Deck and Topside design against 
Greenwater, where the wave height and profile are critical parameters. 

Fig. 1. Eight classification society plots of different wave bending probabilities for the same 
container ship and route (copied from report HSE OTO 98164) 
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To cope with the lack of understanding on probability of exceedance of a given 
sea-state and a given vessel response, Research Institutes and companies in the Oil 
Industry ought to work together. There is a need to improve our knowledge on these 
unexpected or “Rogue” waves, to develop adapted joint distribution functions for 
these events, and to develop design tools to be used when designing an FPSO. This 
would considerably help in optimising FPSO designs. 
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Abstract. The statistics of the elevation and kinematics of waves in real seas are 
very rarely accessible from in-situ measurements which induced very high costs. 
An altemative to the actual waves observation is to derive from the spectral 
climatology of waves, completed with other environmental data like the wind 
and the current, the statistics of the individual waves. But this requires accurate 
models of irregular gravity waves which take into account all the main 
nonlinearities and interactions with the local wind, current and bathymetry. In a 
first step, methodologies have been based on second order irregular wave 3D 
models and have supplied the engineers with new better accurate models of 
statistics of wave crests. These models do not include yet the complex 
interactions with wind and current but participate to the improvement of the 
tools for the design of offshore structures. 

1 In-Situ Measurements 

The statistics of the elevation and kinematics of waves in real seas have been greatly 
based for specific site studies on in-situ measurements (North-Sea and Gulf of Mexico 
oil fields). The incomparable great quality of a measurement is that it includes all the 
physical phenomena, but unfortunately also those which corrupt the actual observation 
of waves (mooring behavior and transfer function for buoys, fouling effect for plunged 
or underwater probes, sea foam or spray effect). To this list will be added the 
problems of spatial integration, calibration and data transformation and transmission. 
So it becomes difficult to clean the measurements without degrading the extreme or 
unexpected events. Moreover the wave instruments furnish point measurements and so 
the instrumentation might be very expensive and long to build accurate statistics, 
making cost and duration time not always compatible with the constraints of the 
project on the site. Apart for some very rich data base, measurements will be used to 
analyze typical situations and to validate or invalidate models. 

So the question is: Is it reasonably possible to build accurate statistics of wave 
kinematics from wave measurements? The answer is obviously No! Apart for some 
very extensive data base (e.g. North-Sea and Gulf of Mexico oil fields). 

The alternative issue is then: Is it reasonably possible to build accurate statistics 
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of wave kinematics from wave models? This is what attempt to answer a lot of works 
this last ten years mainly in using nonlinear irregular wave 3D models. 

2 Power Spectra versus Wave by Wave 

More and more information on waves are restricted to information on energy. The 
hindcast models use better wind fields and assimilate larger amount of data (e.g. 
satellite). They use better models of generation, interaction and dissipation and profit 
by the always increasing power of the computers. The satellites, too, furnish spectral 
information with the SAR (directional spectmm) or the altimeters (Hs). 

The so-called “Wave forecasf’ of the Meteorological Offices consists in the fore-
cast of sea states (Hs, main direction or directional spectrum) and the step to forecast 
the corresponding stochastic information on the wave kinematics, is a giant step if we 
know that we have to collect information and to input in the stochastic models local 
currents, winds and bathymetry and to take into account complex phenomena, 
nonlinearities and breaking effects. To take such a giant step, the addition of small 
steps will be necessary, some of them have been already taken that we describe 
hereafter. 

The advantages of working with the spectral information is that this information i) 
is available all over the world (limited to the grid of the models or to the time- space 
sampling of the satellite tracks), ii) has been collected or computed for several years 
(up to 40 years for the hindcast models and 15 years for the satellites), iii) is available 
in forecast problems thanks to forecast wind fields as input of wave hindcast models. 
The difficult passage from spectral to wave by wave information is illustrated in Fig 
1. 

3 Methodologies for Statistics 

Fig. 1. From directional spectra to wave kinematics [See also Appendix CP] 
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The methodologies to furnish statistics of waves inside a sea state starting from 
spectral information are of different kinds. They can be based on Monte Carlo 
techniques and development of simulators (Forristall [3,10], Prevosto [8,10]), or 
derived from theoretical considerations: Transformed Gaussian process method 
(Rychlik [11]), First Order Reliability Method (FORM) (Tromans [13]). 

Starting from measurements or from simulation or theoretical methodologies, sim-
plified parameterized models based on a fitting procedure have been proposed as 
better practical tools for the engineers. 

In any case, independently of the methodology, the answers will differentiate from 
the model of irregular gravity waves taken as starting point. 

3.1 Linear Model 

The simplest linear model of superposition of Airy waves used the directional spectral 
density S(0,f) as statistical information on the variance of the amplitudes of the 

components. 

with b and c Gaussian random variables defined by 

E[b2 (θ, f)] = E [c2 (θ, f)] = S(θ, f)dθdf (2) 

and 

E[b(θi,fj)c(θ
k
,f

l
)] = O (3) 

This model fumishes a Rayleigh law as the law of the crest heights. 

3.2 Non Linear Models 

Wave height considered as the crest-trough amplitude (and this definition could be 
extended to other parameters, e.g. crest-trough pressure, crest-trough velocity as soon 
as kinematics is studied under the mean water level) are influenced by the steepness 
nonlinearity at one higher order of magnitude than the crest or trough amplitudes. This 
explain the good fitting and quality of models of wave heights based on the linear 
assumption. 

But more complicated models have to be considered to take into account the 
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strong effect of the nonlinearities on the crest amplitudes (or other amplitude of the 
kinematics), e.g. the hybrid model (Zhang [ 15]), the Creamer-transformation (Creamer 
[1]) or the Stokes 5th order correction (Dawson [2]). But as an intermediate way, 
which take into account the wave spreading, irregular 2nd order 3D models have been 
extensively used and validated for the last years. 

3.3 Stokes 2nd Order Based Models 

2nd Order Directional - 3D Wave Model. The 2nd order Stokes expansion based on 
the linear part (Eq. 1) is 

where -c
η2

 is a constant to ensure that E[η
2
(t)] = 0. Moreover, the two second 

order transfer functions TS and TD of course depend of the water depth. Their 
expressions are given in appendix 1. 

2nd Order Uni-Directional - 2D. If now we consider a uni-directional wave train in 
which all the components propagate in the same direction, we obtain, of course, the 
same linear part of the elevation 

but a different second order part in applying Eq. 5 with a(d, f) = a
u
 ( /'), 

ø(θ,f) = ø
u
(f) and θ

i
 = θ

k
 = 0, and calculating T

u
S (fj,fl), Tu

D(f
j
,fl). 

3.4 Crest Height Probability Distribution 

Mainly focussed on the aim to produce simple parametric models corresponding to 
unidirectional or directional sea states and to infmite to intermediate water depths, 
some authors proposed and fitted crest height probability distribution models based on 
perturbations of the laws of the linear case. Some used measurements, others the 
Stokes 2nd order irregular waves models. 
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Jahns and Wheeler. This model is based on a nonlinear transformation of a Rayleigh 
law, where the transformation is dependent of the crest height normalized by water 
depth (Jahns & Wheeler [5]). This model has been fitted later from measurements 
(Haring & Heideman [4]). It appears clearly wrong in infmite depth where it tends to 
the Rayleigh law. The fitting used wave staff measurements in the Gulf of Mexico and 
Waverider measurements in the North Sea. 

Derived Narrowband Models. Some other models were derived from a narrowband 
model of the 2D second order irregular waves model. This model obtained from Eqs 1 
and 5, in the 2D case, is valid if the spectral density is sufficiently narrow to consider 

the 2nd order transfer functions as constant. In this case, Tf (f
j
,f

l
) ) (resp. 

T
u

S (f
j
,f

l
) ) are considered constant and equal to (f

m
 ), (resp. (f

m
 ) ), with 

where f
m
 a mean frequency to be defined. This gives for the second order part 

If η1(t) is considered as a product of an amplitude and a phase time function, 

η1(t) = A(t) cos(Ω(t)), where the amplitude and instantaneous frequency are slowly 

varying, the unidirectional narrowband second order part becomes 

η(t) = A(t)cos(Ω(t)) + 

The formulas for and are given in appendix 2. If we consider that the 

envelope varies sufficiently slowly, the crest occurs at instant t
c
 when Ω(t

c

) = 0. 

Then the crest height given by the linear part is A(tc), and the crest height at second 

order is 
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which links linear to nonlinear crest heights by a quadratic transformation: 

Tayfun [12], Tung and Huang [14], Kriebel and Dawson (1991) [6], Kriebel and 
Dawson (1993) [12] and Prevosto et al. [9] proposed models based on such a non-
linear quadratic relation: 

and on the Rayleigh law for the distribution of the linear crests: 

So, in a classical way, the distribution of the nonlinear crests is obtained by 
applying the inverse nonlinear transformation. 

The only solution of the inverse transformation is 

givmg 

The differences between the parametric models proposed by a number of authors 
come from different choices of α(f

m
;h) and β, and different approximations of 

Q-1 (C). All the previous authors apart Prevosto et al. [9] take () equal to zero and 
coefficient of the transformation from second order regular Stokes wave. But 
unfortunately in finite water depth the irregular narrowband models do not tend to the 
regular model (due to the difference terms), making the Kriebel and Dawson finite 
depth model not an exact one (Compare Eq. 20 to the sum of Eq. 36 and Eq. 37). 
Tung and Huang [14] made an error by taking into account in infinite water depth a 
low frequency part which in fact does not exist (Eq. 36). 
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Kriebel and Dawson. The Kriebel and Dawson model is based on the second order 
regular Stokes wave model in infinite or finite depth, giving 

}* <- r. = 0.95F, 

Kriebel and Dawson approximated the inverse transformation Q-1 (C), first [6] at 

second order and later [7] with a corrected third order expansion. This induces a 
problem in the crest distribution when the steepness is strong. These simplifications 
are not necessary as we know an analytic form of the inverse transformation (Eq. 16). 

In infmite depth the exact Kriebel and Dawson model and the Tayfun model are 
the same. A difference could exist, which comes from the defmition of T

m
 (Eq. 19). 

The same technique is used in (Dawson [2]) with a 5th order regular expansion. 
These models, though based in their principle on narrowband assumptions, do not use 
an exact narrowband Stokes expansion. This induces errors in the models, apart in 
infinite depth where harmonic and narrowband expansion are the same. 

3.5 New Models 

Two new models have been recently proposed and take into account the 3D structure 
of the waves. 

Forristall Model. It is based on a perturbated Weibull law with the two parameters 
written as steepness and Ursell number polynomials (Forristall [3]). Starting from 
simulations based on a synthetic directional spectrum data base and different water 
depths, two different sets of coefficients of the polynomials were fitted from 2D and 
3D simulations. 
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with a = α1 + α2S1 + α3U
r

, β = β1 - β2S1 - β3U
r
 + β4Ur

 , (23) 

where, S1 = is the steepness and U
r
 is the Ursell number. 

The fit on 2D simulations gave 

a = + 0.2892S
1
 + 0.1060U

r

, β = 2-2.1597S
1
 +0.968U

r

2. (24) 
v8 

The fit on 3D simulations gave 

+ 0.25685, +0.08006U
r

, β = 2-1.7912S
1
 - 0.5302U

r

 +0.968U
r

2. (25) 

The advantage of this model is its simplicity, but it does not take into account vari-
ations in the directional spreading. 

Prevosto Model. It is based on a nonlinear transformation of a Rayleigh law, where 
the transformation is based on the narrowband Stokes expansion (Prevosto [10]). The 
two parameters Hs and mean wavenumber are perturbed to take into account the 
spectral bandwidth, the directional spreading and the water depth in Eqs 12-14. It has 
a unique expression in 2D and 3D case. 

Hs = α
Hs
 ,...f

m
=αfm . (26) 

In looking at different directional spectrum climatologies and different water 
depths, the αH and αfm formulations have been determined from simulations and 

theoretical considerations to be: 

where s is the power of the equivalent cos2s directional distribution at the peak fre-
quency, and 

The formulation of αHs has been chosen to take into account the fact that the effect of 

the directional spreading on the crest heights is opposite in deep and shallow water 
(see [8]). This model has the advantage of furnishing a unique expression both the 2D 
and 3D cases, and so can be adapted to all intermediate situations. 
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3.6 Comparison of the Models 

These models have been compared to the empirical distribution of crest heights 
calculated from 1000 hours of simulations (3D second order irregular waves model) 
of a sea-state with parameters (Hs=5m, T02=7s, s=11). Three different water depths 
have been used (1000m, 30m, 20m). It is clear that in all the cases (Figs. 2-4), 
Forristall and Prevosto models give very good results. In the deep water case the 
Haring (Jahns and Wheeler) model is close to Rayleigh and in shallow water the 
Kriebel models are not at all accurate. 

Probability of Exceedance 

Fig. 2. Water depth 1000 meters [See also Appendix CP] 

Probabilitv of Exceedance 

Fig. 3. Water depth 30 meters [See also Appendix CP] 



68 

-6 

Probability of Exceedance 

Fig. 4. Water depth 20 meters [See also Appendix CP] 

4 Validity of the 2nd Order Models in Extreme Situations 

The use of 2nd order models has the advantage to work with simple wave models. If 
these models are used to calculate design crest heights, their validity has to be proved 
before using such extreme values. 

The biggest crest encountered during the 1000 hours (Fig. 5, red curve), in the 
1000 meters water depth case, has a wave height of 12 meters, a crest height of 7.4 
meters (1.5 times the Hs), a wave period of 8.5 sec and a crest duration of 4 sec. This 
wave has a crest shape very close to the breaking limit. In this case the difference 
between the 2D and 3D models is very small compared to the modification of the 
shape of the wave due to the 2nd order nonlinearity. If now we consider an harmonic 
wave with a 5th order expansion giving the same crest height, wave height and crest 
duration (Fig. 6) we observe that the 2nd order expansion for this very extreme wave 
is not so far from the higher expansion and that the main improvement in the model is 
from linear to second order. This, of course, does not validate the distributions based 
on the 2nd order irregular waves models, but shows that accurate distribution models 
like the two Forristall and Prevosto models permits in a first step to greatly improve 
the tools for the design of offshore stmctures. 

A 3D view of this biggest crest is given in Fig. 7, which shows the complexity of 
the shape and of the slopes of such a wave and so the difficulties to define it as a 
dangerous or not dangerous wave. 
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Fig. 5. The biggest crest [See also Appendix CP] 

5 Conclusion 

As an alternative to the actual waves observation, the use of the spectral information 
combined with models of irregular gravity waves has permitted to supply the 
engineers with new better accurate distributions of wave crests. These distributions 
have been fitted starting from 3D second order irregular waves models. If partly 
validated for the crest heights, this methodology will not be enough accurate for other 
parameters of the crest kinematics which ask for higher order expansion. Moreover, 
the introduction of breaking, local wind and current will introduce certainly 
modifications in the probability of occurrence of extreme kinematics. But at the 
moment, to take into account in the irregular wave models local wind and current is a 
big issue not yet solved, which will be the next step for the improvement of the design 
tools and to progress in the maritime risk assessment. 
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Appendix 1: Second Order Transfer Functions: 
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with h the water depth and 

D(kdi,ω,kd
k
 ,-ω ) = 0 (33) 



72 

Appendix 2: Narrow-Band Non Linear Transfer Coefficients 

In the formulas below, K = kmh is the dimensionless water depth, with km a mean 
wavenumber, where 

(2πf
m

)2 = gk
m
 tanh (k

m

h) (34) 

The expressions for vertical displacement, Eulerian (fixed point) measurements 
are, in finite or infinite water depth (see [9] for more formulas): 

T
nb

D (f
m

) = c
diff

 (κ)k
m
,..., (κ) = c

sum

 (κ)k
m
 (35) 

with 

and 

where 

Π (K) = tanh K + κ(1-(tanhκ)2) Π(∞) = l (38) 
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Abstract. Under the assumptions of incompressibility and irrotationality, the 
problem of evolution of water waves over a variable bathymetry region admits 
of at least two different variational formulations. A Hamiltonian one, proposed 
by Petrov (1964) and exploited further by Zakharov (1968), and an 
unconstrained one, proposed by Luke (1967). The present development is 
based on Luke's variational principle, in which the admissible fields are free of 
essential conditions, except for smoothness and completeness prerequisites. A 
complete local-mode series expansion of the wave potential is constructed, 
which represents exactly the vertical structure of the wave field. This series 
contains the usual propagating and evanescent modes, plus two additional 
modes, called the free-surface mode and the sloping-bottom mode, introduced 
in order to consistently treat the non-vertical end-conditions at the free-surface 
and the bottom boundaries, respectively. Using this expansion, in conjunction 
with the variational principle, the original problem is reformulated as a non-
linear coupled-mode system of second-order differential equations in the 
propagation (horizontal) space, fully accounting for the effects of non-linearity 
and dispersion. The main features of this approach are: (i) Various standard 
models of water-wave propagation are recovered by appropriate simplifications 
of the coupled-mode system. Among them are included the mild-slope 
equation(s), the second-order Stokes solutions, and the Boussinesq equation. 
(ii) In all cases examined, a small number of modes (up to 5 or 7) are enough 
for the precise numerical solution, provided that the two new modes (the ffee-
surface and the sloping-bottom ones) are included in the local-mode series. 

1 Introduction 

The interaction of water waves with an uneven bottom topography requires, in 
principle, the solution of a complicated, nonlinear, free-boundary value problem. A 
well-known speciftc feature of this problem is that the propagation space does not 
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coincide with the physical space. While the latter is the whole liquid domain (an 
irregularly shaped horizontal strip, in the case of a shallow-sea environment), the 
former is only the horizontal plane. 

Direct numerical solutions of this problem are possible with or without the 
consideration of viscous effects. The numerical treatment in the framework of Navier-
Stokes equations has recently become possible (see, e.g., [7]), being, however, 
extremely demanding computationally. Usually, the problem is treated in the 
ffamework of potential flow [23], Even under the latter assumption, the complete 
numerical solution to the non-linear ffee-surface problem exhibits great difficulties. 
Several time-domain numerical methods have been developed by various authors. 
See, e.g., [11], [24], [19], and the survey by Tsai and Yue [23]. In order to improve 
efficiency, Wang et al. [25] proposed a multi-subdomain approach, and Kennedy and 
Fenton [8] introduced a local polynomial approximation, satisfying the Laplace 
equation within each subdomain. Still, however, considerable computer requirements 
limit the use of the above fully non-linear models in practical applications. 

On the other hand, there is a vast literature of simplified model wave equations, 
mainly based on the assumptions of weak free-surface non-linearity and slowly 
varying bathymetry. These model equations have more conventional form, permitting 
the development of relevant theoretical results, and they are more efficient 
computationally, within the range of their applicability. For example, combining 
appropriate asymptotic treatment with depth integration, a class of Boussinesq-type 
models is derived, accounting for the effects of weak non-linearity and weak 
dispersion for shallow water waves. Improved versions of these models with 
enhanced dispersion characteristics, extending the range of applicability to larger 
depths and/or variable bathymetry, have been reported by many authors; see, e.g., 
[13], [18], [10], [9], and the references cited therein. In general, however, these 
models cannot be relied on as the depth increases, or the bathymetry is not slowly 
varying. Another important example is a class of models that can be considered as 
weakly non-linear generalizations of the mild-slope equation, e.g., the models 
developed by Beji and Nadaoka [3], [17], and Tang and Ouellet [22]. These models 
can describe combined refraction-diffraction of weakly non-linear water waves, but 
still suffer from the assumption of slowly varying bathymetries. 

Our main concem herewith is to develop a non-linear theory for the case of a 
smooth, generally shaped bathymetry, without imposing any mild-slope type 
assumptions neither on the free-surface nor on the bottom boundary. Under the 
assumptions of incompressibility and irrotationality, the problem of evolution of 
water waves over a variable bathymetry region admits of at least two different 
variational formulations: A Hamiltonian one, constrained on the below-the-surface 
kinematics proposed by Petrov in 1964 [20] and further developed by Zakharov [27] 
and his associates; and an unconstrained one, proposed by Luke in 1967, [12]. See 
also [26] and [14], The present development is based on Luke's variational principle, 
in which the admissible fields are free of essential conditions, except, of course, for 
the smoothness and completeness (compatibility) prerequisites. The vertical stmcture 



75 

of the wave field is exactly represented by means of a local-mode series expansion of 

the wave potential. This series contains the usual propagating and evanescent modes, 

plus two additional modes, called the free-surface mode and the sloping-bottom mode, 
introduced in order to consistently treat the non-vertical end-conditions at the free-

surface and the bottom boundaries, respectively. A similar technique has been 
successfully applied to the solution of the linearised, [1,2], and the second-order, [4], 

problems, over variable bathymetry regions, in the frequency domain. 
Using the local-mode expansion, in conjunction with the variational principle, the 

original problem is reformulated as an infinite, non-linear, coupled-mode system of 
second-order differential equations in the propagation (horizontal) space, fully 
accounting for the effects of non-linearity and dispersion. Various simplified 
equations, like Boussinesq-type models, in shallow water depth, and non-linear mild-
slope models, in intermediate depth, can be obtained as limiting forms. 

Numerical solutions are presented for the linearised and the second-order coupled-

mode system, as a first step towards the numerical treatment of the fully nonlinear 

problem. The discrete equations are obtained by truncating the local-mode series into 
a finite number of terms, and by using finite differences for the discretisation of the 

equations on the horizontal plane. Results for the case of a smooth underwater 

shoaling with a steep bottom slope, show that the rate of decay of the modal-
amplitude functions with respect to the mode number is very fast. This means that a 

small number of modes (up to 5 or 7) are sufficient to accurately calculate the 
potential field and its spatial derivatives throughout the liquid domain, justifying the 
inclusion of the two additional modes into the expansion. 

2 Variational Formulation of the Problem 

Under the assumptions of incompressibility and irrotationality, the problem of 
evolution of water waves, propagating over a variable bathymetry region, can be 
reformulated as a variational equation by means of Luke's variational principle [12]. 
The admissible fields are free of essential conditions, except, of course, for the 
smoothness and completeness (compatibility) prerequisites. All the analysis presented 

in this work can be generalized to N +1 spatial dimensions, in short (N + 1)D, 

where (N + 1)D = ND^™P°8allon^+\D^c

s

r°™^ ■ Cf. Friedman and Shinbrot [5,6], 

For simplicity, in the sequel, we shall restrict ourselves to the (1 + 1)D case. 

Luke's functional, modeling the homogeneous, nonlinear, water-wave problem, 

reads as follows: 
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where x is the horizontal and z is the vertical (positive upwards) co-ordinates, 
Φ = Φ(x,z,t) is the velocity potential, and η = η(x,t) is the free surface elevation. If 
there is an applied pressure distribution p{x,t) on the free surface, and a prescribed 
(outward) normal velocity υ

n
(x,t) on the bottom surface, then we have to add to 

Luke's functional (1) the following, forcing-implied functional 

where P - p / p , and U = υ
n
 ̂ \ + {dh/ ∂x)

2
 . The non-homogeneous, nonlinear, 

water-wave problem is then modeled by requiring the stationarity of the functional 

[Φ,η] = 
Luke

 [ Φ,η] + forc. [Φ,η] . (3) 

More precisely, the variational equation 

models the water-wave kinematics, while the variational equation, 

models the water-wave dynamics (Bemoulli's integral). We shall now proceed with 
the constmction of a complete, local-mode representation of the wave potential, 
which, in conjunction with the variational equations (4) and (5) can provide us with a 
coupled-mode system of differential equations with respect to the unknown modal 
amplitudes and the unknown free-surface elevation. 
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3 Local-mode Representation of the Wave Potential 

Consider a generally-shaped (non-uniform) strip D , extending to infmity in both 
directions x →±∞, and bounded by the graphs of the functions z = ("lower" 

boundary, sea bed), and z = η(x,t) ("upper" boundary, sea surface): 

D = D[h,η] = {(x,z) :-∞ < x <+∞, -h(x) < z < η(x,t)}. (1) 

See Fig. 1. The functions h{x) and η(x,t) are assumed to be continuously 

differentiable with respect to x. The free-surface elevation t]{x,t) is also 

continuously differentiable with respect to time t, ranging either over the half-line 
t≥t0, or over the whole / -axis. The functions h and // satisfy the inequality 

—h{x) < t]{x,t), for all xe R and all t e I, which ensures the connectedness of 

the set D . 
Let Φ(x,z;t) be a function defined on D x I, which, for each t e I, is two times 

continuously differentiable in D, with continuous first derivatives up to and 
including the boundary of D . Moreover, 0{x,z;t) is continuously differentiable 

with respect to t  I, for (x,z) e D. We now state (without proof) the following: 

Fig. 1. Water waves propagating over a generally-shaped (non-uniform) strip D . 
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Theorem 1 [Modal expansion of a smooth function in a non-uniform strip] : Any 

fiinction Φ(x,z;t)  C2 (DxI)C1 (DxI) admits of the following, uniformly 

convergent, series expansion: 

where 

is called the free-surface mode, 

is called the sloping-bottom mode, and 

The z -independent quantities k
n
 = k

n
 (h,η), n = 0,1,2..., appearing in Eqs. (3c,d), are 

defined as the roots of the transcendental equations 

µ
0
-k

0
·tanh[k

0
(h + η)] = 0, µ

0
 +k„·tan[k

n
 (h + η)] = 0 , n = 1,2,3,... , (4) 

where µ0, h0 > 0 are positive constants, not subjected to any a priori restrictions. 

If, in addition, the depth function h(·) e C1 ( R ) and the free-surface elevation 

η(•,•) e C1 ( x I), then, series (2) can be differentiated term-by-term with respect 

to x, z , and t, leading to series expansions for the corresponding derivatives. 
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4 The Coupled-mode System 

4.1 The Nonlinear Coupled-mode System 

The series expansion (3.2) permits us to obtain series representations for the variation 
50 of the wave potential O , with respect to the modal amplitudes φ

n
 and the ffee 

surface elevation η. The general form of the total variation of O is 

Since Z
n
 = Z

n
 (z;h, η) is independent of φ

n
, we have, in general, 

δZ
n

(z;h,η) = W
n
(z;h,η)δη, (1b) 

where W
n
 (z; h,η) = δZ

n
 (z;h, η)/δη. Especially on the ffee surface, the vertical 

modes Z
n
 = Z

n
(z = //;h,η) take the constant value 1. Thus, δZ

n
 = 0, on the free 

surface. Furthermore, the series expansions of the partial derivatives of Φ(x,z;t), 

permit us to obtain modal series expansions for all expressions appearing in the right-
hand side of Eqs. (2.4,5). Introducing the above series expansions in the variational 

equation δ  [Φ,η] = 0, and using standard arguments of the calculus of 

variations, we eventually arrive at the following: 

Theorem 2 [The nonlinear coupled-mode system]: Under the additional assumption 
that φ

n
(x;t) are twice continuously differentiable with respect to x, the problem 

(2.4,5) is equivalent with the following coupled-mode system 
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The matrix-coefficients A
mn

 (η), B
mn

 (η), C
mn

 (//), appearing in Eq. (2a), are expres-

sed in terms of the local vertical modes {Z
n

}n=-2-1,0,1 and their derivatives, as 

where The matrix-coefficients a
mn

 (η), b
mn

 (η), c
mn

 (//), 

appearing in Eq. (2b), are 

The above coupled-mode system, Eqs. (2a,b), has been obtained without any 
simplifications conceming either the nonlinearity or the vertical stmcture of the wave 
potential. Thus, the coupled-mode system is equivalent with the initial (complete) 
formulation, Eqs. (2.4,5), and fully accounts for non-linearity and dispersion. 
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4.2 Comparison with Other Wave Theories 

Various wave theories can be obtained by combining simplifications of the nonlinear 
equations expressing the physics of the problem, Eqs. (2.4,5), with simplifications of 
the vertical structure of the wave potential. Various simplifications introduced in the 
equations (such as linearisation or quadratisation), in conjunction with simplifi-
cations introduced in the vertical structure of the wave potential (mean-domain 
vertical modes or polynomial expansion), lead to various well-known simplified wave 
models. 

A distinctive feature of the present theory is that no simplifications have been 
introduced for the construction of the nonlinear coupled-mode system. Thus, in 
principle, all simplified water-wave theories (wave models) are expected to be 
obtained as appropriate limiting forms of the coupled-mode system, Eqs. (2). For 
example, keeping only the propagating mode Z0 (z) in the vertical representation and 

linearising the coupled-mode equations, the classical mild-slope model, Smith and 
Sprinks [21], is obtained. If the evanescent modes Z

n
 (z),w = l,2,..., are also 

included, the extended mild-slope model, Massel [15], is obtained. If we keep only the 
two polynomial vertical modes Z

- 2

(z), Z
- 1

(z), Eqs. (3.3a,b), in the vertical 

structure of the wave potential, and retain up to second-order nonlinear terms in the 
coupled-mode system, the standard Boussinesq models, [14,16], are obtained. 
However, except of rederiving standard wave models, new enhanced ones can be 
constructed that include: (i) full dispersion and variable bathymetry effects, and (ii) 
better treatment of the ffee-surface nonlinearity. Some first examples of the latter 
category will be briefly presented in the following (sub)sections. 

4.3 The Linearised Coupled-mode System 

The linearisation of the above coupled-mode system is obtained by suppressing the 
explicit and implicit non-linearities appearing in Eqs (2), (3) and (4). In this case, the 
above system reduces to 

The coefficients À
mn

, B
mn

, C
mn

 of the linearised system, appearing in Eq. (5a), are 
independent from the free-surface elevation η. They are expressed in terms of the 
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local vertical modes {Z
n

}n=-2,-1,0,1..., defined on the vertical interval -h(x)≤z≤0. 

The detailed functional form of {Zn}n=-2,-1,0,1..., is given by Eqs. (3.3), setting 

= 0. The specific expressions of the coefficients A
mn,

 B
mn

, C
mn

 are as follows 

where h = h(x) is the local depth. That is, the coefficients A
mn,

 B
mn

,C
mn

, are 

dependent on the horizontal coordinate x, through the local depth function h(x). By 

differentiating Eq. (5b) with respect to time it is possible to eliminate the unknown 
free surface elevation η(x,t) from Eqs. (5), and obtain the following linearised 

coupled-mode system of differential equations with respect to the modal amplitudes 
φ
n
(x,t), n = -2,-1,0,1,..., alone: 

Two crucial questions concerning the theoretical value and practical effectiveness 
of the linearised coupled-mode system (LCMS), Eq. (7), (and thus, of the whole 
analysis presented herewith) are the following: 

Q1: How many terms out of the infinite series expansion are enough for a satisfactory 
solution, or, altematively, how fast does the infinite local-mode series converge? 

Q2: How important are the two newly introduced modes, φ-2 (x;t) and φ-1 (x;t) , 

in comparison with the other ones? 
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Although no rigorous mathematical results conceming the above questions are yet 
available, the extensive numerical experience of the authors suggests the following 
answers: 

A1: A small number of modes, e.g., 5 to 7, are enough for numerical convergence, 
even in cases of very steep bathymetry. In fact, numerical results suggest that the 
following estimate should hold tme 

A2: The first three modes in the series, i.e., the newly introduced ones φ
-2

 (x;t) and 

φ-1
 (x;t), and the propagating mode φ

0
 (x;t), are the most important terms in the 

series expansion, being one order of magnitude higher than the other modes 
φ
n
(x;t) n = 1,2,3,.... 

5 Applications to the Frequency Domain 

5.1 The Time-Harmonic Case 

Let us consider first the time-harmonic case, and seek for solutions of the form 

where Ω is a given angular wave frequency, φ
m

(x,ω) = φ
m

(x) is the frequency-

domain complex-valued modal amplitudes, and j = -1 . Differentiating (1 ) twice 
with respect to time and substituting to Eq. (4.7), the linearised coupled-mode system 
reduces to the equation 

/ 

If we select the parameter µ0 (of the vertical eigenproblem) to be the wave frequency 

parameter µ0 = ω2 / g, then, the free-surface mode φ
- 2

(x,t) becomes identically 
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zero, i.e., φ
- 2

 (x,t) = 0 . Thus, the first row and the first column of the system (4.7) 
are eliminated. Furthermore, because of the normalization of the vertical 
eigenfunctions, the last term in the right-hand side of Eq. (4.6c) becomes: 

Taking into account all the above equations it can be easily seen that the system 
(2) reduces exactly to the corresponding frequency-domain coupled-mode system 
presented and studied in [ 1 ]. 

5.2 Second-Order Theories 

Second-order versions of the nonlinear coupled-mode system in the frequency domain 
can be obtained by introducing the following expansion for the amplitudes of the 
modes φ

m
 (x;t), m=-2,-1,0,... and for the free-surface elevation η(x;t) : 

η(x;t) = Re{ε η(1) (ω;t)exp(-iωt) +ε2(η(20) (ω;t) + η(22) (ω;t)exp(-2iωt)) +...}, , (6) 

where e is the usual non-linearity parameter (wave steepness). Substituting Eqs. (5) 
and (6) in the non-linear CMS (4.2) we obtain, at the first ordcr, the linearised system 
in frequency domain, given by Eq. (2), and at the second-order the corresponding 

coupled-mode systems conceming the steady problem, for {φ
m

(20),η(20)}, and the 

double-frequency problem, for {φm

(22)
,η
(22)

}, respectively. The extension of Stokes 

theory to variable bathymetry by means of the coupled-mode system in the ffequency 
domain has been studied in detail in [4]. Very satisfactory numerical results have been 
obtained by using only 6 modes {m = -2,-1,0,1,2,3) in the representation. In Fig. 2 
results obtained by the second-order CMS, shown by using crosses, are compared 
with the standard Stokes theory in constant depth. The comparison concems the 

φ
m

 (x;t) = Re{εφ
m

(1) {co;t)exp{-icot) + 
(5) 

+ ε2(φ
m

(20) (ω;t) +φ
m
(22)(ω;t)exp(-2iωt))+ 
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Fig. 2. Comparison of the amplitude of the second-order free-surface elevation and wave 
potential as obtained by means of the second-order CMS and the standard Stokes theory in 
constant depth. 

second-order double-frequency free-surface elevation and the wave potential at the 
free surface, for values of the shallowness parameter µh ranging from very shallow to 
practically deep water. 

6 Application to the Time Domain 

6.1 Dispersion Characteristics of the Linearised Coupled-mode System 

If we restrict ourselves to the constant-depth case, then the sloping-bottom mode 
φ-1 , (x,t) becomes identically zero, and the coefficient B

mn
 =0. Thus, the time-

domain linearised CMS (4.7) takes the form 



86 

In order to investigate the dispersion characteristics of this coupled-mode system, 
we have to examine if it admits of simple harmonic solutions of the form 

and, to fmd out the functional dependence (in non-dimensional form) of the quantity 
C / gh = (kh), where C is the phase speed of this harmonic solution, and h is 
the constant depth considered. Recall that, in the case under examination, the exact 
form of the dispersion relation is C / gh = (kh) = tanh(kh)/kh . Thus, the 

question is how good the system (1), when applied in the frequency domain, can 
reproduce the exact dispersion relation. Clearly, the dispersion characteristics of the 
coupled-mode system are dependent on the choice of µ0 and also are affected by the 
truncation of the infmite system. To emphasize this fact, we write 

(kh) = [kh;Μ0,M). . 

By introducing the representation (2) to the linearised CMS (1) we obtain the 
algebraic system 

Nontrivial solutions of the latter are obtained by requiring its determinant to 
vanish, which can be then used for calculating (kh) and comparing with the 

analytical result (kh). Fig. 3 presents such a comparison, for µ0h = 0.25, and 
various truncations of the infmite system. It is clearly shown that the inclusion of the 
free-surface mode in- the representation dramatically improves the convergence to the 
exact solution. That is, if we include the propagating mode the free-surface mode and 
a small number (1 to 3) of evanescent modes, the dispersion curve (kh) is in fïne 
agreement with the exact one. Thus, a few modes ( ≈ 6 ) are sufficient for modelling 
fully dispersive waves in variable bathymetry regions, without any mild-slope 
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Fig. 3. Dispersion characteristics of the coupled mode system for µ0h = 0.25 , using the 
representation (3.2) without (dash-dot iines) and with (dashed lines) the free-surface mode. 

assumptions. Let it be noted that this finding is compatible with the requirements 
concerning the convergence of the wave field at the bottom boundary, after the 
introduction of the sloping-bottom mode, for bottom slopes up to and above 100%! 

6.2 Numerical Solution of the Linear Problem 

As an example, we consider an environment characterised by the (monotonically 
varying) depth function shown in Fig. 4, which represents a smooth, but locally very 
steep, underwater shoaling (region 2), joining a water layer of 6m depth (region 1) 
with a shallower water layer of 2m depth (region 3). This bathymetry has also been 
studied in [1] in connection with the application of the linearised coupled-mode 
system in the frequency domain. The maximum bottom slope of the above shoaling is 
95% and the mean bottom slope is 20%. Numerical results for this bottom geometry, 
and for an incident monochromatic wave of period T= 3.14sec are presented in Fig. 4, 
at various instants. 
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Fig. 4. Application of the linearised coupled-mode system to a smooth, but very steep 
shoaling. The continuous lines show the free surface elevation obtained by the direct numerical 
solution of the CMS (4.7) in the time domain, starting from rest, with harmonic forcing. In the 
last plot the crosses indicate the results obtained by the linearised CMS in the frequency-
domain, Eq. (5.2). 

In the examined case both shallowness ratios h
1
 /λ

1
 = 0.394 and h

3
 /λ

3
 =0.167 

fall well outside the limits of the deep or the shallow water theory. A total number of 
6 modes have been retained in the local-mode representation (3.2) and the coupled-
mode system has been discretised using finite differences. Starting from rest, the 
calculated wave after about 12 periods (t=12T), has fully converged to the harmonic 
solution [1], shown in the last plot by using crosses. In all cases examined the rate of 
decay of modal amplitudes φ

n
 in variable bathymetry regions is found (numerically) 

to exhibit a very rapid decay max |φ
n

| = O(n-4), fully justifying the inclusion of the 

two additional modes (the free-surface mode and the sloping-bottom mode) into the 
expansion. It is interesting to note that similar calculations without the two additional 
modes, i.e., keeping only the modes φ

0
,φ1,...,φM, have shown that, in this case, 

max|φ
n

| = O(n- 2 ). Thus, the additional modes make the convergence of the series 
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much faster, probably by summing the slowly convergent parts of the infmite series 
representation of the sought-for solution. 

6.3 Applications to Nonlinear Problems 

A direct numerical solution of the general nonlinear system (4.2) has not been tried 
yet. As a first step towards understanding the behaviour of this system, a weakly non-
linear (second-order) time-domain variant, in variable bathymetry, has been 
constructed and studied. Numerical results and details will be presented elsewhere. 

7 Conclusion 

In the present work we consider the problem of non-linear gravity waves propagating 
over a general bathymetry. A complete local-mode series expansion of the wave 
potential has been developed and used, in conjunction with Luke's variational 
principle, to reformulate the original problem is as an infmite, coupled-mode system 
of equations in the propagation (horizontal) space. The present local-mode expansion 
represents exactly the vertical structure of the wave field. The series contains the 
usual propagating and evanescent modes, modelling the intemal kinematics, plus two 
additional modes, the free-surface mode and the sloping-bottom mode, introduced in 
order to consistently treat the non-vertical end-conditions at the free-surface and the 
bottom boundaries, which model the boundary kinematics. The resulting coupled-
mode system fully accounts for the effects of non-linearity and dispersion, in 
intermediate and shallow water depth. 
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Abstract. Interactions among free waves result in bound waves, which may 
significant affect resultant wave properties in a steep ocean wave field. Since 
the measurements actually record the resultant properties, the presence of 
bound waves makes it inaccurate to analyze the measurements of steep ocean 
waves based on linear spectral methods. To overcome this difficulty, Hybrid 
Wave Models (HWM) developed recently, separate bound waves from free 
waves in the decomposition of an irregular wave field as well as the prediction 
of its resultant properties. To ensure the convergence, the HWMs selectively 
use the conventional and phase modulation approaches to address the nonlinear 
interactions between free waves of different frequency ratios. The models are 
able to decompose a wave field accurately and hence can predict the wave 
properties accurately and deterministically based on the time-series 
measurements. Examples of their applications to the analyses of laboratory and 
field measurements are given to demonstrate the usefulness of HWMs. 

1 Introduction 

An ocean wave field consists of free (or linear) and bound waves. Free waves obey 
the dispersion relation. Due to the nonlinear nature of surface water waves, free waves 
interact among themselves and result in bound waves that do not obey the dispersion 
relation. Linear spectral methods assume ocean waves as a superposition of many ffee 
(or linear) waves. In applying them to the estimate of irregular wave properties based 
on measurements, bound waves are approximated as free waves of the same 
frequency in the decomposition of a measured wave field and then nonlinear 
interactions among free waves are ignored in the calculation of wave properties. 
When ocean waves are not steep, free waves are dominant in almost entire frequency 
range and a linear spectral method may offer a fairly good approximation. When they 
are steep, free waves near the spectral peak frequency still remain dominant but 
bound waves become dominant or comparable to free waves in the frequency ranges 
either much lower or higher than the peak frequency [21]. lt is known that the 
relationship between the elevation and potential amplitudes of a free wave is quite 
different from that of a bound wave of the same frequency. The approximation of 
bound waves in linear spectral methods may result in large discrepancies. 

Existing high-order nonlinear methods may accurately quantify high-order 
nonlinear effects based on free waves (e.g., [17], [3]). However, they do not address 
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the first approximation made in linear wave spectral methods, that is, to separate 
bound waves from free waves based on measurements. In reality, the records of a 
wave field are always related to resultant wave properties, that is, the superposition of 
free and bound waves. Hence, free waves of a wave field are usually unknown when 
the measurements are given. For accurate analysis of measurements, nonlinear wave 
effects have to be considered in the decomposition of a wave field into free waves. 
The focus of this paper is on wave models allowing for nonlinear wave interactions in 
the decomposition of ocean waves and their applications. 

Before a measured wave field is decomposed into its free waves, the effects 
contributed from bound waves must be calculated and then subtracted from the 
corresponding measurements. However, in order to compute bound waves, free waves 
need to be known. Therefore, the process of decomposition is achieved through 
iterative processes and the convergence of the iteration is critical. When ocean waves 
are steep and of a broad-banded spectrum, the interactions may occur between ffee 
waves of either close frequencies or quite different frequencies. To ensure the 
truncated solutions are convergent, both conventional and phase modulation 
approaches are employed to derive the solutions for bound waves [21]. Since the 
wave models are based on two different perturbation approaches, they are named as 
Hybrid Wave Models (HWM). Once the ffee waves are known, the resultant wave 
properties in the vicinity of the measurements can be obtained as the superposition of 
free and bound waves. The most important nonlinear effects of wave-wave 
interactions are of second order in wave steepness. The HWMs are accurate up to 
second order at least. Their extension to include third-order nonlinear effects can be 
made although it is not trivial. 

2 Numerical Scheme of HWIM 

A HWM was initially developed for unidirectional irregular waves. The water depth 
is assumed to be uniform and intermediate to free waves nearby the spectral peak 
ffequency and deep to the free waves of frequencies significantly higher than the 
spectral peak frequency. The solutions for the interaction between two free waves 
were derived in deep water using both conventional and phase modulation 
perturbation approaches [20] and later extended to allow for water of intermediate 
depth [2], These studies showed that the solutions obtained using the two different 
approaches are identical if the frequencies of the two interacting ffee waves are close. 
If their frequencies are quite different, the solution obtained using the conventional 
approach may diverge while that of the phase modulation approach remains 
convergent. Therefore, in an irregular wave field consisting of many free waves, the 
HWM calculates the interactions between free waves of close frequencies using the 
conventional solution and those between ffee waves of quite different frequencies 
using the phase modulation solution. The related formulations were given in [21 ] and 
are omitted here for brevity. 

Nonlinear wave-wave interactions may become significant when both interacting 
free waves are of large wave steepness. To simplify the computation, only 
interactions of significant effects are considered. For the purpose of applying 
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conventional and phase modulation approaches, a spectrum is divided into three 
regions: a very-low frequency region, a "powerful" region including all relatively 
large-amplitude free waves, and a high-frequency (tail) region, as sketched in Fig. 1. 
By the definition, free waves located in both very-low frequency and tail regions have 
relatively small amplitudes (or steepnesses), and any interactions involving one of 
these components are not significant and hence ignored. The powerful region is 
further divided into three (or more) bands: the long-wave band which usually includes 
the spectral peak, and short-wave bands 1 and 2. The frequencies of free waves within 
the same band are close and the interactions between them are computed using the 
conventional approach. The frequencies of free waves located in different bands are 
usually quite different and the interactions between them are computed using the 
phase modulation approach. It is known that the modulation of a short wave by a long 
wave is much more significant than the influence of the short wave on the long 
wave[20], Therefore, the subtraction of the bound-wave effects from the measured 
wave properties is conducted in the order from low- to high-frequency bands. 

At the beginning of the decomposition, the free-wave amplitude and initial phase 
spectra are approximated by the corresponding resultant wave spectra given based on 
the FFT of measured time-series. Bound waves resulting from the interactions among 
the free waves in the long-wave band are computed using the conventional approach 
and then subtracted from the resultant spectra. The modified spectra are closer to the 
ffee-wave spectra. If the maximum difference in the long-wave band of the two 
modified spectra of consecutive iterations is smaller than a prescribed error tolerance, 
the subtraction of nonlinear effects due to the interaction between the free waves in 
the long-wave band is accomplished and the decomposition of short-wave band 1 
starts. Otherwise the interactions between the long-band free waves are re-computed 
based on the most recent modified spectra and then subtracted from the measured 
spectra.The procedure for the decomposition of the short-wave bands is different from 
that for the long-wave band. The modulation of the short-wave band 1 by the long-
wave band is calculated first using the phase modulation approach and subtracted 
from the modified spectra. The interactions among the free waves of the short-wave 
band 1 are then computed using the conventional approach and subtracted from the 
modified spectra. The step-by-step subtraction of various nonlinear effects makes the 

Fig. 1. Sketch of frequency band division 
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modified spectra closer and closer to the free-wave spectra. The decomposition of the 
short-wave band 2 is similar to that of the band 1. More detailed iterative procedures 
for the decomposition were described in [21], 

Ocean waves are often directional or short-crested. Hence, a directional HWM 
(DHWM) was later developed to allow for wave directionality [22] and [23]. A 
straightforward linear decomposition of a directional sea is to apply two-dimensional 
FFT in wavenumber domain, but it needs numerous simultaneous wave records that 
are usually not available. As an alternative, linear wave theory and a cross-spectrum 
analysis are used to derive a directional frequency-amplitude or energy spectrum. 
Consequently, the initial phases of free waves are not retained. Different from a 
unidirectional wave field, the wave properties of short-crested ocean waves in general 
can not be deterministically recovered even within the scope of linear wave theory. 
That is probably the main reason why previous studies on the measurements of short-
crested waves were dominated by statistical approaches either linear [1] or nonlinear 
[15], [16], [7]. 

