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Abstract :   
 
Volcanic eruptions shape Earth’s surface and provide a window into deep Earth processes. How the 
primary asthenospheric melts form, pond and ascend through the lithosphere is, however, still poorly 
understood. Since 10 May 2018, magmatic activity has occurred offshore eastern Mayotte (North 
Mozambique channel), associated with large surface displacements, very-low-frequency earthquakes and 
exceptionally deep earthquake swarms. Here we present geophysical and marine data from the 
MAYOBS1 cruise, which reveal that by May 2019, this activity formed an 820-m-tall, ~5 km³ volcanic 
edifice on the seafloor. This is the largest active submarine eruption ever documented. Seismic and 
deformation data indicate that deep (>55 km depth) magma reservoirs were rapidly drained through dykes 
that intruded the entire lithosphere and that pre-existing subvertical faults in the mantle were reactivated 
beneath an ancient caldera structure. We locate the new volcanic edifice at the tip of a 50-km-long ridge 
composed of many other recent edifices and lava flows. This volcanic ridge is an extensional feature 
inside a wide transtensional boundary that transfers strain between the East African and Madagascar 
rifts. We propose that the massive eruption originated from hot asthenosphere at the base of a thick, old, 
damaged lithosphere. 
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We locate the new volcanic edifice at the tip of a 50 km-long ridge composed of many 66 

other recent edifices and lava flows. This ridge is an extensional feature inside a wide 67 

transtensional boundary that transfers strain between the East African and Madagascar 68 

rifts. We propose that the massive eruption originated from hot asthenosphere at the base 69 

of a thick old damaged lithosphere. 70 

 71 

Since May 10 2018, Mayotte Island (Comoros archipelago, Indian Ocean, Figure 1a) has 72 

experienced a major magmatic event off its eastern coast. This event generated more than 11000 73 

detectable earthquakes (up to Mw 5.9), surface deformation rates of up to 200 mm/year and 74 

unusual very low frequency (VLF) earthquakes 1,2,3. As of May 2021 (the time of writing), 75 

Mayotte is still deforming and both VLF events and earthquakes with Mw up to 4 are still being 76 

recorded.  77 

Prior to this event, no recent eruption or significant seismic activity was reported around 78 

Mayotte 2. Only two earthquakes were detected within 100 km of the island since 1972 4 and 79 

the most recent volcanic exposure is a 4-6 kyr-old pumice layer sampled in the lagoon 80 

surrounding the island 5. 81 

Recent geodynamic reconstructions suggest that the Comoros archipelago was built on ~150 82 

Ma old oceanic lithosphere accreted to accommodate the opening of the Western Somali Basin 83 

6. The Comorian volcanism may result from partial melting of the base of this old lithosphere 84 

in interaction with plume material 7,8,9, possibly super plumes originating from Africa 10,11,12 , and 85 

may have been controlled by lithospheric deformation 13 14. Subaerial volcanic activity on 86 

Mayotte island began 11 My ago 13. Well-preserved cones, tuff rings and maar craters in the 87 

Northeastern part of the island (on Petite Terre and in and around Mamoudzou 15,7 and further 88 

offshore 16 (Figure 1b) testify to relatively recent (probably Holocene, 7) subaerial explosive 89 

volcanic activity. Gas emissions on Petite-Terre indicate magma degassing 17. 90 
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 91 

The discovery of the eruption and the new volcanic edifice 92 

To determine the origin of the seismicity and deformation and to search for any seafloor 93 

volcanic activity, we deployed Ocean Bottom Seismometers (OBS) with attached Absolute 94 

Pressure Gauges (APG) and acquired high-resolution marine data (bathymetry, seafloor and 95 

water column backscatter), rock dredges and CTD (Conductivity-Temperature-Depth)- Rosette 96 

during the MAYOBS1 (2-19 May 2019) cruise aboard the R/V Marion Dufresne 18.  97 

A systematic 12 kHz multibeam echosounder survey east of Mayotte, revealed a 820 m tall new 98 

volcanic edifice (NVE) 50 km east of Mayotte (Figure 1). The NVE was detected by comparing 99 

our data to those acquired during a 2014 survey by the French Naval Hydrographic and 100 

Oceanographic Service (SHOM) 19 (Figure 2a). The edifice sits on an area that, in the 2014 101 

seafloor topography, was locally almost flat at around 3300 m below sea level (bsl).  102 

The NVE has grown on the lower insular slope of Mayotte, at the eastern tip of a WNW-ESE 103 

trending volcanic ridge (Mayotte ridge) on the submarine flank of Mayotte (Figure 1). The 104 

NVE and many other volcanic features along the ridge have high acoustic reflectivity compared 105 

to the surrounding sediments, indicating recent volcanic activity all along the ridge (Figure 1c 106 

and extended data Figures 1,2,3). The ridge is 50 km long, extending from the most recent 107 

subaerial cones and maar craters on Grande-Terre and Petite-Terre islands (MPT Volcanic 108 

zone) to the NVE (Figure 1b). It is divided into two main segments, one on the upper slope 109 

(western) and one on the mid- to lower-slope (eastern). The eastern segment trends N130°E and 110 

is made of many constructional features similar to mafic submarine eruption features observed 111 

elsewhere 20,21,22: cones up to 2 km-wide and 500 m-high, probably monogenetic; lava flows 112 

with smooth bathymetry, elongated ridges with steep slopes and varying orientations, which 113 

could result from dykes in more sedimented areas (Figure 1 and extended data Figure 2d,e). 114 
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The western segment is made of volcanic features having more complex morphologies and 115 

emplaced along different directions (Figure 1b and extended data Figure 2b,c). The main 116 

features are: i) Two N40°E and N120°E trending sets of high-backscatter cones and lava flows, 117 

northeast and southeast of Petite-Terre, respectively. These sets converge toward the onshore 118 

maar craters of Petite-Terre and may have been emplaced along pre-existing fractures or faults; 119 

ii) a horse-shoe shaped edifice (the Horseshoe) with a 3.5 km wide cone, steep slopes and a 120 

large collapse-induced scar. East of the Horseshoe, several smaller cones and volcanic features 121 

are aligned E-W, suggesting eruptive fissures. Large lava flows originate from this fissure 122 

system. iii) a 4 km-wide circular structure (the Crown), whose rim is crowned by seven 1 km-123 

wide, 100-150m high volcanic cones. Their arrangement suggests typical post-caldera domes 124 

23. West of the Crown, submarine canyons and slope failure scars terminate at a N-S trending 125 

slope break that may be controlled by faulting. The Crown appears to sit inside a larger 10 km 126 

wide flat depression, bounded by faults and fissures, which could be the remnant of an ancient 127 

caldera collapse. 128 

The NVE is located at the eastern tip of the eastern segment of the Mayotte ridge (Figures 1b). 129 