To predict wave properties deterministically, the decomposition of a short-crested 
wave field should not only provide the amplitudes and directions of its free waves but 
also their initial phases. In addition, the DHWM also considers the effects of 
nonlinear wave-wave interactions in both decomposition and superposition as in the 
unidirectional HWH (UHWM). The DHWM thus includes three major steps: wave 
direction estimation, initial phase computation, and subtraction of the bound-wave 
effects from the measurements. To achieve relatively fine resolution in wave direction 
using as few as three simultaneous wave records, the estimate of wave energy 
spreading as a function of directional angle is based on data-adaptive methods, such 
as Maximum Likelihood Method (MLM) and Maximum Entropy Method (MEM). 
For deterministic decomposition, no smoothing or averaging is applied to the 
spectrum. According to a directional spectrum, a limited number of directional free 
waves are chosen at each frequency such that their amplitudes and directions conserve 
the total energy and resemble the energy spreading of the spectrum. The initial phases 
of the ffee waves are then determined by minimizing the square of the differences 
between the measurements and the resultant of predicted ffee and bound waves. Once 
the initial phases, amplitudes and directions of free waves are computed, the nonlinear 
interactions between them can be calculated and then subtracted from the 
corresponding measurements. Similar to the decomposition of long-crested irregular 
waves, the subtraction of bound-wave effects from the measurements is accomplished 
through iterative processes. Detailed descriptions were given in [22] and [23]. 

3 Applications 

In typical storm seas, the frequencies of the free waves of significant amplitudes 
range from about 0.04 - 0.20 Hz. The nonlinear interactions among the free waves 
may result in bound waves of a much wider frequency band that may range from 
hundredth to several tenth Hz. Bound waves are in general much smaller in amplitude 
than free waves nearby the spectral peak. Nevertheless, they may be comparable to or 
even greater than free waves in the frequency bands far away from the peak 
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frequency, say from 0.20 to 0.4 Hz and below 0.05 Hz. In most engineering practices, 
the resultant wave properties are dictated by the free waves near the spectral peak. 
That is why linear spectral methods have been widely accepted. However, in certain 
cases, the contributions from waves in very low or relatively high frequency bands 
can be cmcial to the resultant wave properties and structure responses to waves. 
Under these circumstances, distinguishing the bound waves ffom ffee waves in the 
computation is crucial, and the use of the HWMs can provide more accurate 
prediction than linear spectral methods or their improved modifications 

3.1 Kinematics near Wave Crests 

Predicted particle velocity near a steep wave crest based on linear spectral methods is 
significantly exaggerated. Many modifïcations to linear spectral methods, known as 
'stretching' and 'extrapolation' techniques, were made to correct this error [18], [11]. 
Two of the most widely used modifications are Wheeler stretching and linear 
extrapolation methods. Because the modifications are based on empirical assumptions 
rather than sound hydrodynamic principles, they have two major shortcomings. First, 
in the case of extreme steep waves, based on the same measured wave elevation the 
predicted wave kinematics obtained using the two different modification methods can 
differ by more than 50 %, which greatly concerns the users in computing wave loads 
on offshore structures[14]. 

Secondly, the predictions made by either methods show very large discrepancies 
with respect to the corresponding measurements (see Fig. 2). In general, Wheeler 
stretching under-predicts horizontal velocities under wave crests while the linear 
extrapolation over-predicts them. However, relatively far away from the free surface, 
both predictions are close to the measurements [19], [21], [10]. Poor predicted wave 
kinematics obtained using the two modifications is not by accident. The contributions 
to the surface elevation from the free waves near the spectral peak are much greater 
than waves of relatively high ffequencies. However, their respective contributions to 
wave kinematics, especially the acceleration near the ffee surface, may be comparable 
because the velocity induced by a ffee wave is roughly proportional to its frequency 
and the acceleration to the frequency squared. As mentioned before, bound waves are 
significant in the high-frequency band and their contribution to wave kinematics are 
quite different from that of the free waves of the same frequencies. The HWM 
distinguishes bound wave from the corresponding free waves in an irregular wave 
field and computes their contributions to wave kinematics accordingly. That is why 
the HWM is able to predict the kinematics more accurately than the modification 
methods, as demonstrated in Fig. 2. 

3.2 Wave Elevation Predicted Based on Pressure Measurements 

In using pressure transducers to record ocean waves, wave elevation is determined 
based on the measured dynamic pressure using a linear spectral method. Statistical 
analyses have shown that nonlinear effects, especially due to second-order wave 
interactions, are significant at very low frequencies and the frequencies about twice of 
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Fig. 2. Comparison of predicted (-HWM, -— Wheeler stretching, and — ■ — Linear 
extrapolation) and measured (0) horizontal velocities at time 16.58 sec 

the spectral peak [4], [5]. Yet nonlinear effects on measured pressure in the time 
domain and their influence on the accuracy of predicted surface elevation have not 
received enough attention. 
Fig. 3 shows the measured surface elevation of a transient wave train and its dynamic 
pressure recorded about 16 cm below the still water level. Both were measured at the 
same horizontal coordinate. The transient wave train generated in the wave flume at 
the Hydromechanic Laboratory of Texas A&M University was very steep but non-
breaking at the location of measurements [8]. The measured elevation shows larger 
amplitudes at the crest than at the trough, while the corresponding pressure record 
shows larger pressure heads at the trough. At the first glance, the two records seem to 
indicate inconsistent measurements. The seemingly inconsistency between the two 
measurements, however, can be qualitatively explained by the interaction between 
high-frequency and dominant low-frequency ffee waves. Short (high-frequency) 
waves riding on the surface of long (low-frequency) waves may behave quite 
differently from themselves traveling alone. Short waves decrease in wavelength at 
the crests of long waves and increase at the troughs [6], [9]. In addition, as illustrated 
in Fig. 4, the vertical distance between the still water level with respect to short waves 
and the pressure transducer becomes greater at the crest of long waves and smaller at 
the trough. It is well known that the wave-induced dynamic pressure decays 
exponentially with the increase in the vertical distance from the surface. Thus, when 
the height of long waves is of the order of short wavelengths, the measured dynamic 
pressure induced by short waves at the pressure transducer will be much greater at 
long-wave trough than that at its crest. In a transient wave train, the large crests and 
troughs occur when the crests and troughs of short and long waves are in phase. At 
the crests of long waves, the pressure heads induced by short waves are much smaller 
than those at the trough of long waves. That is why the measured pressure heads are 
greater at the troughs than at the crests. 
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Fig. 3. Simultaneously measured surface elevation and pressure head time series. Pressure 
transducer was located 16 cm below the still water level 

In using a linear spectral method, the surface elevation induced by each individual 
wave is computed as if it travels alone on otherwise calm water. As explained before, 
due to the presence of long waves, the dynamic pressure induced by the high-
frequency waves depends on the phase of long waves. Therefore, the neglect of wave 
interactions in linear wave theory results in over-prediction in trough heights and 
under-prediction in crest heights. The comparison between the measured and 
predicted elevation obtained using linear wave theory (Fig. 5) confirms the over-
prediction of trough height and under-prediction of crest height. The total wave height 
is also over-predicted but not as great as the trough height. On the other hand, the 
HWM considers the interactions among free waves and hence provides accurate 
predicted elevation as shown in Fig. 5. In ocean waves, large crests and troughs 
usually occur when waves of different frequencies are in phase. Therefore, the 
conclusion obtained based on the laboratory generated transient wave train is 
applicable to ocean waves in deep and intermediate-depth water. 

Fig. 4. Change in the still water level for a short wave due to the presence of a long wave: (a) 
no long wave, (b) at the crest of a long wave, (c) at the trough of a long wave 

Fig. 5. Surface elevation predictions from pressure transducer measurements at 16 cm below 
the still water level 
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3.3 Decomposition of Directional Waves Based on Pressure Measurements 

Pressure data were collected from an array of six pressure sensors mounted on the 
Texaco's Harvest offshore oil production platform. The pressure sensors were 
approximately 16 meters below the sea surface. The platform is a fixed structure 
located about 10 km west of Pt. Conception of the Califomia coast in a water depth of 
225 m. The location of the platform and local coordinates are sketched in Fig. 6. The 
coordinates of the six pressure sensors are listed in Table 1. The measured data were 
transferred to the Coastal Data Information Program (CDIP) at the Scripps Institution 
of Oceanography. The details of data acquisition are described in [12]. 

Table 1. Coordinates of the sensors installed on the HARVEST platform. 

Coordinates 
111 Sensor 

P1 P2 P3 P4 P5 P6 
x (m) 0.0 22.9 22.9 0.0 59.4 59.4 
y(m) 0.0 0.0 -22.7 -22.7 0.0 -22.7 
z(m) -16.0 -16.0 -16.0 -16.0 -16.0 -16.0 

A set of data representing the sea states on May 7, 1993 was selected. It was a 
combination of a swell and local wind waves both coming from the northwest as 
indicated in Fig. 7. The peak frequencies of the swell and wind waves were around 
0.066 and 0.11 Hz, respectively. The significant wave height was estimated to be 3.31 
m. The sampling rate was 1 Hz. The duration of the time series used in the 
decomposition was limited to about 17 minutes assuming that within the duration 
wave properties such as wave amplitudes and directions were approximately 
stationary. 

The measurements at P1, P2, and P3 were used as input to the decomposition, and 
the measurements at P4, P5, and P6 were reserved for examining the DHWM predi 
ctions. The measured signals at P1, P2, and P3 were filtered using a numerical low-
pass filter of the cutoff frequency of 0.185 Hz before their input to the decomposition. 
The choice of the cut-off frequency at 0.185 Hz was because of low signal to noise 
ratio over this frequency. The cut-off frequency of ffee waves was also set at. 185 Hz. 

Fig. 6. Approximate location of the platform off the Califomia coast and the local coordinates 
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Fig. 7. Normalized directional pressure head spectrum near the Harvest Platform on May 7, 
1993. 

Fig. 8. Measured pressure heads (°) are compared with the corresponding predicted results 
(-) at: (a) P1, (b) P2, and (c) P3 
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Fig. 9. Measured pressure heads (°) are compared with the corresponding predicted results 
(-) at: (a) P4, (b) P5, and (c) P6 

After the decomposition, the free waves were used to predict the pressure heads at 
the locations of P1 to P6. The predicted pressure heads at P1, P2 and P3 are compared 
with the corresponding measurements in Fig. 8. The agreement between the 
predictions and measurements is excellent. It should be noticed that in the 
decomposition the initial phases of free waves were determined by matching the 
predictions with the corresponding input measurements. Since the measured pressure 
head at P1, P2 and P3 were used as the input, the excellent agreement between the 
predictions and measurements is expected. Hence, this type of comparison only 
divulges whether or not the iteration in the DHWM converges. To vindicate the 
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overall accuracy of the DHWM, the predicted pressure heads at P4, P5 and P6 are 
compared with the corresponding measurements in Fig. 9. The agreement between the 
predictions and the measurements remains satisfactory but is slightly deteriorated in 
comparison with the agreement shown in Fig. 8. Noticing that the measurements at 
P4, P5 and P6 had not been used in the decomposition, satisfactory agreement shown 
in Fig. 9 indicates that the DHWM is able to deterministically predict wave properties 
near the locations of measurements. More examples of applying the DHWM to the 
decomposition and prediction of other directional waves were presented in [23], 

4 Conclusion 

HWMs are unique and superior to most existing nonlinear wave theories in three 
respects. First, HWMs extract bound waves involved in the measurements before 
decomposing a measured wave field into its free waves. Secondly, the nonlinear 
interactions among free waves are modeled by two different perturbation methods, 
conventional and phase modulation approaches so that the truncated solutions 
converge quickly. Finally, the DHWM allows a deterministic analysis of short-crested 
ocean waves, which was not available previously, even in the scope of linear wave 
theory. 

The effects of bound waves on measured wave properties can be more pronounced 
in a steep ocean wave field of a broader frequency range than in a periodic wave 
train. The use of HWMs can greatly improve the accuracy of predicted wave 
properties near the location of measurements. Some of these effects and their 
applications to wave predictions and measurements were demonstrated. In the future, 
it is hoped that more applications of HWMs will be made to ocean and coastal 
engineering and science. 
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Abstract. There is no consensus at present as to whether extreme waves 
are “normal” extremes in ah homogeneous population of waves, or the 
results of totally different generation mechanisms, such as for instance 
non linear interaction and phase locking of wave trains. In a first stage 
of the present paper, we analyse a few selected extreme waves measured 
in the North Sea, and we verify, according to several criteria, that these 
waves can be classified as Rogue Waves according to the criteria com-
monly accepted. In addition, the occurrence of a very deep trough in 
front of the wave is verified by examination of the reconstructed instan-
taneous space profiles of the water surface at several time-steps before 
the maximum crest. In a second stage, the sea states where the selected 
extreme waves occurred are studied and characterized in terms of spec-
tral bandwidth and multiple peakedness, of steepness, of non linearity, 
of wind conditions, and of the characteristics of the storm that contains 
them. These sea states are then compared with the other sea states of 
similar Hs where no rogue wave could be observed, with the intent to 
find some differences or trends that could then be used as forewarning 
signs of an increased risk of occurrence of rogue waves. Unfortunately, 
most of the differences are not significant enough to make a decisive step 
forward in the forecast of risks of rogue waves. Lastly, the individual 
rogue waves that were identified are analysed, both in the time domain 
and from the reconstructed shape that can be calculated in space. Special 
attention is given to the individual wave steepness and to its vertical and 
horizontal asymmetry. These parameters are compared to the same ones 
for “normal” maximum waves in other sea states. 
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Nomenclature 

Hs Significant wave height 
Tz Mean period estimated with 
C

z
 Sea state steepness calculated using -

H Down-zero-crossing wave height 
Ac Crest height defined as the maximum height observed between an 

up-zero-crossing and the following downcrossing 
T Wave period (by zero downcrossing counting) 
T’ Crest front period, see [3] for details 
T” Crest rear period, see [3] for details 
L Wave length 
L’ Crest front wave length, see [3] for details 
L” Crest rear wave length, see [3] for details 
µh

 Wave horizontal asymmetry, or height asymmetry, 
µ

vs
 Crest vertical asymmetry, or front/back asymmetry, in space 

µ
vt

 Crest vertical asymmetry, or front/back asymmetry, in time 
Sl Individual wave steepness by space domain analysis, 
St Individual wave steepness by time domain analysis, 

1 Introduction 

There is no lack of evidence that extreme and dangerous waves exist : their gigan-
tic size has been testified by many shipmasters’ reports and their dangerousness 
has been proven by damages on ships and offshore structures, some examples of 
which are described in [1] or [4]. 

However, the problem as to whether those waves are normal waves or ab-
normal ones in a statistical sense is still unsolved. The present paper intends to 
reach a better understanding of those waves by considering the extreme waves 
of the Frigg in situ data set, see [5] for details. 

The first question raised in this paper is whether the waves selected in the 
Frigg data set are of the same kind as the extreme waves reported by meteocean 
engineers and shipmasters. 

The problem of whether those waves can be called “rogue” (or “freak”) is 
discussed in parts two and three. If they were “freak” or “rogue” waves, it should 
be possible to find characteristics that distinguish them from the “conventional” 
extreme waves. Two characteristics are studied: the individual shape of the indi-
vidual waves, especially wave asymmetry and wave steepness, as presented in the 
second part; and the conditions in which those extreme waves occur, analysed 
in the last part. 
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2 Are We Talking about the Same Waves ? 

2.1 Selection of Extreme Waves 

Extreme waves analysed in this study have been selected according to two cri-
teria, further named Ch and Cc. 

The value 1.25 has be chosen for R
0

 so that the number of waves selected 
with Ch would be similar to that of the ones selected with Cc. Examination 
of the dataset showed that the commonly used value of 1.1 was too frequently 
overpassed for a study that intends to deal with rare extremes. Only sea states 
with Hs larger than 2 m were considered. 

We define a maximal wave as the wave corresponding to the highest crest 
of a given sea state. The set of maximal waves was then searched for extreme 
waves according to criteria (1). The numbers of waves selected in each set are 
presented in table 1. 

Table 1. Description of the selected waves 

Number of waves 
Total 

(Hs > 2m) 
selected by using criterion 

Ch Cc Ch n Cc Ch U Cc 
Data set 

Frigg 1,600,000 79 74 25 128 

Two sets of sea states are considered. The first one corresponds to all sea 
states with Hs>2 m and the second one to sea states for which Hs is larger than 
2 m and the maximal wave crest higher than 5 m. Proportions of extreme waves 
are presented on table 2. 

Table 2. Extreme waves among maximal waves 

Ch Cc Ch U Cc 
Sea state subset # Maximal 

waves 
# Extreme 

waves 
% Extreme 

waves 
Hs > 2m 9858 79 74 128 1.3 % 

Hs > 2m & Ac > 5m 780 22 35 46 5.9 % 
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Extreme waves have then been selected according to the criteria (1) com-
monly used to identify ’’freak” waves, but no justification of abnormality was 
made so far, so we will keep to naming them extreme waves. 

A peculiarity of abnormal extreme waves for shipmasters is the “hole in 
the sea” that can been observed ahead of the wave. We investigate in the next 
part whether such a hole could have been observed ahead of the waves that we 
selected. 

2.2 Is there a “hole in the sea” ahead of the selected waves ? 

The analysis of the water surface elevation time history around the selected 
waves leads to the conclusion that the troughs ahead of high waves are benign. 
Observations from ships’ bridges are however mostly relevant to spatial shapes 
of waves. To get an estimation of the wave shape in space, the following method 
is applied: 

- The Fourier transform is applied to the time history, converting it into the 
frequency domain. 

- A change of variables is performed to turn frequency into wavenumber, by 
use of the dispersion relationship. 

- The values are multiplied by the appropriate complex phase to shift to the 
instant of interest. 

- The inverse Fourier transform is then applied, thus providing the space 
shape. 

It should be noted that with this method, waves are assumed to be all free waves 
propagating in a single direction. 

Figure 1 presents an extreme wave recorded by the Frigg radar on 2 February 
1988 in a sea state when Hs was 6.7m. Instantaneous space wave profiles have 
been computed every 0.5 s. The 40 wave profiles from T-20s to T, where T is 
the time at which the extreme crest is measured by the sensor, are presented on 
the top figure. The figure below shows the 20 profiles from T to T+lOs. 

It is interesting to note that the trough at time T is indeed not outstanding 
and that the wave crest-trough dissymmetry at that time is consequently very 
large. Such features are commonly observed with measurements from fixed plat-
forms. If we consider now the wave profile at T-8s (yellow line), the crest is not 
so high but the trough, around 8m, is very deep. 

If a sensor had been placed 30 m ahead (in the wave propagation direction) of 
the Frigg radar, a “hole in the sea” would have been recorded, but it would not 
necessarily have been matched with a maximal crest. The instantaneous profile 
about 5 séconds after T also shows a deep trough. Almost all extreme waves 
relative to Frigg data present similar profiles as the one presented above, i.e. 
the peculiarities described by shipmasters in reports of ’’rogue waves”. Out of 
46 extreme waves, 43 were also extremal in the sense of Podgórski et al (2000) 
[6], i.e. the crest was a maximum both in the time dimension and in the space 
dimension. Every single one of them exhibited a much deeper trough, about 0.25 
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Fig. 1. Instantaneous space profiles [See also Appendix CP] 

Fig. 2. Preceding trough versus crest [See also Appendix CP] 
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wave-length ahead of the maximal crest in space and 0.75 period ahead in time, 
with respect to the point measurement time-history. 

Figure 2 shows the difference between the trough depths corresponding to 
the maximal waves in the time-history (blue squares) and the troughs at their 
deepest in space and time ahead of these waves (red circles). 

Despite the fact that there might be a slight increase in the trough depth 
due to the assumptions used for estimation of the waves space shapes, there are 
many good reasons to believe that our selected extreme waves are of the same 
nature as the ones that were actually observed and identified as damaging giants. 

Whether these selected waves are normal extremes is discussed in the next 
sections. 

3 What Do Individual Extreme Waves Look Like? 

If those selected waves are abnormal, it should be possible to find features to 
distinguish them from other normal large waves. 

To check if it is the case, parameters relative to individual wave shapes have 
been chosen and their distributions have been compared for different subsets. 

The subset of “conventional waves” (780 waves) corresponds to the “maximal 
waves” of each sea state for which the maximal crest is larger than 5m. The 
subset of extreme waves corresponds to the “conventional waves” identified as 
“extreme waves” with criteria of formula 1 (46 waves). 

Parameters investigated are: 

1. Wave horizontal asymrnetry, or height asymmetry µh = 
2. Crest vertical asymmetry, or front/back asymmetry, in space µvs = and 

in time µvt = 
3. Wave steepness in space and in time 
4. Crest front steepness in space and in time t 

Parameters in space have been estimated from the reconstructed shape at 
the instant of the crest. To compare distributions, a Kolmogorov test is used to 
test hypothesis Ho: FT(x) = F(x) against H1: FT(x) ≠ F(x). FT(x) is said to 
be significantly different from F(x) with risk a if the statistic Dn = sup\FT(x) -
F(x)| is higher than a value θ, with (P(D

n > 6) = a. The risk value used in the 
following of this paper is 5%. 

3.1 Wave Asymmetry 

Figure 3 shows a comparison of the crest front/back asymmetry distributions. 
A distinction is made between extreme waves selected with the different 

conditions Ch : jP > 2, Cc : > R
0
 and Ch\\Cc : jP > 2U > R0. 

The subset of the 780 maximal waves is denoted by FT on the following 
figures. 
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Fig. 3. Wave vertical (front/back) asymmetry [See also Appendix CP] 

There is no significant difference between the crest vertical asymmetry dis-
tribution of all maximal waves and that relative to the selected extreme waves. 
A larger difference is observed for the extreme waves selected with Cc are con-
sidered: values of the vertical crest asymmetry parameter tend to be smaller for 
those extreme waves, µ

v

 < 1 for 70% of them whereas µ
v
 < 1 for only 50% of 

the maximal waves. Most of those extreme waves have thus a crest back period 
smaller than the front one. That result is unexpected but care has to be taken on 
the fact than it relies on only 35 waves and should be validated by an additional 
study not only on the crest period but on the trough to crest period. 

Significant differences appear between maximal and extreme waves when con-
sidering wave height horizontal asymmetry parameter, see figure 4. The median 
of the maximal wave distribution equals 0.63 and the one relative to the ex-
treme waves 0.68. Differences are most important when only the extreme waves 

selected with Cc are considered and become non significant if the extreme waves 
are restricted to the ones selected with Ch. 

3.2 Wave and Crest Steepness 

Comparisons of the individual wave or crest steepness are presented on figures 
5 and 6. 

Figure 5 shows differences between maximal and extreme waves in terms 
of individual wave steepness. Extreme waves are steeper than maximal ones, 
whatever criterion (Ch or Cc) is used to select them. 

Results relative to crest front steepness are not so clear, see figure 6, crest 
front steepnesses relative to extreme waves are still larger than the ones relative 
to maximal waves but differences are much smaller and nearly not significant. 

Differences have been found between extreme and maximal waves: larger 
height horizontal asymmetry, wave steepness more important but those differ-
ences are not always significant and depend on the criterion used to select the 
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Fig. 4. Wave horizontal (height) asymmetry [See also Appendix CP] 

Fig. 5. Wave steepness [See also Appendix CP] 

Fig. 6. Crest front steepness [See also Appendix CP] 
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extreme waves. It is thus not possible to assess the abnormality of extreme waves 
from this analysis. 

4 What Are the Prevailing Sea Conditions when They 
Occur? 

In order to check whether extreme waves are likely to occur in some special 
unusual conditions, we analyse several parameters describing the sea states where 
they were observed. For each of these parameters, we compare the distribution 
for sea states during which extreme waves have been detected (128 sea states) 
with the distribution relative to all sea states with Hs>2m (9850 sea states), 
called common marginal distribution. 

4.1 Sea State Significant Height and Steepness 

Figure 7 shows a comparison of the HS
 distributions for Frigg data. The dis-

tribution relative to the sea states with extreme wave selected with Cc exhibits 
the largest differences from the common marginal one. Period distributions are 
identical in the extreme and common marginal cases. 

Comparison of the steepness distributions leads to the same conclusions as 
the Hs distributions: extreme waves occur when sea states are steeper than the 
average. This increase in steepness is evenly observed over T

Z
 occurrences, and 

thus essentially the consequence of higher HS. 

Fig. 7. Sea state Steepness [See also Appendix CP] 
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4.2 Multi- or Single-Peak Spectra 

Double peaked sea states are identified by a modified version of the Guedes 
Soares criterion [2], for which details can be found in Van Iseghem et al. (2001) 
[8]. For several Hs classes, the occurrence probability of double peaks is calculated 
and used as a reference for the occurrence probability relative to the sea states 
where an extreme wave occurs. 

The percentage of double peaks detected for sea states with extreme waves 
is smaller than when considering all sea states, see figure 8. It can be noted 
that there is no double peaked sea state at all for the 10 % ’most extreme’ waves 
selected, as well with Ch as with Cc, but that significance of this fact is low since 
only 1 % of the sea states where a double peak was detected have HS higher 
than 3m. 

Yet one single wave coming at some significant angle from the direction of 
other waves, even the highest of the sea state, might not be sufficient to create 
a second peak in the spectrum. 

4.3 Strong Winds 

Wind distribution restricted to extreme wave cases is significantly different from 
the common marginal one. Wind speed is larger for extreme waves and the dif-
ference is at highest if we consider only the extremes waves selected with Cc. 
However, it may be noted that the largest values of wind speed do not corre-
spond to the most extreme wave ratios. 

Fig. 8. Occurrence of double peak spectra 
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Fig. 9. Wind [See also Appendix CP] 

4.4 Worsening Sea Conditions 

Figure 10 shows the distribution of the three parameters Hs - HS-2, HS - HS-1 
and HS-HS+1, where HS- 1

 means the HS of the previous sea state in the record 
history (3 hours earlier), and HS+1 that of the following one For 75 % of the 
selected sea states, we have HS > HS — 2 and for 80 % of the selected sea 
states, HS > HS - 1 whereas HS > HS + 1 occurs in half of the sea states. 
The probability of occurrence of extreme waves is thus slightly higher when sea 
conditions have been worsening in the previous hours. 

Fig. 10. Worsening sea conditions 
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5 Conclusion 

It has been investigated whether “rogue waves” would be normal or abnormal. 
Characteristics of those waves have been proven to be consistent between mea-
surements from a fixed platform and shipmasters’reports. Especially, the hori-
zontal height asymmetry is very large at the time when the extreme wave occurs; 
but if the space wave profile at the instant a few seconds before is reconstructed, 
a deep trough a keen to a “hole in the sea” can be observed. 

It is thus reasonable to assume that the selected extremes waves are of the 
same nature as the ones observed by mariners that have proven to be giant and 
dangerous. 

A few hints have been provided to decide whether those waves are ’’normal” 
or not and tests have been made to try to distinguish them from the other 
common large waves. Some differences appear, relative to the individual wave 
shapes: larger horizontal wave height asymmetry, higher steepness, and to sea 
state conditions in which they occur: steeper sea states, worsening conditions. 
Nevertheless those differences are not significant enough to prove the belonging 
of those extreme waves to a different statistical population. 

A recurrent problem with in situ data sets in the small number of identifîed 
extreme waves, which makes it difficult to conclude to any significant difference 
between extreme and common maximal waves. 

We thus recommend that all available datasets be analysed in a similar fash-
ion, and that further measurements be carried out in manners that would allow 
the identification of extreme waves, which is unfortunately not the case for many 
of the datasets currently recorded. 
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Abstract. Longtime stationary ocean wave data taken from the Sea of Japan are 
analyzed in particular for the stochastic properties of their wave periods. The 
probability density functions (PDF) of wave heights and periods are 
determined. A quasi-linear wave propagation model is examined to simulate the 
creation and annihilation of Rogue like waves. This simple model reproduces 
the actual feature of this phenomenon very well. It suggests that the frequency 
modulation in random sea waves is a possible cause of such abnormal a wave. 
A statistical mechanical technique is applied to the sequence of wave periods. 
The fluctuation of the wave period sequence has its spectmm inversely 
proportional to the frequency of the variation, which is a fairly comraon feature 
in many natural phenomena. 

1 Introduction 

The causes of Rogue (Freak) waves in actual ocean area have long been investigated 
by many researchers, and many hypothetical mechanisms of their occurrence have 
been proposed from different points of view and corresponding techniques. Those 
can be classifted roughly as follows: 

1. Non-linear effects of water waves. 
2. External influences, varying current and/or bottom topography. 
3. Superposition of wave systems, wave groups, multidirectional waves. 

In this paper, we pay attention to the statistical properties of wave periods and to their 
role in the generation and annihilation of abnormal waves such as Rogue waves. 

Firstly, actual ocean wave data from the Sea of Japan are reexamined in detail. 
Several existing formulae for the probability distribution of wave periods in stochastic 
processes are compared with the data of 14,227 waves, which were taken in almost 
identical sea conditions. The agreement in the distribution of wave periods is not as 
good as in the distribution of wave heights in general. However, for this large number 
of wave samples, classical Weibull distribution with index 4 is found to be in good 
agreement. The autocorrelation between successive wave periods is 0.35, which is 
slightly less than those of preceding results in a storm field. 

Secondly, we attempt to predict the propagation characteristics of actually 
observed Rogue waves by assuming the non-linear dispersion relation for all wave 
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frequency components in a stochastic wave field. Referring to the results of this 
analysis, we perform a simple numerical simulation of generating and annihilating a 
Rogue wave by superposing a low frequency modulated wave group. 

2 Distribution of Wave Period 

Many types of probability density functions (PDF) have been proposed for sea waves. 
They were deduced from the assumption of a linear stochastic process, that is, a 
Gaussian process. The most typical formula is presented here as equation. 

In this formula, spectrum of the process is also assumed narrow bandedand symbols 
v and mp represenf the bandwidth and the mean value of the period respectively. 
Altematively, we can make use of some empirical formula like 

which is called the Weibull probability density distribution of index c, and mp means 
the root mean square of the periods. Its excess distribution is integrated to be 

3 Analysis of Data from the Sea of Japan 

The most crucial condition for the statistics of sea waves is that we need to obtain 
enough long time data of stationary sea state to be compared with stationary random 
theory if non-linear effect of surface waves is not pronounced in actual ocean. In this 
paper, we deal with an available longtime (37 hours) wave data from the Sea of Japan 
on January 9th and 10th, 1988. The location of the observation site is shown in Fig. 1. 
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Fig. 1. Observation site at Yura 

Fig. 2. Long term sea state of analyzed data 

The sea condition during this observation period (average wind speed and 
significant wave height of every 20 minutes) is shown also in Fig. 2. Wind speed was 
around 15m/sec, and significant wave height was almost constant at 4m throughout. 

This condition satisfies that of fully arisen sea and wind waves are to be found 
without swell. It is very rare case to have data for such many waves of amount to 
140,000 under such a stationary sea condition. We can assume the law of large 
numbers in statistics of wave height and period analyzed by Zero Up Crossing method 
from these data. 

At first, we examine the well-known result of wave height distribution with the 
well-established theoretical formula of Rayleigh distribution in equation (4). 
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The result is shown in Fig. 3. The agreement of the observed PDF with that of the 
theory by the parameter m0 is excellent as expected. Next, we examine the PDF of sea 
wave periods. A comparison is made with theoretical formula (1) [1] in Fig. 4. The 
agreement seems rather poor particularly in the longer periods region. It is not easy to 
explain this sort of discrepancy since it is not necessarily caused by the bandwidth 
effect. 

Actually, the bandwidth parameter ε for every 20 minutes record is found to be 
between 0.6 and 0.7, a value that is commonly considered intermediate. On behalf of 
the unreliable theory, we adopt an empirical PDF of Weibull type of index c (2), 
which is an extension of the Rayleigh PDF. Actually it reduces to Rayleigh 
distribution when c = 2. For identification of the index c , we integrate it to have its 
excess probability distribution (3), which is described in Fig. 5. 

Double logarithms of both sides of equation (3) are shown in Fig. 6. In this figure, 
we find the index c is very close to an integer value of 4 (actually 3.98). This result is 
in accordance with a formerly published result [2]. In Fig. 7, we confirm the excellent 
agreement of this formula with observed data. For reference, we show the joint PDF 
for normalized wave heights and periods of the whole 37 hour record in Fig. 8. The 
correlation of wave height and period seems high, which is mentioned in a latter 
section. 

Fig. 3. Comparison of observed wave height with theory 

Fig. 4. Comparison of observed wave period with theory 
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Fig. 5. Excess probability distribution of the period 

Fig. 6. Linear regression of the log-log plot 

Fig. 7. Comparison of the observed period with Weibull distribution 
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Fig. 8. Joint PDF of wave heights and periods 

4 Transformation of Wave Record 

Ocean wave data are acquired at a fixed position as time series. On the other hand, we 
can describe the wave elevation η in the following form. 

where the dispersion relation of deep water waves is taken into account. Moreover, 
we can consider the nonlinear dispersion relation of each component by replacing 
both sinusoidal terms as follows: 

From equation (5), one can reproduce the observed time series simply by setting x=0. 
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The Fourier coefficients a( ω ) and b( a> ) are determined easily from the observed 
record. We obtain the transformation of acquired record at x=0 to arbitrary point x by 
substituting a( ω ) and b( co) into equation (5) and integrating them along OJ . If x < 0, 

η ( x, t) represents the wave record at x m upstream of the observed one. 
Note that we neglect the bounded wave components and the directional spreading 

of random wind waves in the above quasi-linear model. The former is justified in the 
actual ocean however the latter is not always permissible. 

5 Application to Rogue Waves 

As was written in the preceding papers of the present authors [3], we found several 
cases of 20 minutes data in each of which a typical Rogue wave is included. We pick 
one of them up here and examine the transformation of its change of waveform at up 
and down-stream virtual observation sites. The original data is shown in Fig. 9 as x = 
0. The transformation procedure explained in section 4 is applied to the data to 
provide the records each 80m up and down stream. It is clear that there is not such a 
pronounced peak at all in both calculated records. 

It suggests that the rogue wave itself does not propagate as a crest preserved 
isolated wave. Instead, we can recognize that there is a comparatively small amplitude 
wave train, of which period is gradually increasing in time at x = -80m (see Fig. 10). 
Similarly, a gradually decreasing frequency modulated wave train appears at the 
record at x=80m (see Fig. 11). It means that one can experience the appearance of a 
large wave crest only within an interval a few times as long as the wavelength. 

Fig. 9. Observed Rogue (Freak) wave at Yura site 
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Fig. 10. Wave modulation at 80m upstream virtual site 

Fig. 11. Wave modulation at 80m downstream virtual site 

6 Fluctuation Property of Sea Wave Period 

In the statistical studies of ocean waves as random processes, PDF of wave height and 
period were investigated from various points of view. In contrast, the studies on the 
nature of time sequence of wave height and period are so far somehow scarce. So we 
present here briefly the time variation of these quantities and their stochastic natures. 
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Auto correlation (H,H) 

Fig. 12. Autocorrelation of the sequence of wave height 

Auto correlation (T,T) 

Fig. 13. Autocorrelation of the sequence of wave period 
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From the sequence of wave heights, we calculate their autocorrelation shown in 
Fig. 12. 

In this figure, one can see that the correlation of successive wave heights is 0.43 , 
which lays almost at the middle of the values of actual measurements by Goda [4], In 
his results, the values are 0.63 in swell and 0.26 in sea. For the sequence of wave 
periods, autocorrelation between successive periods is 0.35 as is seen in Fig. 13. The 
autocorrelation of wave height is slightly higher than that of wave period in a fully 
arisen sea. As for the wave period, the correlation of successive wave is rather lower 
than that mentioned in [2], 

The discrepancy is partly explained by the fact that data adopted here is under the 
climatic condition of long lasting low atmospheric pressure in the winter season while 
their data were taken during a severe storm. In Fig. 14, we present the cross 
correlation of wave height to period. 

At the origin of time lag, say for a same ZUC wave, correlation coefficient is 0.63 
comparatively higher than those of non-stationary and is not discrepant to the result 
shown formerly in the contour lines from the contingency table of joint distribution. A 
closer study of the fluctuation of wave period is performed by the statistical 
mechanical technique. We calculated the power spectra of every sequence of 512 
wave periods. Averaging 25 samples extracted from the stationary wind sea, the 
spectral density is obtained in Fig. 15 in log-log scale. Note that the ordinate S and 
abscissa/(recurrence frequency of periods) are in arbitrary scales. For the higher end 
of Fig. 15, we have the linear regression of the coefficient -0.98 shown in Fig. 16. 
This means the power law S ∞ 1/f, which is the famous relation in many branches of 
science. 

7 Conclusions 

The nature of stochastic properties of a fully arisen wind sea are investigated by use 
of large number of wave data including up to 14,000 waves which were taken in 
almost stationary sea conditions. Precise analyses on PDF and temporal variation of 
wave period are performed. The results are considered to be statistically reliable 
because of the law of large numbers. 

A simple quasi-linear method of wave record transformation is examined. It is 
applied to a typical example of Rogue wave in the actual ocean. The results suggest 
that the frequency-modulated wave train is a possible cause of creation and 
annihilation of such an abnormal wave in the ocean. Nevertheless, more observational 
data and more strict non-linear theory concerning wave period in a random seaway is 
needed. We must identify the isolated Rogue wave from the theoretical point of view 
and distinguish it from the Abnormal or Freak wave (wave height is 2 times larger 
than significant wave height), which has ever been defined for the convenience of 
practical use. 
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Fig. 14. Cross correlation of the sequence of wave height and period 

Fig. 15. Averaged power spectrum of the fluctuation of wave period 

Fig. 16. Averaged power spectrum of the fluctuation of wave period and its linear regression 
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Abstract. As an extended introduction, the consequences of a possible 
existence of freak waves is discussed from a risk point of view, where focus is 
on the risk for loss of human lives. Herein freak waves are defined as wave 
events which are not captured by a second order model for the surface process, 
which as of today is the most advanced wave model for routine engineering. 
Finally, a major part of the paper is devoted to a review of literature which have 
presented wave events which may be examples of freak wave events. 

1 Introduction 

Over the last 2-3 decades major improvements are made regarding the modelling of 
environmental conditions for the purpose of designing offshore structures. This is the 
case both when it comes to the understanding of the underlying environmental 
processes and even more when it comes to the availability of good quality data which 
has made an empirical modelling of the environmental conditions rather accurate for a 
number of locations world-wide. Of course the models are not perfect and there are 
obviously rooms for improvements e.g.: 

- Modelling of current in deep waters. 
- Simultaneous modelling of wind sea and swell. This is mainly a question of 

more data of such events. 
- Improved joint probabilistic modelling of wind waves water level and current. 
- Closed form crest height model valid for various levels of sea state steepness 

and water depths. 
- Improved predictions of the most extreme weather conditions (in terms of 

mean characteristics), i.e. so called 10-4 - weather. 
- Kinematics (particle velocity and acceleration) associated with real ocean 

waves. 

Although challenging from an environmental point of view, these short comings do 
not represent major problems from a design point of view. Doing some sensitivity 
studies, conservative choices can be made and together with the load factors used in 
the design process, a safe design should be achieved. More challenging from a design 
point of view is the wave - structure interactions - this topic is associated with very 
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large uncertainties and typically requires costly model tests in order to be solved 
properly. 

One environmental problem, however, stands out as a possible major problem -
freak waves - if it is proven that they exist as a separate population. There are a 
number of indications - more or less subjectively - indicating the existence of wave 
events which are much larger (either in terms of the wave height or in terms of the 
crest height) or much steeper than expected by the reporter. Of course - being 
realisations of a random process - there is always a possibility (although very small) 
that an unexpectedly large event is occurring. Assuming a 10-year storm is affecting 
an ocean area being so large that it can be divided into 100 sub areas between which 
extreme storm waves can be assumed to be statistically independent, one may well see 
a wave close to a 1000-year wave in one of these sub areas. If this is the reason for the 
observed unexpected large events, they do not represent a particular problem. The 
likelihood of occurrence are then baked into our standard design process. 

For a structure to be designed for a site on the Norwegian continental shelf, the 
Norwegian authorities require that the following extreme load cases are controlled: 

Environmental loads corresponding to a retum period of 100 years in 
combination with a load factor typically taken to be 1.3. No major damage are 
permitted for this load event. For a number of ocean stmctures the 100-year load 
is often reasonably well approximated by the loads caused by the 100-year wave. 
Environmental loads corresponding to a retum period of 10000 years in 
combination with a load factor typically set to 1.0. Again - for a number of 
structures this load is reasonably well approximated with the load caused by the 
10000-year wave. For this limit state local damage is accepted, but the situation 
shall not develop into a catastrophic event, i.e. the structure shall not collapse or 
sink. The latter is implemented by requiring that the stmcture in damaged 
condition (i.e. after being exposed to the 10000-year wave induced response) can 
withstand loads with a 100-year retum period with the load factor typically set to 
1.0. 

When we are predicting 100-year and 10000-year loads, we account (at least 
within the Norwegian practise) for a certain deviation from a Gaussian surface 
process. And if observed unexpected large wave events can be concluded to be rare 
realisations of a slightly non-Gaussian surface process, an acceptable stmctural safety 
is tacitly assumed to be achieved by the limit states mentioned above. 

It is, however, this authors point of view that we can not exclude the possibility 
that some of these observed unexpected large wave events are realisations from a 
separate freak wave population. The physical conditions that could onset such a 
population are not yet known and, accordingly, neither the relative frequency of 
occurrence of events. These events are most probably so rare that it is not likely to 
effect our predictions of 100-year wave induced loads. However, if existing, it may 
well impact our prediction of accidental wave induced loads, i.e. loads with a retum 
period in the order of 10000 years. If this is the case, this means that the load we 
presently adopts as a load with an annual probability of occurrence of 10-4 actually 
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should be associated with an annual probability of occurrence of e.g. 10-3. The load 
that should have been used as an accidental load, i.e. a load with an annual probability 
of occurring of 10-4, could well be the load we (by excluding freak waves as a 

separate phenomenon) associate with a annual probability of 10- 5. 
Let us illustrate the possible consequences of this by a simple but realistic 

example. At the Norwegian Continental Shelf, a jacket structure is usually designed 
such that the height from the still water surface to the deck level is so large that it is 
ensured that the wave crest height with an annual probability of occurrence of 10-4 

does not reach the deck level. This means that the topside is not exposed to loading 
from the accidental wave, and, accordingly, the upper bay of the substructure is not 
designed to withstand major wave loading on the deck structure. If ffeak waves do 
exist for that particular site, one can well imagine that the actual 10000-year crest 
height is 10-20% larger than the accidental crest height according to which the 
necessary deck height is determined. This larger wave crest could submerge the lowest 
part of the deck structure with a couple of meters and this will result in an incredible 
horizontal load pulse. This load increase is not covered by our safety factors and a 
worst consequence is that the structure collapses in the upper bay. For a manned 
jacket this is a catastrophic scenario and the annual probability of such an event has to 
be extremely small. 

A common measure for expressing the risk to people on board these platforms are 
the Fatal Accident Rate (FAR), which is defined as the expected number of fatalities 
per 108 exposed hours. For a given platform the FAR-value should in principle 
include all risks that represent a threat to the crew, i.e. explosions and fires, working 
accidents, collisions with other vessels, and stmctural failure due to weather and 
earthquakes. Let us for the sake of illustrations assume that an acceptable risk would 
be obtained by requiring FAR < 5 . A good rule for a robust new structure would be to 
further require that structural failures due the environmental loading (wind, waves or 
earthquake) should represent a very small contribution to the FAR-value, say 
FAR(environment) <0.5. There is a rather simple relation between the FAR-value 

and the annual probability of failure. Assuming all onboard lost due to the accidental 
environmental load, it is not too difficult to show: 

pf = 10- 5  FAR ≈ 0.1 

pf = 10- 4  FAR≈1 (1) 

pf =10- 3  FAR≈10 
Shall we fulfil the requirement above, it is seen from Eq. (1) that the resulting 

annual probability of structural failure has to fulfil: 

pf (environment) < 5•10-5. (2) 

This is to be implemented as an estimate of the actual failure probability. In 
carrying out a structural reliability analysis, effects of gross errors (human errors in a 
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broad sense) are usually not modelled explicitly. Referring to the failure probability 
estimated through a straight forward structural reliability analysis as a nominal failure 
probability, one can well imagine that gross errors could cause the actual (or true) 
failure probability to be 3-10 times larger: This would of course depend on how 
sensitive the failure mode under consideration is to gross errors and/or the efforts 
done through procedures and training to minimise the impact of such failures. Taking 
5 as a reasonable error factor accounting for gross errors, this means that a reasonable 
requirement to the nominal annual failure probability could be: 

Pf.nominal (
environment ) < 10- 5. (3) 

As of today we will possibly have to interprct freak waves as some sort of a gross 
error. Ensuring that our structure fulfils Eq. (3) when excluding the freak wave 
phenomenon, one can hope that Eq. (2) is not too much violated if, in principle, freak 
waves could be consistently treated in a reliability assessment. 

Eqs. (2 and 3) represent extremely rare events, but it is events at this probability 
that are of interest regarding structural failures. In order to verify that we actually can 
reach a target safety as low as indicated, we need to understand phenomena 
corresponding to such low annual probabilities of occurrence. If a freak wave 
population do exist, they will most probably affect our load predictions of such low 
probability events and, consequently, the risk exposure to crew and platform. 

2 Definition of a Freak Wave 

At present there is no broad consensus regarding what should be defined as a freak 
wave event. Over the years a ratio of wave height to significant wave height larger 
than 2 is taken as a defmition of a freak wave. To this author this criterium is 
somewhat vague since nothing is said about the duration of the observation window, 
i.e. is it a 20min. time series, a 3-hour series, or is the observation window covering 
the whole storm event. Although the extremes are not extremely dependent of the time 

period, T , covered (roughly proportional with , where VQ is the expected 

zero-up crossing frequency of the wave process), the expected ratio will vary 
somewhat whether one look at 20-min. events or the full storm length. 

To this author it seems reasonable to define freak waves as something that is 
beyond the knowledge available for routine design. This means that the criterium will 
evolve with time as our understanding is improved. If and when the freak phenomenon 
is fully understood, there is no reason to continue referring to these waves as freak 
waves. They will then be the extreme waves a structure is supposed to be designed 
against at a certain annual probability level. 

As of today, the best we can do regarding the surface process is to describe it as a 
second order process, i.e.: 
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Ξ2 (t) = Ξ1 (t) + ΔΞ2(t) (4) 

where, see e.g. [8]: 

Re[ ] denotes the real part of a complex number, and B
k
 exp(iω

k
t) are the 

complex Fourier amplitudes. Furthermore, Ak and θk are Rayleigh distributed and 

uniformly distributed, respectively. The mean square of Ak is related to the 

underlying wave spectrum, sΞΞ (ω), through: 

The first order approximation to the surface process is given by Eq. (5), while the 
second order correction, ΔΞ2 (t), can be written, see e.g. [13]: 

The functions H
mn

 and H
mn

 are usually referred to as quadratic transfer 

functions and should be evaluated for all frequency pairs (ω
m

, ω
n
 ). Closed form 

solutions for the quadratic transfer functions are available see e.g. [13]. 