In May 2019, its summit rose to 2580 m bsl. Its central peak resembles a pyramid with steep 130 

and smooth slopes (Figure 2a and extended data Figure 3). Radial ridges, up to 300 m thick 131 

and extending up to 5 km from the central pyramid, display hummocky morphology similar to 132 

that observed along mid-ocean volcanic ridges 24 and active seamounts 22 and probably 133 

correspond to coalesced pillow lava mounds 21. Beyond and in-between the hummocky ridges, 134 

flat areas up to 100 m thick, with high backscatter, could indicate channelized lava flows or 135 

sheet flows emplaced at high effusion rates 25. We calculate the volume of material 136 

corresponding to the 2014- 2019 seafloor depth difference to be at least 5.0 ± 0.3 km3 (Figure 137 

2b). Popping fragments of very fresh basanitic pillow lavas (SiO2 47 wt%, Na20 + K2O 7.1 138 

wt%, MgO  5.7 wt% 26) were dredged on the northeastern flank of the NVE, near its summit 139 
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(see Figure 2a for sample location and supplementary S1). The lavas, similar to other basanites 140 

sampled in northern Mayotte 7 are aphyric with rare microphenocrysts of olivine (Fo70) and Ti-141 

magnetite. 142 

A ~1900-m high, vertical acoustic plume, rising through the water column from the NVE 143 

summit to ~800 m below the sea surface, was imaged several times during the cruise using the 144 

ship-borne multibeam echosounder (Figure 3, supplementary movie 1). A vertical CTD/rosette 145 

cast to 3137m depth above the northern flank of the NVE, 1000m offset from the summit, 146 

showed strong geochemical signatures. High volatile concentrations (H2 = 550nM, CH4 = 831 147 

nM, CO2= 34 µM), high turbidity and high total alkalinity values were associated with 148 

temperature and pH anomalies (respectively 0.2°C and 1 pH unit) 27 and Extended data Fig. 4). 149 

Such chemical anomalies are characteristic of submarine eruptions and may reflect magma 150 

degassing 28, molten lava interaction with seawater 29 or fluid/water discharge from subsurface 151 

storage zones in the crust or sedimentary cover 30. The height and the strong backscatter 152 

signature of the acoustic plume suggest that a mixture of solid particles (pyroclastic/hyaloclastic 153 

jet 28) and/or differentiated fluid phases (droplets, hydrate-coated bubbles or free gas 31) are 154 

driven upward through the water column from the NVE summit 32. High turbidity measured at 155 

water depths below 2500 m, on the northern flank of the NVE, likely indicates the presence of 156 

these particles 33. Both the multiple observations of the vertical acoustic plume at the summit of 157 

the NVE and the high H2 concentration 1 km away indicate that the eruption was likely on-158 

going in May 2019 29.  159 

In the upper slope zone, 30 km away from the volcano, two, ~1000-m high acoustic plumes 160 

were detected above the Horseshoe edifice (Figure 1 and extended data Figure 5, movie 2) but 161 

no significant changes in seafloor morphology or reflectivity were detected. 162 

 163 

The seismicity and VLF events relocated by OBS data  164 
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The combined land-OBS network of seismic stations (supplementary Figure S2.1) detected 165 

17000 events between February 25 and May 6, 2019. We manually relocated about 800 of the 166 

largest earthquakes onboard (see method and supplementary S2). Ninety-four percent of the 167 

earthquakes cluster beneath the western segment of the Mayotte ridge, 40 km west of the NVE 168 

and 5 to 15 km east of Petite-Terre (swarm 1, Figure 1). Almost all of the remaining events 169 

form a secondary swarm beneath the northwestern tip of the eastern segment, 30 km from 170 

Petite-Terre and 20 km from the NVE (swarm 2, Figure 1). A few events are also scattered 171 

along the eastern segment. We searched the full OBS-land catalog for events beneath the NVE, 172 

but found none. The located earthquakes are all very deep, ranging from 25±5 to 50±5 km. In 173 

addition, all P-S arrival delays recorded by an OBS deployed for 48h above the main swarm 174 

were greater than 3 seconds, indicating no events less than 20 km depth (Figure 4, extended 175 

data Figure 6b, method and supplementary S2.2). The land-OBS catalog does not show any 176 

evidence for seismicity migration, but it only represents a two-month “snapshot” of the activity. 177 

To extend the observational time window, we relocated 139 earthquakes recorded by the land 178 

stations between May 2018 and the first OBS deployment. All the events were beneath the 179 

volcanic ridge (extended data fig. 6a). During the first weeks of the crisis, they were mainly 180 

located beneath the northwestern tip of the eastern segment, between 30 and 50 km depth, 181 

whereas in the last two weeks of June, a few events occurred closer to the NVE and between 182 

30km-depth and the surface.  183 

In addition to the high frequency seismicity, VLF events were recorded by the OBSs wideband 184 

hydrophones. Their waveforms are similar to those of the globally detected November 11 2018 185 

event (exponentially decaying monochromatic signals of approximately 2000s duration, with 186 

dominant period of ~15 s and polarized Rayleigh waves), suggesting repeated excitation of the 187 

same radiating source. We located 84 VLF events using waveform cross-correlation (see 188 
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method and supplementary S2.3), all of them are most probably above seismic swarm 1 189 

(Figures 4 and extended data Figure 6b), at a mean depth of 22 ± 15 km. 190 

 191 

GNSS data and APG modeling 192 

The GNSS network includes nine stations on Mayotte Island and two far field stations at Diego 193 

Suarez and Grande Glorieuse islands. The geometry is not optimal, preventing geodetic 194 

inversions for complicated structures or media. We performed Bayesian inversions 34 of the data 195 

using a point source in an elastic half-space with two distinct analytical formalisms: an isotropic 196 

point source 35 and a point compound dislocation model (pCDM, 36 see method, supplementary 197 

S3 and extended data Figure 7). In both cases, the results indicate ~5 km3 deflation of a deep 198 

reservoir (> 30 km). The simplest and most robust model is the deflation of ~ 40 km deep 199 

isotropic source below the eastern segment of the Mayotte ridge. An increase in absolute 200 

seafloor pressure measured by all APGs on the OBS frames, interpreted as seafloor subsidence, 201 

is compatible with these models (see method, supplementary S3, extended data Figure 7d).  202 

 203 

Magma reservoirs and chronology of the eruption 204 

Most of our located seismicity and modelled GNSS sources lie in the lithospheric mantle, 205 

beneath the ~17 km deep Moho 37. Volcanic seismicity this deep is rarely documented 38,39, 206 

especially in dense swarms during eruptions. 207 

The distribution of the seismicity in the first weeks of the crisis suggests a dyke migration from 208 

the mid-slope zone to the NVE, along the eastern segment of the Mayotte ridge. This is also 209 

supported by the migration of the largest earthquakes’ Centroid Moment Tensor depths 40 210 

towards the surface (extended data Figures 6c and 8) and agrees well with 1,2. The earthquakes 211 

show strike-slip focal mechanisms compatible with a least compressive principal stress 212 

orthogonal to the eastern segment of the ridge. Similar stress trends have been observed during 213 

dyking events beneath the Izu peninsula in Japan 41 and in Iceland 42 but at much shallower 214 
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depths, where they were interpreted as seismic shear faulting caused by stress transfer to the 215 

surrounding vertical faults in response to dyke opening and propagation.  216 

During the first six weeks of the crisis, the magma migrated 20 km laterally along the eastern 217 

segment of the Mayotte ridge, then upward (Figure 4 and extended data Figure 8). The building 218 

of the NVE may have begun in July 2018, once the dyke reached close to the surface 2,1 allowing 219 

for high magma flow rates and rapid ensuing growth. On the basis of this assumption, we 220 

estimate a minimum mean lava flow rate of ~180m3s-1 between the start of the eruption on the 221 

seafloor and our survey (~ 11 months). The local stress probably decreased considerably once 222 

the magma path to the NVE was opened, as is observed during many eruptions involving dyke 223 

propagation 43, which would explain why no earthquakes were detected beneath the NVE during 224 

the OBS deployment. 225 

After the dike reached the near surface, seismicity resumed beneath the mid- and upper-slope 226 

volcanic zones (Figure 4 and extended data Figures 6a,b and 8) and its pattern appears to be 227 

constant since September 2018 2. This stationary seismicity could be caused by stress 228 

perturbation along pre-existing structures and/or fluid (gas, magma or water) motions. The 229 

swarm 1 earthquakes cluster beneath the ancient caldera structure inferred from our high-230 

resolution bathymetry (Figure 1c and extended data Figure 6b and 8). This seismicity could 231 

indicate activation of pre-existing subvertical faults 44 above a deep (> 55 km) depleting 232 

reservoir (R1,4), as has been observed during caldera collapse events 45: if so, these faults would 233 

be much deeper than documented elsewhere. Analog models for collapse of a caldera with a 234 

high-roof aspect ratio (thickness/width >> 1) indicate reverse fault motions during an initial 235 

downsag stage 46, in agreement with the focal mechanism of the May 14, 2019 Mw4.9 swarm 1 236 

region earthquake (Figure 4 and extended data Figure 8) and 1. 237 

The VLF events located above swarm 1 may be generated by the resonance of a fluid-filled 238 

(magma, gas or hydrothermal) shallower cavity or a fluid-filled crack, most probably at the 239 
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base of the crust. The characteristic frequency and duration of these events are very different 240 

from VLF events typically observed in volcanic zones e.g. 47. Simple up-scaling of fluid 241 

resonance models 48,49 implies a shallower reservoir size of several kilometres (R3, Figure 4). 242 

The excitation mechanism could be rapid slip and related strain on faults close to the reservoir, 243 

or episodic collapse of a piston at the base of this shallow reservoir 47. The acoustic plumes 244 

emanating from the overlying Horseshoe edifice may result from actively degassing of this 245 

shallower reservoir. 246 

Both the distribution of seismicity over time and the surface deformation models suggest the 247 

drainage of an exceptionally deep reservoir by a dyke that propagated from the base of the 248 

brittle lithosphere to the eastern portion of the Mayotte ridge, possibly intersecting another 249 

vertical storage zone below seismic swarm 2 before reaching the surface (R2, Figure 4 and 250 

extended data Figure 8). Within the uncertainties the GNSS isotropic model may reflect the 251 

drainage of reservoir R2 in the brittle lithosphere. The deeper reservoir (R1) may have slowly 252 

recharged from the asthenosphere before reaching tensile failure in May 2018 50.  253 

Magma roots and paths. 254 

The eastern segment of the Mayotte ridge, along which the dike propagated, has the same 255 

orientation as many other volcanic features over a range of scales (Quaternary dykes, volcanic 256 

vent alignments, ridges and volcanic rift zones) in the northeastern part of Mayotte Island 15 and 257 

in and around the other Comoros islands 13,51 (Figure 5 and extended data Figure 9). The left-258 

lateral en-echelon arrangement of these features resembles that of extensional tectonic 259 

structures in a context of oblique extension (i.e in segmented and diffuse strike-slip fault 260 

systems 52 or highly-oblique rifting (e.g. 53,54,55). We infer that the Mayotte ridge results from the 261 

interplay between volcanism and tectonics. The location and orientation of the volcanic features 262 

may be in part controlled by the pre-existing Mesozoic fracture zones 6 but they probably also 263 

emplace along new tectonic structures. These tectonic structures are extensional (fissures or 264 
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step-overs) and open as a result of volcano-tectonic interactions in a wide E-W striking zone, 265 

to transfer the strain between the N-S striking offshore branches of the East African rift 56 and 266 

the grabens of Madagascar (Aloatra and Ankai) 57. In this context, high strain rates 54 or highly 267 

damaged zones may develop 58 (Figure 5a inset) in between the main en-echelon extensional 268 

structures. Such zones may constitute high-permeability zones where large magmatic reservoirs 269 

can develop. The main Comoros volcanic islands may have grown above such zones.  270 

Between Mayotte and Madagascar, the lithosphere-asthenosphere boundary (LAB) is a sharp 271 

limit between a high-velocity 150 Ma lithosphere and a low-velocity asthenosphere, at about 272 

70 km depth 59,60. The low-velocity asthenosphere is interpreted as hot material spreading 273 

beneath the Mascarene basin and beyond 61. Heating of the base of the oceanic 274 

lithosphere damaged by extensional tectonic and loaded by Mayotte island 62 may favour the 275 

ponding of large volumes of buoyant melts. Pore pressure increase in these zones may in turn 276 

favour failure of deep reservoirs and faults inside the brittle lithosphere  277 

The largest eruption ever documented in submarine domain 278 

The NVE extruded volume (as of May 2019) is 30 to 1000 times larger than that estimated for 279 

other deep-sea eruptions 63,25,64,21. It is difficult to evaluate the dense rock equivalent (DRE) 280 

volume 20, but, taking an upper bound of 50% for the DRE factor 65, compatible with the 40% 281 

vesicularity of our rock sample 26, the DRE erupted volume could be as large as 2.5 km3, which 282 

is larger than the 1.2 to 1.5 km3 Havre silicic eruption 66), previously considered to be the largest 283 

documented submarine eruption. It would be 2.5 times larger than the Bardabunga eruption 284 

(Iceland’s largest eruption of the last two centuries) 43 and only 6 times less than Iceland’s 1783-285 