A part of a second order simulation is shown in Fig. 1. The underlying first order 
process and the second order correction are also shown. It is seen that the main effect 
of the second order correction is to make the troughs slightly shallower, the crests 
slightly higher and the wave front slightly steeper. 

Such a second order model is available in a number of computer codes for load 
calculations. The surface shown in Fig. 1 is obtained using Wavemaker, [18]. The 
surface represented by such a model seems to be broadly accepted as a rather accurate 
model for real waves. The empirical distribution functions of 20-min. maximum crest 
heights and 20-min. minimum trough depths of the storm data included in [6] are 
compared with the corresponding distribution functions obtained under a first and a 
second order assumption, respectively, in Figs. 2 and 3. It is seen that the second order 
simulation results in a reasonable fit, except for the largest observed crest height. This 
particular observation will be discussed later on. 

Regarding the calculation of the corresponding kinematics, things are more 
complicated and there is no general agreement on how this should bc done in ordcr to 
be fully consistent with the simulated surface process. 
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Fig. 1. Example of a simulated second order surface elevation process 

Regarding crest heights, wave heights, and various measures of sea state steepness, 
a second order model is from this authors point of view today state-of-art. This is the 
background for suggesting the following definition of a freak wave event: 

A freak wave event is an event (crest height, wave height, steepness, or 
group of waves) that represent an outlier when seen in view of the 
population of events generated by the second order model. 

If one is to look at freak waves in available data, one has to define the length of the 
observation window and a reasonably high fractile for the largest event in the actual 
window. This is discussed in [6]. There the length of the window is taken to be 20 
min. since most available data series at least in Norway correspond to such a duration. 
In a second order process, the ratio of wave height to significant wave height that is 
likely to be exceeded in 1 out of 100 cases is about 2.0 while the same fractile for the 
crest height to significant wave height ratio is 1.25. Based on this, the following 
criterium is suggested as an indicator of possible freak wave events: 

If for a 20-min time series, cmax / h
m0

 >1.25 and/or hmax/hm0 >2.0, the 
event is a possible freak wave. Further investigation will be necessary in 
order to finally conclude. 

Similar criteria can be established with respect to wave steepness and wave 
groupiness. 

3 Some Observations of Possible Freak Waves 

Over the years, a number of possible freak wave episodes are referred to in the 
literature. As a consequence of a number of episodes with significant wave induced 
damage on ships off the eastem South African coast during the fifties, sixties and early 
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seventies, the subject of freak or abnormal waves received some attention during the 
seventies, see e.g. [11], [12], [1] and [3]. The definition of a freak wave adopted by 
WMO (The World Meteorological Organisation) reads, [1]: 

"A freak wave may be defmed as a wave of a considerable height ahead 
of which there is a deep trough. Thus it is the unusual steepness of the 
wave which is its outstanding feature and makes it dangerous to shipping. 
Reports so far suggest that such waves have usually occurred where a 
strong current flows in the opposite direction to a heavy sea. " 

A couple of actual observations supporting this deep trough is referred to in [11]. The 
first is due to the Master of the Edinburgh Castle describing an episode taking place 
off the eastem South African coast. The vessel was heading into a strong south-west 
wind and a heavy south-west swell, but being 750 feet long and of 28000 gross 
tonnage, these conditions presented no serious problems to her. According to the 
master: "Under these conditions she was very comfortable for three-quarters of an 
hour or so. The distance from one wave top to the next was about 150 feet and the 
ship was pitching and scending about 10-15 degrees to the horizontal. And then it 
happened. Suddenly, having scended normally, the wavelength appear to be double 
the normal, about 300 feet, so that when she pitched she charged, as it where, into a 
hole in the ocean at an angle of 30° or more, shovelling the next wave to a height of 
15 or 20 feet before she could recover 'out of step'." (The wave lengths referred to 
above are surprisingly short. We will therefore question the unit feet - meter seems 
more likely.) 

Fig. 2. Adequacy of the Gaussian - and second order assumption in representing observed 
20-min. largest crest heights. (Normalised with the significant wave height, h

m0
.) 
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Fig. 3. Adequacy of the Gaussian - and second order assumption in representing observed 
20-min. smallest trough depths. (Normalised with the significant wave height, hm0 .) 

When this story reached the national press, it brought forward the following story 
from a second world war commander: "When I was serving at the cruiser Birmingham 
during the Second World War we had a similar experience in those waters one night 
which I recall the more vividly for being on watch at the time. We were about 100 
miles south-southwest of Durban on our way to Cape Town, steaming fast but quite 
comfortably into moderate sea and swell when suddenly we hit the 'hole' and went 
down like a plummet into the next sea which came green over A and B turrets and 
broke over our open Bridge. I was knocked violently off my feet, only to recover and 
find myself wading around in 2 feet of water at a height 60 feet above normal sea 
level." 

The idea of a long trough followed by a steep crest is elaborated in the paper by 
[12]. With a strong current opposing the waves, and the wave fïeld built up by three 
sinusoidals of different lengths, such a scenario is illustrated within the ffamework of 
linear wave theory. For a sea state consisting of three pure swell systems, this model 
could possibly be representative. However, in most real sea systems, energy will be 
spread over a much broader range of ffequencies and the probability for a very 
unfavourable phasing between the various components will be very small. 

The early autumn of 1995, Queen Elisabeth II headed into a major storm, "Luis", 
off New Foundland, [2], The maximum wave height from the ship's log was close to 
30m. In a radio interview with the ship master after the storm, he refers to a particular 
episode where they ffom the bridge were looking at a wall of water for a "couple of 
minutes" before it hit the ship with some damage well above the water line. In the end 
of January 1995, a semi submersible, Veslefrikk B, operated by Statoil, was hit by a 
wave resulting in signifïcant damage to the winch housing at the southem comer and 
the double bottom close to the western column. One of the crew members gave an oral 
description of this wave event that reminds very much of that of the QE II master. He 
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also referred "to wall of water they could see for a couple of minutes". In both these 
episodes, the wave conditions were rather severe, and the particular wave events will 
not necessarily be of a freak type. The reason for including these observations is the 
phrasing "a wall of water for a couple minutes". Whether the couple of minutes should 
be two minutes or, say, 30s, is not a major point, but these observations, although not 
very scientifically documented by this paper, suggest that these very extreme waves 
appear for the observers more or less as a ffozen profile for some time. Such a 
situation could not be maintained for several wave periods within a second order 
frame work. 

Some few measurements of possible ffeak waves have been made over the years. 
Concentrating on the Danish sector of the North Sea, [15] present a number of cases 
involving waves we according to the criteria above will consider as possible ffeak 
waves. They show several cases where the crest height is about twice the significant 
wave height, i.e. a factor 2 as compared to the factor 1.2 introduced in this paper as a 
defmition of a possible freak crest height. Even if we consider these as the largest out 
of 2000-3000 waves, we would consider these realisations to be well outside of what 
we would expect within a second order ffamework. Increasing the number of 
underlying waves from 100 to 2500, would suggest that the body of the extreme value 
distribution is shifted some 30 - 50% towards higher values. As the crest heights 
referred to above are measured at a water depth of about 40m, it is most likely that the 
wave profiles under extreme conditions are significantly affected by the bottom. [15], 
however, do also refer to some few episodes from deeper water. Of particular interest 
is a case from the Ekofisk field, 'where significant damage was reported more than 
20m above still water level. The significant wave height at the time of the damage is 
not known, but a value in the order of 10-12m is reasonable, suggesting a crest height 
close to twice the significant wave height. At this depth, the bottom is expected to 
influence the wave profile of the largest waves, but it is not likely to be a goveming 
effect. 

Kjeldsen, [9], has considered data recorded ffom the Frigg field in the North Sea. 
The water depth is about 100m, and limited depth is not expected to be an important 
parameter regarding the surface elevation process. Some few observations seem to 
belong to a possible freak wave class, in particular when attention is given to the crest 
height. Yasuda et al., [20], have considered the occurrence of freak waves off Japan. 
They define a ffeak wave as a wave with a wave height being twice the significant 
wave height. A number of waves fulfilling this defmition are included. An interesting 
example of a possible ffeak wave off Japan is shown by [19], but the measurements 
made off Japan correspond to rather shallow water, 43m, i.e. comparable to the depth 
of the cases from the Danish sector of the North Sea reported by [15]. We expect that 
results obtained for such water depths will not necessarily be representative for deeper 
waters, at least not if we consider sea states of a similar characteristic period. 

A number of examples of heavy weather damages caused by giant waves are 
presented by [10], In particular, he reefers to the capsizing of the semi-submersible, 
Ocean Ranger. The initiating event of this tragedy was according to [10] a giant wave 
that struck on the windows and flooded the control room. Over the years there has 
also been a number of ships disappearing without trace in stormy conditions with a 
considerable loss of human lives, an example being the Derbyshire disaster, see e.g. 
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[5] for some further references to this event. The 4-year old bulker being 965 feet long 
disappeared in a severe typhoon some 500 miles south of Japan. Since vessels are lost 
without trace, they must have been sinking very fast. In reasonable weather conditions 
this seems to suggest that the initiating event is a major explosion. In very severe 
weather conditions, the impact with a giant wave seems just as likely. The structural 
strength may in some cases have been significantly degraded due to age and, possibly, 
lack of proper maintenance. Some ship designs may also be somewhat more 
vulnerable to severe consequences of possible heavy weather damage. In spite of all 
this, one can still not exclude that the reason for the loss of some of these ships is that 
they unfortunately hit a wave well beyond the expected design waves. 

Faulkner and Buckley, [5], do also refer a number of other episodes where massive 
damage to ships due to giant waves is reported. In 1943, the liner "Queen Elizabeth" 
hit a trough preceding a giant wave off the east coast of Greenland. The wave broke 
over the ship and was followed by a second wave. The wave impacts shattered the 
bridge windows about 90 feet above the normal water line. The fore deck was 
smashed 0.15m below its normal level. In a contribution to a HSE-study, [7], Prof. 
Faulkner, in addition to the episode referred to above, also mention an episode in 
1942 where "Queen Mary", carrying 15000 US troops onboard, was close to capsizing 
in steep elevated seas in the north east Atlantic. 

January 1 1995, a Statoil operated jacket platform, "Draupner", was hit by a giant 
wave, see Fig. 4. The meteorological conditions in connection with this event is 
discussed by [17]. The water depth in the area is about 70m. The wave was measured 
by a down-looking laser device and the significant wave height averaged over a 20-
min. period was about 12m. The maximum wave height, see Fig. 5, was close to 26m, 
i.e. identified as a possible freak wave by the criterium established on basis of 20-min. 
measurements. The impressive thing about this wave, however, is its crest height 
which is measured to about 18.5m, well into the class of possible freak waves. This 
event is included in the data underlying Fig. 2 and it clearly deviates from the typical 
pattern. Within a second order frame work, Fig. 2 suggests that the probability of 
obtaining this value of the crest height to significant wave height ratio is 1:1000. The 
observed adjacent trough depth is less than 40% of the crest height. The conditional 
probability of having such a shallow trough following a major crest height is under the 
second order assumption most probably in the order of 1:100. Accordingly, the 
probability of observing an event like the event shown in Fig. 5 during a 20-min. 
window is in the order of 1:100000. For a typical North Sea site, the probability of 
observing a 20-min. sea state with a signifïcant wave height of 10m or more is about 
4-10-4. Assuming 1 out of 10 to correspond to a steepness being necessary for 
producing the most extreme crest heights, we will expect about 1 event per year in at a 
given site. Due to the correlation between adjacent 20-min. events, a more proper 
interpretation may well be 10 events in a row every 10 years. No matter of 
interpretation, and in spite of the rather approximate probabilities presented in this 
paragraph, the observation of an wave event shown in Fig. 5 is rather unlikely event 
under the second order assumption. This author will take this event as an indication 
that the most extreme wave events are effected by phenomena not covered by our 
second order model. 
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The phenomena needed for explaining such a wave is not yet resolved. It could be 
an inherent energy fluctuation with a period much larger than 20 minutes (and a 
corresponding spatial distance) and thus destroyed by our assumption of stationarity. 
If that is the case, it will have major impacts on our fitting of probabilistic models 
since the ergodicity assumption will fail if the stationarity assumption fails. Another 
possibility is energy focusing as the wave system is travelling in space, see e.g. [16], 
[4]

;
 [14] or other disturbances suddenly make 3. and 4. order correction processes 

very important for a short time (maybe some few wave periods) and limited spatial 
area (of the order of some few wave lengths). 

Time (s) 

Fig. 4. A 20-min. wave recording at the "Draupner" platform, January 1, 1995 at 15:20 

Fig. 5. The "New Year Wave" at "Draupner". 
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Abstract. Extreme wave crests have been of special interest for fixed 
platforms, since the platform designs are directly connected to the statistics of 
extreme crest heights and the water velocities in such waves. Extreme statistics 
are usually made from point measurements, but waves often appear in wave 
groups. Due to the dispersive nature of the waves, these groups can have 
different maximum crests at different positions along the direction of travel. 
The probability of measuring the overall maxima from point measurements is 
quite low. Also, buoys, which are widely used for wave measurements, have a 
quasi-Lagrangian (qL) behaviour. In [1] a set of storm data measured with a 
waverider at Ekofïsk (central North Sea) was analysed. The records were 
corrected for the qL behaviour and evolved up and down wave assuming 
unidirectionality. Maximum crest heights and forces were seen to increase. In 
this work we compare similar results using simultaneous waverider and vertical 
lasers measurements. The effect of buoy correction is discussed and some 
results of the comparison are shown. Evolution through dispersive propagation 
increases the number of waves with maximum height twice that of significant 
wave height (often used as the defming criterion for ffeak waves). 

1 Introduction 

On the 12th December 1990 a big storm swept through the North Sea, giving 13-15 
meter significant wave heights and causing severe damage to platforms like those at 
the Ekofisk field (56.5°N, 3.2°E). lt has been observed that extreme crest heights (or 
water damage on the lower deck on offshore platforms) occur in some storms but not 
in others, despite the significant wave height being the same in each of them. Since 
then, and also due to other situations with extremely high wave crests, research and 
development in forecasting of waves has been concerned with going a step further 
(than forecasting average parameters such as significant wave height and mean 
period) by also trying to predict the maximum crest heights in the different kinds of 
sea states. 

The seafloor under the Ekofisk complex is subsiding due to the oil extraction. 
Besides other major safety actions like jack-ups and building of new platforms, 
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Phillips Petroleum Company of Norway (PPCON), operator for Ekofisk, and the 
Norwegian Meteorological Institute (DNMI) started developing a special forecasting 
service called EXWW (Ekofisk eXtreme Wave Waming), with well-defined 
procedures to ensure safety of operations. Experience proved very soon the 
importance of good instrumentation for the measuring of waves, and there are now 3 
in-situ wave recorders (one waverider buoy and 2 vertical lasers) and a WAMOS 
radar (based on nautical radars) reporting wave data in real time to the forecaster in 
Bergen. 

With such an extended database, we have the opportunity to analyse waves in 
detail and to sort out datasets subject to errors of any kind (lee effects - interaction 
effects with construction) that are often quite common in wave profile analysis. 
Earlier attempts have been made to find relations between extreme wave situations 
and weather phenomena [2], without much success. There are a number of reasons for 
this. 

First, Waverider data were used. Buoys are ‘wave followers’: on the crest, they 
tend to move in the wave propagation direction and in the troughs they move the 
opposite way. The movement is restrained to some extent by the tethering. Therefore, 
typically, the buoy spends more time on crests and less in troughs than a fixed sensor.. 
Waves measured by buoys exhibit more vertical symmetry than when measured from 
a fixed position like vertical lasers. Also the apparent mean water level becomes 
displaced (higher), with the consequence that crest heights (above mean water level) 
become too low. Wave steepness measured with buoys are also generally lower than 
those measured from a fixed position. Longuet-Higgins ([3], [4]) describes this quasi-
Lagrangian behaviour, and in [1] some storm data measured with a waverider at 
Ekofisk were corrected for this. 

Secondly, waves come in groups, and their profiles change as they propagate due 
to different propagation speeds of different wave components forming the sea state. 
One way of producing extremes is by the ‘coalescense’ of the waves, when long 
waves overtake the shorter ones [5]. The chance of measuring at the coalescing point 
seems to be quite small. Looking for rare events in a dataset, even when using many 
years of data, must therefore result in very few ‘captures’. 

A statistical analysis of historic datasets is therefore unlikely to answer the 
question of what kind of extremes actually occur. It is a fact that water impacts (due 
to more than only sea spray) have occurred at very high levels above mean water, so 
high that it is reasonable to believe that extreme wave crest heights may occur outside 
the expectancies of Rayleigh distributions. Tank experiments are being done to find if 
certain spectral forms give such waves (see for example [6], [7]). 

In [ 1 ] wave profile time series measured by a waverider during 4 storms have been 
corrected for the quasi-Lagrangian movement, thereafter propagated (‘evolved’) up-
and down-wave assuming linear propagation and unidirectional waves. The new 
dataset showed that maximum wave crests could become considerably higher (25%) 
than in original datasets, in the average by 2.5%. Wave induced forces, proportional 
to the square of the particle velocity also analyzed in the paper using the method of 
Donelan et al [8], were seen to increase by up to 60%. 

In this work we compare such calculations with the waverider with similar 
calculations with the laser measurements during 4 new storms from the winter season 
1998-1999. The questions we ask are: do the corrections for quasi-Lagrangian 
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behaviour make the waverider data similar to the laser data? How does ‘evolution’ 
change the statistics for the 2 kinds of instruments? Some preliminary results are 
presented here. 

2 Waverider and laser measurements 

Wave profile time series from 3 in-situ instruments are used. The recording frequency 
for all three is 2 Hz and each wave record is 20 minutes long. The number of records 
used is dependent on the storm situation. We have sorted out time series with as 
constant wind and wave conditions as possible. The instruments are one waverider 
(heave-buoy) situated 1 nm NE of the Complex, and two lasers measuring the vertical 
height from their location (underside of a bridge between 2 platforms) to the sea 
surface. One laser is situated south of the northemmost platform of the complex 
(‘Flare North’), the other one is north of the southernmost platform (‘Flare South’). 

2. 1 Description of storm cases 

Wind and wave data used in this study are from 25th October (storm no 1) and 27th 
December 1998 (storm no 2), and 4 to 5th (no 3) and 17th (no 4) February 1999. In the 
first storm wind and waves were from WNW. Wind speed was above 22m/s (10 min. 
-10 m level). Significant wave height (Hs) in the period used in the analysis ranges 
from 4 to 10 m. In the second storm, waves at the Ekofisk location were produced by 
a strong wind (23-30m/s) with short fetch. Hs reached 12m. In the third storm, the 
waves and winds were taken in a period starting with WNW wind, veering NNW. In 
this case the laser at Flare South became located in a sector at the lee of the complex, 
so measurements from this location are disregarded. Wind speed reached at 27m/s 
from NW for a short time, but significant wave height was at the 9-10m level for a 
long time (from 17UTC the 4th to 04UTC the 5th). In the 4th storm, winds were from 
NNW, approximately 18m/s, and Hs values were between 7 and 8m for a period of 
about 5 hours. 

2.2 Wave properties measured by different sensors 

The difference in wave skewness (crest height relative to trough depth) recorded by a 
waverider compared to lasers is seen in Fig. 1, where time series of Hs, maximum 
crest and trough (absolute value) height in each 20 minute record from the 3 
instruments at Ekofisk in the first storm are shown. For the waverider (WR, in the 
bottom panel) the crests and troughs (thin lines, stippled for the troughs) are about the 
same, while for the 2 laser time series the crests are mostly larger than the troughs, 
sometimes twice. The figure shows also how variable the sea state is measured from 
one location to another, with one or another sensor. Hs from laser at FN (Flare North) 
increases first, reaching 10m, WR crests one hour later at 10m, and FS (Flare South) 3 
hours later than the WR at a slightly lower level (9m). Maximum crest height in the 
storm seems to occur at the same time for both lasers. It might be at that time that 
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significant wave height at Flare South is reduced because of lee-effects from the 
Ekofisk complex, but high crests do occur at this location anyway. There might be 
several explanations for this, for example can a high crest at the lee of the complex be 
a result of interaction between difffacted waves, but further discussion on this is 
beyond the scope of this paper. In the overall comparison of the wave measuring 
systems, only one of the lasers has been used in each storm: the one being free of lee 
effects of the platforms of the complex. 

Fig. 1. Significant wave height (Hs, thick line), maximum crest height (Crx, thin line) and 
maximum trough depth (Trx, dotted line) during 25th october 1998 at Ekofisk, as measured by 
Waverider (WR, bottom panel) and lasers at Flare North (FN, center) and Flare South (FS, top). 

Fig. 2. Skewness (eq. 1) as function of inverse wave age (Ul0/cp) for Waverider (bottom panel) 
and laser measurements at Ekofisk during all 4 storms. 
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Fig. 3. Mean forward face steepness (FFS in eq. 2, top panel) and mean forward crest steepness 
(FCS, eq. 3, bottom panel) as function of inverse wave age as measured by lasers at Ekofisk. 

Overall skewness versus wave age is shown in Fig. 2 for waverider (bottom panel) 
and laser data using data from all four storms. Average skewness v is given by: 

η = (ξ-ξ)3 >/std(ξ)3 (D 

where ξ= ξ(t) is the time series of surface elevation. Inverse wave age is given by 
U

10
/Cp, where U10 is the 10 meter height wind speed (10 min average) and c

p
 is phase 

velocity at the peak wave frequency. The figure shows that increasing the wind 
forcing increases the skewness for the waves measured with a laser, but such a 
relation is not at all obvious for waverider data, probably because the increasing 
nonlinearity of the surface with increasing forcing is to some extent suppressed by the 
quasi-Lagrangian behaviour of the buoy. This shows why searching for a better 
understanding of how and when extreme or rogue waves occur using buoy data is 
likely to fail. Buoys have been used widely (and are still), so it is worth finding a way 
to correct measurements for the quasi-Lagrangian behaviour that is the main cause of 
this discrepancy. 

In the following, we have calculated different steepness parameters for waves 
measured by both type of instruments. These are Forward Face Steepness (FFS) and 
Forward Crest Steepness (FCS): 

FFS = H/((g/2x).T.T') (2) 

FCS = Cr /((g /2π).T.T") (3) 

H is the trough to crest height, Cr is the crest height above mean water level. T is 
zero-crossing period including the trough followed by the crest, T' is the period from 
trough to following crest, T'' is the period from zero-crossing to crest. 
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Fig. 3 shows the mean steepness (FFS in upper panel, FCS in lower panel) measured 
with the lasers as a function of inverse wave age. Waverider measurements are shown 
in Fig. 4. Average values are comparable, but Waverider data show less variability. In 
Fig. 5 (laser data) and 6 (Waverider data) the maximum values in each 20 minute 
record are shown as a function of inverse wave age. The values have more variability 
than the average values, as can be expected. FFS values are similar for both 
instruments but forward crest steepnesses (FCS) are slightly less with the waverider. 

Inverse Wave Age 

Fig. 4. Mean forward face steepness (FFS in eq. 2, top panel) and mean forward crest steepness 
(FCS, eq. 3, bottom panel) as function of inverse wave age, measured by the Waverider at 
Ekofisk. 

Fig. 5. Maximum forward face steepness (FFS in eq. 2, top panel) and forward crest steepness 
(FCS, eq. 3, bottom panel) from each 20 minute record used as function of inverse wave age as 
measured by lasers at Ekofisk. 
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Fig. 6. Maximum forward face steepness (FFS in eq. 2, top panel) and forward crest steepness 
(FCS, eq. 3, bottom panel) from each 20 minute record used as function of inverse wave age as 
measured by the Waverider at Ekofisk. 

3 Correcting for the quasi-Lagrangian behaviour 

Following the method described in [1], the waverider data used in this study are 
corrected for the quasi-Lagrangian behaviour. We then see that the overall average of 
the FCS values over all 4 storms increases to be comparable to the laser value (0.18). 
But little difference is seen on other average values, i.e.: height factors like 
<Hmax/Hs> and <Crx/Hs>, where Hmax is maximum wave height in a record, and 
Crx is maximum crest height above mean sea level. In Fig. 7 an example of the time 
series around the wave with the highest crest is shown. These are measurements from 
the storm no 2 (28. December 1998). The laser measures its highest crest at 06:40 
UTC (top panel), while the Waverider (central panel) has a maximum crest in the 20 
minute time series preceding the laser one - it is not the same wave passing by. The 
bottom panel shows this crest after correction for the quasi-Lagrangian behaviour. 
Compared to the laser crest, the waverider gives a much smoother one. QL-correction 
increases the skewness and steepness of this crest, as shown by the FFS and FCS 
numbers in the figures. We see that the Forward Crest Steepness especially increases 
by about 40% and becomes comparable to the laser data value. 

4 Evolving wave groups 

Evolving of wave time series using the linear method described in [1] has been 
applied to the waverider and laser time series. In [1] only waverider data was used to 
evaluate maximum crests, and horizontal velocities using the superposition method by 
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Fig. 7. Maximum crest in storm no 2 as measured by the laser at Flare South (top 
panel) and the waverider (center panel). Bottom panel shows the wave profile from 
the waverider after correction for quasi-Lagrangian behaviour. 

Fig. 8. Laser profile of the wave with highest Hmax/Hs factor; measured (top panel) and 
evolved (bottom panel). 
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Fig. 9. Waverider profile of the wave with highest Hmax/Hs factor; measured (top panel) and 
evolved (bottom panel). 

Donelan et al [8]. In summary it was found that evolving 150 original records 
increased the maximum crest to trough value in each record on average by about 10%, 
and the maximum crest height by 17%. But maximum increases were seen to be up to 
30 and 50% respectively. Wave forces, being proportional to the horizontal velocity 
squared, were found to increase by 50%. Correcting for the quasi-Lagrangian 
behaviour of the buoy decreased the apparent mean water level by 8% of the standard 
deviation of surface elevation, increasing by this the skewness of the waverider data. 

After evolving laser and waverider data from parts of the 4 storms in this study, we 
found that the number of ‘freak’ wave events (using the definition Hmax/Hs > 2.0) 
increased from 1 to 10 for the waverider, and from 0 to 8 for the laser data. Fig. 8 
shows the crest with largest Hmax/Hs factor as measured with the laser in the first 
storm (upper panel) and how it appears after propagation to the point where the crest 
is highest (lower panel). The crest heights are very similar in this example, but the 
steepness is considerably larger. Fig. 9 shows the same comparison for the waverider 
(upper panel is the waverider record corrected for quasi-Lagrangian behaviour). The 
crest is 10% higher ( 10 vs 1 1m), but the steepness is less (70 % of original value). 

5 Discussion and Conclusions 

High singular waves (Hmax>2Hs) were not included in the laser records used in this 
study, but we did observe such waves in the time series. They occurred at or after the 
peak of the storms, or in the tirst period when wind increased suddenly. The records 
in this study were chosen to satisfy conditions of stationarity and unidirectionality, to 
satisfy conditions for evolving records using the linear dispersion relation. What we 
see in these records is that skewness and forward face steepness are strongly 
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correlated to wind forcing, while (not shown here) normalized height parameters 
(Hmax/Hs, Crx/Hs) seem not to be. 

The requirements placed on the records discriminated against rapidly changing 
conditions when unusual wave records may have been obtained in the context of 
rogue waves. So meticulous studies of different weather situations and wave records 
one by one are needed to do proper statistics (or at least analysis since the number of 
occurences is low) on the occurrence of extreme waves. Observations of wave records 
from Ekofisk in real time give indications that high and steep crests occur when the 
wind is temporarily weakened, and also at the start of the storm when the waves are 
very steep. These are preliminary observations that need to be verified. 
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Abstract. This paper presents an analysis of a set of available freak 
wave measurements gathered from several periods of continuous wave 
recordings made in the Sea of Japan during 1986 - 1990 by the Ship 
Research Institute of Japan. The analysis provides an ideal opportunity 
to catch a glimpse of the incidence of freak waves. The results show that 
a well-defined freak wave can be readily identified from the wavelet spec-
trum where strong energy density in the spectrum is instantly surged and 
seemingly carried over to the high frequency components at the instant 
the freak wave occurs. Thus for a given freak wave, there appears a clear 
corresponding signature shown in the time-frequency wavelet spectrum. 
Since freak waves are primarily transient events occurring unexpectedly, 
wavelet transform analysis on continuous, long duration wave measure-
ments clearly represents the most ideal approach to discern the localized 
characteristics of freak waves for further exploration. 

1 Introduction 

Perhaps one of the weakest and most difficult aspects for the explorations of 
rogue or freak waves in the oceans is the ostensive scarcity of actual field mea-
surements of rogue wave events. Because of the uncertain and unpredictable 
nature of the occurrence of rogue waves, the conventional, discrete kind of wave 
measurements at fixed time intervals have not been conducive in capturing actual 
freak wave episodes. A viable approach for making comprehensive rogue waves 
measurement does not seem to be presently available. The current literatures 
on rogue waves are predominantly comprised only with conjectured mechanisms 
such as those variously reported in [1], [11], [8], [2], [9], among others. 

This paper presents an empirical analysis of available wave measurements 
collected during 1986 - 1990 in the Sea of Japan where freak waves are known 
to have observed. Since freak waves are primarily transient events, conventional 
frequency spectrum analysis is clearly incapable in effectively processing rogue 
waves in the frequency domain. We applied wavelet transform analysis here to 
analyze the time series and examine the localized freak wave characteristics in 
the generalized time-frequency domain. 
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2 The Wave Measurements 

As freak waves are basically rare and unexpected occurrence, for the conven-
tional wave measurements typically making 10-20 minutes recordings hourly, 
it would be entirely possible that an incidence of a freak wave be overlooked 
if it occurs in between recording times.Only through extended and continuous 
recordings would plausible expectations to capture an event of freak waves be 
realized. There are conspicuously fewer continuous wave measurements avail-
able, hence very few freak wave studies are based on actual measurement. Wave 
measurements used in this study were made from the Sea of Japan, at a location 
3 km off the Yura fishery harbor in 43 m water depth. The instruments used in 
the measurement were ultrasonic type wave gages. Five sets of sea surface fluc-
tuations data, recorded at 1 Hz sampling frequency, are used. Each of the data 
sets has over 20 to 40 hours of continuous recordings. Wind measurements were 
also available, which showed that the occurrence of freak waves are generally 
during steady wind conditions ([5], [11]). The measurement was originally made 
by the Ship Research Institute of the Ministry of Transport of Japan. 

3 The Wavelet Spectrum 

Wavelet transform analysis, developed during the last two decades, is an ideal 
tool for the study of the measured time series data of nonstationary, transient 
phenomenon such as freak waves. As the last decade marked an explosive publi-
cation of wavelet related books and articles, details on wavelet transform can now 
be found in many widely available introductory articles and texts (e.g. [3], [4]). 
Therefore we shall just present a very brief summarization of the formulation of 
continuous wavelet transform here. 

For a given function or data signal X(t), which is assumed to be square 
integrable, its Fourier transform, X(ω), is given by 

which transforms the function in the time domain to the frequency domain. In 
order to examine the characteristics of the function in the frequency domain as 
well as the time domains, a direct approach of extending Eq.(l) to the time-
frequency domain can be obtained by including a time windowing function g(t) 
such that: 

Formulating analogously and replacing the window function with a new fam-
ily of functions, and discretizing the time, t, and frequency, UJ, with position, b, 
and scale, a, respectively, then it readily leads to the wavelet transform: 



153 

where a > 0, —∞ < b < +∞, and the asterisk superscript indicates the complex 
conjugate. 

Suffice to assert that the wavelet spectrum, based on the continuous wavelet 
transform, represents a natural extension of the familiar, conventional Fourier 
spectrum analysis. While Fourier transform is based on the concept of frequency, 
the wavelet transform is based on the concept of scale and time. As scale and 
frequency are inversely related, thus instead of results presented in a conven-
tional plot of energy versus frequency for Fourier energy spectrum, the wavelet 
spectrum is known to be three-dimensional in nature and plotted in the time-
frequency domain with the equivalent energy density appears in terms of contour 
levels. This provides an ideal opportunity to examine the process of energy vari-
ations where the freak waves occur locally and abruptly in time. Note that we 
present mainly the results of continuous wavelet transform using Morlet wavelet 
here, similar result of characteristic features shown here can in general also be 
obtained from using different mother wavelet, or with the application of discrete 
wavelet transforms. 

Since there is presently no available studies examining the localized charac-
teristics during the occurrence of freak waves, and neither is there any theoretical 
implications as to how a freak wave might have behaved in the time-frequency 
domain, our results are therefore necessarily exploratory and tentative. On the 
other hand, the qualitative nature of the results also presents challenging impli-
cations that are inviting for rational interpretation. From the five sets of continu-
ously recorded surface wave data which comprise over 200 hours of measurement, 
only a few episodes of freak waves have been identified both in the field and by 
the time series data. These cases generally resembles the ideal freak wave time 
series case given by the North Sea measurement, [6]. Figure 1 presents such a 
characteristic freak wave time series and its corresponding wavelet spectrum. 
The freak wave episode shown in Figure 1 is represented by a plotting of 10 min-
utes time series segment that contains the occurrence of the freak wave along 
with a panel of corresponding contour plotting for the wavelet spectrum. It ap-
pears that for the well-defined freak wave as shown in the time series plot, it can 
also be readily identified from the wavelet spectrum where strong energy density 
in the spectrum appears instantly surged at the onset of the freak wave and the 
energy density seemingly carried over to the high frequency components at the 
freak wave instant. Therefore, for a given freak wave, there emerges a clear corre-
sponding signature shown in the time-frequency domain of the wavelet spectrum. 

However, for another similar characteristic freak wave time series shown in 
Figure 2, there is no corresponding instantaneous energy surge feature appear in 
the wavelet spectrum as those in Figure 1. So it is somewhat uncertain in this case 
whether a freak wave identified only in the time series can be really considered as 
a freak wave or not. On the other hand, it is of interest to note that the time series 
in Figure 1 at the onset of the freak wave its profile appeared rather asymmetric 
with respect to the mean level, whereas the freak wave profile in Figure 2 was 
generally symmetric1. So the difference in wavelet spectrum might also be a result 

1 We are indebted to Prof. Douglas Faulkner for pointing out this feature to us. 
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Fig. 1. Freak wave time series and its wavelet spectrum for data set Yura Y88121041 
[See also Appendix CP] 

of the difference in freak wave profiles. It is possible that the single large wave 
height shown in Figure 2 represents merely a maximum wave from the extreme 
statistics. Or alternatively it is indeed a freak wave but generated from a different 
process from the case shown in Figure 1. Just as various different conjectures 
all can be shown to produce freak waves, freak waves certainly can be generated 
from different physical processes. Time series alone clearly may or may not be 
relied on for distinguishing freak waves. While wavelet transform applied to the 
time series can provide further discernible features, it is still beyond the scope of 
the wavelet transform to readily comprehend the differences in possibly different 
processes. Undoubtedly more detailed measurements than just surface time series 
would be needed for proper and practical study of freak waves. At any rate, since 
the mechanism of freak wave formation is understandably diverse, it should not 
be surprising that different freak waves exhibit different qualitative features. 
Both cases in Figures 1 and 2 can be freak waves, or only the case in Figure 
1 represent a freak wave. As idealized and more comprehensive measurements 
encompassing all possible relevant parameters are unavailable at the present, 
wavelet transform analysis is nevertheless the ideally suited approach to study 
the available freak wave time series that may be used to clarify the occurrence of 
the freak waves as well as their general characteristics and statistical properties. 
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Fig. 2. Freak wave time series and its wavelet spectrum for data set Yura Y8010901 
[See also Appendix CP] 

4 Concluding Remarks 

Rogue or freak waves have always been a fascinating subject for contemplation 
and speculation, but the hazard of severe damages it may inflect upon ships 
and mariners can not be over stated. While the existence of freak waves has 
been accepted by scientists and engineers, one can not overlook the fact that 
the existence of freak waves is basically only based on eyewitness accounts. It 
is of utmost importance that concerted field efforts should be implemented to 
provide actual detailed measurements and analysis and thus to ascertain its ver-
itable existence. The working group on breaking and freak waves at the NATO 
Advanced Research Workshop ( Torum and Gudmestad 1990, [7]) had recom-
mended over 10 years ago that future research needs should be on full scale freak 
wave measurement, correlation of meteorological information and freak wave oc-
currence, and extended analysis of existing data. These recommendations are 
certainly well-founded, unfortunately none of the advices has been carried out 
since then. The continuous measurements of longer duration in time, made by 
the Ship Research Institute of Japan, which had led to possibly the only avail-
able field recordings of freak waves, are of extreme importance and usefulness. 
Analysis using wavelet transform would probably be the one of the versatile 
tools available that is truly ideal for the study of freak waves data. Hopefully 
the exploratory results presented in this paper may serve to demonstrate the 
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useful effects of wavelet transform and freak waves and thereby enticing more 
particularized freak wave measurements and wavelet transform applications. 
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Abstract. This paper concerns the identification of characteristic os-
cillations of extreme waves based on the Hilbert-Huang Transformation 
(HHT) [7], [8]. The HHT decomposes any time-dependent signal into its 
individual embedded modes with the so-called Empirical Mode Decom-
position (EMD). Applying the Hilbert Transformation (HT) to any of 
these disintegrated Intrinsic Mode Functions (IMF) subsequently gener-
ates distinct time-dependent Hilbert amplitude or energy spectra. This 
implies, in all probability, that the HHT is capable of revealing entirely 
new physical insights for any nonlinear and non-stationary data series 
and could also deduce dissimilar underlying dynamical processes of ex-
treme waves. 

1 Introduction 

1.1 Fourier Transformation 

Fourier analysis has become the most valuable tool in spectral data analysis 
and has consequently been applied to all kinds of data in many scientific or 
engineering disciplines. Although, it is strictly limited to linear systems and 
stationary data series [e.g. [19]]. Therefore, the Fourier spectrum can only be 
regarded as the coefficient function obtained by expanding a signal x(t) into 
a family of an infinite number of waves generally in the form exp(iwt), which 
are completely unlocalized in time typifying the signal mathematically from a 
rather global point of view. Thus, the Fourier sprectrum essentially defines which 
spectral components, as well as their corresponding time-invariant amplitudes 
and phases, are embedded in the signal over the whole time span in which the 
signal was recorded. 

1.2 Short-Time Fourier Transformation 

In order to introduce a time-dependency in the Fourier transform technique, 
a simple and intuitive solution consists of pre-windowing the signal around a 
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particular instant in time, calculating its Fourier transform, and repeating that 
procedure for each time step - assuming the signal to be stationary in all win-
dows. The resulting time-dependent spectrum (spectrogram) is called the short-
time Fourier transformation (STFT) and was first introduced by Gabor, [6]. 
In order to localize an event precisely in time, the window width must be nar-
row, alternately the frequency resolution requires longer time spans. This leads 
to conflicting requirements (Heisenberg-Gabor inequality) and restrains this me-
thod from many practical applications, although it is still the most widely used 
technique in time-frequency analysis today. 

1.3 Wavelet Transformation 

To avoid these restrictions the wavelet analysis - in continuous and discrete 
representation - has been developed in the last decade [e.g., [5]]. Since it has an 
analytical form for the results, it has attracted extensive attention in the field of 
applied mathematics. The central idea of the wavelet transform is to correlate 
a signal x(t) with a family of zero-mean functions derived from an elementary 
function (mother wavelet). e. g. the complex-valued continuous Morlet mother 
wavelet derived from a plane wave modulated Gaussian envelope [14]. 

In principle, the wavelet transform provides an amplitude spectrum of the 
signal x(t) in time and frequency domain. But, even the wavelet analysis has cer-
tain limitations. Firstly, the chosen mother wavelet will significantly influence 
the result of the analysis, as the basic functions of wavelet transformation are 
fixed and do not necessarily match the shape of the considered data series in 
every instant in time. Moreover, spectral wavelet analysis certainly underlies an 
uncertainty principle, indicating that a time or a frequency dependent informa-
tion cannot be classified by the same accuracy, simultaneously. A high frequency 
component is precisely resolved in time domain, but at the same time inexact 
in frequency domain and vice versa for low frequency components. Regardless 
of these restrictions the wavelet analysis has become a very popular tool to in-
vestigate non-stationary data series, although, it is basically a linear technique. 
Most recently, Liu, [11] a, [12] b] applied the continuous Morlet Wavelet Trans-
formation to investigate the spectral energy content of coastal and ocean data 
series. Chien et al. [[3]] analysed nearshore observed extreme waves events east 
off the coast of Taiwan. 

1.4 Hilbert-Huang Transformation 

Empirical Mode Decomposition. Recently, Huang et al. [7], [8] developed 
the Hilbert-Huang transformation (HHT) to decompose a time-dependent data 
series into its individual characteristic oscillations with the so-called Empirical 
Mode Decomposition (EMD). This adaptive technique is derived from the simple 
assumption that any signal consists of different intrinsic mode functions (IMF) -
each of them representing an embedded characteristic oscillation on a separated 
time-scale. An IMF is defined by two criteria: i) the number of extrema and 
of zero crossings must either equal or differ at most by one, and, ii) at any 
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instant in time, the mean value of the envelope defined by the local maxirna and 
the envelope of the local minima is zero. The first criterion is almost similar to 
the narrow band requirement of a Gaussian process, while the latter condition 
modifies a global requirement to a local one, and, is necessary to ensure that the 
instantaneous frequency, which will be explained later, will not have unwanted 
fluctuations. In other words: the EMD is based on the direct extraction of energy 
associated with various intrinsic time scales. The following chart proposes an idea 
about the principle algorithm of the EMD. 

1. Initialize r0(t) = x(t), j = 1 
2. Extract the j-th IMF: 

(a) Initialize h0(t) = rj(t), k = 1 
(b) Locate local maxima and minima of hk-1(t) 
(c) Cubic spline interpolation to define upper and lower envelope of hk-1(t) 
(d) Calculate mean mk- 1

(t) from upper and lower envelope of hk-1(t) 
(e) Define hk(t) = hk-1(t) - mk-1(t) 
(f) If stopping criteria are satisfied then hj(t) = hk(t) else goto 2. (b) with 

k — k + 1 
3. Define rj(t) = rj-1(t) — hj(t) 
4. If rj(t) still has at least two extrema then goto 2. (a) with j = j + 1 else the 

EMD is finished 
5. rj(t) is the residue of x(t) 

At the end of this numerical sifting process the signal x(t) can be expressed: 

n 

where hj(t) indicates the j-th IMF, n as the number of sifted IMF and r
n

(t) 
denotes a residue which can be understood as the trend of the signal. Another 
way to explain how the EMD works is that it picks out the highest frequency 
oscillation that remains in the signal. Thus, locally, each IMF contains lower 
frequency components than the one extracted just before. This property can be 
very useful to detect rapid frequency changes, since a change will appear even 
more clearly at the level of an IMF. Completeness of this decomposition method 
is assured in princple and only dependent on the precision of the numerical 
sifting process. Orthogonality of the EMD is not guaranteed theoretically, but is 
satisfied in a practical sense that two IMF are orthogonal within a certain period 
of time. Additionally, the IMF do not guarantee a well-defined physical meaning 
and great caution is advised when attempting to interpret them. However, the 
IMF do carry physical significance in most cases as Huang et al. point out and 
since the EMD is a patented technique (US005983162A), they only introduce a 
rough overview of their decomposition method - allowing the reader sufficient 
room for adequate interpretation and realisation of their origin ideas. 
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Hilbert Transformation. In a next step, the Hilbert transformation (HT) is 
applied to each of the disintegrated IMF - subsequently providing the Hilbert 
amplitude spectra with significant instantaneous frequencies. Basically, the Hilbert 
transformation H[x(t)] = y(t) of x(t) is defined [see: Bendat & Piersol, [1]]: 

assuming that (x(t))2 dt < 0, we can describe H[x(t)] = y(t) of x(t) as: 

with p.v. as the Cauchy principle value of the integral. Moreover, z(t) is the 
analytical signal of x(t): 

z(t) = x(t) + iy(t) = A(t) exp(i&(t)) , (4) 

with: A(t) — x(t)2 + y(t)2 and 0(t) = arctan (y(t)/x(t)) = ut. We can then 
define the instantaneous frequency (IF) in eq. 5 as the rate of change of the phase 
of the analytical signal z(t). The IF was first introduced by Ville [[21]]. The 
definition of an IF is highly controversially debated [2], [4], because a frequency 
is usually related with the number of cycles undergone during one time by a 
body in a periodic motion, so that there is an apparent paradox in associating 
the words ’instantaneous’ and ’frequency’. However, in practice, signals are not 
truely sinusoidal, or even aggregates of sinusoidal components, representing the 
IF as an excellent discriptor of several [)hysical phenomena. This concept was 
originally defined in the context of FM modulation in theory of communications. 

The analytical signal z(t) is the best local fit in time domain of an amplitude 
and phase varying trigonometric function to the data series x(t). After having 
obtained the IMF and having generated the HT of each IMF, the data series 
x(t) can be represented: 

This time-frequency distribution of the amplitude is designated as the Hilbert 
spectrum H(ω, t). The same data series x(t) if expanded in conventional Fourier 
analysis representation would be: x(t) = fJJLi aj exp (iwjt). Physically, a defini-
tion of an IF has a true meaning only for monocomponent signals, where there’s 
only one frequency or at least a narrow range of frequencies varying as a function 
of time. Most data series do not show these necessary characteristics, so that in 
former times a Hilbert transform only made little physical sense in most practical 
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applications. The real value of the Hilbert transform had to wait to be demon-
strated until the EMD method was developed to separate a signal into its own 
characteristic oscillations each of them in a narrow-banded frequency range as 
Huang et al. further spotlight. Today, the HHT is applied in several scientific and 
engineering disciplines. E.g. in Geophysics or in Meteorology to study the nature 
of seismic, tidal and wind waves, to investigate the occurrences of tsunamis, or 
to examine the gravity wave characteristics in the rniddle atmosphere [Zhu et 
al., [23]]. Moreover, the HHT is used in Medical Science & Engineering or in 
Physics to study the phenomema of physiological studies of the stomach [Liang 
et al., [10]], heart beat irregularities, turbulences in blood flow, brain wave ir-
regularities in epileptic seizures or to detect solar neutrino variations [Details of 
last four research projects were communicated in personal correspondence with 
Dr. N. Huang, NASA Goddard Space Flight Center, USA\. In addition, Schlur-
mann et al. [[17] a] investigate laboratory generated extreme waves with second 
order wavemaker theory and utilize a technically improved numerical algorithm 
of the HHT to decompose these data into their characteristic oscillations [18] b]. 

2 Embedded characteristic oscillations of extreme waves 
based on the HHT 

Extreme waves - with a exceptional single waveheights - are defined as transient 
waves existing in one specific location in one particular instant in time. Extensive 
work has been carried out to study these phenomena either to examine their 
primary driving mechanics or to simulate these waves numerically [e.g.: [16], 
[15], [22], [20], or, [9]. 