1784 Laki eruption, considered to be one of the largest basaltic eruptions witnessed by humanity 286 

67. The volumes and flux of emitted lava during the Mayotte magmatic event are comparable to 287 

those observed during eruptions at Earth's largest hot spots  (Hawaii, Iceland, 43,68 and one 288 

quarter of that emplaced yearly over the entire mid-ocean ridge system (mean estimate from 289 
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spreading rates over the last 80 Ma 69). It thus represents a considerable input in terms of CO2 290 

flux 70. 291 

Future scenarios could include a new caldera collapse, submarine eruptions on the upper slope, 292 

or onshore eruptions. Large lava flows and cones on the upper slope and onshore Mayotte 293 

indicate that this has occurred in the past. Since the discovery of the NVE, an observatory has 294 

been established to monitor activity in real time (REVOSIMA 71) and return cruises continue to 295 

follow the evolution of the eruption and edifices.  296 
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FIGURE CAPTIONS 566 

 567 

Figure 1: The volcanic ridge offshore Mayotte. a) 3D Westward view of Mayotte island and 568 

insular slope (vertical exaggeration 3). Green stars: Acoustically-detected plumes above the 569 

Horseshoe, the NVE and the degassing area on Petite-Terre island. Left inset: geographic 570 

setting and Global Navigation Satellite System (GNSS) surface horizontal displacements 571 

stations. Black points: seismic stations. Dashed grey lines: Mesozoic fracture zones 6. b) 572 

Geological interpretations of MAYOBS1 data. Purple patches: Volcanic structures (mainly 573 

cones). Pink patches: lava flows and elongated features. Yellow patches: upper slope’s high 574 

reflective lava flows. NVE: in red (central part) and orange (radial ridges and flat flows). Green 575 

stars as in a). Red lines: fissures and faults, dashed lines: inferred faults. black dots: bathymetric 576 

depression. White boxes: location of Fig.2a and Extended data Fig. 3. Inset, as in b with 577 

MAYOBS backscatter data. Pink dots: Ocean Bottom seismometer (OBS) seismicity: yellow 578 

diamonds: location of the Very Low Frequency earthquakes. White boxes: location of extended 579 

data Figure 3.  580 

 581 

 582 

Figure 2: The new volcanic edifice (NVE) offshore Mayotte. a) 30 m resolution bathymetric 583 

maps from shipboard EM122 multibeam, illuminated from N290°E. upper panel: SHOM 584 

bathymetry collected in 2014 19. lower panel: MAYOBS1 bathymetry collected in May 2019 18. 585 

black circle: position of dredge DR01. b) Depth changes between 2014 and 2019. The change 586 

in topography is estimated to be significant when larger than 10 m.  587 

 588 

 589 

Figure 3: The new volcanic edifice (NVE) and the acoustic plume. a) Southward 3D view 590 

of the NVE and the water column acoustic plume observed one hour before the Conductivity-591 

Temperature-Depth (CTD) rosette on May 16th 2019. The White dot and blue patch indicate 592 

the position of the CTD rosette deployment, 1 km far from the summit the volcano. Right inset: 593 

Processed polar echogram from one EM122 multibeam ping on May 16th (13:33 UT), 594 

horizontal and vertical-axes (both in meters) correspond respectively to the cross-track distance 595 

and the water depth. 596 

 597 

 598 

 599 
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Figure 4: Conceptual model of the submarine eruption offshore Mayotte eruption. 600 

Bathymetry as in Figure 1b, no vertical exaggeration. Purple zones: N130°E volcano-tectonic 601 

ridges and segments. Dashed white lines: inferred ancient caldera with degassing zones above. 602 

Cross-section: red and reddish zones: magma storage zones (mush or magma chambers) and 603 

magma pathways involved in the 2018-2020 Mayotte volcanic crisis and seafloor eruption. 604 

Yellow layer: sediments. Dashed lines: subvertical faults beneath inferred caldera possibly 605 

reactivated by the deflation of a deep reservoir. White arrow: possible downsag at an initial 606 

stage of caldera collapse.  Pink dots: 800 earthquakes located using OBSs and land stations. 607 

Other dots: 139 earthquakes from before the OBS deployment: colored dots are from the first 608 

6 weeks of the crisis and white dots from the remaining 8 months before the OBS deployment. 609 

Yellow diamonds: Very Low Frequency (VLF) earthquakes. Blue and red triangles: water and 610 

magma movements, respectively. Blue patch:  Location, with 3 sigma uncertainties, of the most 611 

robust isotropic source deformation model. Moho depth from 37. Lithosphere/asthenosphere 612 

boundary depth from 60,61.  613 

 614 

 615 

Figure 5: Regional volcano-tectonic setting of the submarine eruption offshore Mayotte. 616 

a) Volcano-tectonic setting of the new volcanic edifice (NVE). Volcanic cones and ridges 617 

(purple) from this study and 13,72,16,51. Dots and diamonds : earthquakes as in Figure 4 and 618 

Extended data Fig. 6 and 8. Focal mechanisms for M>5 earthquakes 40. Dotted white arrow: 619 

dyking intrusion along eastern segment of the Mayotte volcanic ridge. Red ellipse: inferred 620 

main volcano-tectonic ridges. Purple ellipses: highly damaged zones in between the en echelon 621 

ridges. Thick black arrows: local extension direction.  Inset: sandbox model adapted from 58 622 

illustrating the possible arrangement of the main volcano-tectonic structures in Comoros. b) 623 

Geodynamic setting of the East African Rift systems. Main tectonic structures and extensional 624 

zones in Africa and Madagascar from this study and 73,57,74,75,56. Purple patches: Quaternary 625 

volcanism in Madagascar 57. Red dots: M> 2.5 earthquakes 4 with focal mechanisms from 40 for 626 

the M>5 earthquakes. Arrows: GNSS horizontal motions 73. Small purple ellipses in the 627 

Comoros as in a) with double dark red arrows: the volcanic ridge east of Mayotte and extension 628 

direction. Inset: Simplified tectonic map of the East African Rift system: Yellow highlights: 629 

most active rifts and graben; Red ellipse: Transfer zone of the Comoros with direction of lateral 630 

motion.  631 

 632 
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METHODS 633 

Summary 634 

Ship-borne Multibeam data was acquired using a Kongsberg EM122 1°x1° during the 2014 635 

19 and 2019 18. Ship-borne Multibeam data were processed with the GLOBE software 76 to 636 

provide 30-m grid spaced digital terrain models and seafloor backscatter imagery and to 637 

calculate depth differences, surface and volumes. The 3D acoustic water column data from the 638 

2019 cruise were processed using SonarScope (@Ifremer) and GLOBE softwares 639 

https://doi.org/10.17882/70460 76. Water column measurements: A CTD-Rosette Seabird 640 

911+ CTD (Conductivity; Temperature; Depth) equipped with an altimeter, an Aanderaa 641 

oxygen optode and a Seapoint Turbidity Meter was mounted on a carousel with 16 ®Niskin 642 

sampling bottles (8L) to measure and sample throughout the water column.  Sub-sampling was 643 

performed for onboard analyses (pH, alkalinity and total CO2 by pH electrode and titrator) and 644 

for onshore analyses (CH4 analysis by the purge and trap method and H2 and CO2 analysis by 645 

the Headspace method). Seismology: 800 earthquakes identified from the onshore catalog were 646 

selected in descending magnitude order and manually picked onboard. The seismic network 647 

used during the two month deployment included OBSs, onshore local and regional stations (up 648 

to 500km distance). The events were relocated with NonLinLoc 77 and an hybrid velocity model 649 

based on trials with 6 different velocity models, achieving final location accuracies better than 650 

5km. Eighty-four very low frequency (VLF) earthquakes were detected between February 25 651 

and April 24, 2019, using an amplitude trigger on ocean bottom hydrophones recordings, 652 

filtered between 0.05 and 0.10 Hz, followed by a selection of events with a clear peak frequency 653 

and a final visual inspection. VLF earthquakes were located using spatial 3D back-projection 654 

of station-pair cross-correlation functions 78, assuming a constant surface-wave speed of 3.5 655 

km/s. A well-constrained epicentral location was obtained for 81 events. Geodesy: We inverted 656 

the surface deformation recorded by 6 permanent GNSS (Global Navigation Satellite System) 657 
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receivers installed in Mayotte, Grande Glorieuse and Madagascar. We used both an isotropic 658 

model and a triple volumetric discontinuities (pCDM source) in a homogeneous elastic half-659 

space, isotropic material with Poisson's ratio of 0.25 to model the pressure source in depth. 660 

Seafloor pressure data (30s sample interval) were pre-processed using harmonic analysis to 661 

remove the tides and low-pass filtering to remove residual oscillations interpreted as internal 662 

waves.   663 

Water Column: Bathymetry and water column acoustic data. 664 

See also Extended Data Figures 1 to 3 and Figure 5 665 

We mapped the submarine slope and basin adjacent to Mayotte and detected and mapped water 666 

column anomalies using ship-borne multibeam surveys over an area of 8600 km2. Bathymetric 667 

data were collected in 2014 by the French Service Hydrographique et Océanographique de la 668 

Marine 19 using the vessel BHO Beautemps Beaupré. The 2019 data 18 were collected using the 669 

R/V Marion Dufresne during the MAYOBS1 cruise (May 3rd to 18th). Both vessels are equipped 670 

with identical Kongsberg EM122 multibeam echosounders (12 kHz, 1°x1° beam width). 671 

Bathymetry and seafloor backscatter data sets were processed using the GLOBE software 76 672 

with identical 30-m cell grids to allow accurate estimates of differences in depth, surfaces and 673 

volumes. Water column acoustic data are only available for the 2019 cruise and processing was 674 

performed onboard using the SonarScope (@Ifremer) and GLOBE software packages using 675 

published methods 79. 676 

 677 

Water column: Sampling and chemical analysis 678 

See also Extended Data Figure 4. 679 

 680 

Water column sampling and in situ measurements with CTD-Rosette. 681 

Seawater was sampled using IFREMER’s CTD-Rosette, consisting of a Seabird 911+ CTD 682 
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(Conductivity; Temperature; Depth) instrument mounted on a carousel with 16 8-liter ®Niskin 683 

sampling bottles. For this cruise, the CTD-Rosette was equipped with an altimeter, an Aanderaa 684 

oxygen optode and a Seapoint turbidity meter. Information from the sensors was transmitted in 685 

real time, allowing us to adapt the sampling strategy to observed water column anomalies. 686 

The ®Niskin bottles were subsampled for onboard and onshore analyses. For CH4 analysis, 687 

125mL glass bulbs were used for analysis using the purge and trap method. The bulbs were 688 

allowed to overflow by at least two volumes of seawater and particular care was taken to 689 

exclude air bubbles to prevent contamination. While filling, sodium azide was added to prevent 690 

future microbial activity. For H2 and CO2 analysis, 160 mL vials were filled using the 691 

Headspace method. The vials, containing some sodium azide, were filled using a silicone tube 692 

connected to the ®Niskin bottle. The silicone tube was inserted to the bottom of the vial in order 693 

to completely fill the vial from the bottom to the top, displacing all contained air. The tube was 694 

then slowly removed, taking care to avoid any air bubble, and the vial was sealed with a PTFE 695 

septum using special crimping pliers. The headspace volume of 10 mL of atmospheric air was 696 

added using a needle mounted on a syringe. 697 

 698 

CH4 analysis by the purge and trap method at IFREMER laboratories. 699 

Onshore, the Purge and trap method 80 was used. Once in the laboratory, CH4 was stripped from 700 

seawater using Helium carrier gas, trapped on activated charcoal at -80°C and detected and 701 

quantified with a flame ionization detector after separation on a packed column. Calibration 702 

was performed injecting of a commercial gas standard (CH4 107.8ppm). The limit of detection 703 

is 0.03nmol/L, the precision (based on five replicates from the same rosette bottle) is within ± 704 

2% (confidence level 95%) and the accuracy is 5%. The CH4 equipment was set up in a portable 705 

clean air-conditioned container, allowing one CH4 analysis every 6 min using two extraction 706 

kits.  707 
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CO2 and H2 analysis were performed at IFREMER laboratories by GC/HID following methods 708 

described in 81, except that the headspace vial replaced the syringe.  709 

 710 

pH, Total Alkalinity and CO2 measurements onboard. 711 

pH, Total Alkalinity and CO2 measurements were performed onboard using a Metrohm 848 712 

Titrino Plus titrator. The pH electrode was calibrated using commercially available pH buffers. 713 

pH was measured as soon as possible after sample recovery and Total Alkalinity and CO2 714 

were then determined by direct titration with 0.1N hydrochloric acid. Concentrations were 715 

compared to a seawater reference for oceanic CO2 measurements (Batch 178).  716 

 717 
 718 

Seismology data 719 

See also Supplementary information and Extended Data Figures 6 and 8 720 

The 800 earthquakes discussed in this paper were located using recordings from a network of 721 

up to 22 seismological stations equipped with sensors of different types, operating during 722 

different time slots comprised between February 25th and May 5th 2019: 6 ocean bottom 723 

seismometers (OBS) and up to 16 land stations on Mayotte island, on Grande Glorieuse, on 724 

Khartala volcano, in Madagascar and in Kenya. Details on station location, type and quality are 725 

provided in Supplementary Information Figures S2.1 and S2.2 and Table S2.1. 726 

An earthquake catalog of 2362 events of magnitude 2.0<M<5.4, between February 25th and 727 