Investigations in the present paper concentrate on the application of the HHT 
to analyse extreme wave events observed in the Sea of Japan. Water surface ele-
vations were measured by three individual operating ultrasonic type wave gages 
mounted on the sea bottom (d = 43 m) approximately 3 km off the coast of Yura 
with a sampling frequency Δf = 1 Hz. Observations were carried out from 1986 
to 1990 by the Ship Research Institute, Japan. Main results with emphasis on a 
statistical analysis were done by Yasuda et al, [22]], and Mori et al., [13] and con-
clude that most of the observed freak waves in this region occur in single peaked 
spectra sea conditions during seasonal winter storms, mainly without any mul-
tidirectional effects. Figure 1 presents one example of a freak wave measured at 
these three locations in a ten minute record on 24-Nov-1987. It is unmistakably 
defined by its transient character. Significant waveheights H

1/3
 were derived 

from 30 minutes intervals and are practically constant for all three locations. 
Largest waveheight H

max
 = 13.6 m is measured at location #1 for this event. 

Figure 2 shows results of the EMD carried out for the signal from location #1. It 
is disintegrated into ten IMF in total, only the first seven IMF are shown here. 
This particular extreme wave event is separated into locally non-overlapping 
time scale components with altering amplitudes. The first three IMF carry most 
of the embedded energy. It is clearly identified that each IMF is dominated by 
an almost constant inter-wave component that rather represents a carrier wave 
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constituent. Only small intra-wave components are evident that modulate the 
carrier wave constituent in frequency domain. Figure 3 presents results from the 
Wavelet and Hilbert Transformation. The top panel a contains the recorded data 
series. Correspondingly, panel b shows the Wavelet (Morlet) spectrum and panel 
c presents the Hilbert spectrum, both in time domain. Horizontal colorbars be-
neath panel bkc denote the amplitude of each spectrum. Apparently, the Hilbert 
spectrum provides more distinct information on the time-frequency contents of 
this event - evidently showing that this extreme wave is the superimposition of 
selected characteristic embedded modes that are in phase at the concentration 
point. 

3 Conclusion and Discussion 

A conclusion that can be drawn from this very brief analysis of extreme wave 
events is, that the Hilbert-Huang Transformation gives the impression of being 
an extremely powerful tool to analyse nonlinear and non-stationary data se-
ries in the time-frequency plane. The EMD adaptively decomposes an extreme 
wave record into its embedded characteristic oscillations. The Hilbert spectra 
not only show no obvious constraints compared to other conventional analysing 
techniques in defining a more precise representation of particular events in time-
frequency space, but also provide a more physically meaningful interpretation 
of the underlying dynamic processes. But, the Hilbert-Huang Transformation is 
not an undisputed analysing technique. Certain points are seriously debated in 
the moment: 

1. technical improvements of EMD algorithm: e.g. spline fitting methods, bound-
ary effects of splines, intermittency checks (merging of different IMF), 

2. influence of sampling frequency (oversampling), minimum data length, weak 
oscillations embedded in strong oscillations, effects of noisy data, 

3. derivation of further analytical characteristics: mean frequency spectrum 
(marginal spectrum), higher order moments, local frequency bandwidth, 

4. closure of fragmentary theoretical mathematical background: final proof of 
orthogonality and completeness, IMF in closed analytical form. 

Regardless of these obvious theoretical inadequacies the Hilbert-Huang Trans-
formation is one of the most important discoveries in the field of applied math-
ematics in the last decades that is, in all probability, capable of determining 
entirely new physical insights of any nonlinear and non-stationary data series, 
and, therefore, could also presume different underlying dynamic processes of 
extreme waves. 

’’We’ve only begun to explore the fully physical interpretations of the Hilbert 
spectra for any complicated data series” [Huang et al., [7]]. 
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Fig. 1: Extreme wave (24-Nov-1987) 

Fig. 2: EMD (location #1) 

Fig. 3: Wavelet and Hilbert spectrum 

[See also Appendix CP] 
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Abstract. Experiments were performed in a large wave-tank 40 meters long, in 
order to measure geometric and kinematic properties of waves breaking on deep 
water, especially of plunging breakers. Because the shape of waves approaching 
the breaking stage changes rapidly, we used a visualization technique associated 
to an image analysis process to make observations and measurements both in 
time and space. The asymmetry of the profile of wave breaking is in particular 
displayed. This asymmetry is an important parameter, which contributes to 
make breaking waves dangerous with regard to numerous marine activities. 

1 Introduction 

Among others, the knowledge of the geometric and kinematic properties of rogue 
waves is important from several practical points of view. It is in particular important 
with regard to the safety of ships and offshore structures. 

The experimental study of this phenomenon is difficult for various reasons: the 
phenomenon is unsteady, it occurs suddenly and intermittently, and it can display 
three-dimensional aspects. In-situ experiments are especially difficult because the 
adverse conditions and the variability of the meteorological conditions. For these 
reasons, experiments in laboratory, in controlled conditions, are very useful. 

The geometry and the kinematics of rogue waves occurring in ocean are 
practically unknown and the present paper tries to shed some light to this 
phenomenon by reporting on measurements in laboratory on deep-water breaking 
waves, which can be considered themselves as extreme waves. The experimental 
means used for these measurements could be easily applicable to the study of rogue 
waves. 

In the present report, only plunging waves are considered because of their 
particularly dangerous aspect. 
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2 Experimental Method and Instrumentation 

2.1 The Facility 

Experiments were performed in the Air-Sea Interaction Simulation Facility of IRPHE. 
This facility is composed of two parts: a wave-tank 40m long, 1m deep and 2.6m 
wide, and a closed aerodynamic circuit 60m long, 1.5m high and 3.2m wide. 

Waves can be generated either by wind (wind waves), blowing up to 14m/s, or by 
a complete immersed wave-maker (mechanical waves), working in the range 0.5 to 2 
Hz. Adverse or following water-current up to 15cm/s in deep water condition can be 
generated by means of pumps. 

2.2 The Visualization Technique 

Wave breaking process is a non-stationary phenomenon. Therefore, visualization of 
the wave profile appears to be a privileged way for investigation. The principle of the 
technique is quite simple: a vertical thin sheet of light illuminates the water surface 
previously tinted by means of ink, so that the intersection between the water surface 
and the light sheet makes the wave profile visible. A video-camera perpendicular to 
the sheet of light takes pictures of the evolution of the wave profile. The camera and 
the sheet of light are put on a moving carriage allowing observations and pictures at 
different fetches (Fig. 1). 

2.3 The Image Analysis Process 

The video camera takes time series of pictures, which are then stored in a laser 
videodisc recorder. Selected pictures are then focused on an electronic tablet, in stop 
frame mode, where they are transformed into digital form for further quantitative 
analysis. At present, an operator follows the wave profile by means of an electronic 
stylus interacting with a computer. The digitalized pictures are finally stored in the 
memory of the computer. An automatic method of digitalization is currently in 
progress to allow “statistic” measurements. Fig. 2 shows a sample of plunging wave. 

3 Application to Measurements of Plunging Waves 

3.1 Geometric Properties 

It is well known that breaking waves, especially plunging ones, display an 
asymmetric shape as they approach the breaking stage. Consequently, two parameters 
are no more sufficient to describe accurately the wave profile, as it is the case for 
sinusoidal waves (wavelength and wave height for example). 

Among the most interesting parameters, four are of particular interest. These are 
(see Fig. 3): 
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- the horizontal asymmetry factor as µ ; µ = n'/H, where η' is the crest 
amplitude and H the full wave height. This parameter describes the asymmetry 
of the wave with respect to a horizontal axis, the still water level, taken as a 
reference. 

- the slope of the ffont part of the crest, indicated as e ; e = r]'/F1 

- the slope of the rear part of the crest, indicated as S ; S = η'/ F2 

- the vertical asymmetry fasctor, indicated as λ ; A = F2/ F1 ; this parameter 
describes the asymmetry of the crest with respect to a vertical axis through this 
latter. 

Evolution of the Geometry during the Breaking. Asymmetry increases as long as 
the wave approaches the breaking stage; see Figs. 4 and 5. These figures display the 
evolution of the horizontal asymmetry factor (µ). and of the factor (ε), related to the 
slope of the front part of the crest, respectively. 

The horizontal asymmetry increases from an initial value about 0.5, corresponding 
to a symmetric wave, to about 0.9. 

The slope of the front part of the crest increases, as expected, and reaches a 
maximum value at the breaking onset. Note that for a limiting second order Stokes 
wave, e equals 0.282, which is significantly less than the present measured value of 
0.5. 

The present results are in good agreement with the ones by Kjeldsen and 
Myrhaug, [2]. 

The potential energy increases during breaking, as expected. However, it reaches a 
maximum value not at the breaking onset, as expected, but prior to this, see Fig. 6. 

Geometry at the Breaking Onset. The asymmetry was measured at the breaking 
onset (see Table 1). The significant asymmetry with comparison to the case of a 
symmetric wave, and the relative good agreement, except perhaps for A , between the 
results from different origins are noteworthy. 

Table 1. Asymmetry properties of a plunging breaker at the breaking onset, [2] 

Parameter µ A 8 δ 
Computation (ak=0.25), [3] 0.77 1.83 0.59 0.32 
Experiments (ak=0.28), [1] 0.76 1.87 0.54 0.30 
Experiments (ak=0.24), [4] 0.76 1.43 0.50 0.35 
Theory: symmetric (2nd order Stokes 
limiting) wave, (ak=0.442) 

0.50 1.00 0.28 0.28 

It is clear that the asymmetry depends on the type of breaking; it is more 
pronounced for a plunging than for a spilling. Experimental results were classified 
into four families of breakers, from the fully spilling, or typical spilling, to the fully 
plunging, or typical plunging. Table 2 summarizes the results obtained. 
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Table 2. Relation between Asymmetry and Breaker Type 

µ 6 δ À α1 / α2 α'1 /α'2 

Fully spilling 0.69 0.39 0.33 1.20 0.97 0.99 
Spilling 0.75 0.41 0.31 1.37 0.93 1.01 
Plunging 0.76 0.47 0.30 1.60 0.88 1.01 
Fully plunging 0.77 0.62 0.28 2.13 0.80 1.02 
Symmetric (2nd order 
Stokes limiting) wave 

0.50 0.28 0.28 1.00 1.00 1.00 

3.2 Kinematic Properties 

Five regions of particular interest were investigated: the forward (or front) zero-
crossing point, the rear zero-crossing point, the face of the falling water jet, the back 
of the overtuming region and the crest of the wave. 

The zero-crossing points are the points where the crest profile crosses the still 
water level taken as a reference: the forward (or ffont) crossing point is the upward 
zero-crossing ahead of the breaking crest, the rear crossing point is the downward 
zero-crossing after the crest. Fig. 7 shows that the breaking event concerns only a 
region located in the vicinity of the wave crest. 

As about the face of the falling water and the back of the overturning region, their 
celerity is also constant as displayed on Fig. 8. The “breaking onset” corresponds to 
the time when the face of the crest becomes vertical, the plunge point, or touch-down 
point, corresponds to the time when the tip of the falling water jet hits the calm water 
surface ahead the breaking crest. Here again, it should be noticed that the breaking 
event does not affect the forward displacement of the back of the overturning region. 

The face of the falling water jet moves forward with a constant celerity equal to 
the one of the crest before the breaking onset, as shown in Fig. 9. The crest celerity is 
constant in first approximation before the breaking onset, and then it decreases 
lightly. 

The real (Langrangian) acceleration was measured on the surface of a plunging 
crest, and in the overturning region. Small floating tracers (respectively 15mm and 
4mm in diameter) were used for these measurements. Acceleration up to 1.5g was 
measured when the plunging crest meets the floating tracer (see Fig. 10); maximum 
acceleration of the order of 2.2g was measured in the overtuming region (see Fig. 11). 
These results are in relatively good agreement with the numerical predictions by 
Vinje and Brevig, [5], see Table 3. Here the numerical value 1.6g, resulting from the 
numerical simulation, takes into account the size of the tracer (15mm). 

It should be noticed that because of their finite size, the tracers cannot be strictly 
equated to fluid particles, and consequently the present measurements are certainly 
lightly under valued. 
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3.3 Effect of an Adverse Current 

The study of the effect of an adverse current is the subject of a cooperative work with 
the Japanese Ship Research Institute. Preliminary experiments were performed in the 
framework of this cooperation and some preliminary results are now presented. The 
experiments were performed both on a uniform weak current ( U / C = -0.10 ), and on 
a shear current ( U

s
 C = -0.27 ), where U

s
 is the current velocity at the water 

surface. 
Table 3. Action of an adverse current on the horizontal asymmetry factor and on the 

crest front steepness 

Action on the Crest Front Steepness ( ε ) 
Still water Uniform current Shear current 

Kjeldsen and 
Myrhaug (1980) 

0.70 - 0.70 

Bonmarin (1999) 0.54 0.54 0.49 

Action on the Horizontal Asymmetry Factor (µ) 

Still water Uniform current Shear current 

Kjeldsen and 
Myrhaug (1980) 

0.80 - 0.75 

Bonmarin (1999) 0.76 0.75 0.76 

Effect on the Geometric Properties. The present results concern measurements 
made at the breaking onset. Table 3 summarizes the results obtained and compares 
them to previous results obtained by Kjeldsen and Myrhaug, [2], 

It should be noticed that, at least at the breaking onset, the current does not 
significantly affect the wave asymmetry. On the contrary, Kjeldsen and Myrhaug, [2], 
have observed an amplification of about 13% of the crest front steepness, and of about 
6% of the horizontal asymmetry factor on a weak adverse shear current (2% of the 
phase velocity), after the occurrence of the breaking stage. It is striking that a so weak 
adverse shear current can cause such drastic changes. 

Effect on the Kinematic Properties. It was previously shown that, in the case of still 
water, the breaking event did not affect the displacement of the zero-crossing points, 
the same observation was made in the case of a current (Fig. 12). The celerity of these 
points depends nevertheless on the flow conditions as shown on Table 4: it decreases 
from still water to shear current. 

When the wave profile is not sufficiently smooth, it is difficult to accurately locate 
the crest and, thus, to accurately measure the phase velocity. In this case, we sugge'st 
equating the phase velocity to the rear zero-crossing point one. Indeed, we have found 
out that the phase velocity, so estimated, is very close to the one deduced from the 
displacement of the crest. In addition, the zero-crossing points can be located with 
precision on the pictures. 

Table 4 shows that the phase velocity is smaller on still water than on adverse 
current, as expected. 
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As previously observed on still water, the celerity of the face of the falling water 
jet and the one of the back of the overtuming region are constant. Moreover, the 
celerity of the water jet is higher than the one of the back of the overtuming region, as 
expected, (see Fig. 13). 

Table 4. Action of the current on the celerity of the zero-crossing points and the phase velocity 
during the plunging (celerity scaled by the theoretical velocity g / 2πf ) 

Experimental 
condition 

Forward Point Rear point “Phase velocity” 
0.5 (Forward + Rear) 

Still water 0.95 1.08 1.01 
Uniform current 0.89 0.90 0.89 

Shear current 0.82 0.82 0.82 

4 Conclusions 

A simple visualization technique and an associated image analysis process were 
developed in order to measure specific geometric and kinematic properties of 
breaking wave profile. 

The following results should be mentioned: 
- the wave profile becomes more and more asymmetric as the wave approaches 

the breaking stage 
- the degree of asymmetry depends on the breaker type: it is more pronounced 

for plunging waves than for spilling ones 
- because of this asymmetry, more than two parameters are needed to describe 

accurately the wave profile 
- the potential energy concentrates into the crest, as approaching the breaking 

stage 
- preliminary measurements on a relatively weak adverse current have not 

displayed any significant influence ncither on geometric nor on kinematic 
properties of breaking waves at the breaking onset. 

5 Prospects 

(A) an automatic image analysis process is in progress in order to increase i) the 
number of measurements, ii) the reliability of the results 

(B) the extension of the visualized field is considered 
(C) further experiments are currently planed, to confirm the preliminary results 
(D) from our point of view, the application of the present means to rogue waves 

could be helpful 
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6 Figures 

Fig. 1. Scheme of the Visualization Device. M: Plan Mirror; LD: Light Generator; SL; Light 
Sheet; V: Video Camera 

Fig. 2. Plunging wave in the large IRPHE Facility 

Fig. 3. Definition of Wave Parameters 
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Fig. 4. Evolution of the horizontal asymmetry factor as a function of time, in the near-breaking 
region. 

Fig. 5. Evolution of the crest front steepness as a function of time, in the near-breaking region. 

Fig. 6. Evolution of the potential energy in the near-breaking region 
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Fig. 7. Zero-crossing points position as a function of time (C0: crest celerity before breaking 
onset, 144 cm/s) 

Fig. 8. Face of the water jet and back of the overtuming region position as a funciton of time 
(in bracket: celerity in cm/s; C0: phase velocity before the breaking onset) 

Fig. 9. Position of the crest and of the falling water jet as a funciton of time 



178 

Fig. 10. Real acceleration at the surface of a plunging crest 

Fig.11. Real acceleration at the water surface, in the overtuming region 
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Fig. 12. Action of the current on the displacement of the zero-crossing points 
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Abstract. The Nonlinear Schroedinger Equation (NLS) and higher or-
der corrections (Dysthe equation) in the envelope-equation hierarchy are 
considered as simple models for explaining the generation of freak waves 
in 1+1 dimensions. We discuss a simple analytical formula that predicts 
the maximum wave amplitude as a function of wave steepness and num-
ber of waves under the envelope. We also perform numerical simulations 
using random-wave initial conditions characterized by the JONSWAP 
power spectrum: we find that the occurrence of freak waves is related to 
the initial steepness and to the correlation length of complex envelope of 
the initial time series. Cumulative probability density functions of wave 
heights from 1+1 numerical simulations are also reported. 

1 Introduction 

Freak waves are extraordinarily large water waves whose heights exceed by a fac-
tor of 2.2 the significant wave height of a measured wave train (see for example 
[1]). The mechanism of freak wave generation has become an issue of princi-
pal interest due to their potentially devastating effects on offshore structures 
and ships. In addition to the formation of such waves in the presence of strong 
currents [2] or as a result of a simple chance superposition of Fourier modes 
with coherent phases, it has recently been established that the weakly nonlin-
ear envelope equations (Nonlinear Schroedinger (NLS) equation or higher order 
extensions) can describe many of the features of the dynamics of freak waves, 
which are thought to arise as a result of the nonlinear self-focusing phenomena 
[1,3]. The self-focusing effect arises from the Benjamin-Feir instability [4] which 
causes a local exponential growth in the amplitude of a wave train. Moreover, it 
is known that small-amplitude instabilities are but a particular case of the much 
more complicated and general analytical solutions of the NLS equation obtained 
by exploiting its integrability properties via Inverse Scattering (IST) theory in 
the θ-function representation [5,6] (see also [7]). 

Herein we follow the pioneering work by Trulsen and Dysthe [1] and we in-
vestigate the generation of freak waves through the nonlinear self modulation 
of a slowly modulated wave train. An open question is how freak waves can be 
generated via the Benjamin-Feir instability in realistic oceanic conditions, i.e. in 
those characterized not by a simple monochromatic wave perturbed by two small 
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side-bands, but instead by a complex spectrum whose perturbation of the car-
rier wave cannot be viewed as being small. Therefore we have performed many 
numerical simulations starting from initial conditions that are characterized by 
the JONSWAP spectrum. Cumulative probability density functions (CPDF) of 
wave heights from very long numerical simulations have been computed for dif-
ferent JONSWAP spectra. It is found that as the “enhancement” parameter, 7, 
and the Phillips parameter, a, of the JONSWAP spectrum are increased, the 
CPDF manifest a right-hand tail which is higher than the one predicted from the 
Rayleigh distribution. The focus herein is not to attempt to model ocean waves 
but instead to study leading order effects using simple envelope equations. Re-
search at higher order suggests that the results given herein are indicative of 
many physical phenomena in the primitive equations [3]. 

The paper is organized as follows: In Sec. (2) weakly nonlinear envelope 
equations are briefly reported, in Sec. (3) we give some theoretical prediction 
on the maximum wave amplitude from from small perturbation theory. Results 
from numerical simulations of the NLS and Dysthe equations in the case of 
JONSWAP random waves are reported in Sec. (4) 

2 Envelope Equations 

We consider the fluid inviscid, irrotational, on a horizontal bed, propagating in 
one direction, x. The envelope equations are obtained by employing an harmonic 
expansion of the velocity potential ø and the surface displacement η (for a for-
mal and complete derivation of NLS equation see for example Ref. [8]). Since 
initial conditions for numerical simulations will be given starting from frequency 
spectra, the analysis is carried out by considering the so called time-like NLS 
equation (TNLS) (for the use of time-like equations in water waves see, e.g., [8, 
9]) which describes the evolution of the nondimensional complex envelope A(x, t) 
in deep water waves: 

where ω
0 is the angular frequency of the carrier wave, ε = k0A0 is the steepness 

and 1 /∆ω is a characteristic time scale. Here k0 is the carrier wave number and 
A0 is the amplitude of the carrier wave. Equation (1) solves a boundary value 
problem: given the temporal evolution .4(0, t) at some location x = 0, eq. (2) 
determines the wave motion over all space and time, A(x,t). 

It is instructive to introduce a parameter that estimates the influence of the 
nonlinearity in deep water waves. This parameter, which is a kind of “Ursell” 
number [9], can be obtained as the ratio between the nonlinear and the dispersive 
term in the TNLS equation: 
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When Ur « 1 waves are essentially linear and their dynamics can be expressed 
as a simple superposition of sinusoidal waves. For Ur > 1, the dynamics become 
nonlinear and the evolution of the wave train is likely dominated by envelope 
solitons or unstable mode solutions such as those studied by Yuen and coworkers 
[10]. 

Higher Order Envelope Equations. Dysthe, Trulsen and co-workers have 
done extensive research in trying to extend the NLS equation to higher order, 
especially for what concerns the spectral width (see [11-13]). In this paper we 
will perform numerical simulations of what we call the Dysthe-Lo-Mei (DLM) 
equation which is basically the equation originally written by Dysthe [11] in its 
time-like version. The transformation was first applied by Lo and Mei [14]. The 
equation reads as follows: 

One motivation led us to use the variables and coordinate system as in Ref. [14]: 
the evolution of the waves can be directly compared with experimental time 
series from open-sea measurements or from wave tank facilities. For a discussion 
on the linear stability analysis of the Dysthe equation and an extended equation 
see Refs.[12,13]. 

3 Predicting the maximum wave amplitude from small 
perturbation theory 

It is well known that a monochromatic wave is unstable to sideband perturba-
tions if the wave number of the perturbation, Ak, falls in the range: 

0 < Ak < 22k0e, (7) 

This result (which is the condition for the Benjamin-Feir instability to appear) 
has been obtained by a standard linear stability analysis of the NLS equation 
under the hypothesis of a small amplitude perturbation (see for example [10]). 
In this paragraph we complete this result by reporting a simple formula that 
we have recently obtained from Inverse Scattering Theory (for an outline of the 
derivation see [15]) which gives the maximum wave amplitude as a function of 
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Fig. 1. Maximum wave amplitude as a function of N for ε=0.05, 0.1 and 0.15. 

the wave steepness e and N = ko/Ak, that is the number of waves under the 
perturbation. The equation reads as follows: 

In Fig. 1 we plot Amax/A0 as a function of N for different values of the steep-
ness. It is clear from the figure that as the steepness and the number of waves 
under the envelope increases, the wave can reach higher amplitudes: the max-
imum amplitude obtainable is 3 times the initial amplitude A0. It has to be 
remembered that eq. (8) has been derived for a small amplitude perturbation: 
if the perturbation is larger, the waves can reach amplitudes greater than 3 (see 
[15]). Moreover, the NLS equation does not include breaking: physically some of 
the waves could indeed break before reaching their maximum amplitude. This 
last point definitely deserves more attention in further studies. For the TNLS 
equation which gives the evolution in space (instead of in time), it is straight-
forward to show that eq. (8) still applies (it has to be remembered that in deep 
water ko/Ak = f0/(2Δf)). In order to verify our results in Fig. 2 we show the 
maximum amplitude of the wave as a function of 2N = fo/Af with e = 0.1 and 
from numerical experiments of the TNLS equation and from IST theory (eq. 8). 
The values of the amplitude of the perturbation were fixed at δ=10- 4. As ex-
pected, good agreement is achieved. In the same plot, the maximum amplitude 
from numerical simulations of the DLM equation (3) is also reported. We note 
that the maximum amplitude reached by the DLM equation is slightly smaller 
than that for the TNLS equation. Moreover, as anticipated, the region of insta-
bility for the DLM equation is restricted with respect to the TNLS equation: for 
example in Fig. 2, for f0/Δf=8 the TNLS equation is unstable and the waves 
grow to a normalized amplitude of almost 2, while the DLM equation is stable 
and there is no growth. 
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Fig. 2. Maximum wave amplitude from Inverse Scattering theory, numerical simulation 
of TNLS and DLM equation. The value of the initial steepness is ε=0.1. 

4 The Jonswap Spectrum and Freak Waves 

In this Section our attention is focused on freak wave generation in numerical 
simulations of the TNLS and DLM equation where we assume initial conditions 
described by the JONSWAP power spectrum [16]: 

where ao=0.07 if f ≤ f0 and σ0=0.09 if / > f0. Our use of the JONSWAP 
formula is based. upon the established result that developing storm dynamics 
are governed by this spectrum for a range of the parameters [16]. 

Fig. 3. The JONSWAP spectrum for γ=1 (dashed line), γ=5 (dotted line), 7=10 (solid 
line) with f0=0.1 Hz and α=0.0081. 
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The constants a. 7 and σ0 were originally obtained by fitting experimental 
data from the international JONSWAP experiment conducted during 1968-69 
in the North Sea. Here f0 is the dominant frequency, 7 is the “enhancement” 
coefficient and a is the Phillips parameter [16]. All of the JONSWAP parameters 
depend on the stage of wave development and probably are all interdependent 
on one another in a non trivial manner. For a recent description of these topics 
see [17] and references therein. In Fig. 3 we show the JONSWAP spectrum for 
different values of 7 (7=1, 5, 10) for /o=0.1 Hz and α=0.0081: as 7 increases 
the spectrum becomes narrower. 

Many aspects of the importance of the nonlinearity can be addressed by 
computing Ur from the spectrum (9). In Fig. 4 we show the Ursell number as 
a function of the parameter 7 for a=0.0081 and a=0.0162. In the construction 
of the plot an estimation of e and Δω/ω0 needs to be given. The steepness e 
has been estimated as the product of the wave number, k0, of the carrier wave 
with a characteristic wave amplitude which we compute as the significant wave 
height (the mean of the highest 1/3 waves in a wave train), H

s
, divided by 2. 

Au is a measure of the width of the spectrum and it has been estimated as 
the half-width at half-maximum of the spectrum. From the plot it is evident 
that for the Pierson-Moskowitz spectrum (γ = 1) the Ursell number is quite 
small: this indicates that dispersion dominates nonlinearity. Formally speaking 
the NLS equation is derived assuming that the spectrum is narrow banded and 
the steepness is small. When the spectral width is allowed to become large, the 
steepness becomes small; this in effect “linearizes” the NLS equation. Results of 
this type are evidently somewhat out of the range of applicability of the NLS 
equation, but are essentially linear. 

As 7 increases, the Ursell number increases rapidly reaching Ur ~ 1 for 
7 ~ 10. The influence of the parameter a consists in increasing the energy 
content of the time series and, therefore as a increases, the wave amplitude, 
and consequently the wave steepness, also increase. If a doubles, the steepness 
increases by a factor of \/2 and the Ursell number by a factor of 2 since the spec-
tral width remains constant. From this analysis we expect that large amplitude 
freak waves (large with respect to their significant wave height) are more likely 
to occur when 7 and a are both large. 

An additional aspect of this work that is rather important and gives a con-
nection to what has been shown in the previous Section is the relationship of the 
“enhancement” parameter, 7, with the correlation length of the envelope of the 
time series generated via the JONSWAP spectrum. In Fig. 5 we show that the 
auto-correlation function of the complex envelope A(t) computed from the JON-
SWAP spectrum for different values of 7. For small values of 7 the correlation 
length is very small and therefore the field is more likely to be homogeneous. For 
high values of 7 inhomogeneities such as wave grouping cannot be neglected: in 
this case wave groups could be unstable and develope into rogue waves. 

We now verify our findings by numerical integration of eq. (1) which has been 
solved numerically using a standard split-step, pseudo-spectral Fourier method 
[14]. Initial conditions for the free surface elevation ζ(0, t) have been constructed 
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Fig. 4. The Ursell number as a function of 7 for the JONSWAP spectrum. 

as the following random process: 

where ø
n
 are uniformly distributed random phases on the interval (0, 2π) , and 

C
n
 = 2P(f

n
)Δf

n
, where P(f) is the JONSWAP spectrum given in (9). In 

order to give quantitative results we have performed more that 300 simulations 
of the TNLS equation. The simulations have been performed in dimensional 
units in the following way. An initial time series of 32768 seconds (about 9 
hours) has been computed from the JONSWAP spectrum for different values of 
a and 7 (from a=0.0081 to a=0.02 and from 7=1 to 7=10). Such a long time 
series has been computed in order to ensure a convergence of the tails of the 
probability density function. In many cases more than 10 different realizations 
(with different sets of random phases, øn) for each selected value of a and 7 
has been constructed. The time series were then allowed to evolve according 

Fig. 5. Autocorrelation function of the complex envelope for 7=1,3 and 6. 
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Fig. 6. Cumulative Probability Density Function from Rayleigh distribution and nu-
merical simulations of TNLS, DLM. a: 7 = 2 and a = 0.0081, 6: 7 = 6 and a = 0.0081. 

to the periodic TNLS and DLM equations for a distance of 5 km, saving the 
output every 50 m. We have checked that during the space evolution the shape 
of the initial spectrum has been maintained in an average sense. We have then 
computed the CPDF of the wave heights normalized by the significant wave 
height, H

s
, of the simulated x — t field. In Fig. 6 we show CPDFs computed 

from a single realization of the TNLS and DLM equations for different values 
of 7 and a. The CPDFs of the numerical simulations are also compared with 
the Rayleigh distribution which is theoretically obtained from a linear system in 
the case of small spectral width. For γ=2 and α=0.0081 (Fig. 6a) the numerical 
CPDF is below the linear prediction of Rayleigh. The CPDFs from TNLS and 
DLM numerical simulations are almost indistingushible. Fig. 65 refers to 7=6 
and a=0.0081: in this case the linear prediction for extreme waves is well below 
our numerically obtained values; as previously mentioned the NLS equation over 
estimates the wave heights with respect to the DLM equation. Note further that 
in the same simulation, due to a sort of Fermi-Pasta-Ulam recurrence in a random 
field the same freak wave can appear with a certain periodicity in space, therefore 
contributing to the probability in the tail of the cumalive CPDFs. 

In order to have more quantitative results we have computed the intersection 
between the CPDFs from the linear prediction and the numerical simulations for 
different values of a and 7. The results are shown in Fig. 7 in which we plot the 
the value of the probability at which linear theory and numerical experiment 
intersect, Pcross, as a function of 7 for different values of a. The intersection 
point for each 7 and a has been computed as the mean of the intersections of the 
different realizations. The figure clearly shows that as 7 and a grow (increasing 
nonlinearity), the cumulative CPDFs from the numerical simulations cross the 
Rayleigh distribution at a higher probability and therefore at lower values of 
H/H

s
. 

5 Discussion and Conclusions 

This work constitutes an attempt to study the influence of nonlinearity on the 
prediction of large amplitude waves in random sea states. Numerical simulations 
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Fig. 7. Probability at which the Rayleigh distribution is crossed by numerical CPDFs 
as a function of 7 for different values of a. 

of random waves governed by the dynamics of the TNLS and DLM equations 
for the JONSWAP power spectrum have provided insight about this problem. 
We have shown that as 7 and a increase the effects of nonlinearity become more 
important: therefore freak waves that result as a modulational instability are 
more likely to occur in a physical situation where 7 and a are large. The local 
properties of the wave trains are presumably of fundamental importance for 
understanding the formation of freak waves. It may happen that the Benjamin-
Feir instability mechanism is satisfied only in a small portion of the full wave 
train, giving raise to a local instability and therefore to the formation of a freak 
wave. We have shown that as 7 increases the correlation length increases and 
therefore inhomogenities, such as wave packets that can evolve via the Benjamin 
Feir instability mechanism, are more likely to be encountered. The correlation 
length of the complex envelope is strictly related to the number of waves under 
the envelope, N, for the case of small-amplitude perturbation theory (see Sec. 
3) and according to eq. (8) the maximum wave height, for a given steepness, 
increases as N increases. All these results can probably be better understood 
and explained in terms of the discrete unstable modes of the NLS equation 
whose integrability properties and the Inverse Scattering Transform provide a 
unique way of approaching the problem, the scope of a future paper. 

We have found that the TNLS equation over estimates not only the region 
of instability but also the maximum wave amplitude with respect to the DLM 
equation. Furthermore it is well known that the NLS equation is formally derived 
from the Euler equations under the assumption of a narrow-banded process. 
Nevertheless, in spite of these deficiencies in the NLS equation, we believe that 
our results provide new important physical insight into the generation of freak 
waves. Simulations with the fully nonlinear equations of motion will be required 
in order to definitively confirm these results. Wave tank experiments will also be 
very useful in this regard. 
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Another important issue that has to be taken into account for future work is 
directional spreading: It is well known that sea states are not fully unidirectional 
and directionality can play an important role in the dynamics of ocean waves. In a 
recent paper [18] we have considered simple initial conditions in 2+1 dimensions 
using the NLS equation and we have demonstrated the ubiquitous occurrence of 
freak waves. Whether the additional directionality in the JONSWAP spectrum 
will drastically change our statistical results is still an open question. At the 
same time we are confident that our results can apply to the cases in which 
the spectrum is quasi-unidirectional. In particular, as suggested in a private 
communication [19], the so called “energetic swell”, which corresponds to the 
early stages of a swell evolution, still characterized by a highly nonlinear regime, 
are described by high values of γ and a and are candidate sea states for the 
occurrence of freak waves. In such conditions the 1+1 TNLS or DLM equation 
could represent “good” evolution equations in this regards. 
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Abstract. The mechanism of focusing of nonlinear wave field to explain the 
ffeak wave occurrence in the ocean is developed. First, the linear theory of 
amplitude-phase modulation is presented, and the conditions of the optimal 
focusing are obtained. Then, weak nonlinear theory of freak wave generation is 
given. For shallow water, the Korteweg - de Vries equation is used to 
demonstrate the features of the wave focusing. It is shown that large-amplitude 
abnormal impulse can be generated from the weak “invisible” deterministic 
(transient) component on the background of the random wind wave field. For 
deep water, the nonlinear Schroedinger equation for the complex amplitude of 
the wave envelope is applied. The mechanism of wave focusing is compared 
with the well-known mechanism of the Benjamin-Feir instability. It is shown 
that the preliminary phase modulation can amplify the process of appearance of 
large-amplitude abnormal waves. 

1 Introduction 

The rogue wave appearance is a phenomenon observed in many areas of the World 
Ocean. Several physical factors of the freak wave phenomenon are discussed in 
literature. First of all, the water wave interaction with an opposite current is 
considered as a mechanism of strong wave amplification. Historically, this effect has 
been taken into account due to large number of ffeak wave appearances in the 
Agulhas current off the south-east coast of South Africa (at least, 13 documented 
events since 1950). Significant wave amplification can be predicted as the blocking of 
water waves on current within the framework of 1D equations (modified nonlinear 
Schroedinger equation, energy action equation), as well as due to the formation of 
caustics in the wave field on the currents [1-5]. Many observations of abnormal were 
also made in the areas with no strong currents, for instance in the North Sea [6], 
including the famous “1995 New Year Wave” of 26 m at “Draupner”, Statoil operated 
jacket platform, Norway [7]. For such areas two mechanisms are considered. The first 
one is the wave focusing related with the dispersion enhancement of water waves. It 
has been studied analytically within the ffamework of the linear theory only [8,9] and 
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also in laboratory tanks [10, 11]. The second one is the well-known effect of 
modulation instability (Benjamin - Feir instability) of nonlinear water waves in deep 
water [12-15], This mechanism can explain the appearance of abnormal waves in the 
periodic weakly modulated wave field with heights exceeding 2-3 times unperturbed 
wave heights. 

From our point of view, the mechanism of the focusing of nonlinear water wave 
packets related with phase (frequency) modulation should play signifïcant role in the 
"short-lived" freak wave formation for both, deep and shallow water. This mechanism 
requires specific meteorological conditions. For instance, the increase of wind speed 
generates wave packets with large group velocities later than wave packets with lower 
group velocities, and due to the process of propagation, abnormal single waves can be 
formed by the superposition of many spectral components. The wind action far from 
the storm area can be ignored and the process of freak wave formation will be 
described within the framework of “free” hydrodynamic models. 

The paper is organised as follows. Simple analytical theory demonstrating the 
focusing mechanism in the linear theory will be described in section 2. Then, it will 
be shown that the mechanism of wave focusing is applicable to the nonlineaf theory 
of shallow water (section 3). A method to find possible forms of the wave trains 
evolving into the freak wave, including random background of wind waves will be 
suggested. Because of absence of the Benjamin - Feir instability for shallow water, 
the “focusing” mechanism seems to be major in shallow water for explanation of 
freak wave phenomenon. For deep water the mechanism of freak wave formation due 
to focusing of the nonlinear wave packets with phase modulation will be coinpared 
with the possible generation of giant waves due to the classical Benjamin - Feir 
instability of water waves (section 4). The main result here is that the frequency 
modulation of a nonlinear wave field leads to greatest amplification of the freak wave 
than the amplitude modulation usually studied in the theory of the Benjamin - Feir 
instability. Numerical simulations of the evolution equations for shallow water 
(Korteweg - de Vries equation) and for deep water (nonlinear Schroedinger equation) 
provide the details of the freak wave formation from deterministic and random wave 
fields. 

2 Focusing of Linear Waves 

To demonstrate the wave focusing effect, 1D linear theory of quasi-monochromatic 
wave packets can be applied. Considering the sea surface elevation in the form η(x,t) 
= A(x,t) exp(iΘ)with slowly varied amplitude A(x,t), frequency ω(x,t) = ∂Θ/∂t and 
wave-number k(x,t) = - ∂Θ/∂x; its parameters satisfy the kinematic and energy balance 
equations [16-17] 

(la) 
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where the group velocity cgr(k) = dω/dk is calculated using the dispersion relation of 
the water waves 

ω = gktanh(kh). (2) 

Here h is water depth and g is the acceleration due to gravity. The solution of 
equation (1) satisfying the initial condition: k(x,0) = k0(x) and A(x,0) = A0(x) can be 
written in explicit form 

c
gr

(x,t) = c
0
(ξ) = c

0
(x-c

gr
t), 

(3a) 

where c0 = cgr(k0). It describes the temporal evolution of initial spatial inhomogeneous 
wave field. An example of calculation for quasi-monochromatic waves having 
different values of wave-number outside of the transition zone is shown in Fig. 1. 
Packets with large values of the group velocity overtake the “low-speed” packets and 
the wave energy concentrates in the transition zone. Wave focusing occurs at the 
point where wave packets with different values of the wave-number meet together. 
The corresponding focusing time is 

Optimal focusing with maximal amplification of the wave amplitude is achieved 
when all wave groups come to the focusing point simultaneously. As it can be shown, 
the optimal regime is realized for the following variation of wave parameters 

In particular, for demonstration of this effect in the laboratory tank, the 
wavemaker should vary the wave frequency as (for deep water) 
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Fig. 1. Temporal evolution of the initial wave with phase modulation only. 

and the wave of maximal amplitude will appear at the distance Lf from the 
wavemaker. 

In the vicinity of the focusing point the approximation of slow variation of the 
parameters of quasi-monochromatic wave fails. To find the structure of the wave field 
there models of higher level should be used, for instance, the Fourier representation of 
sea surface elevation. In particular, wave impulses with Gaussian amplitude envelope 
will possess the Gaussian form [8, 9] 

if it has the phase modulation also 

Here A0 and 1/K0 are the amplitude and the length of the wave at the focusing 
point (t = Tf). 

It is obvious that the random wind wave field in the linear theory cannot influence 
the process of the freak wave formation due to the well-known superposition of 
random and deterministic components, and an “invisible” (on the background of 
random field) wave train like (7) may transform into the “visible” peak [9]. 
Nonlinearity destroys the principle of wave superposition that leads to the dominant 
influence of one individual wave on the parameters of other individual waves. From 
the first point of view the focusing mechanism cannot amplify weak deterministic 
components on the background of a strong random field. As it will be shown in next 
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sections, the focusing mechanism is effective in the nonlinear case also, but it has 
specific features. 

3 Nonlinear Wave Focusing in Shallow Water 

To study wave processes in shallow water, the simplified nonlinear - dispersive 
theory based on the Korteweg - de Vries equation can be used 

(9) 

Here η(x,t) is the sea surface elevation and c=(gh)1/2 is the linear wave speed 
propagation in shallow water. Equation (9) is valid for long waves of weak but finite 
amplitude. The Korteweg - de Vries equation is well studied. As it is known, the 
solution of the Cauchy problem for equation (9) with the impulse or periodic initial 
disturbances can be derived rigorously within the framework of the inverse scattering 
method [18]. In particular, if the initial disturbance represents a single crest of 
arbitrary amplitude (including very large amplitude), it evolves into a set of solitary 
waves (solitons) and an oscillating dispersive tail located in space according to the 
values of the speed for each component (solitons have large speed and they are in the 
front of the wave field). Due to invariance of the Korteweg - de Vries equation with 
respect to the reversal of time and coordinate, this wave field inverted in space should 
transform into the initial disturbance at fixed time, and then again transforms to 
solitons and dispersive tail. It means that there is no principal limitation on the 
formation of abnormal waves of large amplitude. Therefore, the wave focusing 
mechanism is applicable in the nonlinear case also but the wave field structure is 
more complicated, it includes solitons and amplitude-phase modulated wave packets. 
This process was investigated in detail in [19], Fig. 2 displays the focusing of the 
initial wave field (containing the soliton and dispersive train) into the isolated crest 
and then its dispersion. The peak value of the wave field in the domain increases 
rapidly and then rapidly decreases, and this explains the rare and “short lived” 
character of the freak wave. 

More important is to investigate the freak wave appearance in a nonlinear random 
wave field. First of all, we would like to mention that if an initial wave field has no 
significant phase (frequency) modulation, its evolution does not lead to the formation 
of the abnormal wave. The process of evolution of the initial amplitude modulated 
wave group (no phase modulation) is shown in Fig. 3. Due to absence of the 
Benjamin - Feir instability, the wave packet demodulates with time and this is 
confirmed by experimental data [20,21]. 

Phase modulation cardinally influences the wave evolution. To investigate this 
effect, the invariance of the Korteweg - de Vries equation under the transformation x 

→ -x, t → -t can be used again, Equation (9) is solved for the initial disturbance 
containing superposition of irregular components and the large-amplitude crest, and 
then inverted in space. Its evolution is shown in Fig. 4. At short times the 
deterministic component is “invisible”, but it became dominant at t = 140 and then 
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again invisible. Of course, due to interference of random waves sometimes, casual 
isolated peaks occur (for instance at t = 40), but usually they have no such large 
amplitude as the “expected” freak wave. These results correlate with the conclusions 
by Kriebel [22], who emphasizes that an energy of deterministic component about 10-
20% of the energy of the random field may be able to produce freak waves. 

The suggested method to find possible wave trains evolving into freak waves 
shows that many wave trains with different amplitude and phase spectra can generate 
the same freak wave. It means that the freak wave, being the rare event, is not an 
extremely rare one and, therefore, this should be forecast together with the wave 
climate. We would like to mention also that a relatively small deviation from the 
optimal conditions of the wave focusing, of course, decreases the amplitude of the 
freak wave (and change its form), but not cardinally, this effect is investigated in [19]. 

Fig. 2. The process of the large-amplitude isolated crest formation from the nonlinear-
dispersive wave field for different times (all variables are dimensionless) 

Fig. 3. The evolution of initial amplitude modulated wave group (no phase modulation) within 
the framework of the Korteweg - de Vries equation (all variables are dimensionless) 
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Fig. 4. The freak wave formation from the random field (all variables are dimensionless) 

4 Wave Focusing in Deep Water 

Wind waves in the first approximation can be considered as waves with narrow 
spectrum, and the complex envelope of sea surface elevation can be described by the 
nonlinear Schroedinger equation 

written for dimensionless variables: wave steepness, A = 2k0rj, coordinate, x ' = 

2k,fc - ω0t, and time, t'= œot/2 (' is omitted). Here k0 and ω0 are the wave-number and 
frequency of the carrier wave and i is the complex unit. The nonlinear Schroedinger 
equation is well studied too, and its exact solutions can be obtained by the inverse 
scattering method [18]. In particular, the solution of the Cauchy problem for equation 
(10) with impulse initial disturbances (including the large-amplitude impulse) 
represents a set of solitary waves (envelope solitons) and dispersive tail (last example 
of solution of the Cauchy problem for the rectangular disturbance is given in [23]). As 
it can be seen from (10), the nonlinear Schroedinger equation (as the Korteweg - de 
Vries equation) is invariant under the transformation: x → -x, t → -t, i → -i. Due to 
this invariance, the solution of the Cauchy problem inverted in space should transform 
into the initial disturbance (including the large-amplitude impulse) at fixed time, and 
then again transforms into solitons and dispersive tail. It means that like the case of 
shallow water there is no principal limitation for the formation of an abnormal huge 
wave in deep water. More detailed information of the freak wave formation from the 
initial disturbances vanishing at infinity is contained in our paper [24]. 
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Fig. 5. High-energetic wave groups appeared in the initial amplitude modulated wave field 

Periodic problem for the nonlinear Schroedinger equation is more complicated 
than for the Korteweg - de Vries equation due to well-known effect of modulation 
instability discovered for the water waves in deep water by Benjamin and Feir (see, 
for instance, [25]). Initial wave with weak amplitude modulation transforms into high-
energy groups due to the Benjamin - Feir instability, and the examples of high-
energetic groups (breathers) within the framework of the nonlinear Schroedinger 
equation is depicted in Fig. 5 for four values of time. Wave groups appear for relative 
short time and then - disappear. In the pure periodic problem the wave process is 
retumed to the initial state (recurrence phenomenon). High-energetic wave groups 
correspond to the exact breather solutions of the nonlinear Schroedinger equation. 
These solutions are discussed in [12, 13]. There are three kinds of breathers, periodic 
in time (called sometimes as the Ma - soliton), periodic in space (Akhmediev’s 
breather), and the algebraic breather. In particular, the algebraic breather is described 
by (its form is shown in Fig. 6): 

The maximal amplification in wave amplitude for breather solutions is |q
max

| = 3. 
Therefore, possible peak amplitudes of the freak waves generated in the process of the 
Benjamin - Feir instability will not exceed more than three times unperturbed wave 
amplitude. 