May 5th, was produced in near real-time by BRGM using land stations 82. On board, three groups 728 

of operators working around the clock manually picked 800 of the events from the OBS, 729 

selected in descending magnitude order, using SeisComP3 software 83. The Hypo71 software 84 730 

was used for preliminary locations and SeisComP3 was used to compute ML and MLv 731 

magnitudes, the velocity model was updated to fit the data (see Supplementary S2) then the 732 

NonLinLoc (NLL) software 77 was used to relocate the events.  Low-frequency events were 733 
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detected and analysed using the broadband land stations and the broadband hydrophone 734 

(HiTech HTI-90U, 30s cut-off frequency) on the OBSs. 735 

 736 

Geodesy data 737 

See Supplementary Material and Extended Data Figures 7 738 

We used the GNSS stations from the Centre National d'Etudes Spatiales (MAYG), 739 

EXAGONE’s TERIA network (BDRL and GAMO), Precision Topo’s Lel@ network (KAWE), 740 

IPGP (GLOR) and the Université de la Réunion (DSUA). Sea floor pressure data were collected 741 

using Seabird SBE37 pressure sensors deployed on the OBS frames. The seawater pump of 742 

each instrument was deactivated to avoid induced noise on the seismometer recordings. 743 

Although SBE37s are not designed for seafloor geodesy, previous experiments indicate that 744 

their pressure gauge can be used to characterize sudden or large-amplitude deformations 85,86. 745 

 746 

 747 

 748 

Data availability statement 749 

Data availability statement 750 

The authors declare that most of the data supporting the findings of this study are available 751 

within the paper and its supplementary information files. GNSS data are available on the 752 

website « http://mayotte.gnss.fr » and can be downloaded on this ftp site 753 

ftp://rgpdata.ign.fr/pub/gnss_mayotte/. Ship-borne geophysical data from the MAYOBS1 754 

cruise can be obtained through the French national oceanographic data center SISMER 755 

(http://en.data.ifremer.fr/SISMER, doi: https://doi.org/10.17600/18001217) but restrictions 756 

apply to the availability of these data. The compilations of older bathymetric and topographic 757 

data are available on the SHOM Website (http://www.shom.fr,  758 
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https://doi.org/10.17183/S201406900) Rock samples are referenced at 759 

https://wwz.ifremer.fr/echantillons/Echantillons/Carte#/map 760 

(https://campagnes.flotteoceanographique.fr/prl?id=BFBGX-134187). Samples are accessible 761 

on site at IFREMER, Plouzané, France.  762 

Map were created using Globe software https://doi.org/10.17882/70460 76, ArcGIS® software 763 

by Esri (https://www.arcgis.com/index.html), Generic Mapping Tools  87, Adobe illustrator ® 764 

(https://www.adobe.com/) and MATLAB. 765 

In addition to Mayobs 1 cruise multibeam data (resolution: 30m) 18, Figs. 1, 2, 4, 5 and Extended 766 

data Fig. 1, 2, 3, 6, 7, 8, 9 include topographic and bathymetric data from previous compilation 767 

16,88,90 (https://doi.org/10.17600/14000900, https://doi.org/10.17183) the General Bathymetric 768 

Chart of the0 Oceans (https://www.gebco.net) and Global topography from SRTM GL1 769 

(https://catalog.data.gov/dataset/shuttle-radar-topography-mission-srtm-gl1-global-30m). 770 

Litto3D Mayotte (https://diffusion.shom.fr/presentation/litto3d-mayot2012.html). Topography 771 

and bathymetry of Figure 5b from GeoMapApp (www.geomapapp.org) / CC BY.  In Fig 5 and 772 

Extended data Figs.6, 8, 9: focal mechanisms for M>5 earthquakes are from 40. In Figure 5, M> 773 

2.5 earthquakes are from 4 774 

 775 

Code Availability 776 

Ship-borne Multibeam data were processed with the GLOBE software 76. The 3D acoustic 777 

water column data were processed using SonarScope (@Ifremer) and GLOBE softwares 778 

https://doi.org/10.17882/70460 76. GNSS solutions were computed using the GipsyX/JPL software 779 

available at https://gipsy-oasis.jpl.nasa.gov. Deformation source modeling codes (Mogi and 780 

Nikkhoo) are available at https://github.com/IPGP/deformations-matlab and data processing 781 

has been achieved using the WebObs open-source system available 782 

at https://ipgp.github.io/webobs/.  783 
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Pressure gauge data were processed with Python 91. Very Low Frequency Event analysis has 784 

been performed using ObsPy 89 NumPy 92 and Matplotlib 93. Earthquake phase picking was 785 

performed with SeisComP3 94 and initial locations used Hypo71 84 786 

Final locations were performed with NonLinLoc 77 and  787 

results converted back to SeisComP3 using ObsPy 89.  788 

 789 
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Extended data. Figure 1: The Mayotte Ridge. 3-D westward view of submarine volcanic 

features located east of Mayotte, 3x vertical exaggeration. Bathymetry from MAYOBS1 30-m 

resolution DTM and 16,88 a) bathymetry (b) Backscatter seafloor reflectivity (white is highest 

reflectivity) from MAYOBS1 cruise .  

 

Extended data. Figure 2: Volcanic features offshore Mayotte. a) 30-m resolution EM122 

multibeam bathymetry (MAYOBS 1 cruise) and 16,88 with locations of Fig 2. b,c,d indicated. 

b), c) Interpreted MAYOBS1 shipboard bathymetry and backscatter of the upper slope east of 

Mayotte (location in a). Cones, lava flows and canyons as in Figure 1b. Black dots: 

bathymetric depression. Dashed red lines: pre-existing caldera structure. d) Interpreted 

bathymetry of the lower slope east of Mayotte (localisation in a). e) zoom on d) showing 

monogenetic cones and lava flows. 

 

Extended data. Figure 3: The new volcanic edifice. a) 2014 EM122 multibeam seafloor 

backscatter 19. b) 2019 reflectivity (MAYOBS 1 cruise) 18. c) Depth changes between the 2014 

and 2019 surveys, superimposed on 2019 reflectivity. The white areas of the 2019 backscatter 

map exceeding the bathymetric difference map indicate the extent of new volcanic material. 

 

Extended data. Figure 4: CTD (conductivity temperature-depth)-Rosette measurements. 

a) Nephelometry and b) temperature vertical profiles. c)-g) sample analyses from 8L ®Niskin 

bottles. c)-e) Gas concentrations(CH4, H2, CO2); .f) pH,  g) total alkalinity and total CO2. 