If the wave field contains transient waves with phase (ffequency) modulation, 
generated abnormal waves have more energy. Results of wave transformation are de-
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Fig. 6. Algebraic breather as a model of abnormal wave appeared in the periodic wave field 
[See also Appendix CP] 

Fig. 7. Snapshot of initial phase modulated wave field in deep water 
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picted in Fig. 7. The wave packet focuses in a very narrow group (with a weak 
background),and then defocuses to the initial weakly modulated waves.The maximal 
wave amplitude is increased more than four times. Therefore, focusing mechanism 
can amplify the amplitude of the freak wave more than three times as it can be for 
Benjamin - Feir instability. It is important to mention also, that the phase modulation 
leads to decreasing of time of occurrence of the first freak wave. For large time, the 
influence of the periodic boundary conditions becomes dominant, as a result, the 
focusing of wave packets is possible several times. It leads to the complex picture of 
wave transformation with appearance and disappearance of large-amplitude waves. 

Therefore, a freak wave in deep water can appear in the wave field due to 
nonlinear Benjamin - Feir instability and wave focusing. Phase modulation can 
amplify this process and an abnormal wave with larger amplitude can appear within 
shorter time. 

5 Conclusion 

From our point of view, the appearance of freak waves in the ocean is related mainly 
with the variable meteorological conditions generated the frequency modulated wind 
wave packets. Phase modulation leads to the focusing of wave energy in large-
amplitude groups occurring within the short time. This mechanism is important for 
both, deep and shallow water. A simple analytical theory demonstrating the focusing 
mechanism in the linear theory was presented. It can predict the time and location of 
the appearance of large-amplitude waves. Also the optimal conditions of the wave 
focusing in the linear theory were formulated. Then it was shown that the mechanism 
of wave focusing is applicable in the weak nonlinear theory of shallow and deep 
water. For shallow water within the framework of the Korteweg - de Vries equation a 
method to find possible forms of the wave trains evolving into the freak wave, 
including random background of wind waves was suggested. Due to absence of the 
Benjamin - Feir instability for shallow water, the “focusing” mechanism seems to be 
major in shallow water for explanation of freak wave phenomenon. For deep water 
within the framework of the nonlinear Schroedinger equation for the wave envelope 
two possible mechanisms of large-amplitude wave appearance are discussed: the 
Benjamin - Feir instability of periodic waves and the mechanism of the nonlinear 
wave focusing. The main result here is that the frequency modulation of a nonlinear 
wave field leads to larger amplification of the freak wave than the amplitude 
modulation usually studied in the theory of the Benjamin - Feir instability. Numerical 
simulations point out the details of the freak wave formation from deterministic and 
random wave field. 
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Abstract. The problem of appearance of high-amplitude waves is con-
sidered within weakly nonlinear approach based on the Hamiltonian for-
mulation for surface gravity waves. It is shown that the cooperative ef-
fect of four- and five-wave interactions with specific dispersion of wave 
components is likely to be responsible for the phenomena. The novel 
numerical approach for weakly nonlinear water wave equations without 
essential restrictions on spatio-temporal domain is proposed. Examples 
of numeric modelling are considered. 

1 Introduction 

Freak, rogue or extreme waves appear sporadically at the sea surface. Their emer-
gence from ‘nowhere’ [1-4] is usually related to specific conditions of wind wave 
generation and propagation; bottom topography, mean current effect, strong 
wind effect etc. Besides these ‘external agents’, the extreme wave manifestations 
can be stimulated by the intrinsic wave dynamics itself. 

In order to specify the role of wave packet dispersion and nonlinearity on 
the appearance of high-amplitude waves, the term ‘nonlinear focusing’ has been 
introduced recently [5-9]. The effect of dispersion on high-amplitude wave ap-
pearance corresponds to simple interference of different spectral components of 
the wave field. While these components have different wavelengths and prop-

agate at different speeds, their interference leads to sporadic amplification of 
local (in space and time) wave amplitudes. On the other hand, the principal 
effect of nonlinearity is the energy redistribution between different wave com-
ponents. While intrinsic frequencies and, hence, speeds of wave components are 
affected by their amplitudes, this sporadic amplification (focusing) is also mod-
ified by nonlinearity. Thus, it is not a trivial problem to predict the outcome of 
joint effects of nonlinearity and wave dispersion. 

This paper is aimed at the analysis of the cooperative effect of nonlinearity 
and wave dispersion within a weakly nonlinear approach. The proper use of the 
approach, based on the Hamiltonian formulation for surface gravity waves pro-
posed by Zakharov [10-13], allows the detailed physical analysis of the problem 
and enables one to elaborate an effective numerical algorithm with no essential 
restrictions on the dimension of spatio-temporal domain where a corresponding 
problem is considered [14 16]. 
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The essence of the approach is the study of multi-wave resonant interactions 
responsible for energy exchange of water wave components. In Section 2, we 
consider arguments for the account of both four- and five-wave resonances in the 
problem. Details of numerical approach are given in Section 3. In the Discussion, 
examples of numerical modelling of freak waves emergence are presented. 

2 Wave Resonances — Dynamics and Kinematics of 
Interacting Wave Components 

2.1 Basics of Weakly Nonlinear Approach 

Weakly nonlinear approach can be adequately used for the problem of freak 
waves as long as we are discussing the possibility of forecasting high-amplitude 
events but not their consequences. Normally, at rather heavy wind wave condi-
tions wave steepness does not exceed magnitudes ak = 0.2. We use the Hamil-
tonian formulation for water wave equations proposed by Zakharov [10], which 
gives asymptotic expansions for the Hamilton function H in powers of the small 
parameter e = ak, measuring wave steepness. Within the accuracy e4 of the cor-
responding equations, we have the so-called five-wave reduced Zakharov equation 
[10,11] 

(1) 

In (1), only cubic and quartic nonlinear terms are present, corresponding 
to multi-wave resonances 2  2 (four-wave resonances) and 2  3 (five-wave 
resonances). Non-resonant quadratic terms, corresponding to processes 1  2 
are eliminated by the proper canonical transformation to normal variables b(k). 
General form of this transformation from primitive physical variables (surface 
elevation and velocity potential at the surface) is discussed in a number of papers 
[11-13]. Such a transformation contains linear terms corresponding to linear 
approximation of the problem, and higher-order integral terms containing all 
their possible combinations. Exact solutions in the form of discrete set of ô-
pulses in wavevector space 

can be obtained with a special canonical transformation to normal variables 
6(k) [12], In the corresponding expansions for primitive variables these solutions 
are sums of L linear terms (‘master harmonics’) and a number of cross-terms 
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representing all their possible combinations [12,13]. The proper canonical trans-
formation, in fact, cumulates a great number of ‘slave’ (forced) harmonics into 
a small number of master modes, serving as nonlinear normal variables of the 
problem, and, thus, optimizes the dynamical description in weakly nonlinear 
approach. This description is two-stage. First, we have to solve the ordinary dif-
ferential dynamical equations to obtain amplitudes and phases of master modes. 
Second, we have to unfold the relatively small set of master harmonics into a 
much richer set by means of a corresponding canonical transformation. 

Formally, this technique can be considered as a truncation of primitive phys-
ical system by retaining a small number of elements (eigenfunctions), as it is 
done in commonly used spectral numerical methods. The essential feature of our 
approach lies in the use of the master modes as eigenfunctions. They cumulate 
the dynamically linked ‘slave’ (forced) harmonics automatically and, thus, all 
essential features of wave dynamics are preserved in the approach. In the case 
of five-wave Zakharov equation (1), this means the conservation of energy and 
momentum expressed by symmetry conditions for the kernels V0123

 and W01234. 
The truncation of the wave system within our approach implies a special choice 
of master modes. These modes have to be in resonances to provide non-trivial 
dynamics of the system and, thus, the corresponding ‘grid’ in wavevector space 
is not a trivial regular one, but is governed by resonance conditions. Different 
choices of the grid can affect (sometimes, significantly) the dynamics. Thus, nu-
merical experiment within the proposed approach depends on the search for 
robust dynamical features. 

Physically, the proposed approach facilitates dramatically the wave dynam-
ics analysis. The first stage of the analysis is the solution of an ODE system. 
In fact, it gives a pure effect of energy exchange between relatively small num-
ber of dynamical master modes. The second stage is the canonical transforma-
tion from specially constructed variables b(k) to the primitive variables. This 
transformation is a nonlinear superposition of a number of master modes with 
time-dependent amplitudes and phases. The effect of interference in the weakly 
nonlinear problem can be analyzed at this stage within plain algebraic transfor-
mation. Such a splitting of mathematical (ODE and canonical transformation) 
and physical (energy exchange and wave component dispersion) sides of the 
problem is very useful for the analysis. 

2.2 The Simplest Models 

In this subsection, nonlinear resonances, as the fundamental feature of nonlin-
ear terms in (1), are briefly discussed. Details of quantitative and qualitative 
description of these resonances can be found in many papers [17,18]. 

Dynamics of water wave resonances (energy exchange) are determined, first, 
by the order of resonances. Four-wave resonances are in general more efficient 
than higher-order five-wave ones. At the same time, kernels in (1) depend on the 
geometry of interacting wavevectors. The resonant curves for the simplest models 
of one dominant plane wave, as well as the values of the interaction coefficients, 
are shown in fig.1. It is seen that the interactions of waves of close wavevectors 
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are essential for the four-wave coupling associated with the Benjamin-Feir in-
stability. Five-wave interactions are important (the corresponding kernels have 
relatively high magnitudes) for wave components of different scales. In the model 
discussed, this means different frequency ranges of interacting components that 
have important consequences for the model dynamics. The kinematical effect of 
this difference is of principal importance for our study: the components affected 
by five-wave coupling have different phase velocities and, thus, ‘linearized’ ideas 
of wave dispersion effects can be used in the problem. This qualitative hint is 
in contrast with the commonly used model of Benjamin-Feir modulations as a 
possible cause of freak wave appearance. In the latter case phase velocities of 
interacting components are close to each other and their dispersion is strongly 
affected by nonlinear dynamics [17]. 

The different role of four- and five-wave resonance in the energy exchange and 
wave dispersion (finally, on wave forms on the surface) brings up the question of 
how to model a wave field numerically. Within our approach we need to distribute 
wave harmonics in the wavevector space. Emphasizing four-wave resonances we 
tend to reinforce energy exchanges in the wave system, while the preference for 
quintet interactions weakens the exchanges but stimulates variations of wave 
forms due to interference of harmonics. 

Fig.1. Kinematical and dynamical features of water wave resonances. a — Resonant 
curves and corresponding wavevectors for the model geometry of four- (2a = b + c) 
and five-wave (3a = d + e) resonances; b -— Normalized four- and five-wave kernels. 
Five-wave kernel is normalized on the amplitude factor corresponding to e = ak = 0.3. 
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3 Numerical Approach 

3.1 Approach Basics 

Details of numerical approach are presented in recent papers [14-16]. Generally, 
we followed the same method in modelling of the effect of freak wave appearance. 
We tried to verify the basic features of freak wave events using the idea that the 
appearance of high-amplitude waves can be related to instantaneous coincidence 
of wave crests at quite ordinary wave field conditions. Since such coincidence is 
a rather rare event, we started with specific extreme-wave forms and solved time 
reversal problem observing the time behaviour of wave forms and wave spec-
tra features. Time series, which are usually available as an input of numerical 
models, do not provide information on the spatial structure of water wave field 
and have to be supplemented by a priori conjectures. As the first point, we used 
a common concept of a wind wave field with narrow angular distribution and 
spectral amplitudes monotonically decreasing to high frequencies. Thus, we are 
going to show that high-amplitude waves can appear from initial conditions with 
no essential scale and angular preferences. We suppose that ‘abnormal’ appear-
ance of oblique wave components from the ‘stereotype’ wave field is possible due 
to five-wave resonances at reasonable time scales. 

The second hypothesis is based on our previous knowledge of nonlinear water 
wave dynamics. It has been shown [14,16] that sporadic amplification of water 
wave components due to five-wave resonances is accompanied by the strong 
selection of water wave modes, so that in a generic case, only a small number of 
oblique components can grow due to five-wave resonances. 

Thus, our method of numerical study can be summarized as follows: 

— An initial wave field state is represented by a number of master modes in 
special canonical variables; 

- Amplitude distribution of master modes is taken as in conventional mod-
els of wind wave field (generally we use the simplest temporal Pierson-
Moskowitz approximation for wave spectra); 

- Master modes are distributed mainly in along-wind direction. A small 
number of oblique wave components is placed in the vicinity of five-wave 
resonant curves in wavevector space; 

- Wave phases are chosen in such a way that the resulting wave profile has 
a characteristic pronounced amplitude; 

- Calculations for initial conditions with different distributions of master modes 
in wavevector space but the same temporal spectra are performed in order 
to estimate characteristic time scales of transformation of wave forms and 
wave spectra. 

In fact, in the study we meet a number of accompanying problems. While all 
these problems are solved in the simplest way, their correct resolution is necessary 
for the further progress. 
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3.2 Example. ‘Draupner’ Wave 

As a numerical example, consider the case of the ‘Draupner’ wave [19]. The time 
series used in this example was provided by Dr Haver. The example allows to 
demonstrate the main physical results of the modelling as well as the possible 
difficulties. 

The initial data of our numeric experiments is the 20 minutes time series with 
sample frequency 2.133 Hz. This data was used to construct the instantaneous 
Fourier amplitudes and then normal variables for the Hamiltonian equations. 
The normal variables can be related to temporal Fourier transform with the 
help of the dispersion relation. The problem of such a relation is that, first, it is 
a function of wavevector, second, it is amplitude-dependent for nonlinear waves. 
At present, we have no way to resolve correctly the arbitrariness of relation of 
frequency spectra to its spatial counterpart, and the simplest solution of the 
problem is accepted. In fig.2a, instantaneous amplitudes and phases of temporal 
Fourier transform and the profile of ‘Draupner’ wave are shown. The Fourier 
amplitudes have pronounced peaks at specific frequencies. Taking the frequency 
of the highest peak f0 as a characteristic value, we see that almost all these 
peaks are in the range f0 4 2f0. The next highest in magnitude peak is at 3/2/0, 
corresponding exactly to the symmetric five-wave resonance, whose specific role 
in wave dynamics has been discussed in recent papers [13,14,16]. 

The role of this resonance is the subject of the numeric experiment. The prin-
cipal part of the initial wave field was modelled by a uni-directional distribution 
close to the ‘reference’ Pierson-Moskovitz spectrum (solid curve in fig. la). The 
excess of temporal Fourier amplitudes relative to the ‘reference’ wave field has 
been distributed in wavevector space close to the four-wave resonance curve in 
the range f0  3/2f0, and close to the five-wave resonant curve for the range 
3/2fo  2f0. Small noise of arbitrary distributed harmonics was added in the 
rest of the frequency range. A number of numerical experiments were performed 
with different distributions of the ‘excess part’ of such a wave field. The typicaf 
results of time evolution in terms of time series are presented in fig. 3 for the 
rather short time period of about 8 periods of dominant wave component. These 
results can be considered as unexpected. In the figure, the peak at 3/2f0 has 
disappeared! In fact the result is trivial: two spatial harmonics — the along-wind 
one and the oblique one from five-wave resonance contribute to the same linear 
frequencies but in different ‘nonlinear’ ones (with nonlinear corrections taken 
into account). This leads to the phase shift and effective interference between 
these two harmonics. Such a mixing of phases of different harmonics is a mecha-
nism of disappearance of the freak wave which is a sum of harmonics with certain 
phases. As we see, this mechanism is nonlinear, due to the amplitude dependence 
of harmonics, but is not related to the energy exchange between harmonics. 

The energy transfer in the problem under study has longer timescales. As we 
found in the example, this scale does not depend essentiaJly on initial conditions 
and can be easily estimated in generaJ case. In our experiments the oblique wave 
harmonics appear from (or ‘disappear’, in our time reversal approach) rather 
low ‘noise’ amplitude for about 1000 dominant wave periods. 
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4 Discussion 

The study is the first attempt of the application of the novel numerical approach 
based on weakly nonlinear Hamiltonian formulation of water wave equations. 
This approach is very powerful because of the practical absence of limitations 
on time and space of the analysis. It has evident advantages for the modelling of 
different initial conditions as well, because the most expensive procedure is the 
solution of ODE systems. The possibility of effective qualitative analysis of the 
problem is extremely valuable in the approach. Thus, the approach represents a 
convenient tool to predict the results of a detailed study without large numerical 
and analytical difficulties. 

The role of nonlinearity in the problem discussed is twofold. First, it is re-
sponsible for the transformation of temporal spectra. While in wavevector space 
the amplitudes of harmonics evolve slowly, in frequency space they can interfere 
effectively. Thus, frequency spectra appears to be inconvenient for the prediction 
of freak wave events. 

Nonlinear energy exchange can provide the appearance of oblique waves of 
rather high amplitudes that can interfere effectively and stimulate sporadic high-
amplitude events, creating conditions for their emergence. As we have seen, 
knowledge of spatial structure of wind wave fîeld is of principal importance to 
estimate these conditions and the possibility of these events. 

The work was supported by grants INTAS-97-575 and Russian Foundation for 
Basic Research N98-05-64714. Authors are grateful to the participants of Rogue 
2000 workshop for fruitful discussion of the problem. Authors are especially 
grateful to Dr Sverre Haver (Statoil) for kindly providing the experimental data. 

Fig. 2. Temporal characteristics of the ‘Draupner’ wave as a base for numeric mod-
elling. a,b — Instantaneous Fourier amplitudes for 4 minutes period close to the 
highest wave amplitude. ‘Reference’ amplitude distribution corresponding to Pierson-
Moskowitz spectra at wind speed approximately 10 m/s is shown, c — 4 minutes of 
time series. 
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Fig. 3. Same as in previous figure at t = 8/fo 
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Abstract. The conjecture explored in this paper is that the interfer-
ence of ‘latent’ wave groups evolving in different directions at differing 
group celerities might provide a (partial) explanation for ‘freak’ waves 
and correlated large ‘riding’ waves, with associated phase loops, observed 
in extreme seas. The S-transform, a form of wavelet transform, provides 
a time-frequency matrix directly related to the time evolution of the 
conventional water surface power spectral density. The interpretation of 
this matrix is illustrated by applying the S-transform to single point 
and three probe wave array data, obtained at the North Alwyn plat-
form in the North Sea. These time-frequency cohtour plots of typical 
wave packet energy may be interpreted as representing both wave packet 
evolution and interaction. In addition the decomposition of single-point 
wave records into ‘latent’ wave groups is described using the inverse S-
transform. 

1 Introduction 

A series of papers describing experimental measurements of the evolution of wave 
groups by Stansberg (e.g. [1]) demonstrate the hyp'othesis that freak waves re-
sult from the natural process of evolution of wave groups in accordance with the 
predictions of the nonlinear Schrödinger equation (NLS). Similar experiments 
were undertaken by Clauss and Kiihnlein [2] in order to determine the response 
characteristics of scale model offshore structures. Their experiments give a valu-
able insight into possible mechanisms of freak wave causation in the laboratory 
which can also be studied by numerical simulations based on the NLS equation. 

Papers by Mollo-Christenson and coworkers [3,4] argued that similar evolu-
tionary behaviour of the envelope modulations also occurs in deep water storm 
waves. Recently Magnusson et al. [5] have provided further observational support 
using measurements in the North Sea. They have used both the linear and non-
linear evolution equations to obtain estimates of the effect of local wave packet 
evolution on wave height statistics. 

Storm waves observed by Linfoot et al. [6] at the North Alwyn platform in the 
North Sea [7] exhibit the familiar modulational characteristics and wave group 
statistics expected from narrow band theory (Longuet-Higgins [8]). However, 

215 



216 

Fig. 1. : Wave record during storm: (a - upper) large amplitude ’riding’ waves 240 to 
300 seconds (b - lower) time -frequency plot showing main group modulation at 0.9 hz 
and a secondary group splitting at 0.13Hz to 0.15 Hz at 240 to 300 seconds [See also 
Appendix CP] 

close inspection of group profiles. sampled at high-rate (5Hz), shows instances of 
carrier frequencies which are noticeably different from their neighbours while oth-
ers show locally correlated ‘riding’ waves (Figure la) which appear as secondary 
loops in the instantaneous phase-time plot. These features are not explained by 
narrow-band processes. 

It is our contention that these features provide observational support for 
arguments originally made by Mollo-Christensen and cited recently by Donelan 
et al.[9] that the sea surface during broad-banded storms may be represented by 
the interaction of independent evolving wave packets which may be travelling 
in different directions at different wave group celerities- even in circumstances 
when the directional spectrum is unimodal. 

2 Techniques for Time-Frequency Analysis and Time 
Series Decomposition 

In the last few decades a range of techniques have been developed to study the 
frequency distribution of time series over short time spans (e.g. [10]) including 



217 

the recent development of the S-transform due to Stockwell [11]. The Stockwell 
transform output is a complex matrix which is directly related to the amplitude 
and phase spectra of the fourier transform. A time-frequency energy distribution 
is obtained directly from the square of the absolute values of the complex S-
matrix while time averaging the S- matrix gives the unwindowed complex fourier 
spectrum. This property allows the S-matrix to be inverted to recover the original 
signal: an adaptive filter based on this has been developed which constructs 
‘latent’ time series from the dominant ridges in the time-frequency contour plot 
(Fig.2 (b)) effectively decomposing the original time series into a small number of 
components and a residual as shown in Fig. 2(c). The large wave at 350 seconds 
and the distortions in the surface profile at 330 seconds and 360 to 380 seconds 
are shown to be a possible consequence of the interaction of two wave packets. 
The residual component at the peak (350 seconds)is the non-linear contribution 
to the second higher-frequency wave packet. 

Fig. 2. 800 seconds of wave data from North Sea storm (1 Jan 1995): (a -upper) 
water surface elevation time series (b - middle) Time-frequency contour plot derived 
from S-transform matrix: light patches indicate high energy concentrations (c - lower) 
component time series produced by adaptive inversion of S-transform matrix with a 
5% Hanning taper applied to ends of time series in plots (b) and (c) [See also Appendix 
CP] 
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A number of other time-series decomposition algorithms published recently 
have been tested to provide representations of the ‘latent’ wave groups. These 
include the time-varying autocorrelation method (TVAR) of Prado and West 
[12] and the Empirical Mode Decomposition (EMD) of Huang et al.[13]. We 
have found the S-transform method to be successful in effectively separating 
‘riding’ wave components, as shown above, while preliminary exploration of the 
same time series using the TVAR method shows promising agreement. The cor-
responding results from our coding of the EMD algorithm show discrepancies 
and physical inconsistences which require further investigation. 

3 Simultaneous S-T Matrix Plots Derived from Wave 
Probe Array 

The array of three wave altimeters at North Alwyn has allowed us to produce 
synchronous time-frequency plots from each time series. Representative time 
series are shown in Fig.3 while the corresponding time-frequency contour plots 
are in Fig.4, with light tones indicating energy peaks. 

Figures 3 and 4 show similar large energy packets at around 100-150 seconds 
and at 1080-1180 seconds at each probe. At 670, 780 and 850 seconds the T-F 
plots in Fig.4 (upper) show packet interactions which are almost absent in the 
lower plot: we interpret this as clear evidence that the interacting packets are 
moving independently with no significant higher frequency component appearing 
on the lower plot. In Fig.4 (lower) two, or possibly three, packets appear to be 
interacting at 500 seconds while in the upper plot the two component packets are 
not quite synchronous. We are currently investigating these features to establish 
the directions of the components and compaxing the results with data obtained 
from experiments in a short-crested wave basin. 

4 Conclusions 

We conclude that 

1. the S-transform provides a useful analysis tool for constructing time-frequency 
plots of wave packet evolution and interaction; and, 

2. mixing and evolution of independently propagating wave groups may con-
tribute to the explanation of ‘rogue’ waves; and, 

3. locally correlated ‘riding’ waves may also be explained by group interactions. 
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Fig. 3. : Wave synchronous records from three wave altimeters 

Fig. 4. : Time-frequency contour plots of abs(S-matrix) corresponding to the wave 
records in Fig.3 [See also Appendix CP] 
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Abstract. In view of the potentially devastating consequences of the 
impact of rogue waves, it is necessary to mcike predictions of the geometry 
and kinematics of such severe wave events, as well as calculating their 
occurrence probability. 
In spite of the fact that steep and breaking waves come in many differ-
ent forms: spilling or plunging breakers, for example, it appears that very 
many of these wave forms can be related to a paxticular potential flow 
geometry which is stationaxy in a frame of reference moving with the 
wave crest. This flow field has a geometrical scale which has a fixed rela-
tion to the amount of fluid which is expelled forwards in a jet emanating 
from the wave crest. 
Comparison with relevant laboratory investigations indicate that some 
aspects of the observed breaker geometry, such as the orientation of 
the loop structure under the breaking crest, axe correctly predicted by 
the quasi-stationary theory. The length and velocity scales, however, axe 
highly variable, but it may be possible to make quantitative predictions 
by analogy with already-established relationships for the characterization 
of waves breaking on beaches. Waves which are initially steeper tend to 
generate smaller-scale ‘spilling’ breaker structures. 

1 Introduction—What Happens during a Rogue Wave 
Event? 

The extreme loading on structures caused by the impact of breaking waves has 
long been known, and has recently been brought into focus again as a result 
of the occurrence of unexpectedly high or steep waves around both fixed and 
floating offshore facilities. The probability of occurrence of such waves can be 
determined by statistical analysis [4,12] and long-term simulation studies [15]. 
However, In view of the potentially devastating consequences of severe wave 
impact, it is also necessary to know the wave form and kinematics in order to 
predict their effects on vessels, floating and fixed structures. It is also very likely 
that such rogue waves will have breaking crests, so a quantitative understanding 
of the dynamics of breaking is necessary. 
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2 Quasi-Stationary Flow Approximation for Breaking 
Crest 

Wave breaking is a complicated nonlinear time-dependent process, and has been 
investigated in numerous studies, involving field and laboratory experiments, and 
analytical and numerical modelling studies [2,13,14,16,18]. Although there are 
many different possible forms of breaking wave which can occur under different 
circumstances, there is one ‘classical’ form (the plunging breaker) which is very 
common, in which a jet projects forward from the wave crest and descends in a 
parabolic trajectory down to the forward face of the wave. 

The ‘plunging’ breaker geometry can appear at many different length scales, 
but with essentially the same shape, and it can be argued that the ‘spilling’ 
breakers which are common in the open ocean and on gently-shelving shorelines 
are in fact a short-lengthscale form of plunging breaker. 

A steady-state irrotational flow which satisfies the necessary boundary condi-
tions and which tends to 120° Stokes corner flow at large distances from the crest 
[5,6] may be a useful approximation, to estimate impact velocities, for example. 
In this flow: 

- The length scale depends on the flux of fluid through the jet: the length of 
the loop under the jet is ≈ 8g – ⅓ W ⅔ 

- The acceleration is scale-independent, with a maximum of « 5.4g 
- The velocity scale V = (gW)⅓; the relative speed of the fluid in the jet and 

the main body of water at the ‘impact point’ is « 6.9F 

This quasi-stationary flow is illustrated in the upper part of Fig. 1, and the 
velocity of the flow with respect to the stagnation point at the crest is shown in 
Fig. 2. 

Comparison with laboratory measurements Figure 3 shows the dimensions of 
the width (minor axis) of the interior of the loop under the breaking crest jet, 
during breaking events in two laboratory investigations: those of Bonmarin [1] 
and of Tomita and Sawada [14]. During the later stages of the breaking events 
(but before the breaker loop collapses) the spatial dimensions of the breaking 
structure are fairly constant, and the loop orientation is reasonably close to that 
in the quasi-stationary flow (≈ 51° from the horizontal). The behaviour is more 
complex and variable in the initial stages of breaking. 

3 Plunging or Spilling Breakers?—Relation to the Rest 
of the Flow Field 

The quasi-stationary flow approximation is only useful if we can determine the 
length scale which is applicable during a typical ‘rogue wave’ event. This is not 
straightforward, as we may need to ‘patch’ the stationary flow on top of a com-
plicated, time-dependent flow. However, we can perhaps find some simple rules 
by reviewing the criteria for when plunging and spilling breakers are observed in 
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Scale of breaking crest 

Fig. 1. The upper graph shows the quasi-stationary breaking-crest flow field of Jenkins 
[5]. The lower graph shows the superharmonic instability which grows on the crest of 
an ‘almost-highest’ wave crest according to Jillians, Longuet-Higgins and Cleaver [7-9]. 
The jet emanating from the crest of the quasi-stationary breaker may be thought of as 
a fully-developed form of this instability. The scale units are as in the papers cited. 

Fig. 2. A hodograph of the velocity of the fluid in upper graph of Fig. 1. 
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Fig. 3. Analysis of two laboratory investigations: those of Bonmarin [1] and of Tomita 
and Sawada [14]. The upper curve shows the width (minor axis) of the interior of the 
loop under the breaker jet. and the lower curve shows the orientation of the major axis 
of the loop with respect to the horizontal plane. 

the field. Given the paucity of systematic observations (and the rarity of plung-
ing breakers) in the open sea, it is necessary to refer to observations of breakers 
in coastal areas. The rule seems to be: 

— Spilling breakers are observed on gently-shelving shorelines 
— Plunging breakers are observed when the shoreline shelves more steeply, 

particularly when large-amplitude long-wavelength swell waves propagate 
onto the coast from offshore. 

On further investigation ([17] Fig. 4, after [3]), it actually appears that: 

— the transition from spilling to plunging breakers, and also the transition from 
plunging to the more violent ‘surging’ breakers, is most strongly determined 
by the ratio Hb/H0, where H0 is the wave height offshore, before it has been 
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affected by depth-dependent refraction, and Hb is the height of the wave 
when it breaks. The dependence on incident wave steepness H0

/gT2, where 
T is the wave period, is considerably weaker. The transition from spilling to 
plunging is at Hb/H0 » 1.2 

Hence it may be the case that the geometrical scale of the breaker is more-or-
less proportional to Hb—H0, the amount that bottom refraction has increased the 
wave height above its original value. This may also be the case where the wave 
height has been increased by refraction by variable currents, and by focusing. 
This is confirmed by the fact that e.g. focusing can be used to generate plunging 
breakers in the laboratory. 

A general explanation of how we get a breaker length scale which is propor-
tional to the increase in wave height before breaking is probably that the initial 
waves have smooth crests if they are not steep, but in general have sharper crests, 
with a smaller radius of curvature, if they are steeper and thus initially closer 
to breaking. An idealized example of this would be the almost-highest periodic 
waves of Longuet-Higgins and Fox [11]. The superharmonic instability mecha-
nism of Jillians, Longuet-Higgins, Cleaver and Fox [7,10], depicted in Fig. 1, will 
generate a more rapidly-growing instability of a smaller length scale, in the case 
where the crest radius of curvature is smaller, and thus will generate a breaking 
structure with a smaller scale in this case. 

4 Conclusion 

The quasi-stationary breaking crest flow field described in this paper may be 
useful in predicting the geometry and kinematics of breaking crests in rogue 
wave events, provided that the length scale of the flow field can be predicted. 
Certain aspects of the geometry, such as the orientation of the breaking-crest 
loop, are approximated reasonably well. The length scale, and thus the velocity 
scale, are more variable and need to be determined by other means. There is 
empirical evidence, from the behaviour of breakers on shorelines, that the rele-
vant length scale is proportional to the increase in wave height above that of the 
surrounding ‘undisturbed’ waves. This height increase may be due to bottom 
refraction, refraction by currents, or wave focusing, and an explanation for the 
relation can be that the length scale of a superharmonic instability at the wave 
crest is smaller for waves which are steeper and initially closer to breaking. 
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Abstract. Numerical simulations of gravity waves with high-order non-
linearities in two and three dimensional domains are performed by using 
a pseudo spectral method. High-order nonlinearities higher than third-
order excite apparently chaotic evolutions of the Fourier energy in deep-
water random waves. The high-order nonlinearities increase kurtosis, 
wave height distribution and H

max
 H⅓

 in deep-water and decrease 
these wave statistics in shallow water. They, moreover, can generate a 
single extreme high wave with an outstanding crest height in deep-water. 
The high-order nonlinearities more than third-order can be regarded as 
one of the reasons that may cause a freak wave in deep-water. 

1 Introduction 

Since the discovery of the Benjamin-Feir instability in the Stokes wave train, 
much attention has been paid to the behavior of nonlinear deep-water waves. In 
the last two decades, the instability of the gravity waves has been studied by 
many researchers by using nonlinear Schrödinger type equations[l][2][3], mode-
coupling equations[4], pseudo-spectral methods[5] and experiments[6]. However, 
most of them are concentrated on amplitude modulations of the Stokes wave for 
the purpose of scientific interest. The rest of studies are related to energy trans-
fer of random waves for the purpose of prediction of ocean wave spectra[7][8]. 
Little is known about the high-order resonant interaction effects on random wave 
statistics in deep and shallow-water. 

Alber mathematically demonstrated that randomness of waves leads wave 
trains to stabilize[9] and others stated that the instability is confined within 
an initially unstable range and becomes weaker when the spectral bandwidth 
becomes broader[10]. However, it is not clear how stability and instability of the 
gravity waves are connected between Stokes waves and random waves having 
broad band spectra. It is found that relatively broad banded spectrum waves 
can transfer the Fourier mode energy in deep-water[ll][12]. 
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On the other hand, freak waves recently became an important topic and 
are sometimes featured by a single and steep crest giving severe damage to 
offshore structures and ships. There is no doubt on the occurrence of freak waves 
from many reports[13] and the mechanisms and detailed statistical properties of 
the freak wave are getting clearer[14][15[. The state of the art on freak waves 
was summarized at a NATO Advanced Research Workshop in the last decade. 
It was concluded that both nonlinearity and directionality effects are primary 
possible causes of the freak waves[16[. Experimental studies demonstrate that 
the freak-like waves can be generated in a two-dimensional wave flume without 
current, refraction and diffraction[17]. Numerical studies also indicate that freak 
waves having a single and steep crest can be generated by third-order nonlinear 
interaction in deep-water[11]. It is, however, not clear what statistical properties, 
occurrence probabilities and effects of spectrum shape and water depth are for 
the instability generated freak waves. 

The purpose of this study is to investigate influence of spectrum bandwidth 
and water depth on the stability of random waves, solving highly nonlinear 
equations of a potential flow by a pseudo spectrum method. On the basis of the 
numerical results, the importance of the high-order nonlinearities is evaluated in 
comparison with the second-order solution. Moreover, the stability of the Stokes 
wave in the three dimensional domain is demonstrated. 

2 Numerical Method 

2.1 Governing Equations 

Two types of nonlinear equations for gravity waves are numerically solved in 
this study. One is high-order nonlinear equations which can completely take into 
consideration nonlinear interactions at higher than third-order[18] and another 
one is the second-order approximated equations which exclude nonlinear terms 
higher than the 3rd order[ll]. 

A periodic boundary condition is assumed and is assigned to spatial coor-
dinates (x, z); the origin is located at the mean water level, x — (x, y) the 
horizontal axis and 2 the upward vertical axis. Kinematic and dynamic bound-
ary conditions on the free surface are rewritten into the evolution equations as 
a function of the free surface profile η (x, t) and of the velocity potential on the 
surface Φs(x, t) = Φ (x, η, É)[19]; 

ηt + V
x

Φsηϰ – (1 + Vϰη Vϰη)Φ
z
 = 0, (z =η) (1) 

Φ
t
 + gη+\v

x
ΦsA7

x
<fis-±(1 + V

x
η•V

x
η)Φ2

z
 = 0, (z = η) (2) 

where Vx=(∂/∂x,∂/∂y), the subscript t denotes the partial differentiation with 
t, z is the vertical gradient of the velocity potential , t the time and g the 
acceleration due to the gravity. Dommermuth & Yue[18] directly solved eqs.(l) 
and (2) for quasi-monochromatic waves by using a pseudo-spectral method. They 
considered an approximation z up to the order M in relative wave steepness. To 
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Fig. 1. Initial profiles of wavenumber spectra for 2D simulations given by Wallops type 
spectra as a function of spectrum bandwidth m. 

skip the detail of the formulation, finally, it is formulated the vertical gradient 
of velocity potential on the surface as 

where M is the order of nonlinearity. 
As a result, the eqs.(l) and (2) can be solved with the approximated <j>

z
 in 

the Fourier space by using a pseudo-spectral method. The spatial derivations 
of Vx

s and Vη are evaluated in the Fourier space, thc nonlinear products are 
calculated in the physical space. Therefore, this approach is useful to simulate 
the long time evolution of random waves having broad band spectra because it 
requires CPU time of the order of N log N, whereas the mode-coupling equation 
consumes the CPU time as order of N3. All aliasing errors generated in the 
nonlinear terms are deleted. The time integration of the Fourier modes of 77 and 
Vx

s is evaluated in the Fourier space with a fourth-order Runge-Kutta-Gill 
method. The order of nonlinearity M is fixed to four for all cases, that is the 
fourth-order nonlinear interactions were taken into consideration for the high-
order nonlinear simulation. 

The accuracy and convergence of the numerical model are verified by prop-
agating the exact solution of a Stokes wave. The maximum error of the total 
energy leak and the surface profile change were 2.39 x 10- 5 and 6.70 x 10- 4, re-
spectively. It is hence expected sufficient accuracy from the high-order nonlinear 
wave propagation in solving eqs.(l), (2) and (3). 
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2.2 Initial Conditions: Randora Waves in 2D 

The amplitudes of initial waves are taken from a Wallops type spectrum in 
wavenumber space transformed through the linear dispersion relation. 

K — kthkh / kpthkph (5) 

where m is the spectral bandwidth parameter, k
p the peak wavenumber of the 

spectrum, h the water depth and a is a constant satisfying the following relation 
with H1/3: 

Eq. (4) with m=5 and kph=∞ is equivalent to the Pierson-Moskowitz spectrum 
and the shape of the spectrum is getting narrower as the value of m increases. 
The Wallops spectrum is a function of spectral bandwidth m only. The phase 
constants of the initial waves are assumed to follow the random phase approxi-
mation. This assumption is very important simulating random wave propagation 
representatively. A further important point is that if the phase is chosen facti-
tiously(e.g. frequency wave focusing), it is then possible to generate a freak-like 
surface profile at any arbitrary time and location. However, such an approach is 
out of our intention. 

The computations are made in a periodic space having the length of 256L
p

. 
Initial wave statistics are chosen with a fixed characteristic wave steepness: 
kpa=0.14 and spectrum band widths:m=10, 20, 30, 40, 60, 80 and 100 as shown 
in Figure 1. Here, a is half of H1/3 and Lp and Tp are the wave length and wave 
period at the spectral peak (mode), respectively. The water depth was chosen as 
kph=∞ (deep-water), 3.0, 2.0, 1.36, 1.0. The total time integration was calculated 
up to t=100Tp. 

2.3 Initial Conditions: Stokes Wave in 3D 

An initial wave profile and a potential energy on the surface for three dimensional 
simulation were taken as the Stokes exact solution[20] for 3D simulation. The 
relative amplitude ka was fixed at 0.15. The amplitudes of the perturbations 
for the Stokes wave were taken as 1/100 of the carrier wave amplitude and the 
angles as 6=5, 15, 30 degree, respectively. The number of Fourier modes were 
taken as 64X64 in wavenumber space. The total time integration was carried out 
up to t=250Tp. 
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(a)High-order solution. 

(b)Second-order solution. 

Fig. 2. Temporal evolutions of the Fourier spectra of the simulated wave train which 
initially has steepness kpa = 0.14 and spectrum bandwidth m = 10 

3 Numerical Results and Discussions 

3.1 High-order Nonlinear Effects on Random Wave Trains in 2D 

Spectral Evolutions and Dispersion Relations. Figure 2 shows the time 
evolutions of the wavenumber spectra for m=10 and kph=∞ for both the high-
order and the second-order solution. Although both simulations were started 
with the same initial conditions, there are significant differences in the spectrum 
evolution between them. It is found that the Fourier modes actively exchange 
their energy and the Fourier mode amplitudes are strongly modulated during the 
propagation process for the high-order solution, while the second-order solution 
seems to remain stable. These differences between the high-order solution and 
the second-order one in Figure 2 suggest that the Fourier modes can transfer 
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Fig. 3. The spectra time-averaged over t/T=30 to 100, and their relations to the initial 
bandwidth m. 

Fig. 4. Relationship between the relative phase velocity c/cp and the relative wavenum-
ber k/kp for the high-order and linear solutions. 

the energy due to the high-order nonlinear interactions even when the spec-
trum bandwidth is relatively broad. A similar relation was observed for various 
spectrum bandwidths in deep-water conditions. However, the intensity of energy 
transfer becomes weaker as the initial spectrum bandwidth becomes broader. 
The amplitude modulation-like behavior becomes weaker with decreasing water 
depth and finally disappears if the characteristic water depth kph is shallower 
than 1.36. 

Figure 3 shows the time averaged wavenumber spectra for both the high-order 
and the second-order solution in deep-water conditions. The second-order solu-
tion shows a secondary peak in the higher harmonics when the initial spectrum 
bandwidth is narrow. On the contrary, there is no significant difference amongst 



235 

(a) High-order solution 

(b) Second-order solution 

Fig. 5. Examples of simulated water surface profiles for both the high-order and the 
second-order solution at time t/Tp=25. 

the time averaged wavenumber spectra of the high-order solution. This result 
demonstrates that spectra of random wave trains in deep-water transform their 
profiles through high-order nonlinear resonant interaction and it is equivalent to 
phase averaged high-order equation (e.g. Hasselmann’s eq.) 

It appears that the shapes of time averaged spectra of the high-order solu-
tion are similar and independent from the initial spectrum bandwidth. However, 
effects of the initial spectrum bandwidth are not seen in the shape of the time 
averaged spectra but are found out in dispersion relations. The phase of the 
nonlinear wave is given by 

ψ (k,t) = kx — w(k,t)t + δ(k), (7) 

where S(k) is the phase constant and ω the angular frequency as a function 
of x and t. Then the nonlinear dispersion relation ω=ω>(k, t) can be calculated 
numerically through finite differentiation of the phase ψ(k, t): 



236 

Fig. 6. Temporal histories of GF of a simulated wave train for the high-order so-
lution (solid line) and the second-order one (dashed line), filled circle:m=10, filled 
triangle:m=30. 

Figure 4 shows the relationship between phase speed c/cp and wavenumber k of 
the high-order nonlinear solution for m=10 and kph=∞. The solid line in the 
figure denotes the nonlinear dispersion relation calculated by Eqn.(8), the dashed 
line denotes the linear dispersion relation, the dashed line with filled circles and 
the solid line with filled triangles denote wavenumber spectra at t/Tp=0 and 
100, respectively. The nonlinear dispersion relation is distinct from the linear 
dispersion relation at high wavenumbers k/kp > 2.0. The separation points from 
the linear dispersion relation depend on the initial spectrum bandwidth and are 
shifted to the low wave number side in the initially narrow banded spectrum case. 
The fact that a nonlinear wave grouping becomes dominant for narrow banded 
spectrum waves suggests that the nonlinear components of the spectrum are 
important to describe the nonlinear characteristics of the wave train. 

Surface Wave Profile and Wave Statistics. It is important for engineering 
practice to make clear the high-order nonlinear effects on water surface elevations 
and their statistics, because understanding of the wave characteristics/statistics 
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Fig. 7. Time averaged wave statistics as a function of spectral bandwidth m in deep-
water conditions (solid line: high-order solution, dashed line: second-order solution). 

is of high value for engineering. Figure 5 are plotted the spatial wave profiles 
of the high-order and 2nd order solutions at the evolution time of t/T

p
=25 

for m=10 and k
p
h=∞. The whole of the surface profiles of the high-order and 

second-order solution are quite similar, however, a giant and steep wave, freak 
wave-like, can be observed at k

p
x=140 of the high-order solution. It is found that 

the high-order nonlinear interactions are strongly related to the occurrence pf a 
single extreme wave having an outstanding crest height, because such a wave can 
be never observed in the second-order nonlinear solution. The occurrence of the 
steep wave is related to wavenumber components higher than 2k/k

p
, particularly 

3k/k
p

[12] and has high velocity near the surface[21]. 

The fact that the high-order nonlinear interactions generate a steep wave sug-
gests that such high-order nonlinearities also affect wave statistics. GF (Groupi-
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Fig. 8. Time averaged wave statistics as a function of relative water depth kph for 
m=4, 10, 30 (solid line: high-order solution, dashed line: second-order solution, filled 
circles: m=4, filled triangles: m=10, filled squares: m=30). 

ness Factor) is thus picked up to describe the characteristics of the wave train. 
The time histories of GF during the propagating process are shown in Figure 6 
for m=10, 30 and 100. GF of the high-order non-linear solution is always larger 
than that of the second order solution, and the high-order effects are stronger for 
initially narrow banded spectrum waves in deep-water conditions. Moreover, if 
the water depth becomes shallower, differences between the high-order and the 
second-order solution become smaller. And finally they are almost same in the 
case of kph= 1.36 that corresponds to a saddle node point of the stability of the 
nonlinear Schrödinger equation. 

To verify quantitatively the effects of the high-order nonlinearities on wave 
statistics, time averaged GF, H

max
/H⅓, kurtosis μ4, and skewness μ3, are 

plotted in Figure 7 and Figure 8 as a function of initial spectral bandwidth m 
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(a) m = 4, kph=∞ 

(b) m = 4, kph = 1.36 

Fig. 9. Comparison of exceedance probabilities of wave heights for high-order and 
second-order solutions with the Rayleigh distribution. 

and water-depth k
p
h. The vertical bars in the figures indicate variance of the 

statistics and brackets <> indicate time averaged values. The difference of <μ3> 
between the high-order and the second-order solution is small. However, <0F>, 
< H

max
/H

⅓
 > and < μ

4
 > of the high-order solution are larger than those 

of the second-order solution, and the differences between the high-order solu-
tion and the second-order one decrease when the spectrum bandwidth becomes 
broader in deep-water. These differences are reduced for k

p
h=2.0 and vanish 

when k
p
h= 1.36. Moreover, they become opposite when k

p
h= 1.0. This implies 

that the high-order nonlinear effects play an important role to stabilize the waves 
in shallow-water. The effects of the high-order nonlinearities are most remark-
able in μ

4
. The reason why μ

4
 is outstanding is that μ

4
 statistically depends on 
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the third-order nonlinearities[22]. Therefore, the value of μ4 is necessary step to 
check the influence of the high-order nonlinearities of an observed wave train. 