 

Extended data. Figure 5: Acoustic plumes over the Horseshoe volcanic structure.  a) 

Southward 3D view of the horseshoe morphology and two water column acoustic plumes 

observed on the western internal flank. b) Processed polar echogram from one EM122 

multibeam ping of the data set displayed in (a) acquired on May 18th (05:41 UT) horizontal 

and vertical-axes correspond respectively to the cross-track distance and the water depth, in 

meters) – see also Acoustic plume movie 2. 

 

 

Extended data. Figure 6: Seismicity. Top: map views, bottom: cross-sections (A-A’) 

projection along azimuth N115°E; (B-B’) along azimuth N45°E.  a) Earthquakes recorded by 
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onshore seismological stations before the deployment of the Ocean bottom seismometers 

(OBS). Colored circles are events occuring in the first six weeks of the crisis, white circles are 

earthquakes in the intervening 8 months. b) Earthquakes recorded by the OBS+land stations 

between February 25 and May 6 2019 (pink dots). Yellow diamonds: location of the Very 

Low Frequency (VLF) events located in this study (see supplementary S2.3). c) Focal 

mechanisms of the largest earthquakes from the Harvard CMT catalog 40 with color scale as in 

a). 

 

Extended data. Figure 7  - Global Navigation Satellite System (GNSS) data modelling 

and seafloor subsidence estimated from seafloor pressure variations. a) Stations locations. 

Arrows with colors and names: GNSS velocity vectors (mm/yr) and station names. Coloured 

numbers: vertical deformation (mm/yr). Inset: yellow dots : pressure sensors on ocean bottom 

seismometer stations (see supplementary Fig.S2.1), red arrows: Mayotte GNSS velocity 

vectors (mm/yr), white arrows: far field GNSS velocity vectors.  b) GNSS Time series with 

relative displacements recorded on the east (top), north (middle) and vertical (bottom) 

components of the stations between January 2018 and January 2020. c) Best fit-models with 

1σ uncertainties of the GNSS data for one isotropic point source and a triple volumetric 

discontinuity pCDM source. d) Top panel: Pressure recorded by Seabird SBE37 gauges at the 

six ocean-bottom seismometer stations (Yellow dots inset Figure 7a and Fig. S2.1) de-tided 

and converted to vertical motion. Middle panel: vertical deformation estimated at each 

seafloor instrument location, using the best isotropic source model obtained from the GNSS 

data for the March 1st to May 1st 2019 period.  

 

 

 

Extended data. Figure 8: Conceptual model for the Mayotte seismo-volcanic event.  

Circles and diamonds are events as in Extended data - Figure 6.  Focal mechanisms of main 

earthquakes are from Harvard CMT catalog 40) with the same color scale as the May 10 to 

June 30, 2018 events, Yellow circle and blue patch:  Location, with 3 sigma uncertainties, of 

the most robust isotropic source deformation model. a) Map view: The redish ellipse: Mayotte 

ridge, dashed circular area: old caldera structure in the morphology b) Cross-section 

(projection along azimuth 115 degree). Symbols as in a). Red lines: magma migration 

(dykes). Red ellipses and circle: magma reservoirs or mushes. Pink arrow: possible downsag 

along caldera structures. Redish zone: Eastern segment of the Mayotte ridge.  
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Extended data. Figure 9: Regional volcano-tectonic setting of the submarine eruption 

offshore Mayotte. a) Volcano-tectonic setting of the new volcanic edifice (NVE). Volcanic 

cones and ridges (purple) from this study and 13,72,16,51. Beach balls: focal mechanisms for M>5 

earthquakes 40. Dotted white arrow: dyking event along the N130° E trending eastern segment 

of the volcanic ridge. Pink ellipse: inferred main volcano-tectonic ridges. Purple ellipses: 

highly damaged zones in between the en echelon ridges. Dashed grey lines: Mesozoic fracture 

zones 6. Inset: sandbox model adapted from 58 illustrating the possible arrangement of the 

main volcano-tectonic structures in Comoros. Thick black arrows: local extensi 
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Description of contents  
 
This document contains three main sections S1, S2, S3 with supplementary text, figures and 

tables.  

S1 includes two tables (S1.1 and S1.2) and presents the analysis of the rock sample DR01. 

S2 includes text, 18 figures (Fig. S2-1 to S2-18) and 2 tables (Tables S2.1, S2.2) and presents 

the seismological data and analysis. Classical high frequency earthquakes are presented in 

section S2.2 and very low frequency events in section S2.3. 

S3 includes three tables (Tables S3.1 to S3.3) and text and presents the Global Navigation 

Satellite System GNSS and seafloor pressure data and modeling (see also Extended data Fig. 

7).   
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S1. Analysis of rock sample DR01 
See Figure 2a in the main text for the position of dredge DR01. 

Composition of representative rocks of the New Volcanic Edifice (DR01).  
 

Sample name DR 01 – 01 DR 01 – 05 

SiO2 45.98 45.72 

TiO2 3.21 3.20 

Al2O3 14.88 14.81 

Fe2O3 t 13.77 13.76 

MgO 5.28 5.27 

MnO 0.23 0.23 

CaO 7.07 7.04 

Na2O 4.55 4.48 

K2O 2.43 2.44 

P2O5 1.64 1.62 

LOI 0.17 0.34 

Total 99.21 98.91 

 
Table S1.1: Analysis* recalculated to 100 wt% on an anhydrous basis, with Fe2O3 = 0.2 total Fe.  
 

Sample name DR 01 – 01 DR 01 – 05 

SiO2 46.95 46.91 

TiO2 3.28 3.28 

Al2O3 15.19 15.19 

Fe2O3 2.81 2.82 

FeO 10.12 10.16 

MgO 5.39 5.41 

MnO 0.23 0.24 

CaO 7.22 7.22 

Na2O 4.65 4.60 

K2O 2.48 2.50 

P2O5 1.67 1.66 

Total 100.00 100.00 

Na2O + K2O 7.13 7.10 
 
Table S1.2: Analysis* recalculated to 100 wt% on an anhydrous basis 
 
* Major elements were analysed by ICP-AES (Horiba Jobin-Yvon Ultima C spectrometre) at Laboratoire 
Magmas et Volcans (Clermont-Ferrand, France), after alkali fusion and nitric acid dissolution, following the 
method described by (Gurioli, Di Muro et al. 2018). Calibration was done against a BHVO-1 rock standard 
(Jochum, Weis et al. 2016). 
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S2. Seismology 

S2.1 General Figures 

 
 

Figure S2.1: Map of seismological land stations and Ocean Bottom Seismometers (OBS) used in this study (left: 

regional scale; right: local scale). Colour code: months of data recorded between May 2018 and May 2019. 

White crosses: Stations with significant data gaps and poor data quality. GGLO station had only triggered data. 