Wave Height Distribution. High-order nonlinearities increase Hmax/H⅓, 
kurtosis and GF. Another significant aspect of the high-order nonlinear effects 
is the exceedance probability of wave heights. Figure 9 shows a comparison of 
exceedance probabilities of wave heights for the high-order nonlinear solution 
(filled circles), second-order one (filled triangles) and the Rayleigh distribution 
(dashed line) for kph=∞ and 1.36. The exceedance probabilities of wave heights 
for the second-order solution are independent from the water depth and are 
slightly below the Rayleigh distribution. On the other hand, the exceedance 
probabilities of wave heights of the high-order solution exceed the Rayleigh dis-
tribution in deep-water and are the same as for the second-order solution when 
kph=1.36. This tendency of the exceedance probability of wave heights is the 
same as for kurtosis. The results of numerical simulation clearly show that the 
wave heights distribution is not constant and varies as a function of kurtosis. The 
authors studied the nonlinear wave heights distribution as a function of kurtosis 
in [23] [24], 

3.2 High-order Nonlinear Effects for a Stokes Wave in 3D 

Numerical simulations in three dimensional domain were performed for a Stokes 
wave. Figure 11 shows the temporal evolutions of spatial surface profiles of the 
wave at t/Tp=0, 100 and 200 with the perturbations making angles 5 and 30 
degree to the carrier wave. The horizontal and vertical axes denote respectively 
the x and y axss normalized by the carrier wave length Lp. The Stokes wave 
trains become unstable due to five wave resonances at t/Tp=200. Figure 12 shows 
temporal evolutions of two dimensional wavenumber spectra for the same case of 
Figure 11. The horizontal and vertical axis denote two dimensional wavenumber 
space normalized by carrier wavenumber kp, respectively. The energy of the 
carrier wave spreads out on wavenumber space for both 0=5 and 30. There is no 
significant difference between 0=5 and 30 at t/Tp=200, although the influence of 
the initial conditions still remains at t/Tp=100. Finally the temporal evolution 
of the wavenumber spectra in the x direction is shown in Figure 12. There is no 
regular motion such as the FPU recurrence of the two dimensional case. 

4 Conclusion 

It is found that the high-order nonlinear interactions play a very important role 
in the long time evolutions of gravity waves both in deep and shallow-water when 
solving the hydrodynamic equations for gravity waves having narrow to broad 
banded spectra. It is concluded as follows: 

- The high-order nonlinear interactions can transfer energy between the Fourier 
modes and excite apparently chaoti.c mode evolutions even if waves have a 
broad band spectrum in deep-water. 
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Fig. 10. Temporal evolutions of spatial surface profiles for a 3D monochromatic wave 
train with perturbations from different initial angles. 

— The high-order nonlinear interactions can generate a single extreme high 
wave having outstanding crest height such as a freak wave. 

— The high-order nonlinear interactions affect H
max

, kurtosis and GF remark-
ably. 

— The high-order nonlinear interactions increase the occurrence probability of 
large wave heights in deep-water and decrease it in shallow-water in com-
parison with the Rayleigh theory. 

Consequently, the high-order nonlinear effects should be taken into account in-
dependently of the spectral bandwidth to predict the maximum wave and the 
freak wave generation. 
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Fig. 11. Temporal evolutions of wavenumber spectra for a 3D monochromatic wave 
train with perturbations from different initial angles (same as Figure 10). 

Fig. 12. Temporal evolutions of the Fourier spectra (x direction only) of a 3D 
monochromatic wave train (θ=5). 
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Abstract. The simplest model for random waves is based on Gaussian statistics. 
The idea of an average shape for an extreme wave crest in a linear sea, due to 
Lindgren and subsequently known as NewWave, is used as a starting point for a 
review of the effects of non-linearity in the production of extreme waves in ran-
dom seas. Both experiments and numerical simulations show that the physics of 
the evolution of directionally spread wave fields is different to that of uni-
directional waves. Thus, efforts to explain the occurrence of rogue waves 
should reflect the wave spreading obvious in nature. 

1 Introduction 

What is a rogue wave? A possible definition might be 

“An extreme wave event which apparently occurs on average more of-
ten than would be predicted using the tail of the Rayleigh distribution 
for statistics of linear waves - even after allowing for the obvious 2nd 

order crest-trough asymmetry of steep waves 

Let us start by assuming that the possible occurrence of rogue waves can be explored 
by means of solutions to the full Euler equations of potential flow for an ideal incom-
pressible and constant density fluid. There is no dissipation or energy input into the 
fluid domain. Hence, the fluid remains irrotational. Further, we shall assume that there 
are no ocean currents and that the water is deep. The ffee-surface boundary condi-
tions neglect any influence of the air above the surface and surface tension is ignored. 
Since our models cannot calculate beyond wave breaking, we further assume that 
wave overtuming does not occur and that white water is not important. Although these 
assumptions represent an enormous simplification of reality in the open ocean during 
severe storms, the prediction of the evolution of surface water waves still remains 
challenging. 

If rogue waves exist, they must be inherently non-linear. If they are defined to be 
more severe than a 2nd order model would predict, then they must arise from 3rd and 
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higher order interactions - if such a perturbation expansion is meaningful. This con-
tribution attempts a partial, somewhat personally biased review of the literature on 
steep wave focussing. 

2 Second Order Models and NewWave 

A Stokes 2nd order model for steep waves represents the 1st non-linear term in a per-
turbation expansion for surface waves in terms of wave steepness. As such, it can only 
weakly be non-linear - the kinematics at the free surface are different for crests and 
troughs and there is the radiation-stress driven retum flow beneath localized wave 
steep groups. However, the underlying dynamics are still assumed to be linear - the 
position of the dominant linear Fourier components for any time can be predicted 
using simple linear dispersion. 

So long as only a 2nd order accurate model is used, then the properties of extremes 
in an underlying effectively linear random Gaussian process are simple to describe. 
The average shape of a tall crest tends to the scaled auto-correlation function, 
Lindgren [)]. Tromans [2] introduced this idea into offshore engineering where it has 
become known as NewWave. One of the reasons why this is an attractive model is that 
it connects the (averaged) properties of the largest extremes in a sea-state to the prop-
erties of all the waves in that sea-state. The auto-correlation fimction is simply the 
Fourier transform of the power spectmm. This model is convenient for both physical 
experiments and computation as it gives a localized wave group consistent with the 
broad-banded and directional spread nature of real sea-states. 

Second order corrections to an underlying linear model are consistent with much 
field data. The average shapes of large deep-water waves measured during severe 
winter storms at Tem, a northem North Sea platform in 170m of water, are entirely 
consistent with the NewWave model [3], Both the simple case of a single point meas-
urement of surface elevation in time and the more complex case of the simultaneous 
time history at a second location given a wave crest of given size at an adjacent point 
were studied. The prediction of this latter case required directional sea-state informa-
tion obtained from a directional wave-rider buoy. For small waves, the full solution by 
Lindgren [1] for the average shape of waves is required. However, in the limit of a 
large event ( A > 2σ, where A is the individual wave amplitude and cr is the rms 
surface elevation), this exact Lindgren solution tends to the shape of the auto-
correlation function. As well as being a good model for the average shape of large 
wave crests on deep water, analysis of wave data measured in 17m water depth during 
the recent WACSIS joint industry project confirms the validity of this approach for 
steep waves on intermediate water depth in winter storms. 

At second order, all the terms quadratic in wave amplitude are slaved to the (as-
sumed) underlying linear components which move in a manner consistent with simple 
linear dispersion. Thus, brute force simulation of random sea-states can provide 
benchmark statistics on crest elevations etc. (Forristall [4], Prevosto in this workshop). 
A more elegant method of obtaining the same short-term wave statistics is the re-
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sponse surface (FORM) approach of Tromans. This approach has been applied to the 
statistics of crest elevation for deep-water uni-directional waves [5]. 

The apparent consistency between field data in severe storms and 2nd order models 
implies that rogues are rare - perhaps requiring a special set of circumstances that we 
don’t yet understand. 

3 Beyond Second Order for Wave Evolution 

Theoretical models of steep waves beyond 2nd order in wave steepness must account 
for non-linear dispersion if they are to be accurate over long distance and time scales. 
The simplest example of non-linear dispersion is the amplitude dependent Stokes 
correction to the phase speed of regular waves arising at 3rd order in the theory. 

The idea of having shorter, slower waves overtaken by longer, faster ones - fre-
quency-based focussing - pre-dates the derivation of the non-linear Schrödinger equa-
tion and the derivation of a general solution method by inverse scattering, Zakharov 
and Shabat [6], The interaction of linear dispersion and wave non-linearity was first 
studied by Lighthill [7] and is briefly discussed in his book [8], p.462. 

At 3rd order for narrow-banded wave groups, non-linear evolution equations 
(NLEEs) can be used to explore the effects of wave amplitude in the dynamics. The 
consequences are profound - and different for group structure in a longitudinal down-
wave direction or structure laterally along the wave crests. The simplest NLEE is the 
non-linear Schrôdinger equation, Zakharov and Shabat [6], Yuen and Lake [9] and 
Peregrine [10]. For isolated uni-directional wave groups on deep water described by 
the positive (NLS+) version of the equation, there are soliton solutions where linear 
dispersion is balanced by 3rd order amplitude dispersion to produce permanent and 
robust localized groups. 

Both one-dimensional physical experiments, Baldock, Swan and Taylor [11], and 
numerical and analytic modelling [12] show that non-linearity co-operates with linear 
focussing, when an extreme event is produced by having long wave components over-
take short ones. The following simple argument, originally due to Lighthill, shows 
how this co-operation can occur. Consider a wave group with shorter waves ahead and 
longer ones behind. Due to linear dispersion the longer waves will slowly catch up 
with the shorter ones. In the centre of the group the waves are higher than those at the 
edges. Since high waves move faster than small waves of the same wavelength, the 
waves in the centre of the group will catch up with those ahead - amplitude disper-
sion. The waves ahead will be compressed, the local wavelength is reduced, and those 
behind stretched, leading to further linear dispersive changes to the focus event. A 
simple approximation for this physical process is captured by the NLS equation. 

Although the NLS equation is the lowest order NLEE for deep-water waves, it is 
not quantitatively accurate for isolated wave groups. Dysthe [13], Stiassnie [14] and 
Lo and Mei [15] include other terms to improve both the dispersive and non-linear 
aspects of the physics. 

Probably the most important piece of the physics not captured by the NLS equa-
tion is the dynamical consequence of the return flow beneath the wave group. Any 
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finite size deep-water wave transports fluid forwards in the direction of wave advance 
- Stokes drift. However, an isolated wave group rides on a quiescent ocean. Thus, 
there must be a continuous retum flow beneath the wave group balancing the Stokes 
drift. The length-scales associated with this flow are those of the whole group, not 
those of individual waves. In a perturbation expansion for a wave group, this retum 
flow occurs at 2nd order and is associated with the set-down beneath the group. To this 
order there is no effect on the wave dynamics. However, there is a physical effect at 
3rd order. The large waves in the centre of the group ride on a locally opposing current 
- the retum flow. Thus, the full dynamics to 3rd order are weaker than predicted by the 
NLS equation. The relative importance of the retum flow depends on the length of the 
group. If the group is compact (the spectmm broad-banded), this effect is important. 

In an engineering context, the direction and magnitude of this retum flow is impor-
tant, both for waves on deep and shallow water. Being backwards in direction, the 
horizontal fluid velocity subtracts from the usual in-line kinematics beneath the wave 
crests but adds to the backward flow beneath wave troughs. Thus, for steep waves the 
magnitude of the net horizontal kinematics at elevations below the level of the deepest 
trough can be larger beneath a deep trough than beneath tall crests. Of course, the 
highest kinematics occur in the in-line direction within the crests above mean-sea-
level. 

One result, clear from experiment [11], is the fast rate at which non-linear energy 
transfer between spectral components can occur in uni-directional wave groups. Start-
ing 10 periods before focus, a wave group could become 0 (25%) higher than pre-

dicted by linear theory at focus, even after allowing for 2nd order effects. Such a local-
ized wave group is formed which is more compact, taller and longer lasting than 
would be predicted by simple linear theory (even if 2nd order corrected). Indeed, if the 
spectral components in the converging group are chosen suitably, a group is formed 
which at least locally closely approximates a solitary wave group. Perhaps such a 
soliton might be a good candidate for a model of rogue waves. 

The discussion thus far has concentrated on isolated wave groups on quiescent wa-
ter. In reality, every large event in a random sea emerges and presumably disperses 
back into a random background. Does the presence of this background have any effect 
on the coalescence properties of a large wave event? Yuen and Lake [9] discuss the 
work of Albers and Saffman on this problem. For sufficiently narrow-banded prob-
lems so that the NLS equation is valid, they conclude that the modulational (Benja-
min-Feir) instability of a Stokes wave train is weakened and can be eliminated if the 
background is sufficiently strong. This can be understood as phase randomization of 
the 3rd order wave-wave interactions (which feed back to the principal dynamics only 
when the 3rd order difference terms remain in phase with the otherwise dominant lin-
ear components). Both recent experiments by Stansberg [16] in a long wave tank and 
full simulations of the Euler equations by Mori and Yasuda (this workshop) show that 
the statistical properties of a uni-directional random wave field do change with dis-
tance and or time. Hence, some cumulative non-linear effects survive randomization. 

In contrast to 1 -D waves with group structure along the mean wave direction but 
crests running transversely to infmity, variation in the height of a wave group along 
the wave crest direction leads to the NLS- or defocusing version of the equation. Non-
linearity is still important but the focussing of components to produce an extreme 
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event is weakened -the group is now lower but longer-crested. Consistent with this, 
there are now no soliton solutions propagating in isolation. Thus, group structure in 
the mean wave and transverse directions has difFerent consequences for the production 
of extreme events. 

4 Wave Focussing for Directionally Spread Components 

Real waves on the open ocean are directionally spread. The wave crests do not run at 
constant height from horizon to horizon. Instead, a strongly two-dimensional pattem is 
obvious. A simple argument indicates that non-linearity could well be less important 
for a spread sea than it is for the 1 -D case. A wave group can be built up from many 
individual Fourier components, each with its own phase speed and group velocity. 
The group velocity is defined as the speed of propagation of energy of that compo-
nent. Due to the range of wavelengths present, the length of the group will increase 
with time away from the instant of focus when all the components are in phase. Thus, 
the length of the group increases asymptotically with time as L~ O(t). As the group 
lengthens, the wave height drops to satisfy conservation of total energy. The total 
energy of the group is constant as E ~ 0(A L), where A is the amplitude of a linearly 
dispersing wave group. Thus, the amplitude decays asymptotically as A~ 0(t ) as the 
energy becomes more and more spread out along a line. This simple asymptotic be-
haviour is consistent with the linear part of the NLS equation. Now, the NLS equation 
contains both linear and cubic terms in the wave amplitude. The net effect of the cubic 
term in the NLS equation on the amplitude over long times is 0(A t) ~ 0(A), assum-
ing the effect is cumulative. Thus, there are long-term consequences for the evolution 
of the group in 1-D. 

The situation is quite different for directionally spread wave groups. A localized 
wave group now disperses out over a plane rather than along a line. The wave ampli-
tude decays asymptotically as t '. Over long times, the long-term contribution to the 
amplitude from the cubic NLS term is 0(A * t) ~ 0(A ), being negligible compared to 
linear behaviour which is 0(A). Thus, wave-wave interactions are more localized -
needing a large wave group close to the linear focus to produce significant effects. 

Both versions (NLS+ and NLS-) of the Schrôdinger equation in 1 -D are solvable 
by inverse-scattering techniques. The combined spread sea (x,y,t) version is not. The 

spread sea (x, y, t) version of the NLS equation also suffers from a catastrophic defect 

- energy is predicted to leak to higher and higher wavenumber. This leakage is non-
physical and implies that long-time simulations in 2-D using the NLS equation would 
be severely flawed. In an exciting development described at this workshop, Trulsen 
presented an improved version of the wave evolution equation with this energy leak-
age problem cured. This work may represent an elegant starting point to study the 
statistics of the freak wave problem with a realistic amount of computer resources. 
However, benchmarking against fully non-linear schemes will be required as the range 
of free wavelengths that any evolution equation can simulate is restricted and real 
ocean wave spectra are broad-banded. Note also that NLEEs are usually studied nu-
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merically with pseudo-spectral numerical schemes, with the computational effort scal-
ing as 0(N Log N), where N is the number of points on the surface. 

As discussed above, the standard NLS equation does not include the dynamic ef-
fects of the retum current beneath the wave group, which is driven by the Stokes drifit. 
For a directional spread wave group, the retum flow still exists, as the Stokes drift is 
still transporting fluid forwards to the lead edge of the group. However, this flow is 
now locally considerably weaker - it is able to spread out sideways horizontally as 
well as penetrating downwards undemeath the centre of the group. Thus, the backward 
advection velocity of the tall waves in the centre of the group is significantly reduced, 
and the effect on the wave dynamics at 3rd order is smaller. There is a NLEE with this 
effect included - the Davey-Stewartson equation. For deep water spread seas, the 
Davey-Stewartson equation is not solvable by inverse scattering, Ablowitz and Clark-
son [17]. 

Overall, we have two opposing effects - the directionally spread groups are com-
pact and tall for a shorter time than uni-directional groups, simply due to linear disper-
sion. This reduces the time over which 3rd order non-linear effects are able to act. 
However, the dynamical consequences of the retum flow (opposing non-linear focus-
sing) are also weaker. Further, it is known that new physics enters with the extra spa-
tial dimension - the resonant interactions of Phillips [18] and Hasselmann [19], which 
permanently transfer energy from 3 components to a 4th. 

All of this suggests that the behaviour of directional spread wave groups is likely 
to be both qualitatively as well as quantitatively different to uni-directional wave 
groups. Thus, it is probably inappropriate to base the analysis of field data on one-
dimensional models. However, this discussion has been based on known properties of 
solutions to the non-linear evolution equations. Whether, these approximate equations 
capture enough of the behaviour of solutions to the full Euler equations for water 
waves remains to be seen. 

5 Fully Non-Linear Simulations 

Many different computational approaches have been proposed for the solution of the 
full water wave equations. For uni-directional problems perhaps the best is the bound-
ary integral technique used by Dold [20] and others. 

For directionally spread waves, there are several pseudo-spectral methods in the 
literature. These are attractive as the main computational task is taking Fourier trans-
forms, for which efficient FFT algorithms exist. Thus, the computational effort scales 
as 0(N Log N), where N is the number of points on the surface. This is the same scal-
ing, albeit with a larger coefficient in front, as nonlinear evolution equations - which 
are considerably more restricted in the range of wavelengths that can be accurately 
represented. Although Fenton and Rienecker presented the first full non-linear Fourier 
scheme [21], a more recent one devised by Dommermuth and Yue [22] is widely used. 
In work presented at this workshop, Mori and Yasuda used it in their study of the 
statistics of random realizations of sea-states. They conclude that 3rd order interactions 
are important both for uni-directional and directionally spread waves. 
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A new, efficient and robust numerical scheme for the solution for the full Euler 
equations for water waves has recently been derived [23]. This is based on the 
Dirichlet-Neumann (G-) operator of Craig and Sulem [24], This operator permits the 
accurate conversion of the velocity potential on the free surface into the normal gradi-
ent of this velocity potential, even with a large range of wavenumber components 
represented. This step is essential in any time-integration scheme for water waves 
based on the exact dynamic and kinematic boundary conditions. In common with all 
pseudo-spectral schemes, this approach is restricted to non-overtuming waves: the 
surface elevation is assumed to be a single-valued function of the horizontal co-
ordinates. Thus, only the early stages of wave breaking can be studied. However, the 
main advantages of this new scheme are its efficiency and robustness. It can be run on 
a PC and is sufficiently robust that it can be used to predict the time histories and local 
kinematics of near breaking waves. The results are in excellent agreement with the 
high quality wave basin data recently reported by Johannessen and Swan [25] and 
discussed at this workshop by Swan in a separate contribution. 

6 Results from Steep Wave Simulations 

A fundamental difficulty with numerical modelling is the choice of suitable initial 
conditions to start the simulation. With random initial conditions, considerable com-
puter resources are required to represent a large enough patch of ocean surface evolv-
ing over a long enough time to generate useful statistics. The average shape of an 
extreme wave crest helps here. This defines an isolated NewWave group, which in 
some sense is typical of the occurrence of large events in a random sea-state. Away 
from the focus point, such a localized wave group would disperse. If the group is 
isolated, it arises from and presumably disperses back to a linear background state. 
Such a NewWave group well before the focus time provides a suitable initial condi-
tion for numerical simulation. The non-linear physics of steep waves can then be 
explored with a ‘clean’ calculation. At a later stage, the presence of the random back-
ground could be included. 

Although numerical work is still in progress, examples of fully non-linear focussed 
wave groups on deep water show that the introduction of a realistic degree of direc-
tional spreading has dramatic consequences for the focussing of a steep wave group 
[26]. Using a realistic wave spectrum and directional spreading to define a NewWave 
well before focus, Bateman at Imperial College in London has followed the fully non-
linear evolution in time. The wave-wave interactions, which are so important for uni-
directional wave groups, are considerably modified by directional spreading. In par-
ticular, the peak surface elevations arising in directional spread focussed wave groups 
are similar to those predicted by simple 2nd order theory if the spreading is as large as 
that commonly observed in severe winter storm waves. However, the underlying dy-
namics of spread group focussing are not close to linear - in the vicinity of the focus 
event, the group becomes more compact in the mean wave direction but wider in the 
along-crest direction and the position of the occurrence of the highest surface 
elevation is shifted. Thus, the shape of the wave group is modified - and for engineer-
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ing applications the local factor on in-line wave kinematics to allow for spreading 
would be closer to unity than expected from linear theory. Furthermore, this localiza-
tion of the total energy into a small area of sea for a relatively short time has a perma-
nent effect even as the group subsequently diverges to infmity - the directional spread-
ing of the group far downstream is different to that far upstream. 

One clear result from the numerical runs is that the same net directionality changes 
arise whether the input groups are designed to create a tall crest or inverted to give a 
deep trough. This symmetry property is obeyed even for waves only a few per cent 
lower than the breaking limit for that spectral shape. Thus, only the shape and ampli-
tude of the group are important, not the relative phasing of the ‘wiggles’ within the 
group. This observation implies that these large-scale group changes can only be only 
consistent with odd order non-linear interactions. Presumably these global changes are 
examples of the 3rd order resonant interactions of Phillips [18] and Hasselmann [19]. 
To date, this part of the physics has only been incorporated into wavefïeld prediction 
and hindcast via perturbation interaction equations [27]. The adequacy of these inter-
action equations is yet to be assessed for events typical of extremes in a random sea. 

7 Conclusion 

It is apparent that most waves in a random sea behave for most of the time in a manner 
consistent with simple 2nd order models based on linear dynamics. As a consequence, 
the average shape of a large wave crest, the scaled auto-correlation function New-
Wave, becomes a useful model. It captures considerable information about the overall 
statistical properties of the sea-state into a single isolated wave group. 

Beyond 2nd there is interesting non-linear dynamics to be explored. Both experi-
ments and numerical simulations show that the evolution of directionally spread wave 
fields is qualitatively different to that of uni-directional waves. The important role 
played by soliton-type non-linear wave groups in uni-directional wave evolution 
seems to be absent from the physics of directionally spread seas. Thus, efforts to ex-
plain the occurrence of rogue waves should reflect the directional spreading of waves 
obvious in nature. 

Although the possible implications of wave dynamical non-linearity on the likeli-
hood of the occurrence of rogue waves is still not resolved, the study of steep wave 
groups arising by frequency focussing appears to be a useful area of research. Even if 
the true explanation for rogue waves lies elsewhere, improved models for the statistics 
of wave crests and the associated wave kinematics would be an important contribution 
to oceanography and offshore engineering. 

It is a great pleasure to acknowledge the major contributions to this work made by 
William Bateman and others at Imperial College, Peter Tromans, Philip Jonathan and 
George Forristall. 



253 

References 

1. Lindgren G. Some Properties of a Normal Process near a Local Maximum. The Annals of 
Mathematical Statistics 41, no.6, (1970) 1870-1883 

2. Tromans P.S., Anaturk A.R. and Hagemeijer P. A New Model for the Kinematics of Large 
Ocean Waves. ISOPE-91 Conference, Edinburgh (1991) 

3. Jonathan P. and Taylor P.H. Irregular, Nonlinear Waves in a Spread Sea. ASME Transac-
tions J. of Offshore Mechanics and Arctic Engineering 119, no.l (1996), 37-41 

4. Forristall, G.Z. 2000 Wave Crest Distributions: Observations and Second Order Theory, J. 
Phys. Oceanogr., 30 (2000) 1931-1943 

5. Tromans P.S. and Taylor P.H. 1998 The Shapes, Histories and Statistics of Non-Linear 
Wave Crests in Random Seas. Proc. 17th Int. Conf. On Offshore Mechanics and Arctic En-
gineering. OMAE98-1206 

6. Zakharov V.E. and Shabat A.B. Exact Theory of Two-Dimensional Self-Focussing and 
One-Dimensional Self-Modulation in Nonlinear Media. Sov. Phys. JETP 34 (1972), 62-9 

7. Lighthill M.J. Contributions to the Theory of Waves in Non-Linear Dispersive Systems. Jn. 
Inst. Maths Applic. 1, (1965) 269-306 

8. Lighthill M.J. Waves in Fluids. 1st edn. Cambridge University Press (1978) 
9. Yuen H.C. and Lake B.M. Nonlinear Dynamics of Deep-Water Gravity Waves. In Chia-

Shun Yih (ed.): Advances in Applied Mechanics vol.22, 153-180. Academic Press (1992) 
10. Peregrine D.H. Water Waves, Nonlinear Schrodinger Equations and Their Solutions. J. 

Austral. Math. Soc. B25, (1983) 16-43 
11. Baldock T.E., Swan C. and Taylor P.H. A Laboratory Study of Non-Linear Surface Waves 

on Water. Phil.Trans. Roy. Soc. Lond. A 354, (1996) 649-676 
12. Taylor P.H. and Haagsma Ij. Focussing of Steep Wave Groups on Deep Water. Proc. Int. 

Symp. Waves - Physical and Numerical Modelling, Vancouver, Canada, Vol.2 (1994), 
862-870 

13. Dysthe K.B. Note on a Modification to the Nonlinear Schrodinger Equation for Application 
to Deep Water Waves. Proc. Roy. Soc. A 269 (1979), 105-114. 

14. Stiassnie M. Note on the Modified Nonlinear Schrodinger Equation for Deep Water 
Waves. Wave Motion 6 (1984), 431-433 

15. Lo E and Mei C.C. A Numerical Study of Water-Wave Modulation Based on a Higher 
Order Nonlinear Schrodinger Equation. J. Fluid Mech. 150 (1985), 395-416 

16. Stansberg C-T Nonlinear Extreme Wave Evolution in Random Wave Groups. Paper Pre-
sented at ISOPE2000, May 28-June 2, 2000. Held in Seattle, Washington, USA 

17. Ablowitz M.J. and Clarkson P.A. 1991 Solitons, Nonlinear Evolution Equations and In-
verse Scattering. 1st edn. Cambridge University Press, publ. as London Mathematical Lec-
ture Note Series, 149 

18. Phillips O.M. The Dynamics of Unsteady Gravity Waves of Finite Amplitude, part 1. J. 
Fluid Mech. 4 (1960), 426-434 

19. Hasselmann K. On the Non-Linear Energy Transfer in a Gravity-Wave Spectrum, part 1: 
general theory. J. Fluid Mech. 12 (1967), 481 

20. Dold J.W. An Efficient Surface-Integral Algorithm Applied to Unsteady Gravity Waves. J. 
Comput. Phys. 103 (1992), 90-115 

21. Fenton J.D. and Rienecker M.M A Fourier Method for Solving Nonlinear Water Wave 
Problems: Application to Solitary Wave Interactions. J. Fluid Mech. 118 (1982), 411-443 

22. Dommermuth D.G. and Yue D.K.P. A Higher-Order Spectral Scheme for the Study of 
Nonlinear Gravity Waves. J. Fluid Mech. 184 ( 1987), 267-288 

23. Bateman W.J.C., Swan C. and Taylor P.H. On the Efficient Numerical Simulation of Direc-
tional-Spread Water Waves. Submitted to Joumal of Comput. Phys. (2001 ) 



254 

24. Craig W. and Sulem C. Numerical Simulation of Gravity Waves. J. Comput. Phys. 108 
(1993), 73-83 

25. Johannessen T.B. and Swan C. A Laboratory Study of the Focusing of Transient and Direc-
tionally Spread Surface Water Waves. Proc. Roy. Soc. Lond. A 457 (2001), 1-36 

26. Bateman W.J.C., Swan C. and Taylor P.H. Steep Multi-Directional Waves on Constant 
Depth. Proc. 18th Int. Conf. on Ofîshore Mechanics and Arctic Engineering. OMAE99-
6463 (1999) 

27. WAMDI Group (13 authors, including V. J. Cardone and J. A Greenwood) The WAM 
Model - A 3rd Generation Ocean Wave Prediction Model. J. Phys. Oceanog., 18 (1988), 
1775-1810 



Modelling a “Rogue Wave” - Speculations or a 
Realistic Possibility? 
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Abstract. The findings of Skourup et.al., [13], who analyzed 89 storms 
over a 12 year period at the Gorm field in the central North Sea is inter-
preted to indicate that the freak- or rogue waves generally belongs to very 
short groups. We examine three basic physical mechanisms that may be 
responsible for the formation of such groups. In each case, however, there 
seems to be some special preparation or coherens that is needed for the 
effect to work. The data indicates that nonlinear effects cire important. 
One possibility is that the weak coherence introduced by four-wave inter-
actions may influence the probability of the rare events of constructive 
interference. This is presently being investigated by simulating an ocean 
area of approximately 100x100 wavelengths using a nonlinear numerical 
model (Trulsen et.al., [15]). 

1 Introduction. 

There is growing evidence that wave records may under certain conditions have 
occurrences of extreme waves in excess of those predicted by the Rayleigh distri-
bution (e.g.[13]). The occurrences of dangerous wave conditions in coastal waters 
may possibly be explained by focussing (or caustics) due to refraction by bottom 
topography or current gradients, and even reflection from land. Well documented 
in that respect are the giant waves sometimes found in the Aguhlas current on 
the eastern coast of South Africa, [7]. 

It seems, however, that this kind of freak- or rogue waves exist even in the 
open ocean far away from strong current gradients, e.g. [12], [13]. In the following 
I shall concentrate on this latter case. 

Skourup et.al., [13], analyzed more than 12 years of wave records from the 
central north sea (the Gorm field). They used the following criteria to select 
candidates for their rogue wave collection: Single waves with cam heights, a

c
 > 

1.1Hs,1 or wave heigts larger than 2H
s

, where H
s
 is the significant wave height 

of the surrounding 20 min. wave record. They find the expected extreme value of 
the ratio a

c
/H

s
 to be approximately 1.8, which is outside the range of Gaussian 

waves. 
1 The probability P(ac > 1.1 H

s
) for such an event to happen according to the Rayleigh 

distribution is roughly  6 • 10- 5. 
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Warren et.al., [17], analyzed some other North Sea data. Comparisons were 
made with the modified Rayleigh distribution of Tung and Huang, [16], which 
take into account second order nonlinear effects. For the case of deep water 
waves (see their figure 11) the data is not easily reconciled with the theoretical 
distribution. 

Ratios of a
c
/H

s
 > 2 and H

ma
,
x
/H

s
 > 2.5 has been reported, [6], [12]. 

Although years of wave data from numerous buoys have been analyzed, the 
number of freak wave events recorded are still modest. The chances that such a 
wave hits a buoy is even lower than was previously expected, as pointed out in 
[8], 

Interest in these waves is not only because of our rather limited knowledge 
of their statistical probability of occurrence. We need to know more about their 
dynamics, what they look like, how long they last and so on. 

2 The Freak Character of Extreme Waves. 

The rogue wave is often described as a freak, "the one out of nowhere". The 
paper in [13] sheds some light on the form of a rogue wave event. They found 
that the expected ratio between the crest height and the corresponding wave 
height of their rogue waves was approximately 0.7. This large ratio can clearly 
not be explained by the nonlinear crest asymmetry of Stokes waves, as pointed 
out by the authors. It is, however, rather easily explained as the effect of a 

Fig. 1. Shows the ratio ac/H to increase with decreasing group length. 
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very short group as demonstrated in Figure 1 by comparing groups of different 
lengths. 

Boccotti, [2] (see also [11]) have investigated the expected configuration in 
space and time surrounding extremely high crests in a random Gaussian wave 
field. The most likely configuration was found to have approximately the form 
of the auto-correlation function for the wave field. A real test of this result need 
more data than is presently available. The findings, [11], seem to indicate that 
the variability of the extreme event configuration is rather large. 

3 The Physics of Rogue Wave Events. 

What about the physics behind rogue waves? Clearly they represent a very high 
concentration of wave energy compared to the average2. A number of mechanisms 
are known that produce large waves from moderately small ones by focusing the 
energy. Basically there are three types of effects: 

Spatial Focusing. This is due to refraction by bottom topography or current 
gradients and is a well known reason for dangerous waves in coastal waters. An 
example of the effect of current refraction is the giant waves reported in the 
Agulhas current off the African south-east coast (see e.g. [7]). Far offshore on 
the open ocean only very small current velocities (less than 20cm/s say) it would 
seem that these effects are negligible. White and Fornberg, [18], have pointed 
out, however, that even small random current fiuctuations with rms values of the 
order 10cm/s can give focussing provided their scale is sufficiently large (of the 
order of 10km). Thus they maintain that even the very weak refraction found 
in the open ocean may produce “hotspots” of wave energy. In their numerical 
ray-tracing calculations the incoming wave field is unidirectional, and they get 
caustics after some distance into the fluctuating wave fîeld. Further “downstream” 
the rays appear rather random. 

From experience with similar refraction calculations, [14], we suggest that 
even a small directional distribution of the incoming wave field will ’’smear out” 
the caustics and thus reduce the effect of weak refraction to minor fluctuations 
in energy density. This effect is illustrated by the refraction calculations shown 
in Figure 2. In Figure2 (a) three neighboring rays (note the different scales on 
the two axis) enter in the same direction, and a caustic forms after some distance 
into the weak current area. In Figure 2(b) each of the three original rays have got 
two companions starting in slightly different directions ~ 1°,2°). The location 
of the caustic is seen to depend strongly on the angular direction of the incoming 
waves. 

It is demonstrated elsewhere, [4], that the curvature ϰ of the refracted rays 
is given by the simple formula 

2 For a wave with a
c
 = 1.5 H

s
 the concentration is roughly a factor 18, if the energy 

density in the rogue wave is estimated by pga2J2. 
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Fig. 2. (a) Caustic formed by three initially parallel rays. (b) Shows how the caustic 
move sideways by slight changes (1°, 2°) of the initial ray direction. 

(1) 

where C = — is the vertical component of vorticity of the (horizon-
tal) current velocity u =(u,v) and vg is the group velocity, provided that 
H = |u| /vg <C 1. For a zero mean, random vorticity field which is statistically 
homogeneous and isotropic it is shown in the appendix that rays moving through 
such an area of the ocean experience an angular diffusion i.e. (A62) = 4Ds where 
s is the arclength and A6 the angular deviation from some reference point on a 
ray, and the difîusion coefficient is given by 

(2) 

The integral length scafe Lint is given in terms of the normalized vorticity 
auto-correlation function R(|x - y|) = (C(x)C(y)) / (C2) as Lint = /0°° R(x)dx. 
As an exampfe we use parameters roughly corresponding to those used in Fig-
ure 6a in Ref. [18] with (C2)1^ = 2 • 1CT

5
S

- 1

 , vg = 8m/s and Lint = 3km. 
We then get D ~ 0.94 • 10_ 5fcm_ 1. To produce a rms angular spread of ±5° 
to initially mono-directional rays will then require a propagation distance of 
~ 270fcm, which seems in reasonable agreement with their result (Figure 6a). 
For swell this tendency towards angular spreading will counteract the tendency 
towards “directional filtering” due to distance from the storm area that created 
it. The initial mono directional wave field of White and Fornberg therefore ap-
pears rather unrealistic. 

Temporal-Spatial Focusing. This is the result of dispersion and a chirped 
spatial distribution of frequencies. The effect is used in a well-known technique 
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for producing short groups of large waves at a given position in a wave tank. It 
is done by producing a long and chirped wave group (with steadily decreasing 
frequency) by the wave maker. With proper design of the frequency chirp, disper-
sion brings this group to contract to a few wavelengths at a given position. This 
type of focussing has been suggested in [10] (see also their article in this book) 
as a possible explanation for freak waves. They show (using the KdV equation 
for shallow water waves) that if a given chirped wavetrain produces strong focus-
ing in the absence of other waves, it will still do so (although somewhat weaker) 
when a random wave field is added. If the amplitude of the deterministic chirped 
wavetrain is below the rms value of the random waves it will remain “invisible” 
until it focuses. 

For the temporal-spatial focussing to work, however, a spatial ordering of 
frequencies in a chirped wavetrain is needed. So far the question of how such a 
situation may develop spontaneously has not been answered. 

Nonlinear Focusing. The so-called Benjamin Feir (BF) instability of regu-
lar wavetrains is well-known. Henderson et.al., [5], have investigated what they 
call steep wave events (SWE) by simulating the evolution of a periodically per-
turbed regular wavetrain. Due to the BF instability the wavetrain breaks up 
into periodic groups. Within each group a further focusing takes place produc-
ing a very large wave having a steepness roughly 3 times the initial steepness of 
the wavetrain. For narrow band waves centered around the wave number k, the 
lowest order evolution equation accounting for both nonlinearity and dispersion 
is the Non-Linear Schroedinger equation (NLS). The surface elevation ( can be 
represented as 

c = A(x,t)eiikx~uWt) + A
2
(x,t)é2(kx~“{k)t) + ..c.c 

and a similar expression for the velocity potential. Here the complex amplitude 
functions A and A2 (of the first and second harmonic) are slowly varying in space 
and time compared to the wavelength and wave period. The ratio A2/A = O(e) 
where e is a typical wave steepness. To lowest signifîcant order the amplitude 
function A of the fîrst harmonic satisfies the NLS equation 

By the transformation to non-dimensional variables 

this equation attains the canonical form 
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Fig. 3. Envelope soliton. 

iAt + A
xx

 + 2A |A|2 — 0 (3) 
There are two types of solutions of (3) associated with a group of large waves. 

The first is the.envelope soliton solution > 

whose fîrst harmonic envelope \A\ does not change its form (see Figure 3). The 
second are the so-called breather solutions, a one parameter family of solutions 
that can be written 

where 

p = 2 sin and fi = 2 sin(2φ) 

For real p the solution is space-periodic. It evolves from a nearly uniform 
wavetrain to space-periodic soliton-like groups, and back to a uniform wavetrain. 

For imaginary φ the solution (4) is time-periodic, “breathing” itself up from a 
nearly uniform wavetrain to a soliton-like group and back to a uniform wavetrain 
during one period (see [3] and the references therein). 

As a limiting case for these two solutions (i.e. when φ 0) (4) tends to the 
Peregrine solution, [91, 

which is illustrated in Figure 4(a) and 4(b). In [5], ([3]) it is suggested that the 
SWE they observe in their simulations can be approximately modelled by this 
breather solution. A Peregrine type breather at its maximum is shown in Figure 
5. Here the second order term A2 is taken into account and the initial uniform 



261 

Fig. 4. (a) The Peregrine breather solution (equation (5)) at two different times. (b) 
Space-time illustration of the Peregrine breather envelope. 

wavetrain had a steepness of 0.12 . While the solution (5) is in the frame of 
reference moving with the group velocity, Figure 5 is a breather “time-series” 
as it would have been observed by buoys at three slightly different horizontal 
locations (the envelope of the first harmonic is also shown). 

It was shown in [1] that if the bandwidth exceeds some small critical value, 
there is no BF instability. The natural wind wave spectra seems to always exceed 
this critical value. Thus the nonlinear focussing as described by Henderson et. 
al., [5], is not likely to work. This does not mean, however, that the form and 
dynamics of the SWE they observe may not have a close relation to the rogue 
wave phenomena. 

Thus it seems that all the ahove mechanisms for producing large waves need 
some special preparation or coherence to work. 

Does this leave us with the old idea that the rogue waves are simple (and 
unlikely) constructive interference phenomena that can be explained by linear-
or slightly (second order) nonlinear theory? This seems to be a rather popular 
assumption, and serves as a basis for the statistical estimates. 

Another possibility, however, is that weak (third order) nonlinear wave inter-
actions may play a role. Although these interactions are slow they are known to 
produce large waves under special conditions. The correlation they introduces 
between the interacting waves may change the probability of constructive inter-
ference. 

I think it is fair to say that nobody knows the answer to these questions yet. 
To test this latter idea, a project funded by The Norwegian Research Council 
is presently starting up. The idea is to simulate a piece of the ocean surface 
of dimensions approximately 100x100 wavelengths. Starting with a wave field 
based on a suitably truncated empirical spectrum (like JONSWAP) we will use 
the numerical model described in [15] to follow the evolution of the wave field. 
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Fig. 5. Time series of a passing Peregrine breather from three slightly different hori-
zontal locations. Here the full second order expression for the elevation ζ is used. Also 
shown is the first harmonic envelope. The steepness of the initial wavetrain is 0.12. 

The probability of seeing a freak wave event in a simulation is estimated to be 
more than 104 times higher than for a corresponding point measurement (buoy) 
over the same period of time. 
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Appendix 

We shall now consider angulax diffusion of rays moving through a random eddy 
field. For simplicity we shall assume this vorticity field ζ to be statistically ho-
mogeneous and isotropic with zero mean. 

We denote by Δθ the angular change of direction over an arclength s of the 
ray path from some reference starting point. From the formula (1) we have to 
order e 

It follows that 

and by the assumption of homogeneity and isotropy we have 

(6) 

where the normalized vorticity auto-correlation function R is given by 

Let L be a characteristic correlation distance for (, i.e. R(|x — y|) is small 
when |x — y| > L. If we assume that xL « 1 , then the ray x(s) can be 
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approximated by a straight line in the integral (6). Doing this we obtain for 
s» L 

where D is the diffusion coefficient of angular diffusion given by 

and Lint is the integral lengthscale 
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Abstract. The measured time history of the “New Year” freak wave that 
hit the “Draupner” platform is simulated forward and backward in space 
to find the time histories at neighboring locations. The impression that 
could have been seen by an observer is reconstructed. The freak wave 
likely did not suddenly appear from nowhere. Instead, the simulation 
suggests that a short and tall wave group approached the platform for 
at kast a minute or so. 

1 Introduction 

In many cases it is more useful to perform space-domain simulation than time-
domain simulation. Conventional methods for quantitative field observations 
usually yield time series of the surface displacement at one or a few selected 
locations. Spatial evolution is implied between the selected locations, or be-
tween the instrumented locations and other locations of interest. A time-domain 
simulation tool would likely not be very useful for application to such data, or 
at best it would be quite difficult to initialize since knowledge of the entire sea 
surface at initial time is not known. A better approach is to interchange the role 
of space and time in the evolution equations in order to obtain a space-domain 
simulator; initialization with the measured time history at a point then becomes 
trivial. 

We have cast the modified nonlinear Schrödinger equation as a space domain 
simulator, and have “initialized” it with the measured time series of the freak 
wave that hit the Statoil operated “Draupner” platform, January 1, 1995 at 
15:20. Figure 1 shows a 20 minute wave recording measured by a down-looking 
laser device (see [2]). The measured response of the platform was found to be 
unidirectional ([3]), therefore it is reasonable to assume that the waves were 
long-crested. The sea floor is flat at 70 m depth. 

The desired model should obey the empirical scaling laws that are observed 
in the field. We have earlier reported [10] that characteristic values for steep-
ness and bandwidth for this wave train is k

c
a

c
 ~ 0.12, Δω/ω

c
 ~ 0.24 and 

Δk/k
c
 ~ 0.4, where k

c
, a

c
, ω

c
, Δω and Ak are the characteristic wavenumber, 

amplitude, frequency, modulation frequency and modulation wavenumber, re-
spectively. Therefore, we have previously argued that the modulation should be 
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Fig. 1. Freak wave measured at the Statoil Draupner platform, January 1, 1995 at 
15:20. 

scaled as the square root of the steepness; we thus derived a modified nonlinear 
Schrödinger equation for this purpose [9]. Recently, we have further taken the 
consequence of the importance of linear dispersion by enhancing the modified 
nonlinear Schrôdinger equation with exact linear dispersion, [11]. Our approach 
is based on the assumption that the spectrum to leading order of approxima-
tion is narrow-banded. The remaining part of the spectrum is reconstructed only 
to the extent that it is nonlinearly forced by, and thus coherent with, the linear 
waves near the spectral peak. Special care must be taken for proper initialization 
to distinguish between linear free waves and nonlinearly forced waves. To this 
end we have developed an iterative technique by which the extracted spectrum 
of linear free waves is refined until exact reconstruction of the most energetic 
part of the measured complex spectrum has been achieved. 

Early attempts to simulate the ocean surface in two horizontal dimensions 
with the nonlinear Schrôdinger equation were only partially successful due to 
energy leakage that broadened an initially narrow spectrum such that the model 
eventually violated its own bandwidth constraint, [6]. The higher-order modified 
nonlinear Schrôdinger equation reduced the leakage such that 2D simulations 
became feasible. As of the new equation with exact linear dispersion, the leakage 
is completely eliminated, [11], Numerical integration can be done as efficiently as 
for the conventional nonlinear Schrôdinger equation through operator splitting 
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methods. In this paper we limit consideration to simulation in one horizontal 
dimension. 

The natural spatial scale of nonlinear modulation is r) = e2k
c
x, where e = 

k
c
a

c
 is the wave steepness, k

c
 and a

c
 are characteristic scales for wavenumber 

and amplitude, and x is the fetch. Results presented elsewhere [12] comparing 
simulations with laboratory experiments suggest that the modified nonlinear 
Schrödinger equation predicts the evolution of individual wave crests quite well 
at least up to r/ = 3, while it becomes poor for η > 5. In the present paper we 
present simulations over 500 m, which corresponds t.o η = 0.26. 

In [5] Lo & Meifirst presented comparisons between experiments and the 
space evolution predicted by the modified nonlinear Schrôdinger equation, and 
obtained good results. Similar work with the cubic nonlinear Schrôdinger equa-
tion was done by Shemer et al. [8] for deep water and with the Korteweg de-Vries 
equation for shallow water by Kit et al. [4]. The Zakharov equation, which in 
its original form is a time-domain equation, has been discretized for application 
to measurements, [7]); it can likely be cast as a space domain simulator and be 
used for the same purpose as in the present paper. 

2 Mathematical Model for Space-Domain Simulation 

Starting from the inviscid equations for potential ffow, normalized with the char-
acteristic wavenumber k

c
 and frequency wc, we make an assumption that the ve-

locity potential (p and surface displacement ζ of the wave field can be expanded 
in harmonic expansions 

Here x and y are horizontal coordinates, 2 is the vertical coordinate, t is time, 
Φ and ζ are the mean fields (zeroth harmonic), A and B are the linear first 

harmonics, and A
n
 and B

n
 are the higher order nonlinear harmonics. We limit 

consideration to a constant depth h and assume that the linear dispersion rela-
tion can be approximated by the deep water assumption, while the induced flow 
will be affected by the depth. 

Trulsen et al. ([11]) enhanced the modified nonlinear Schrôdinger equation 
with exact linear dispersion by introducing a pseudo-differential operator for the 
linear part. In two horizontal dimensions it reads 
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∂φ/∂z =0 at z = —h. (6) 

The pseudo-differential operator L is 

L(d
x
,d

y
) = i {[(1 - i∂

x
)2 - ∂y]]1/4 - 1} . (7) 

These equations can be inverted with respect to space and time to yield a 
space-domain formulation 

(8) 

(9) 

(10) 

(11) 

Here we have used the fact that ∂/∂x = -2∂/∂t to the leading order. The 
pseudo-differential operator becomes 

(∂t,∂
v

) = -i {[(1 + i∂
t
)4 + ∂y\1/2 -1}. (12) 

By expanding the linear pseudo-differential operators L or £ in power series 
expansions and truncating at appropriate orders, we recover the previous modi-
fied nonlinear Schrödinger equation of Dysthe ([1]) and the broader bandwidth 
equation of Trulsen & Dysthe ([9]). Furthermore by truncating the nonlinear 
part to retain only the leading cubic nonlinear term, we recover the standard 
cubic nonlinear Schrôdinger equation. 

The reconstruction of the surface displacement (2) is achieved by the formulas 

(13) 

(14) 

and 

(15) 

3 Initialization 

The complex spectrum of the first harmonic B is first tentatively assigned by 
bandpassing the most energetic part of the desired complex spectrum of (. Then 
the first harmonic B is adjusted in an iterative manner until the desired spectrum 
of ζ is exactly reconstructed within the bandpass part of the frequency domain. 
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Fig. 2. Power spectrum: —, measured; • ■ -, reconstructed. The vertical dashed lines 
indicate the bandpass filter used to define the domain of the first harmonic. 

Figure 2 shows the measured and the reconstructed power spectrum of the 
surface displacement ζ. The full complex spectrum is reconstructed exactly 
within the bandpass region bounded by the vertical dashed lines (the figure 
only shows the reconstruction of the power spectrum). The reconstruction of the 
high frequency tail includes contributions that are coherent with the energetic 
part near the peak. The mismatch in reconstruction in the tail is to a large ex-
tent due to uncorrelated noise and incoherent waves, which are assumed to be 
unimportant for the evolution of the main features of the wave train. 

The reconstruction of the freak wave is compared with the desired surface 
displacement in figure 3. The consequence of the mismatch in the spectrum seen 
in the previous figure is that the most rapid wave disturbances are smoothed 
out. 

4 Forward and Backward Propagation in Space 

The predicted time histories at 50 meter intervals upstream and downstream 
are shown in figures 4 and 5, respectively. At 500 m upstream of “Draupner” 
there appears to be a large wave group passing by about one minute before the 
freak wave hits the platform. This wave group appears to split up into a short 
and large leading group that runs away from a longer and smaller trailing group 
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Fig. 3. Measured (—) and reconstructed (- - -) surface displacement. 

that becomes rather difFuse as it approaches the platform. The freak wave that 
hits the platform is in the middle of the short leading group. After the impact 
with the platform, this wave group broadens, becomes less steep, and slows down 
slightly. A large trough (a “hole” in the ocean) can be observed slightly upstream 
of the platform. 

Since the platform is of jacket type, it is not expected to have modifîed the 
waves. 

5 Conclusion 

We have presented a model for weakly nonlinear spatial evolution of waves, 
and have shown how a measured time history of a freak wave can be used for 
initialization and be propagated forward and backward in space. 

As far as the “New Year” freak wave that hit “Draupner” is concerned, the 
most important conclusion is probably that it did not occur suddenly and un-
expectedly. There is rather reason to believe that large waves approached the 
platform for at least a minute or so, and would likely have been an impressive 
view for a daring observer. 
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Fig. 4. Time histories at 50 meters intervals upstream (bottom to top). 
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Fig. 5. Time histories at 50 meters intervals downstream (top to bottom). 
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Abstract. A numerical investigation of nonlinear interaction mecha-
nisms producing large wave energy concentrations, which lead to episodic 
transient waves, is performed using both a Higher Order Spectral (HOS) 
model and a three-dimensional (3D) fully nonlinear Numerical Wave 
Tank (NWT). Self-focusing of wave energy is achieved through mod-
ulating a periodic wave train along two orthogonal directions. Nonlinear 
unsteady 3D wave groups are obtained, which show a curved wavefront 
structure, with focusing of wave energy in both the directional and the 
frequency domains. Breaking would ultimately occur in such groups. 
This, however, cannot be described by the HOS model but, based on 
the HOS solution, both breaking and non-breaking freak waves may be 
simulated in the NWT, and their shape and kinematics can be studied. 

1 Introduction 

A number of attempts have been reported in the literature to produce freak waves 
by nonlinear self-modulation of a two-dimensional slowly modulating wave train. 
Both solutions based on the (weakly) nonlinear Schrôdinger equation (NLS), or 
its modifications [4], and numerical models solving fully nonlinear free surface 
flows, have been proposed [5,17]. Freak waves have been observed to be essen-
tially three-dimensional (3D) phenomena. McLean [8] theoretically predicted a 
type of wave instability (called type II), which is predominantly 3D, in con-
trast with the 2D instability (type I; i.e., the side-band instability) identified 
by Benjamin and Feir (BF) [7], which leads to the formation of wave groups 
in quasi-2D swells, through a self-focusing mechanism. Su et al. [10] experimen-
tally confirmed this prediction by showing how a steep 2D wave train can evolve 
into 3D spilling breakers. Hence, 3D modulational instabilities cannot be ne-
glected when describing the steepest ocean waves. Two-dimensional nonlinear 
wave instabilities have been simulated in a few numerical studies, by slow self-
modulations of a 2D periodic wave train (Dysthe and Trulsen [4]; Henderson et 
al., [5]). In such studies, an initially periodic wave train of moderate steepness 
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is perturbed by a small periodic perturbation. After a large time of propagation 
(typically over 100 wave periods), it is observed that a large steep wave, i.e., a 
freak wave, may emerge from the initial wave train, and break or recede and 
periodically reappear. In these studies, 3D effects were not usually addressed 
because, either it was not possible to generalize the method of solution to 3D, or 
the computational effort in a 3D model was too high. Nevertheless directional ef-
fects are of prime importance. Breaking may occur, when waves reach a sufficient 
size, at some stage of the modulation. Nepf et al. [14], for instance, experimen-
tally showed that curved wave fronts lead to 3D breaking in ocean waves, and 
that the shape and kinematics of 3D breaking waves greatly differ from those 
of two-dimensional (2D) breakers (see also She et al. [15]; and Johannessen and 
Swan [19]). The degree of angular spreading is found to have large effects on 
wave breaking characteristics and kinematics, and non directional wave theories 
are demonstrated to be insufRcient to describe the kinematics of 3D waves. 

Since many extreme (freak) waves are expected (and have been observed) 
to be 3D, modulational instabihties occurring in three dimensions cannot be 
neglected when describing the steepest waves. 

2 Three-dimensional modulations 

The computationally efficient Higher Order Spectral (HOS) method [17,18] is 
used in the present computations, assuming doubly periodic boundary condi-
tions in the computational domain. Extreme waves are produced through the 
evolution of 3D wavetrains subjected to both longitudinal and lateral modula-
tions. Modulations of this type are characterized by the initial steepness of the 
wave train (ak), and by two characteristic wavelengths, for the longitudinal and 
transverse modulations, respectively. 

A transverse modulation is superimposed to the longitudinal one. For the 
free surface elevation, this leads to expressions of the form, 

where a is the wave ampfitude, k the wavenumber, ω the circular frequency of 
the initial 2D wave train (which, here, for sake of illustration, is simply sinu-
soidal), and λ

x
 and λy are the longitudinal and transverse wavelengths of the 

perturbations, respectively (in terms of the longitudinal wavelength A = 2π/k 
of the initial 2D wavetrain; dashes indicate nondimensional variables). 

A systematic study of such kinds of modulations, would require, for each wave 
steepness, the evaluation of the influence of both the longitudinal and the trans-
verse wavelengths, on the evolution of initially slowly modulated wavetrains. 

The evolution of a modulated wavetrain having ak = 0.14, λ
x
 = 5 and 

λy = 10 (hence with a lateral modulational wavelength that is two times the 
longitudinal one) is described in Figs. 1-4. The initial regime shown in Fig. 
1 is composed of nearly uniform Stokes waves. At these early stages of the 
evolution, waves are essentially 2D while, at later stages, the growth of transverse 
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Fig. 1. Initial condition for a 3D wave train modulated in both the longitudinal and 
the transverse direction 

perturbations causes a 3D structure to develop. At final stages of evolution, both 
a longitudinal and a transverse growth of modulations are observed. Fig. 2, for 
instance, shows the evolution of the wavetrain at time t/T = 90. This evolution 
results from the combination of two effects : 

1. In the longitudinal direction a BF-like mechanism causes the wave group to 
shorten ahead and to lengthen behind, with a wave energy concentration in 
the middle of the wave envelope. 

2. In the lateral direction the growth of transverse perturbations affects the 
highest wave and its first predecessor. Lateral features in the form of standing 
waves across the (periodic) wavetank appear. 

The combination of these two effects gives rise to a fully three-dimensional 
structure of the wave group. Fig. 3 shows the evolution after just one more wave 
period, hence at time t/T = 91; we see that a large crest elevation is produced. 
This clarifies the evolution as a truly directional self-focusing process. The 3D 
structure of this doubly modulated wave is more evident in planview (Fig. 4), 
where an identical wavefield has been placed at one of the lateral sides (this is 
possible because of the lateral periodicity assumed for the computational do-
main). The appearance of curved wave fronts is an important feature of such 3D 
waves. These wave groups, as shown in Figs. 2-4, are also characterized by skewed 
wave patterns that qualitatively agree with Su’s experiments. In particular : 

1. The system of oblique wave groups, which is seen to radiate symmetrically 
from the primary wave direction, seems similar to that observed in the exper-
iments. The angle, locally measured in these oblique wave fronts, approaches 
the 30° value which was found experimentally. 

2. A shifting of the lateral wave forms between two consecutive rows. 
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x/L 

Fig. 2. Evolution of the wave train in Fig. 1 after t/T — 90 

Our interpretation of these observations is that the BF-like mechanism pro-
duces a short wave group of increasing height and steepness, and it is within 
such a group that the lateral instability manifests itself, if the modulational 
wavelength in the lateral direction is long enough. For instance, the evolution of 
a modulated wavetrain having the same initial steepness ak = 0.14 and λx = 5 

= 4 (so that the lateral modulational wavelength is only 0.8 times the lon-
gitudinal one) is shown in Fig. 5. In this case, only the longitudinal modulation 
grows according to a classical BF modulational mechanism. More details can be 
found in [3]. 

The growth of perturbations leads, for the steepest initial waves, to a rapid 
development of high wavenumber instabilities. A few time steps later, the model 
fails to converge. Using the HOS method, it is not possible to conclude whether 
this would be a case leading to wave breaking, but the range of wave steepness 
over which such numerical instabilities occur is consistent with typical values of 
steepness, relative to the occurrence of spilling breakers observed in laboratory 
experiments (ak > 0.25). 

To be able to follow the evolution of this system further in time, after numer-
ical breaking occurs, an ideal fîlter, removing all high frequency components and 
producinga loss of energy, has been applied. In this case, the loss of one or two 
wave crests may occur after the wavetrain has reached the maximum stage of 
modulations. This effect is the equivalent of the downshifting observed in phys-
ical experiments. A similar tendency to lateral energy transfer is also reported 
by Trulsen and Dysthe [11], who suggested that the full explanation of this 
downshift probably involves the combined effects of 3D nonlinear modulations, 
dissipation, and wave breaking. 
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Fig. 3. Evolution of the wave train in Fig. 1 after t/T = 91 

3 Three-dimensional breaking waves 

The modulation growth observed in 3D modulations should be limited by wave 
breaking, which cannot be modeled using a method describing the free surface 
as single-valued, such as the HOS method. Breaking will not happen uniformly 
along a wave crest, and a 3D self-focused breaking wave is expected to appear at 
some stage of the modulation. A 3D fully nonlinear potential flow model, with 
an Eulerian-Lagrangian flow representation, recently developed by Grilli et al. 
[16], has been extended to represent 3D directional and wave focusing, including 
the additional possibility of frequency focusing such as studied in earlier 2D non-
linear models. To do so a “snake” wavemaker similar to those used in laboratory 
facilities is modeled at one extremity of a 3D Numerical Wave Tank (NWT), 
while a snake absorbing piston is modeled at the other extremity of the NWT to 
minimize the effect of wave reflection. Details can be found in [2]. In directional 
focusing, waves are focused in front of the wavemaker. For instance Fig. 5 shows 
an example of directional wave focusing where waves are focused at a distance 
ϰf = 2À in front of the wavemaker. In Fig. 6 a case with more intense directional 

energy focusing is shown, producing a giant steep wave a short distance away 
from the wavemaker, whose crest is starting to break by spilling breaking. 

Very large, possibly breaking (i.e., overturning), 3D transient waves could be 
modeled in this 3D-BEM model, by using the HOS method to compute the first 
stages of growth of wave modulations (the longer ones, on the order of 100 wave 
periods) as initial condition for the model. In this case the initial wave elevation 
and velocity potential are specified at time t on the free surface, based on the 
HOS solution. This will be the object of further studies. 
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Fig. 4. Planview of the situation depicted in Fig: 3 clearly showing the appearance of 
curved wave fronts. 

4 Conclusions 

Three-dimensional self-focusing of wave energy is achieved through modulat-
ing a periodic wave train along two orthogonal directions. Both the well known 
Benjamin-Feir instability (essentially 2D) and 3D instability mechanisms are 
found to be important for describing the evolution of nonlinear waves. Non-
linear wave interactions produce an instability which transforms an initially 
two-dimensional wavetrain into a three-dimensional unsteady wave pattern, with 
short-crestedness in the lateral direction. When the transverse modulation wave-
length is sufficiently large, one can observe the growth of the lateral modulation 
through the absorption of part of the longitudinaJ wave energy. The model not 
only predicts the initial stages of instability, but also the evolution of unsteady 
modulations of 3D finite amplitude waves in a fully nonlinear sense. Three dimen-
sional effects lead to the natural formation of locally curved wave fronts which 
spread energy from the primary (longitudinal) motion to the secondary (trans-
verse) one. This curved structure of 3D wave groups produces a self-focusing 
mechanism in both the directionaJ and the frequency domain. Ultimately, this 
would lead to wave breaking, which cannot be described by the HOS model. 
However this 3D self-focusing case can be studied in the NWT, which has the 
capability of modeling both breaking and non-breaking freak waves. Such as 
study would be very difficuit to achieve in a laboratory tank, due to the long 
distances of propagation required for both the 2D and 3D instabilities to grow. 
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The evolution of wave groups in the ocean can be modeled with high accuracy 
using the classical Mixed Eulerian Lagrangian approach based on Boundary Ele-
ment Method (see e.g. [1], [2]). Nevertheless, this method which relies on the fact 
that the flow is irrotationnal and the fluid is incompressible fails when breaking 
occurs. Indeed, as the jet re-enters the front face of the wave, vorticity is cre-
ated in the fluid. To pursue the simulation, a suitable method should allow for 
(i) the modeling of rotational flow and, (ii) an easy treatment of discontinuities 
since the free surface experiences extremely large deformations. Among the dif-
ferent possibilities, the Smoothed Particle Hydrodynamics (SPH) method has 
been choosen by several authors [3], [4], [5]. 

The key concept of the method is to give a local approximation of a generic 
physical variable f(x,t) in terms of the values fi,(t) carried by a finite number 
of particles, i.e. 

where the smoothing kernel W(x) is an approximation to the Dirac δ function, 
mi and ρi are the mass and density of the fluid particle. Upon identifying / 

with the variables p and U, Euler’s equation reduces to a set of ODEs that 
are integrated with respect to time to give the evolution of the fluid dynamic 
system. Spatial derivatives of the quantities are obtained by differentiating eq. 
(2), i.e. using analytical kernel derivatives. The compact support of the kernel 
leads each particle to interact only with its close neighbors. Mass and momentum 
conservation are explicitly enforced by requiring each particle to have a constant 
mass and symmetric interactions between them, respectively. The pressure is 
computed by using the density and a suitable equation of state for water which 
is considered a weakly compressible fluid. Simulations are performed at a low 
Mach number (typically M = 0.1), leading to non essential perturbations in 
density during the simulation (typically of the order of 0(M2) = 0.01). As in 
most numerical methods, artificial viscosity is introduced to stabilize the scheme. 
Changes in the total energy, typically within a few percent, are representative of 

283 



284 

Fig. 1. Comparison between BEM and SPH simulation for a breaking wave in shallow 
water [See also Appendix CP] 

the global accuracy of the simulations. Although individual time stepping algo-
rithm can be use to speed-up the computations, the method remains demanding 
in term of CPU time so that most applications have been performed assuming 
two dimensional flow. The accuracy of the initiaJ algorithms is also enhanced 
using Reproducing Kernel Method [6]. 

Recent studies have proven the ability of the resulting method to reproduce 
most of the physical features observed in the flow, such as the occurrence of 
breaking in shallow water, fluid fragmentation of some parts of the fluid and 
creation of vortices during the post-breaking phase. The quaJitative agreement 
between computations and experiments has been clearly demonstrated despite 
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Fig. 2. Comparison between BEM and SPH simulation for the vertical entry of a 45 
degrees wedge 

the complexity of the physical processes involved during breaking. The next 
stage in developing the method is to perform quantitative comparisons. 

Detailed comparisons between SPH and BEM simulations of a propagating 
wave before breaking occurs are presented in fig. 1. As expected, the two methods 
give similar results for the wave elevation until the BEM simulation breaks down 
as the jet re-enters the front face of the wave. For this simulation, a total of 10.000 
particles were used. Clearly, this is not sufficient to model accurately the jet. A 
local modeling of the so called splashing and ploughing phase is presented [4]. 

Breaking wave leads to impulsive loads on structures. To test the ability of 
the method to predict these loads, the classical water entry problem of a wedge is 
considered (see fig. 2). For this simulation, 100.000 particules were used although 
this number could have been reduced by a factor of 10 using of particules with 
different sizes. The SPH simulation is compared to both fully nonlinear BEM 
and first order (linear) asymptotic solution. Although, compressibility effects 
affect the free surface position, good agreement is recovered for the loads on the 
body. 

These two test case problems allow to conclude that SPH would seem to be a 
good choice for simulation complex free surface flows where breaking and fluid-
structure interaction occur. More work is nevertheless needed to improve the 
algorithms which allow to consider boundary conditions on the structure and far 
away, together with a systematic validation of the method against experiments. 
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Abstract. The generation and interpretation of extreme waves in physical 
model testing is discussed. A list of relevant wave parameters describing the 
extremes is outlined. A probabilistic approach is considered, with extremes 
occurring randomly in a wave train synthesized for the test. Statistical reference 
models based on linear and second-order wave theory are applied. Comparisons 
to model test results show that the second-order model predicts reasonably well 
in most cases, although with a slight under-prediction of steep extremes, 
possibly due to unidirectional wave conditions in the laboratory. Under 
particular conditions, with narrow-banded unidirectional spectra propagating 
more than 12 - 15 wavelengths, special modulation effects may occur in 
energetic wave groups, leading to very high extremes that are clearly beyond 
second order. This may one possible explanation of “freak waves” observed in 
the real ocean. The effect is reflected in the 4lh order statistical moment 
(kurtosis), and a prediction formula taking this into account is suggested. 

1 Introduction 

The prediction and reproduction of extreme ocean waves is a complex task, since they 
are rare events, and therefore hard to observe in the real ocean. Trying to understand 
all the underlying mechanisms, and the resulting physics, can be confusing, since 
there may be a number of various conditions leading to the different events actually 
observed. Ideally, perfect theoretical and physical models should therefore be able to 
cover a broad range of situations. A discussion of the occurrence and prediction of 
extreme waves has been given in [1], Fully nonlinear theoretical models for random 
extreme waves do still not exist, although there are several theoretical approaches that 
include essential linear and nonlinear components and properties. Thus the challenge 
in present day-to-day applications is to sort out which are the most relevant properties 
to be modelled, and how to model them. This may vary from application to 
application, but there are also general patterns. In the present paper, the generation 
and interpretation of wave extremes in physical model testing is discussed. 

The laboratory generation of waves has been reviewed in [2]. There are still a 
number of questions to be handled in connection with reproduction and use of 
extreme wave generation. One of them is: What should we expect - or, in other 
words, what is our reference? This question may be two-fold: 1) What is required 
from the application?, and 2) what is actually possible, given the laboratory frame? 
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And furthermore, can we leam something about the wave physics itself from the 
experiment? Some key words in this process are: 

Parameters selected for reproduction 
Input from full scale or theory 
Methodology (Stochastic vs. deterministic approach; Synthesisation etc.) 
Basic physics vs. laboratory effects 
Simplifïcations 

Some practical examples from the experience in an offshore model test basin are 
discussed in the paper, on basis of previous presentations in [3], [4], Here a stochastic 
approach is followed, with the synthesisation and physical generation of random 
storm records (typically of 3-hours duration, full scale). Thus, the extremes occur as 
random events in the scaled wave field, as the result of the random summation of a 
large number (thousands) of independent input components. Nonlinear effects 
observed in the records are then mainly interpreted as results from nonlinear 
couplings in the actual propagation of the laboratory wave field, although one has to 
be aware of possible laboratory defined effects. Another approach which has been 
suggested and applied in the literature, is the design and use of single deterministic, 
transient wave groups specified with particular extreme value properties [5], The two 
different approaches may in certain situations be considered as altematives to each 
other, but it is perhaps more fruitful to treat them as complementary, since they are 
based on quite different background philosophies. 

The present experimental results are seen in relation to linear and second-order 
random wave prediction models, with a particular discussion of deviations from the 
models. Thus one possible way of defming “freak waves” may be considered as 
waves and crests clearly higher than second-order. A possible connection between 
such extremes and nonlinear wave grouping is considered. 

2 Background: Critical Wave Events and Parameters 

2.1 Some Critical Wave Situations in Offshore Engineering 

The design and operation of FPSO’s in extreme weather exposed areas must take into 
account the effects from steep and energetic individual wave events. The wave impact 
on bow and deck structures can be serious, such as the bow slam experienced on the 
Schiehallion FPSO [6], as well as the water on deck problems reported on Norwegian 
production vessels [7], New design tools are being developed as a result of this [8]. 
The impact loads and possible damages are certainly a combined effect from the wave 
properties and the interaction with the vessel, but knowledge about the incoming 
energetic waves is very helpful in the further development in the area. 

For floating platforms, such as semisubmersibles, TLPs and Spars, the deck 
clearance (air-gap) is critical. Thus the ability to properly predict the extreme wave 
crests and their kinematics, in 100-year storms is essential, not only for the prediction 
of the probability of impact, but also for the prediction of resulting loads. Other direct 



291 

results from extreme waves interacting with platforms include the ringing problem on 
TLP’s and GBS’s (see e.g. [9], as well as the possible capsizing of platforms with 
compliant mooring. 

Extreme waves or wave groups can also induce particular vessel motions, as a 
result of particularly large slow-drift forces. For FPSO’s, this may lead to large head 
angles and, consequently, even larger offset and high nonlinear mooring line loads 
(static as well as dynamic). Large slow-drift is critical also for the extreme loads of 
platform moorings. 

2.2 Critical Wave Parameters 

The detailed description of dangerous waves is complex, since the different problems 
such as described above may depend on different wave properties. A list of possible 
parameters or characteristics may be as follows: 

Individual waves 
Crest height: A

max
 or Amax/σ 

Wave height: H
max

 or H
max

/σ 
Steepness: (∂η/∂x)max

 or (kA)
max 

Particle velocity: U
max 

Particle acceleration: (dU/dt)
max 

Grouping (succeeding waves); 
Energy envelope: E(t); Group spectrum - relative to linear model 

Breaking 

Short-term sea state properties 
Skewness: y, = l/(Ma3) ■ Σ [r|; -E(η)]3 (1) 
Kurtosis (grouping parameter): γ2 = l/(Ma4) • Σ [ηi -E(η)]4 (2) 
Probability of given extreme levels 

where η is the elevation, a is the standard deviation of the elevation record, and M is 
the number of record samples. In addition, there may also be other parameters 
relevant for particular problems. 

2.3 Extreme Waves: Possible Physical Mechanisms 

For a proper prediction of extreme and rare waves, it is also important to keep in mind 
that there may be a range of different physical mechanisms leading to the events. 
Some of these are: 

Phase combination of harmonic components 
Steepness-induced crest increase (“Stokes effects”) 
Nonlinear self-focusing of energetic wave groups 
Multi-directional effects 
Bottom effects (finite water depth; refraction) 
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Current effects (wave-current interaction: refraction) 
Wind influence 
Storm age and duration 
Several storm systems? 

Thus the description of real cases may be complex. In offshore engineering 
applications, the first two mechanisms listed are perhaps those with most attention. It 
may be a reasonable choice to consider them as basic conditions, and then add the 
effects from the others when appropriate. Later in this paper, effects from nonlinear 
wave grouping are discussed in particular, on basis of some laboratory results. 

3 Specifïcation and Limitations of Laboratory Waves 

The reproduction of wave conditions in a laboratory must be based upon a chosen 
specification, which can be essential for the generated extremes. Thus the reproduced 
conditions will be simplified with regard to some properties, while others are 
emphasised. Parameters of a specification may include some of the following: 

In aprobabilistic approach: 
Significant wave height Hs ; Hmo 

Spectral peak period (or equivalent) Tp ; T
z 

Spectrum shape (e.g. JONSWAP, 2-peaked etc.) 
Storm duration 
Additional requirements? 

(H
max

 ; A
max

 ; γi ; γ2 ; wave grouping; others ?) 

In a deterministic transient wave approach: 
Specific properties of single wave (or wave group) 

Some laboratory simplifications may typically (but not necessarily) be: 
Uni-directional waves 
Horizontal bottom or deep water 
Stationary sea state 
Mechanical wave generator - no wind influence 
If “transient wave” : Specific parameters of event 

Specific laboratory-defined effects: 
Reflections & diffraction 
“Parasitic waves” due to imperfect boundary conditions 
Size & shape of basin / distance from wave generator 
Repeatability 
Scale effects (viscous effects; breaking) 
Synthesization method 
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4 Probabilistic Modelling of Linear and Nonlinear Waves 

Based on the specification, the synthesisation of a random laboratory signal input to 
the wave-maker is typically made as a linear sum of a large number of independent 
harmonic components. Nonlinear corrections may also be made [10]. As an example, 
a 3-hours storm duration may be simulated by inverse Fast Fourier Transform (FFT) 
with 16000 frequency components. Extreme waves are then a result of this random 
combination, plus nonlinear interactions during the propagation from the wavemaker 
to the acmal location. The statistical behaviour is observed through parameters like 

the skewness γ
1
 and kurtosis γ

2
 of the wave record, and probability distributions and 

extremes of the crests and wave heights. 
The results can then be compared to reference models. In particular there are two 

models in use: Linear waves, with Gaussian statistics and Rayleigh distributed peaks, 
and second-order waves [11], [12], with a non-Gaussian correction on the statistics, 
and with extreme crests deviating from the Rayleigh model. The effect from second-
order contributions on an extreme wave is shown in a numerical example in Fig. 1. 
One should also take into account the sampling scatter of a finite record [12]. The 
estimation of extremes from a given 3-hours record can be improved by use of e.g. 
fitting the tail of the peak distribution to a Weibull distribution, and predict the 
extreme from that. 

Fig. 1. Time series sample from numerically generated second-order random wave 



294 

Based on the reference models, we can derive expectations for the measured statistics, 
and the extremes in particular. For a simple linear model, the expected skewness and 
kurtosis are = 0; γ2 = 3.0, respectively, and extreme crests and wave heights are 
expected to be Rayleigh distributed with the following commonly used relations: 

E[A
max

] = AR = σ [V (2 ln (M)) + 0.577/V (2 ln (M))] (3) 

E[Hmax] = 2 AR (4) 

In a second-order model, the skewness y, increases linearly with the steepness. 
Models for γ1 andy2 have been derived in [13]: 

γ, =5.41 (H
m0

/Lp) (5) 
γ2-3 = 3 γ1 2 (6) 

where L p is the wavelength corresponding to the peak wave period. For extreme 
crests a simplified formula has been proposed by [14]: 

E[A
max

] = A
R (1+14 kp AR ) (7) 

where kp is the wave number corresponding to L p, and AR is given in Eq. (3) above. 
The wave heights are still Rayleigh distributed as in the linear model. 

The experience from [11] is that the second-order model generally agrees quite 
well with deep water full scale measurements of crests. Thus the linear model will 
underpredict extreme crests but not the wave heights. Laboratory measurements in [3] 
more or less confirm this (see the next chapter), but a slight under-prediction is 
observed. In special conditions, even higher extremes have been observed [4], Higher-
order models can also predict this [15]. Such events may possibly be seen in relation 
to full-scale observations of so-called “freak waves”, and will be discussed later in 
this paper. 

5 Observed Nonlinear Behaviour of Random Extremes 

Observations from a range of model test studies in scales 1:55 - 1:70, with random 
wave generation in a large wave basin [3], have shown that the largest crest heights 
deviate systematically from Rayleigh model predictions derived for linear waves. In 
general, a second-order description fits reasonably well, as concluded from the full-
scale study in [11], although it slightly under-predicts the most extreme cases, 
typically by 5% of the total crests. See Fig. 2. The deviation may be partly due to the 
fact that most of the results in this figure were obtained with unidirectional waves, 
while field data are expected to be more or less muliti-directional. There is a also a 
considerable sampling scatter, as expected from theory. Extreme peak-to-peak wave 
heights are normally reasonably well predicted by Rayleigh theory. The same results 
are also reflected in probability distributions (Fig. 3). 
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Fig.2. Measured extreme crests from laboratory tests, compared to second-order and Rayleigh 
predictions. 3-hours as well as 12 - 18-hours storm duration models (from Stansberg, 2000a) 

Fig.3a. Probability distributions of crests in 1:55 scaled 18-hours storm model test 
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Fig. 3b. As Fig. 3a, but for wave heights. 

Under certain conditions, extremes in random wave trains may be observed to be 
significantly higher than second-order predictions, even for moderately steep wave 
conditions [4], This occurs when unidirectional, narrow-banded spectra propagate 
over large distances, that is, more than about 12-15 wavelengths, in which case 
higher-order wave group amplification may take place, leading to particularly high 
crests and wave heights. This is illustrated by an example from a 1:200 scaled 
laboratory experiment shown in Fig.4. We may interpret it as a so-called “freak wave” 
event. However, the results in [4] also show that it can be a result of systematic 
behaviour under these particular conditions. A reasonable physical explanation is the 
self-focusing casued by amplitude dispersion in energetic wave groups, which can be 
related to the modulational instabilities commonly referred to as the Benjamin-Feir 
effect [16]. The physics is studied experimentally in [17]. Results from tests with 
different scales indicate that the phenomenon is not scale dependent. For bi-chromatic 
wave trains, observations have been found to agree very well with a higher-order 
Schrödinger formulation [18]. Probability crest and height distributions from a case 
where the effect is particularly strong are shown in Fig 5. The difference from Fig. 3 
above is clearly seen, also for the peak-to-peak wave heights. 
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The 4th-order statistical moment parameter y
2
 (kurtosis) reflects, on an average, the 

increased groupiness, although it is also statistically unstable [12]. An empirical 
relation has been derived on basis of the experimental data above, with very 

Fig. 4. Space and time evolution of energetic wave group into extreme wave - example from 
model tests. (D = distance from wave-maker, in wavelengths)) 

long records corresponding to 12, 15, 18 and 36 hour storm models. Thus the kurtosis 
has been correlated with the corresponding 3-hours extreme crest and wave height 
estimates A

max
 , H

max
. The result is shown in Fig. 6, where deviations from the 

second-order and Rayleigh models (for A
max

 and H
max

 , respectively) are plotted 
against the kurtosis. The values are normalised by the standard deviation CT of the 
record. From this, the following simplified formulae are proposed for extreme crests 
and wave heights, taking into account the second-order term for A

max
 [16] as well as 

an empirical higher order correction for A
max

 and for H
max

: 

A
max

 /σ = (A
max, R/σ)• (1 + ½ k

p
 A

max
,
R

) + 1.3- (y2- 3.0) (8) 

H
max

 /2σ = (H
max

,R/2a) + (γ2 - 3.25) (9) 
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We sees that for the extreme wave heights, the Rayleigh model overpredicts the 
measurements when the kurtosis approaches 3.0 (that is, Gaussian waves). This is an 
expected result in linear waves, due to the de-correlation between crests and 
neighbouring troughs in a fmite-bandwidth spectrum. 

Fig. 5. Probability distributions of crests and wave heights, after 25 wavelengths 
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Fig. 6. Measured extreme crests and wave heights in 12-36 hours storm tests: Deviations 
from second-order and Rayleigh models, respectively, vs. kurtosis 

Another, more general altemative to this empirical formula is the Hermite 
transformation method in [19]), where the extremes are estimated directly on basis of 
the statistical moments y, and γ2 . 

The kurtosis γ2 will have to be determined for the actual case. Thus there is a task 
for the future: How do we know when to assume γ2 clearly larger than 3.0 , and how 
do we predict it? 

The typical time domain behaviour of the most extreme (“freak”) events is shown 
in Fig. 7. It normally results from an energetic wave group of 4-6 waves, which after 
some propagation is focused into a narrower group of of 1-2 waves. Most of the 
energy is then concentrated in the front wave. Until this point, only little energy has 
been dissipated from the original wave group. Thus the occurrence of such “freak” 
events may possibly be caused by the time and space development of wave groups 
with a duration sufficient to contain a large amount of integrated energy. 
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6 Conclusions 

Probabilistic modelling of storm sea states in a laboratory wave basin, with 
particular emphasis on the resulting extreme wave events, has been discussed and 
demonstrated. The results are seen in light of what is expected from linear and second 

Fig. 7. Particularly extreme wave event. 

order models. Main fmdings are: 
An empirically adjusted formula for extremes is suggested. For the crests, this is 

based on a second-order model plus an empirical correction for kurtosis values larger 
than 3.0. For the wave heights, a Rayleigh model with a similar kurtosis correction is 
proposed. 

The kurtosis is closely connected with the average “groupiness” of the sea state. 
Normally it is 3.0 - 3.2, but it can under certain conditions, such as narrow-banded, 
unidirectional sea on deep water, grow significantly higher. 

Nonlinear group amplification (focusing) can generate strongly nonlinear, rare 
wave events - clearly beyond second order 

There is a considerable sampling variability in a randomly chosen 3-hours 
realisation, as expected from theory. 
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Abstract. In this paper a new procedure is proposed to generate predetermined 
nonlinear wave sequences in random seaways. These tailored wave trains are 
simulated numerically in time domain using the finite element method. Modem 
nonlinear programming methods are applied to fit the two dimensional wave field 
to global parameters defined in terms of significant wave height and peak period 
as well as local target parameters like wave height, crest height, and period of 
individual waves. Firstly, a linear approximation of the desired wave train is 
computed by optimizing an initially random phase spectrum for given variance 
spectrum. This initial guess is further improved by fitting the fully nonlinear wave 
evolution simulated in a numerical wave tank to the target characteristics. The 
discrete wavelet transform of the wave board motion allows to identify the 
relevant signal information efficiently, as only a small number of wavelet 
coefficients needs to be considered in the fitting problem. Results are presented 
for a steep and high transient wave within a tailored group of three successive 
waves embedded in random seaway. 
As an altemative to the numerical optimization of the wave generation control 
signal an experimental simulation technique is also presented. In this case 
nonlinear free surface effects, even wave breaking are naturally included in the 
fitting process since the simulation of the physical wave evolution under 
laboratory conditions is an integral part of the new technique. This feature is 
especially important for simulating experimentally wave/structure interactions in 
rogue waves and critical wave groups. As an application of the deterministic 
transient wave technique the paper presents 
— the generation of a 3.2 m freak wave in a dedicated wave tank 
— a typical seakeeping test with a high speed catamaran 
— a RANSE/VOF analysis of the interaction of a wave and an artificial 

reef (including viscous effects). 
In conclusion it is shown that the deterministic transient wave technique is a 
powerful tool for evaluating the cause/reaction chain of wave/stmcture 
interactions. 

For the design of safe and economic offshore structures and ships the know-
ledge of the extreme wave environment and related wave/structure interactions 
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Fig.1. Design wave as rare event of a severe irregular sea state 

is required. A stochastic analysis of these phenomena is insufficient as local 
characteristics in the wave pattem are of great importance for deriving appropriate 
design criteria. This paper describes techniques to synthesize deterministic task-

Fig.2. Wave/structure interaction as a cause-reaction chain 
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Fig.3. Wave packet registration at different positions (left) as well as instantaneous wave profiles 
at selected instances (right) (waterdepth d=4.2 m) 

related 'rogue' waves or critical wave groups for engineering applications. These extreme 
events, characterized by local parameters like tailored design wave sequences, are 
integrated in a random or deterministic seaway with a defined energy spectrum, and can 
be generated deterministically (Fig.1). If a strictly deterministic process is established, 
cause and effect are clearly related: at any position the non-linear surface elevation and 
the associated pressure field as well as the velocity and acceleration fïelds can be 
determined. Also the point of wave/structure interaction can be selected arbitrarily, and 
any test can be repeated deliberately. Wave-structure interaction is decomposable into 
subsequent steps (Fig.2): surface elevation - wave kinematics and dynamics - forces on 
structure components and the entire structure - structure motions [ 1 ]. 

Firstly, the generation of linear wave groups is presented. The synthesis and up-
stream transformation of arbitrary wave packets is developed from its so-called 
concentration point where all component waves are superimposed without phase-shift. 
For a target Fourier wave spectrum a tailored wave sequence can be assigned to a 
selected position. 
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Fig. 4. Genesis ofa 3.2 m rogue wave by deterministic superposition ofcomponent waves (water 
dept d=4m) 

This wave train is linearly transformed back to the wave maker and - by introducing 
the electro-hydraulic transfer function of the wave generator - the associated control 
signal is calculated. Fig. 3 shows a linear wave packet converging at the concentration 
point x = 107 m. It illustrates registrations at different positions as well as instantaneous 
wave profiles at selected instances. 

The generation of steeper and higher wave groups requires a more sophisticated 
approach as propagation velocity increases with height. With a semi-empirical 
procedure the control signal of extremely high wave groups is determined, and the 
propagation of the associated wave train is calculated by iterative integration of coupled 
equations of particle positions. With this deterministic technique "freak" waves up to 
3.2 m high have been generated in a wave tank [5] (Fig. 4). 

Based on the linear wave packet technique the seakeeping behaviour of ships or 
offshore structures is efficiently determined with just one single model test [4] (Fig. 5). 
With higher wave trains this technique is used to analyze the capsizing mechanism of 
ships in tailored transient wave packet sequences [3]. 
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Fig. 5. Registrations, Fourier spectra, and transfer functions of a typical seakeeping test with 
a high-speed catamaran in transient wave trains (model scale: 1:7, V = 4.0 m/s; full scale: 
V= 20.5 kN; Fn = 0.56) 
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In many applications the detailed knowledge of the nonlinear characteristics of the 
flow field is required, i.e. wave elevation, pressure field as well as velocity and 
acceleration fields. In this case a finite element method developed by G. Wu and R. 
Eatock Taylor [12,13] is used to determine the velocity potential, which satisfies the 
Laplace equation for Neumann and Dirichlet boundary conditions. The Neumann 
boundary condition at the wave generator is introduced in form of the first time-
derivative of the measured wave board motion. To develop the solution in time domain 
the forth order Runge-Kutta method is applied [7]. Starting from a finite element mesh 
with 8000 triangular elements (401 nodes in x-direction, 11 nodes in -direction, i.e. 4411 
nodes) a new boundary-fitted mesh is created at each time step. Lagrangian particles 
concentrate in regions of high velocity gradients, leading to a high resolution at the 
concentration point. This mixed Eulerian-Langrangian approach has proved its 
capability to handle the singularities at intersection points of the free surface and the 
wave board. Fig. 6 and Fig. 7 show wave profiles with associated velocity potential as 
well as registrations at different positions. Excellent agreement of numerical and 
experimental results is observed. Note that the pressure distribution as well as velocity 
and acceleration fields including particle tracks at arbitrary locations are deduced from 
the velocity potential. 

Horizontal motion and velocity Surface elevation and 
of the wave generator associated velocity potential  

Fig.6. Nonlinear numerical simulation of transient waves 
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Fig.7. Nonlinear numerical simulation of transient waves and its experimental validation 

So far, nonlinear wave groups is an ideal fluid have been discussed. If vis-
cous effects are also considered an approach of transient viscous ffee surface flow 
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computation with RANSE/VOF solver is used. As an application, an artificial reef -
modeled as a submerged permeable wall - has been investigated: Using an unstructured 
grid, the dissipation loss is explained by overtopping phenomena and subsequent 
recirculation of the flow locked in chambers between filter elements (Fig. 8). Jet flow 
between filter components is also fostering high energy loss. Due to non-linear 
wave/filter interactions long low-frequency incident waves with substantial erosive 
impact are transformed into irregular wave trains with high-frequency wave energy 
components, which cause less erosion to the sea floor [2], 

Fig.8. Transient viscous computation of artificial reefs (RANSE/VOF)- velocities due 
to wave/filter interaction for submerged wall and 11% filter 
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In general, extremely high "rogue" craves or critical wave groups are rare events 
embedded in a random seaway. The most efficient and economical procedure to simulate 
and generate such a specified wave scenario for a given design variance spectrum is 
based on the appropriate superposition of component waves or wavelets. As the method 
is linear, the wave train can be transformed down-stream and up-stream between wave 
board and target position. The desired characteristics like wave height and period as well 
as crest height and steepness are defined by an appropriate objective fimction. The 
subsequent optimization of the initially random phase spectrum is solved by a Sequential 
Quadratic Programming method (SQP) (Fig. 9) [8]. The linear synthetization of critical 

Fig.9. Optimized phase spectra and associated wave trains resulting from different 
initial phase distributions. 
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wave events is expanded to a fully nonlinear simulation by applying the subplex method, 
developed by T. Rowan [11]. The domain space is decomposed into smaller subdomains 
which are minimized by the Nelder and Mead simplex method [10]. Improving the linear 
SQP-solution by the nonlinear subplex expansion results in realistic 'rogue'-waves 
embedded in random seas [8]. In case of extremely high 'rogue' waves, however, 
embedded in irregular seas at target position we may observe local differences in wave 
characteristics if the resulting wave sequence is compared to the target wave train. 
Consequently, a subsequent optimization process is required to obtain the design wave 
sequence. This fully nonlinear calculation of wave elevation is based on a linear initial 
guess which is iteratively improved to fit the target characteristics. The discrete wavelet 
transform of the wave board motion allows to identify the relevant signal efficiently, as 
only a small number of wavelet coefficients need to be considered. Fig. 10 presents 
results for a steep and high transient wave within a tailored group of three successive 
waves embedded in a random seaway [9]. 

Fig.10. Nonlinear wave train simulated with tailored wave sequence - wave board motion 
optimized with subplex method 
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As an altemative to the numerical optimization of the wave generation control signal 

by the nonlinear subplex method an experimental simulation technique has been 
developed (Fig. 11) [6]. For a given design variance spectmm, the SQP-method yields an 
optimized phase spectrum which corresponds to the desired wave characteristics at target 
position. The wave generator control signal is determined by transforming this wave train 
in terms of the complex Fourier transform to the location of the wave generator. The 
measured wave train at target position is then iteratively improved by systematic 
variation of the wave board control signal which is based on the linear SQP-optimization 
with subsequent non-linear subplex improvement. To synthesize the control signal 
wavelet coefficients are used. The number of ffee variables is significantly reduced if this 
signal is compressed by low-pass discrete wavelet decomposition, concentrating on the 
high energy band. Based on deviations between the measured wave sequence and the 
design wave group at target location the control signal for generating the seaway is 
iteratively optimized in a fully automatic computer-controlled model test procedure. As 
this new experimental technique can cope with breaking waves it is a promising 
procedure for synthesizing model rogue waves or critical wave groups for wave/structure 
interactions. Fig. 11 illustrates the experimental procedure, and demonstrates the 
improvement of the linear SQP solution by nonlinear subplex fitting. It also shows 
registrations at different locations as well as the Fourier spectra of the target wave, the 
linear SQP solution and the finally obtained subplex fitting. 

Fig.11. Experimental simulation of tailored design wave sequences in extreme seas 
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DETERMINISTIC TRANSIENT WAVE TRAINS 
based on target spectrum, 
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Fig. 12. Applications of the transient wave technique 

In conclusion, it has been demonstrated that the transient wave technique is capable 
to generate tailored wave sequences with high accuracy 

- for standard seakeeping tests 
- for special wave/structure interactions 
- for worst-case studies in extreme waves (Fig. 12). 

The simulation technique is based on a computer controlled nonlinear procedure: at any 
position we can determine the (non-linear) surface elevation as well as the associated 
pressure, velocity and acceleration ïïelds. Also the point of wave/structure interaction 
can be selected arbitrarily, and any test can be repeated deliberately. Consequently, 
cause-reaction chains can be identiïïed to reveal the mechanism of wave/structure 
interactions. 
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Abstract. In a deep-water ocean environment wind waves are charac-
terised by a spread of energy in both frequency and direction. In such cir-
cumstances wave focusing provides a likely mechanism for the occurrence 
of an extreme wave event. This arises when the phasing and direction of 
freely propagating wave components is such that a large number of wave 
crests arise at one point in space and time, thereby producing a large 
transient wave group. The present paper concerns the characteristics of 
such waves, providing both laboratory data and numerical calculations. 
The principle findings arising from this work are two-fold. First the im-
portance of directionality in defining the characteristics of extreme waves 
is clearly highlighted. In particular, if a constant energy level (or input 
amplitude sum, A = ∑an) is maintained an increase in directional-
ity leads to reduced nonlinearity and hence lower crest elevations. Con-
versely, if the energy levels are increased until the onset of wave break-
ing, an increase in the directional spread allows larger limiting waves 
to evolve. Secondly, the frequency-amplitude spectra in the vicinity of 
the extreme highlight some new and unexpected energy shifts. These are 
consistent with the widening of the ffee wave regime in the vicinity of the 
extreme and, as such, provide a possible mechanism for the occurrence 
of rogue or ffeak waves. 

1 Introduction 

Throughout this workshop the definition of a rogue or freak wave received much 
attention. Although no consensus was reached, the most frequently adopted def-
initions were based upon η

max
 > 1.25H

s
 or H > 2H

s
, where ηmax defines 

the maximum crest elevation, H the wave height and Hs the significant wave 
height. Irrespective of the precise value employed, it is clear that rogue waves 
correspond to extreme events that are either larger than is statistically predicted 
or occur more often than is expected, given the underlying characteristics of the 
sea state. From an engineering perspective such events are of enormous practical 
importance. In particular, they are believed to be associated with the loss of an 
effective airgap leading to wave impacts on the underside of fixed structures, the 
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occurrence of wave slamming on both fixed and floating structures, and green-
water inundation on the decks of floating vessels. Such problems are relevant to 
both offshore engineers and naval architects. 

Field observations (see, for example [9]) confirm that large ocean waves do 
not arise as part of a regular or ‘steady’ wave train, but occur as isolated events 
within a random or irregular sea, involving a significant spread of wave energy in 
both frequency and direction. Furthermore, since rogue waves are large they will, 
inevitably, involve steep water surface elevations implying that both the wave 
shape and the underlying wave motions are highly nonlinear. The combination of 
nonlinearity, unsteadiness and directional spreading makes for a highly complex 
phenomena, the description of which is well beyond the scope of the commonly 
applied design wave solutions. Furthermore, if such waves genuinely lie outside 
accepted statistical predictions, and this remains an open question, it perhaps 
implies that their evolution involves new or unexpected physical processes that 
are not generally applicable to the wavefield as a whole. 

The present paper considers the description of extreme water waves and 
seeks to define their underlying characteristics. Experimental data from a new 
series of laboratory observations are combined with supporting numerical cal-
culations based upon a state-of-the-art fully nonlinear, three-dimensional, wave 
model. The combination of these results suggests that the evolution of large wave 
groups is characterised by rapid energy transfers, occurring in the vicinity of the 
extreme, leading to the generation of new high-frequency wave components re-
sulting in a widening of the free-wave regime. This effect leads to a local increase 
in the energy density and therefore allows larger maximum crest elevations to 
evolve. The present paper argues that these energy transfers correspond to the 
‘new physics’ that is necessary to explain the occurrence of rogue waves. Indeed, 
it is perhaps not surprising that statistical predictions, based on the original 
(underlying) frequency spectrum, cannot model the largest water surface eleva-
tions if, as a consequence of the evolution of large waves, the spectrum itself 
undergoes significant change. The present paper will also demonstrate that the 
directionality of a wavefield plays a crucial role in determining the effectiveness 
of these processes. 

2 Experimental Observations 

The initial motivation behind these observations was the apparent contrast be-
tween field data [9] and laboratory observations describing the focusing of uni-
directional waves [1], A typical example of the latter observations is provided in 
Figure la. This contrasts the time-history of the water surface elevation, η(t), 
with a linear and a second-order theory based on the wave components gener-
ated at the paddle. It is clear from these results that the nonlinear interactions 
lead to a huge increase in the maximum water surface elevation, with the max-
imum measured crest elevation 40% larger than the linear predictions and 30% 
larger than second-order theory. An explanation for this lies in the nature of the 
nonlinear wave-wave interactions clearly identified in the frequency-amplitude 
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Fig. 1. Uni-directional waves: a comparison with established theory (a) Time-history 
of the water surface elevation, 77(f), and (b) Frequency-amplitude spectrum. 

spectra given on Figure 1b. In this case the input spectrum (denoted by the 
thick solid line) is both narrow-banded and truncated at / = 1.25Hz. As a 
result, there is a clear division between the input range and the correspond-
ing second-order range, defining the frequency-sum terms first identified in [10]. 
According to second-order theory there should be no energy within this inter-
lying region. Furthermore, if it is assumed that any energy present is of third 
or higher order, it should be very small. However, Figure 1b shows that this is 
not, in fact, the case. Indeed, there appears to be a large transfer of energy from 
frequencies within the input range to those lying immediately outside. Although 
detailed analysis of field observations clearly identifies nonlinear effects, they are 
typically much smaller than those identified in Figure 1. An obvious explanation 
for this difference lies in the directionality (or three-dimensional character) of 
real ocean waves. For example, [9] shows that in the northern North Sea wind 
waves arising in large storms have a typical directional spread corresponding to 
a normal distribution with a standard deviation of 30°. 
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Fig. 2. a) Definition sketch. b) Wave basin 

To investigate the influence of directionality laboratory observations were 
undertaken in which wave components, involving a spread of energy in both 
frequency and direction, were focused at one point in space and time. Depending 
on the directional spread this produces a wave form similar to that indicated in 
Figure 2a, where x defines the mean wave direction and d the constant water 
depth. These observations were undertaken in the wide wave basin at Edinburgh 
University. This facility has a plan area of 25m x 11m, a uniform depth of 1.2m, 
and is equipped with 75 numerically controlled wave paddles, each 0.3m wide. 
(Figure 2b). 

The test programme incorporated three frequency spectra: Case B, corre-
sponding to a broad-banded frequency spectrum (0.17 < / < 1.66Hz); Case D, 
a narrow-banded spectrum (0.83 < / < 1.25Hz); and Case C of intermediate 
bandwidth (0.77 < / < 1.42). For each case, six directional spreads were consid-
ered ranging from uni-directional (or s = oo), to a very short-crested sea with a 
large directional spread (s = 4), where s is the Mitsuyasu [12] spreading parame-
ter. For each of these combinations, a range of input amplitudes were considered 
so that the characteristics of the focused wave event could be considered from 
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a near-linear condition (A = 20mm, where A represents the linear sum of the 
component wave amplitudes) to the limit of incipient wave breaking. Full details 
of this experimental study are given in [7]. 

A typical set of surface elevation measurements is presented on Figures 3a & 
3b. These concern the narrow-banded frequency spectrum addressed in Figure 
la (Case D), but with directional spreads of s = 45 (relatively long-crested) in 
Figure 3a and s=4(very short-crested) in Figure 3b. In each of these three cases 
(Figure la, Figure 3a & Figure 3b) the focused waves are'very close to the limit 
of wave breaking, and comparisons are made with both a linear and a second-
order theory (where the latter model is based on [11] for the directionally-spread 
cases in Figures 3a & 3b). Comparisons between these results suggests that as 
the directionality of the wavefield increases, the second-order solution appears 
to provide an improved description of the maximum crest elevation. This is 
consistent with the field observations discussed earlier. 

Further evidence of this effect is given in Figure 4a. This provides data corre-
sponding to each of the three frequency spectra (cases B, C & D) and describes 
the variation in the maximum crest elevation with the directional spread (ex-
pressed as 1 /s, where 1/s = 0 corresponds to a uni-directional wave). In each 
test case the input amplitude was set at A = 55mm. The reduction in the max-
imum crest elevation with increasing directionality is clearly observed. Indeed, 
it appears that the introduction of even a small directional spread (s = 150 
or 1/s = 0.0067) leads to a large reduction in the nonlinear crest elevation. If 
this effect is interpreted as a real reduction in the nonlinearity of a wave group 
(having a constant energy input: A = 55mm) it may, perhaps, be explained 
by a reduction in the absolute wave-front steepness. This arises due to the fact 
that as the directionality increases the wave steepness is no longer constrained 
within a single plain, as is the case in a uni-directional wave, but spread over 
a number of intersecting plains. The larger the directional spread, the smaller 
the wave-front steepness. The reduced nonlinearity and therefore the lower crest 
elevations follow as a logical consequence. 

Further evidence of the reduced nonlinearity is provided by the frequency-
amplitude spectra, a(ω), presented on Figure 5a. These results are derived from a 
Fourier transform of the water surface elevation, η(t), recorded at the position of 
the maximum crest. Four data records are considered, each corresponding to the 
narrow banded spectrum (Case D) with an input amplitude of A = 55mm, but 
with differing directional spreads defined by s = 00 (or uni-directional), s = 150, 
s = 45 and s = 4. A comparison between these traces highlights significant 
differences in the transfer of energy to the high-frequency wave components 
that lie immediately outside the input range. This transfer is largest in the 
uni-directional case, and progressively reduces as the directionality increases. 
These results appear to be consistent with the nonlinearity of a large wave being 
strongly dependent upon the directionality of a sea state. 

Although, at first sight, the arguments noted above appear ‘positive’ from a 
design perspective, the reduced nonlinearity has wider implications. If it is as-
sumed that the limiting condition, corresponding to the onset of wave-breaking, 
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Fig. 3. Time-history of the water surface elevation, Case D. (a) A = 78mm, s — 45. b) 
A = 93mm, s = 4. 

is largely determined by the wave steepness (H/2k ≈ 0.44 in uni-directional 
regular waves), an increase in directionality should allow larger limiting wave 
heights and hence larger limiting crest elevations. Figure 4b again concerns each 
of the three underlying frequency spectra (Cases B, C & D), with the direction-
ality specified in term of 1/s. For each combination, the input amplitude, A, was 
increased until the onset of incipient wave breaking (determined visually) and 
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1/s 

Fig. 4. Maximum crest elevation vs. directional spread. (a) Constant input amplitude, 
A = 55mm. (b) At the breaking limit. □ Case B, A Case C & x Case D. 

the maximum limiting crest elevation recorded. The data presented on Figure 
4b confirms that an increase in the directional spread allows larger limiting wave 
crests to evolve prior to the onset of wave breaking. 

Further analysis of the limiting wave profiles recorded in the narrow-banded 
spectrum (Case D) is given on Figure 5b. Comparisons between these results 
confirms that the input energy required to achieve a limiting wave increases 
with the underlying directionality. However, at this limiting condition the en-
ergy transferred to the high-frequency components, immediately outside the in-
put range, appears to be independent of the directional spread. One possible 
explanation for these results is that the limiting wave conditions are largely de-
pendent upon the generation of sufficient nonlinear wave components (involving 
both free and bound waves) arising outside the initial input range. Once this 
threshold is reached the wave breaks. This condition may perhaps be defined 
in terms of some limiting in-line crest-front steepness. In the case of a direc-
tional wave, the reduction in crest-front steepness means that more energy is 
required in the input range to achieve this threshold value. Accordingly, the lim-
iting wave height and therefore also the limiting crest elevation increases with 
the directionality of the sea state. 

Having demonstrated the importance of the energy transfers immediately 
outside the input range, attempts were made to determine whether these wave 
components were bound or freely propagating. Unfortunately, although there 
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Fig. 5. Frequency-amplitude spectra (Case D). (a) Constant input amplitude, A = 
55mm. (b) At the breaking limit. 

was considerable evidence to suggest the latter, this could not be rigorously 
proven on the basis of the laboratory data alone. 

3 Numerical Calculations 

To further our understanding of extreme ocean waves recent work has sought to 
provide a fully nonlinear numerical wave model capable of describing the evo-
lution of waves which are spread in both frequency and direction. This work 
has progressed in two stages. The first was undertaken by Johannessen [6] in 
which he developed a three-dimensional scheme based upon the uni-directional 
model proposed in [5]. This was the first fully nonlinear three-dimensional wave 
model of its kind. As with other (uni-directional) time-marching procedures this 
solution is essentially exact and very good agreement was achieved with the 
previously-noted laboratory data [7]. However, the nature of this solution, in-
volving large matrix inversion, is such that it is computationally intensive. As a 
result, the solution is limited when it comes to the description of reaJistic ocean 
waves, involving a large range of length-scaJes in two horizontaJ directions (x, y). 

To overcome this difficulty a second solution has been proposed by Bateman 
[2]. This model extends a uni-directionaJ scheme proposed in [4] to describe 
directionally spread waves. The principal advantage of this soiution lies in its 
computational efficiency, achieved by the application of a new three-dimensional 
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G-operator. This represents an approximation of the Dirichlet-Neuman operator 
the purpose of which is to transform boundary values of the velocity potential, , 
at the water surface into values of 

z
. This allows an initial spatial representation 

of the water surface elevation and the velocity potential on this surface to be 
time-marched using fast Fourier transforms, thereby avoiding the need for large 
matrix inversion. 

The elegance of this approach is such that the computational effort required 
to run the scheme increases as NlogN, where N is the number of surface points 
at which calculations are undertaken. This is in stark contrast to the original 
scheme, proposed in [6] and further explained in [8], where the computational 
effort increases as N3. This difference is of fundamental importance when seeking 
to provide accurate calculations of extreme ocean waves, involving broad-banded 
frequency spectra and realistic directional spreads. In its present form the model 
is appropriate to waves propagating in water of constant depth. It runs on a 
standard PC, and is sufficiently stable to predict the evolution of near-breaking 
waves. Indeed, the only significant restriction arises due to the Fourier series 
representation. This requires the water surface elevation, η(x,y), to be a single-
valued function of the horizontal coordinates and therefore limits the model to 
non-overturning waves. Full details of this solution are given in [3]. 

4 Discussion of Results 

To highlight the success of the numerical modelling Figures 6a-6c provide a 
typical example of the agreement between the laboratory data and the numerical 
calculations. This case concerns the narrow-banded spectrum (Case D), with a 
large directional spread (s = 4) and an input amplitude of A = 93mm giving 
rise to a highly nonlinear, near-breaking, wave event. This case will subsequently 
be referred to as Case D93S04. 

In this and all subsequent comparisons, the numerical model is simply based 
upon the underlying linear wave spectrum, Sηη(ω,θ), or the wave components 
generated at the wave paddles, together with the assumption that their phasing 
and/or direction of propagation, 6, are such that they will come into phase at 
one point in space and time. (This latter assumption also forms the basis of the 
NewWave model [16] used to describe the average or most-probable shape of an 
extreme wave event). The initial or starting conditions, from which the time-
marching process commences, are specified using a linear wave theory applied 
at some initial time t = to, well in advance of the extreme event so that the 
wave energy is widely distributed across the computational domain. Using this 
approach no prior knowledge is required concerning the shape of the extreme 
water surface elevation and consequently the method is genuinely ‘predictive’. 
This is in marked contrast to the second-order, or quasi second-order, solutions 
given in [15] and [17]. These are based upon either a recorded time-history of the 
extreme wave event, η(t), or a power spectrum describing the energy distribution 
associated with such an event, Sηη(ω), where the latter implies the same prior 
description of the extreme water surface elevation. 
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Fig. 6. Comparison with the numerical model. (a) Time-history of the water surface 
elevation, rj(t). (b) Spatial history of the water surface elevation, rj(x). (c) Horizontal 
velocity profile beneath the largest crest, u(z) 
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Figure 6a contrasts the measured and predicted time-history of the water 
surface elevation, η(t), at the focaJ position; Figure 6b the spatial description of 
the water surface profile, η(x), at the instant of wave focusing; and Figure 6c the 
in-line (or x-component) of the wave induced horizontal velocity directly beneath 
the largest wave crest, u(z). In each of these figures the agreement between the 
experiment and the theory is near perfect. 

To clarify the nature of the nonlinear interactions associated with the evolu-
tion of an extreme, directionally spread, wave group the distribution of energy 
in the vicinity of the extreme must be considered. Such an investigation is best 
conducted in the absolute wavenumber-frequency domain, or |fc| vs ω, where 
|fc| = Jk2

x
 + and (k

x
,k

y
) are the wavenumbers in the x and y directions 

respectively. Figure 7 concerns Case D93S04 and provides a contour plot out-
lining the energy distributions within this domain. In effect, this figure may be 
viewed as a sequence of diagonal ‘patches’, where the second patch from the left 
incorporates the highest energy levels and corresponds, at least in part, to the 
linear input range. Within this dominant energy, the solid black line defines the 
linear dispersion equation, the boundaries of which (denoted by a vertical line) 
correspond to the range of freely propagating wave components generated at the 
wave paddles. 

Immediately to the left of this dominant energy there is a relatively indis-
tinct ‘patch’ involving small energy distributions. These correspond to the low 
frequency, or frequency-difference, terms representing the set-down beneath the 
wave group. This energy distribution will be dominated by second-order effects 
[11,13] which are not expected to be large in deep water. Further discussion of 
these terms and, in particular, their increasing importance as the water depth 
reduces is given in [14]. To the right of this dominant energy lies a sequence 
of ‘patches’ representing the second, third, and fourth-order interactions, where 
the second-order terms correspond to the two-wave frequency-sum terms, again 
investigated in [11,13]. As expected, the frequency-sum terms involve larger en-
ergy distributions than the frequency-difference terms. Furthermore, within the 
high-frequency range the energy levels rapidly decline with increasing order. 

The most significant aspect of this figure arises within the dominant or first-
order range. Comparisons between the contour lines and the linear input range 
confirms that there is significant energy arising in frequencies that are immedi-
ately adjacent to the upper limit of the input range i.e. 1.25 < / < 2.25Hz. This 
corresponds to the additional wave energy identified in the frequency-amplitude 
spectra given in Figures 5a & 5b. If the line representing the linear dispersion 
equation is extended beyond the input range, defining the wave components 
generated at the wave paddle, the dashed line included on Figure 7 results. 
Comparison between this line and the new high-frequency energy distributions 
suggests that much of this energy is freely propagating. This result suggests that 
in the vicinity of an extreme wave event there is a local, and rapid, widening of 
the free wave regime. This is consistent with several other aspects of the labora-
tory study reported in [7]. In particular, quantitative observations of the velocity 
of the largest wave crest suggests that as it evolves, and grows in size, its velocity 
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Fig. 7. Energy distribution in / vs \k\ space. 

initially increases and then, in the vicinity of the extreme, actually reduces. The 
initial increase undoubtedly represents the nonlinear increase in the phase ve-
locity and is consistent with the notion that larger waves travel faster. However, 
the subsequent decrease can only come about due to changes in the free-wave 
regime. Indeed, the bound-wave structure cannot produce such a change since 
it is, by definition, tied to its associated free waves and therefore has no impact 
on the crest velocity. 

This apparent widening of the free wave regime is important from the per-
spective of rogue waves since it implies the potential for increased crest ele-
vations. This efîect can easily be demonstrated by considering a simple linear 
argument. If a focused wavefield consists of N linear wave components defining a 
top hat amplitude spectrum, the maximum crest elevation is given by the linear 
amplitude sum, A: 

where a
n

 — a is the constant amplitude of the wave components. The energy 
associated with such a system is proportional to: 

If this is compared to a second focused wave group consisting of 2N wave com-
ponents each with an amplitude of a', twice the band width, but an identical 
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energy we obtain: 

As a result, it is easily shown that the amplitude sum, and hence the max-
imum crest elevation, arising in the second wave field is larger than that of the 
first by a factor of y/2: 

5 Concluding Remarks 

The present paper has provided both laboratory observations and numerical cal-
culations appropriate to the description of extreme, near-breaking, waves arising 
due to the focusing of wave components involving a spread of energy in both 
frequency and direction. The results have shown that if the energy associated 
with the wavefield is held constant (in a laboratory context this corresponds to 
a constant input amplitude sum, A) an increase in the directional spread leads 
to lower maximum crest elevations. It is believed that. this arises due to a reduc-
tion in the in-line crest-front steepness, thereby causing the reduced nonlinearity. 
This explains the apparent mjsmatch between uni-directional laboratory studies 
and recent field observations of large waves, where the latter appear to be less 
nonlinear. In contrast, if one considers the limiting characteristics of focused 
waves an increase in the directional spread allows larger limiting crest elevations 
to evolve. 

More significantly, the present results have shown that as a large wave event 
evolves, the nonlinear interactions lead to a transfer of energy to the higher-
frequency wave components lying immediately outside the input range. This is 
quite distinct from the second-order frequency-sum terms originally identified in 
[10]. Indeed, numerical calculations suggest that much of this transferred energy 
is freely propagating. In the context of rogue waves this is an important result 
since it implies a local and rapid widening of the free wave regime in the vicinity 
of the extreme event. This, in turn, has the potential to ailow increases in the 
maximum crest elevation. Indeed, if the underlying spectrum defining the freely 
propagating wave components can change in both space and time, it is perhaps 
not surprising that local extremes may difîer significantly from the results of 
statistical predictions based on the underlying linear spectrum. Although further 
work is undoubtedly required, the energy transfers identified within this study 
may provide at least a partial explanation for the occurrence of rogue waves. 
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Abstract. A general method is presented for estimating distributions 
of the characteristic wave parameters of second-order Stokes waves. The 
second-order Stokes waves are expressed as a sum of a linear paxt (Gaus-
sian process), and a non-linear part (quadratic transformation of a Gaus-
sian process). Using Rice’s formula the mean up-crossing intensities are 
estimated for different sea levels. The Transform Gaussian Process Method 
is then used to obtain the distributions. A numerical example is shown 
where the distributions of crest period vs crest amplitude are estimated. 

1 Introduction 

In safety analysis of offshore structures and marine vessels there are mainly two 
types of problems we need to consider: the estimation of the probability for waves 
to exceed a critical level, and the estimation of the variability of the stresses that 
causes fatigue. Most research has been carried out under the assumption that 
both the wave loads and the responses of the offshore structures are Gaussian 
processes. However, statistical analyses of real sea data show that the high and 
steep waves deviate from this assumption. Moreover, it is well known that most 
of the offshore structures are non-linear systems, and accordingly their response 
processes are also non-Gaussian. 

In this study we consider the non-linear process of the second-order descrip-
tion of the sea, the so called Stokes waves. We apply Rice’s formula in order to 
estimate the mean up-crossing intensities of different sea levels. The numerically 
computed intensities are then used to determine approximately the distributions 
of the characteristic wave parameters of the non-Gaussian sea surface elevation. 

2 The Stochastic Process 

We approximate the random free surface elevation by the second-order Stokes 
wave, η(t). From a probabilistic point of view this is a stochastic process which 
can be expressed as a sum of a linear part (Gaussian process), and a non-linear 
part (quadratic transformation of a Gaussian process). More precisely, 
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where Zj are independent Gaussian processes, and /3j and λj are coefficients 
computed based on the information provided by the sea spectrum S(ωn), which 
is chosen for a given sea state (Hs,Tz). More precisely, these coefhcients pj and 
λj are obtained following a procedure first proposed by Langley in [1], a brief 
review is presented in the Appendix. 

Other processes interesting to engineers can be represented as in eq. (1), 
such as the motion response of a Rnear structure subjected to a Gaussian wind 
velocity, and the excursion response of a moored floating offshore platform in a 
random sea. Some research has been done, see for instance [3] or [4]. 

3 The Narrow-Band Approximation 

In case of the narrow-band approximation the interaction coefficients En,m and 
E

n m
 (see the Appendix), become 

where ωp is the peak frequency. Introducing this information into the formulation 
presented in the Appendix we can verify that eq. (1) becomes much simpler 

(t) — β
1
Z

1
(t) + λ1Z1(t)2 + λ2Z2(t)2 (3) 

where 

In general, when the narrow-band approximation is considered in the Rtera-
ture, the process is written as 

where X (t) is a zero mean Gaussian process with one side spectral density S(ω) 
and Y(t) is its Hilbert transform. It is easy to see that eqs. (3 and 5) are equiv-
alent. 

4 Distributions of the Characteristic Wave Parameters 

In order to develop practical models for use in the offshore-industry it is necessary 
to ’obtain’ statistics of waves. There are different ways to obtain these statistics, 
either from direct measurements, or from different models which take the wave 
spectrum as input. Although, direct measurements appear to be straight forward 
they have a great disadvantage: the measurements are never long enough to 
provide valid information concerning the extremes. In addition, the data are not 
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’clean’, i.e. they need processing which leads to a loss of information, increasing 
costs and time. Thus, there is a great need for mathematical models that enable 
us to obtain statistics of waves from a selected sea spectrum. 

We can say that there exists mainly two types of models: models based 
on Monte Carlo techniques and development of simulators, and models derived 
from theoretical considerations. Here, we use a model of the second type, more 
precisely the Transform Gaussian Process Method, which was first presented in 
Rychlik et al. [7]. The main idea is as follows: once we have written the sea 
elevation process as in eq. (1), and computed the intensity of up-crossings for 
the different sea levels μ+(u), we consider a transformed Gaussian process which 
has the same intensity of up-crossings as our initial process. For this last process 
we compute then the different distributions of the characteristic wave parameters 
(statistics of waves). 

In this way, the problem of estimating the distributions of the characteristic 
wave parameters of the process η(t) is reduced to that of estimating distributions 
of the characteristic wave parameters of a Gaussian process as in [5]. More pre-
cisely, these distributions are obtained using a MATLAB toolbox WAFO-Wave 
Analysis in Fatigue and Oceanography 1, which was developed by the depart-
ment of Mathematical Statistics in Lund, and contains a comprehensive package 
of numerical subroutines and programs for statistical analysis of random waves. 

5 Numerical Procedures 

5.1 The Mean Up-Crossing Intensity 

For a given water level u the mean up-crossing intensity μ+(μ) of the process 
η(t) is given by Rice’s formula 

where pηη,(u,z) denotes the joint probability density function of η and η. This 
density is very difficult (if possible) to compute. In contrary, the characteristic 
function of r] and η, M(θ1,θ2) can be evaluated by a closed form. By definition, 
M(θ1,θ2) = E [

e
iθ1η+iθ2ηn] and is the Fourier transform of p

nn
(u, z). Introducing 

this fact and using the Fourier transform properties, the formula above can 
be written in a more compact form (which replaces the triple integration by a 
double one, and introduces an extra derivative). As shown by Naess in [2], (for 
a stationary process) 

1 Available for free of charge at http:/www.maths.lth.se/matstat/wafo/. 
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where the outer integral is interpreted as a principal value integral in the sense 
that /+“ = lime_>.o(/_(^ + /+£°°)- The characteristic function M(61,62) in the 
present case can be evaluated as 

where 

A = I — 2i6θA -2iθ2(AE2l + E12A) + 4θlAVA (9) 
t = (iθiI + iθ2Σ12 -2θ2

2 AV)β 
V = Σ22 — Σ21Σ12 

and A is a diagonal matrix with the parameters λ1, λ2, λ2N on the main 
diagonal. The correlation structure between the Gaussian variables Zi,(t), Zj(t) 
and Zi(t), Zj(t) is given by the following covariance matrix 

where 

E11(i, j) =E[ZiZj] Σ12(i, j) = E[ZiZj] (11) 
E-n(i,j) = E [ZiZj] E22(i,j) = E[Z,Zj\. (12) 

In order to solve the integral inside brackets in eq. (7) we use a method similar 
to the Saddle Point Method. It is a generalization of the numerical method first 
proposed by Rice in [6]. 

6 Numerical Example 

The input spectrum selected for the present example is a JONSWAP spectrum 
(deep waters) with significant wave height Hs = 7 [m], peak period TP = 11 [sec] 
and peak-shape parameter 7 = 2.3853. The spectrum is evaluated in 257 bands 
of frequency, ranging from 0 to 3 [rad/sec], see figure (1) on the Left. 

To evaluate the accuracy of our theoretical model we simulate the process 
represented by the spèctrum above, and compute the empirical up-crossings 
intensity for it. Hence, eq. (13) with the interaction coefficients evaluated for 
the deep water conditions, is used to perform 100 non-linear simulations, each 
of them with a duration of T = 10000 [sec] « 2.8 [hours] where At = 0.5 [sec]. 

We define crest Period Tc, as the period between an up-crossing and the 
next down-crossing, and crest Amplitude Ac the amplitude of the crest. In the 
Right graph of figure (1) we can see the empirical distribution (Tc, Ac) obtained 
from the simulation described above. Notice that the dots represent only part 
of the simulated waves. The continuous lines (level curves) are obtained using a 
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Fig. 1. Left: JONSWAP spectrum used in the example. Right: Kernel density estimate 
of Tc and Ac, using circa 100000 non-linear simulated waves. 

Fig. 2. Theoretical method (bold line) and Kernel estimate (thin line). 

Kernel density estimate (WAFO toolbox). Each of the level curves encloses the 
percentage of waves mentioned in the legend of the plot. For example, if we look 
to the outer curve; it means that 99.9 % of the simulated waves are inside this 
curve, and 0.1 % are outside. In the present case this corresponds to have about 
100 waves outside this level curve. 

To apply the method here proposed we proceed as follows: We compute the 
coefficients βj and λj as explained in the Appendix, and then we estimate the 
mean up-crossing intensity (u) according to eq. (7) using a numerical method. 
Next we use μ+ (μ) as input to the Transform Gaussian Process Method in order 
to obtain a transformation function and finally get the distribution (Tc,Ac). 
The results obtained are presented using bold line in Fig. 2. When comparing 
them with the Kernel density estimate (thinner line), we notice that the steepest 
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Fig. 3. Left: Kernel density estimate of Tc and Ac, in the case of the narrow band 
approximation. Right: Comparison of the Kernel density estimates; broad band (dashed 
line) and narrow band (solid line). 

waves are ’missing’. The distributions fit well each other in the areas with larger 
number of waves, however in the case of waves of short (Tc) and high (Ac) the 
curves are not agreeing so well. 

6.1 Narrow-Band Approximation 

To the Left in figure (3), we have the Kernel density estimate of Tc and Ac in 
the case of the 

Fig. 4. Theoretical method (bold line) and Kernel estimate (thin line). 
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narrow-band approximation, and to the Right we compare it (solid line) to the 
Kernel estimate in the broad-band case (dashed line). We notice that we obtain 
smaller waves when we assume a narrow band spectrum. 

In figure (4) we apply the theoretical method (bold line) to the narrow-band 
case and compare it to the empirical distribution. In this case it seems that the 
theoretical distribution fits well with the empirical distribution in all the regions. 
Although, since narrow-band is assumed we have already excluded the very steep 
waves. 

7 Conclusions and Further Developments 

We have applied the Transform Gaussian Process Method to obtain distribu-
tions of the characteristic wave parameters of the second-order Stokes waves. A 
case study where we used the JONSWAP spectrum as input has been presented. 
We have found that the simulations of the complete second-order Stokes waves 
model contains steeper waves then the waves obtained when applying the Trans-
form Gaussian Method. However, for larger values of crest period there is a good 
agreement between the simulated values and the values produced by the theoret-
ical model. When we consider narrow-band approximation the simulations and 
the theoretical model give similar results which shows that the theoretical model 
works well under this assumption. 

Currently we investigate if the same tendencies appear when we consider 
other types of wave spectra as input, namely bi-modal spectra and measured 
spectra. 
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Appendix 

Computation of j3j and λj in the Case of the Second-Order 
Description of the Sea 

The second-order sea elevation can be expressed as 

η(t) = sTX(t) + X(t)T(Q + R)X(t) + Y(t)T(Q - R)Y(t) (13) 

where s is a vector with components S(ω
n

) AÜJ, X(t) and Y(t) are vec-
tors for each t, and Q and R are real symmetric matrices with components 
Q(n,m) = S(ωn) S(ω

m
) Au En~

m
 and R(n,m) = S(ω

n
) S(ω

m
) AuE+

m
. 

The interaction coefficients E~
m

 and E/
m

, are obtained from a second-order 
perturbation analysis. In the case of deep waters they assume the following form 

Introducing an eigenvalue decomposition, eq. (13) becomes 

r)(t) = s TX(t) + X(t)TPf AxPiX^t) + Y(t)TPT A2P2Y(t) (15) 

where Ai is a diagonal matrix with the eigenvalues in the respective diagonal 
and Pi contains the corresponding eigenvectors per row. Introducing a new set 
of Gaussian random variables Z/t), such that 

we can write the stochastic process r)(t) as in eq. (1), with the coefficients com-
puted as follows 

where (ωi)d denotes a column vector formed by the diagonal elements of ωi
. 
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Abstract. The results of probability analysis of rogue waves recorded at 
North Alwyn between August, 1994 and June, 1998 are presented as a bi-
variate distribution of normalised H' = H/H
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 vs. S' — gST/
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for rogue waves defined as H' > 2.0, S' > 0.5. The probability distri-
bution is the extreme tail of the bivariate distribution formed from the 
overall population of H' and S'. The rogue waves exhibited a maxginal 
exponential distribution of normalised height, the marginal distribution 
of normalised steepness was Weibull and the joint distribution showed 
that the maxima of the conditional distribution of normalised steepness 
were constant at 1.5. The rogue waves were generally 50% steeper than 
the significant steepness and the preceding and succeeding waves had 
steepness values around half the corresponding significant values while 
their heights were around the significant height. Tentatively we propose 
that a more logical definition for rogue waves would be those where 
H' > 2.3 since the probability distribution of these waves appears to 
depart from that of their neighbours from this point. 

1 Introduction 

The conventional definition of rogue waves as all waves exceeding twice the 
significant wave height (e.g. Ochi [l],page 253) provides a conveniently precise 
criterion for the automated analysis of field data records; although it can be ar-
gued, Ochi, op. cit., that such waves would occur fairly frequently in the natural 
record of extended duration storms. The approximate asymptotic formula due 
to Longuet-Higgins [2] for the expected value of the maximum wave height for 
the number of zero-crossing waves, assuming stationary conditions, is 

which leads to N = 1655 with H
max

/H
mo

 = 2. 
For T

z
 ranging between 8 and 16 seconds the corresponding durations in 

hours are: 

T
z
 (s) 8 10 12 14 16 

Duration (h) 3.68 4.60 5.52 6.44 7.36 
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The duration of quasi-stationary conditions at the storm peak, with H
mo

 varying 
within ±0.5m, typically falls in the range between 2 to 5 hours. Total storm 
durations commonly exceed these values - two data sets collected in the North 
Sea in 1997 had lengths of 159 hours and 139 hours during which H

mo
 exceeded 

3.5m. For the purposes of this paper we have adopted this definition of rogue 
waves and applied it to data collected over four years in the northern North Sea 
in order to provide a probabilistic measure of rogue wave occurrence based on 
the joint distribution of normalised wave height and steepness. The height and 
steepness of these extreme waves has been compared with corresponding values 
for neighbouring waves in order to determine if the extreme waves are singular 
isolated events in the wave record or if they belong to groups. 

The paper begins with a summary of the data collection systems at North 
Alwyn and procedures adopted to process this data to obtain joint H', S' distri-
butions conditional on H

mo
,T

z
. This data set has been reprocessed to provide 

a bivariate H', S' distribution for rogue waves. Finally, the height and steepness 
characteristics of the rogue waves and their immediate neighbours are compared 
to provide a context for the occurrence of rogue events. 

2 North Alwyn Metocean data collection station 

The metocean observation system at North Alywn was set up in 1994 and in-
cludes three wave altimeters and two anemometers. It records waves and wind 
continuously at 5Hz when the significant wave height exceeds 3.5m; at other 
times 20-minute summary statistics only are recorded. Wolfram, et al. [3] have 
documented full details of the instrumention and analysis procedures. Detailed 
results of data analysis of six severe storms, recorded by the system, were re-
ported by Linfoot, et al. [4]. 

3 Statistics of Wave Height and Steepness at N Alwyn 

All the data collected between 1994 and 1998 have recently been analysed to 
determine bivariate Weibull probability models for individual wave height and 
steepness conditional on H

mo
 and T

z
 (Wolfram et al., [5]). The bivariate distri-

bution is 

where a, β and γ are dimensionless parameters, and r/ = TSλ where τ and A are 
also dimensionless parameters. Data analysis involved aggregating the individ-
ual wave data for each twenty-minute observation period into the corresponding 
H

mo
,T

z
 bin . Bivariate Weibull models were then fitted to the aggregated data 

in individual bins as shown in Table 1 and regression models were determined 
for the parameters of the bivariate distributions over H

mo
,T

z
 space. Predictions 

of the bivariate parameters based on these regression models were then tested 
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against observations for two bins which were not included in the regression anal-
ysis and found to give reasonable correspondence [5]. 

Table 1. Coefficients for bivariate Weibull distribution for normalised waveheight H' 
and steepness S' for various Hmo, Tz

 bins 

Hmo Tz 
a β 7 T A Total No. waves 20 minute 

waves analysed periods 

6.5 7.5 0.729 1.9491 1.8215 0.701 0.0894 48298 46848 302 
6.5 8.5 0.768 1.9383 1.9771 0.739 0.1346 154708 151651 1096 
7.5 8.5 0.748 1.9752 1.9083 0.742 0.1686 35729 35078 253 
8.5 8.5 0.707 1.8762 1.7610 0.760 0.2902 4823 4699 34 
6.5 9.5 0.810 1.8387 2.0911 0.739 0.1038 20154 19833 160 
7.5 9.5 0.782 1.9496 2.0333 0.762 0.1787 41897 41297 331 
8.5 9.5 0.764 1.9855 1.9905 0.768 0.2134 26715 26343 211 
9.5 9.5 0.730 2.0648 1.9318 0.774 0.2768 4613 4581 37 
7.5 10.5 0.817 1.8392 2.1285 0.735 0.0855 5160 5083 45 
8.5 10.5 0.798 1.9444 2.1189 0.773 0.1912 14226 14052 124 
9.5 10.5 0.775 2.0545 2.0977 0.774 0.2154 10032 9969 88 

10.5 10.5 0.719 1.9869 1.9495 0.781 0.3279 4362 4305 38 
11.5 10.5 0.692 1.8412 1.8169 0.761 0.3457 2751 2697 24 
11.5 11.5 0.753 2.0382 2.0415 0.754 0.2215 1939 1926 19 

mean 0.756 1.9487 1.9763 0.754 0.2031 
s.d. 0.038 0.0771 0.1184 0.021 0.0845 

c.o.v. 0.050 0.0396 0.0599 0.028 0.4160 

4 Bivariate distribution of Height and Steepness of 
Normalised Rogue Waves 

In the study reported here the individual binned wave data has been reanalysed 
for the occurrence of rogue wave events in terms of the number of exceedences. 
Table 2 shows the total number of waves in each bin together with the number 
of rogue wave events. 

The complete unbinned data have also been analysed to determine the bivari-
ate H',S' distribution of the rogue waves. These data represent the combined 
extreme right-hand tails of the II', S' distributions for H' > 2 in the study 
referred to above. The best fit simplified distribution was found to be 
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Table 2. Total number of waves (upper) and number of rogue waves (lower) in each 
f ' bin 

Tz(s) 6.5 7.5 
Mid-points of Hmo

 bins (m) 
8.5 9.5 10.5 11.5 12.5 13.5 

7.5 48298 1865 1928 337 962 160 
21 3 8 0 0 0 

8.5 154708 35729 4823 979 703 1001 429 
38 10 6 0 0 0 0 

9.5 20154 41897 26715 4613 1607 1019 123 
1 15 5 4 0 0 0 

10.5 953 5160 14226 10032 4362 2751 1371 221 
0 0 2 1 0 0 0 0 

11.5 106 856 1394 1169 1939 1062 
0 0 0 0 0 0 

12.5 94 390 391 391 
0 0 0 0 

All Tz 224219 84651 48642 17355 9193 7261 3376 221 
60 28 21 5 0 0 0 0 

Fig. 1. : Bivariate distribution of normalised waveheight H' and steepness S' for rogue 
waves. (a) scatterplot and kernel density estimate contours at 90% to 10%. (b) fitted 
distribution (c) marginal distribution of waveheight and (d) marginal distribution of 
steepness showing fitted model (smooth curve) and data 
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since log likelihood fitting gave 7 « 1 and where C is a normalising constant. 
The other parameters were a = 1.60,/? = 4.18, r = 0.25 and A = -0.089. 

5 Comparison of rogue waves with their immediate 
neighbours 

Joint probability models have also been fitted for the height and steepness of 
the waves immediately before and after the rogue wave events. 

Kernel density estimates were made for the scatterplots for the height and 
steepness of the rogue waves against the waves immediately preceding and suc-
ceeding them. Quantile-quantile plots were also constructed to determine if the 
rogue waves departed from the expected distributions of wave height and steep-
ness of their immediate neighbours. The KDE and QQ plots show that the 
normalised largest waves occur in groups where approximately 50% of the imme-
diately preceding and/or succeeding waves exceed H

mo
 and 90% exceed H

mo2
/2. 

The QQ plots show that the highest 20% of the rogue waves, i.e those with 
H' > 2.3, follow a different distribution of normalised height to their neigh-
bours. 

Fig. 2. : Quantile-Quantile plots of normalised height and steepness of preceding cind 
succeeding waves. Deviation from straight line indicates samples from differing distri-
butions 
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Fig. 3. : Relative and normalised heights of waves preceding (H — 1) and succeeding 
(H + 1) the rogue waves H; kernel density estimate contours at 80% to 20% 

Fig. 4. : Normalised steepness of waves preceding (S — 1)' and succeeding (S + 1)' the 
rogue waves against normalised rogue wave steepness S' and height H': kernel density 
estimate contours at 80% to 20% 
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6 Conclusions 

We conclude that the rogue waves were generally 50% steeper than the signifi-
cant steepness and that the preceding and succeeding waves had steepness values 
around half the corresponding significant values while their heights were around 
the significant height. The rogue waves exhibited a marginal exponential distri-
bution of normalised height, the marginal distribution of normalised steepness 
was Weibull and the joint distribution showed that the maxima of the condi-
tional distribution of normalised steepness were constant at 1.5. Tentatively we 
propose that a more logical definition for rogue waves would be those where 
H' > 2.3 since the probability distribution of these waves appears to depart 
from that of their neighbours from this point. 
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Appendix CP: Coloured Plates 



ROGUE WAVES - DEFINING THEIR CHARACTERISTICS FOR MARINE 
DESIGN 

Keynote address by Douglas Faulkner 

Fig. 10. MV SELKIRK SETTLER encounters a beam on rogue wave in 1977 

Fig. 11. Container ship plunging into moderate seas 

381 



382 

CAPSIZE RESISTANCE AND SURVIVABILITY WHEN SMALLER VESSELS 
ENCOUNTER EXTREME WAVES 

by Bruce Johnson 

Wave data measured on 27-11-98 
Esso Kingfish-B platform 

Fig. 1. Wave height (significant and maximum) and direction in eastern Bass Strait 
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STATISTICS OF WAVE CRESTS FROM SECOND ORDER IRREGULAR WAVE 
3D MODELS 

by Marc Prevosto 

Fig. 1. From directional spectra to wave kinematics 

Fig. 2. Waterdepth 1000 meters 
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STATISTICS OF WAVE CRESTS FROM SECOND ORDER IRREGULAR WAVE 
3D MODELS 

by Marc Prevosto 

Fig. 3. Water depth 30 meters 

Fig. 4. Water depth 20 meters 
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STATISTICS OF WAVE CRESTS FROM SECOND ORDER IRREGULAR WAVE 
3D MODELS 

by Marc Prevosto 

Fig. 5. The biggest crest 

Fig. 6. The equivalent regular wave 

Fig. 7. 3D view of the biggest crest 
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SOME CASES OF OBSERVED ROGUE WAVES AND AN ATTEMPT TO 
CHARACTERIZE THEIR OCCURRENCE CONDITIONS 

by Michel Olagnon and Sylvie van Iseghem 

Fig. 1. Instantaneous space profiles 

Fig. 2. Preceding trough versus crest 
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SOME CASES OF OBSERVED ROGUE WAVES AND AN ATTEMPT TO 
CHARACTERIZE THEIR OCCURRENCE CONDITIONS 

by Michel Olagnon and Sylvie van Iseghem 

Fig. 3. Wave vertical (front/back) asymmetry 

Fig. 4. Wave horizontal (height) asymmetry 



388 

SOME CASES OF OBSERVED ROGUE WAVES AND AN ATTEMPT TO 
CHARACTERIZE THEIR OCCURRENCE CONDITIONS 

by Michel Olagnon and Sylvie van Iseghem 

Fig. 5. Wave steepness 

Fig. 6. Crest front steepness 
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SOME CASES OF OBSERVED ROGUE WAVES AND AN ATTEMPT TO 
CHARACTERIZE THEIR OCCURRENCE CONDITIONS 

by Michel Olagnon and Sylvie van Iseghem 

Fig. 7. Instantaneous space profiles 

Fig. 9. Wind 



390 

CHARACTERIZING FREAK WAVES WITH WAVELET TRANSFORM 
ANALYSIS 

by Paul C. Liu and Nobuhito Mori 

Fig. 1. Freak wave time series and its wavelet spectrum for data set Yura Y88121041 
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CHARACTERIZING FREAK WAVES WITH WAVELET TRANSFORM 
ANALYSIS 

by Paul C. Liu and Nobuhito Mori 

Fig. 2. Freak wave time series and its wavelet spectrum for data set Yura Y8010901 
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THE EMPIRICAL MODE DECOMPOSITION AND THE HILBERT SPECTRA TO 
ANALYSE EMBEDDED CHARACTERISTIC OSCILLATIONS OF EXTREME 

WAVES 

by Torsten Schlurmann 

Fig. 3. Wavelet and Hilbert Spectrum 

NONLINEAR WAVE FOCUSING AS A MECHANISM OF THE FREAK WAVE 
GENERATION IN THE OCEAN 

by Efm Pelinovsky et al. 

Fig. 6. Algebraic breather as a model of abnormal wave appeared in the periodic wave field 
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MODULATIONAL INTERACTIONS OF BROAD-BAND GRAVITY WAVES 
OBSERVED DURING NORTH SEA STORMS 

by Brian Linfool et al. 

Fig. 1. Wave record during storm: (a - upper) large amplitude “riding” waves 240 to 300 
seconds (b - lower) time -frequency plot showing main group modulation at 0.9 Hz and a 
secondary group splitting at 0.13Hz to 0.15 Hz at 240 to 300 seconds 

Fig. 2. 800 seconds of wave data firom North Sea storm (1 Jan 1995): (a -upper) water surface 
elevation time series (b - middle) Time-frequency contour plot derived from S-transform 
matrix: light patches indicate high energy concentrations (c - lower) component time series 
produced by adaptive inversion of S-transform matrix with a 5% Hanning taper applied to ends 
of time series in plots (b) and (c) 
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MODULATIONAL INTERACTIONS OF BROAD-BAND GRAVITY WAVES 
OBSERVED DURING NORTH SEA STORMS 

by Brian Linfoot et al. 

Fig. 4. Time-frequency contour plots of abs (S-matrix) corresponding to the wave records in 
Fig. 3 
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ON THE USE OF SMOOTHED PARTICLE HYDRODYNAMICS TO MODEL 
BREAKING WAVES AND THEIR INTERACTION WITH A STRUCTURE 

by E. Fontaine 

Fig. 1. Comparison between BEM and SPH simulation for a breaking wave in shallow water 
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Rogue waves 2000 
Brest, 29-30 november 2000 
There are now many evidences that some waves do 
significantly exceed the common height and steepness 
expectations that can be derived from existing models. A 
better understanding of why, how, and when these huge 
waves occur should thus be a research priority. The Brest 
ROGUE WAVES 2000 workshop gathered many of the 
scientists and engineers actively working on the subject 
to an opportunity to confront and discuss their most 
recent advances concerning the definition, statistics, 
modeling and prediction of those abnormal waves. 
Keywords: ocean waves, non-linear waves, extremes, 
rogue waves, freak waves. 

Vagues scélérates 
Brest, 29-30 novembre 2000 
C'est aujourd'hui une certitude que certaines vagues 
outrepassent en hauteur et en cambrure les prédictions 
fondées sur les modèles courants. L'amélioration de la 
compréhension des raisons, des mécanismes, et des 
circonstances de leur apparition se doit donc d'être une 
priorité de recherche. Le colloque Rogue Waves 2000 a 
rassemblé à Brest nombre des sçientifiques et ingénieurs 
actifs sur le sujet, qui y ont trouvé l'occasion de confronter 
et discuter leurs avancées les plus récentes en termes de 
définition, de statistiques, de modélisation et de prédiction 
de ces vagues anormales. 32 
Mots-clés : vagues, extrêmes, non-linéarités, vagues 
anormales, vagues scélérates. 
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