A seafloor pressure gauge is attached to each OBS. 
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Figure S2.2: Station data availability between 25 February 2019 and 5 May 2019.  
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Code Network Name Location 
Latitude 
(°N) 

Longitude 
(°E) 

Elevation 
(m) 

Duration 
(months) Type 

KNKL QM Kani-Keli Mayotte -12.9571 45.1042 24 2.0 VBB 

RAE55 AM Koungou Mayotte -12.7335 45.2036 47 10.5 SP 

MCHI ED Chiconi Mayotte -12.8329 45.1237 130 10.5 BB 

KIBK GE Kibwezi Kenya -2.3591 38.0433 790 12.0 VBB 

SBV GE Sambava Madagascar -13.4584 49.9212 65 10.0 VBB 

VOI GE Vohitsoka Madagascar -21.9065 46.7933 993 12.0 VBB 

ABPO II 
Ambohipano
mpo Madagascar -19.0183 47.2292 1552 12.0 VBB 

CAB KA Cabanes 
Grande 
Comore -11.7486 43.3435 1984 11.0 BB 

MOIN KA Moindzaza 
Grande 
Comore -11.7659 43.2435 145 0.5 BB 

DEMB KA Dembeni 
Grande 
Comore -11.8774 43.4062 300 0.6 BB 

SBC KA Bahani 
Grande 
Comore -11.6491 43.2969 640 11.0 BB 

GGLO QM Glorieuse Glorieuse -11.5830 47.2924 7 1.7 BB 

MILA RA 
Iloni 
Dembeni Mayotte -12.8481 45.1928 30 1.6 ACC 

YTMZ RA Mamoudzou Mayotte -12.7557 45.2307 25 12.0 ACC 

MOCE 1T central OBS offshore  -12.6652 45.8037 -3120 0.5 SP 

MONE 1T NE OBS offshore  -12.8074 45.6343 -3510 0.5 SP 

MONN 1T N OBS offshore  -12.4932 45.5576 -3180 2.0 SP 

MONO 1T NW OBS offshore  -12.6513 45.3919 -1600 2.0 SP 

MONO 1T NW OBS offshore  -12.6513 45.3919 -1600 2.0 SP 

MOSE 1T SE OBS offshore  -12.9625 45.8199 -3520 2.0 SP 

MOSO 1T SW OBS offshore  -13.0790 45.4585 -2530 2.0 SP 

MTSB 1T Mtsamboro Mayotte -12.6804 45.0847 50 1.0 BB 

PMZI 1T Pamandzi Mayotte -12.7993 45.2743 10 2.0 BB 
 
 
Table S2.1: Stations used for local earthquake relocations  
 
VBB: Very BroadBand (high performance, low frequency cutoff > 120s) 

BB: BroadBand (medium to standard performance, low frequency cutoff > 20s) 

SP: Short Period (low frequency cutoff < 1s) 

ACC: Accelerometer 
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S2.2: Earthquake locations and magnitudes 

S2.2.1: Velocity models 

Once phases were picked on the OBS data (see Methods, location of stations in Fig. S2.1 and 

information on data Station data availability Fig. S2.2), Hypo71(Lee and Lahr 1972) was used 

for preliminary earthquake location and SeisComP3 (Weber, Becker et al. 2007) was used to 

compute ML and MLv magnitudes. We started with two different velocity profiles. The first 

one, named “Coffin449”, is based on a Vp velocity profile calculated from a 1986 active-

seismic sonobuoy experiment (Coffin, Rabinowitz et al. 1986). The second profile, named 

“ADofal” is based on a Vs velocity profile from a receiver function study (Dofal, Fontaine et 

al. 2018) using a Mayotte land station. After picking the first 100 events, we used a modified 

Wadati diagram (Chatelain 1978) to estimate a local (OBS and Mayotte land stations) Vp/Vs 

ratio of 1.6 and a regional (Glorieuse, Karthala, Madagascar, Kenya, Seychelles and Réunion 

Island stations) Vp/Vs of 1.72 (Figure S2.3). 
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Figure S2.3: Modified Wadati diagram (Chatelain 1978) of arrival times of the P-and S-waves for the first 

hundred OBS+land located earthquakes. Differences in arrival times of S-wave arrival times (tsi, tsj) are plotted 

against differences in P=wave arrival times (tpi, tpj) for station couples(i,j) (a) Plot for local and regional 

stations: Vp/Vs = 1.72. (b) Plot for local stations only (Mayotte land stations and and OBSs): Vp/Vs = 1.6. 

 

We then used NonLinLoc (Lomax, Michelini et al. 2009) to relocate the events. We first 

focused on local picks, in order to assess the best local velocity. We compared the 

distributions of maximum hypocentre error for the two velocity models and three Vp/Vs 

ratios (Figures S2.4 and S2.5) for an 800-earthquake dataset. The ellipsoidal error major axes 

range between 2 and 10 km, with most of the events having error major axes of 4±2 km. The 

best results were obtained using the “ADofal” velocity model with Vp/Vs = 1.66, for which 

83.5% of the events had errors smaller than 5km.  Our final velocity model is a hybrid model 
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composed of: the “ADofal” and Vp/Vs 1.66 for OBSs and stations in Mayotte; the 

“Coffin449” oceanic model and Vp/Vs 1.72 for regional stations (between 200 and 400 km 

from Mayotte); AK135 (Kennett, Engdahl et al. 1995) for more distant stations. NLL also 

computes a Vp/Vs ratio for each event, based on P and S arrival times, and independent from 

earthquake location, using a formulation described in the HypoEllipse manual (Lahr 1999). 

The NLL estimation, using the 800 events, supports the mean Vp/Vs ratios of 1.66 use for 

local stations and 1.72 for regional stations (Figure S2.6). 

 

Figure S2.4: Histogram of the maximum ellipsoidal errors (major axis) for the 800 earthquakes picked using the 

OBS+land network, for six tested velocity models. For each Vp/Vs ratio, the ADofal model shows a lower 

distribution than the Coffin449 model. The dispersion is lowest for Vp/Vs = 1.66. 
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Figure S2.5: The 1D, layered velocity models tested to locate the 800 earthquakes picked on the local 

OBS+land network.  
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Figure S2.6: Distribution of P-wave velocity/S-wave velocity (Vp/Vs) ratios based on NonLinLoc estimations, 

from local (a) and regional (b) phases for the 800 events. The mean values agree with the initial values found 

using a limited subset of events and the modified Wadati method (Chatelain 1978) (Figure S2.3). 

 

S2.2.2 Depth bounds of events 

The resulting locations span a depth range between 25 and 55 km, with average vertical 

uncertainty of 2.5 km (Figure S2.7). These depths are stable over most of the velocity models 

and Vp/Vs ratios (Figure S2.8): only the “Coffin449” oceanic crust type model, with an 

unrealistic Vp/Vs ratio of 1.8, gives significantly shallower depths, between 10 and 40 km. In 

no case were earthquakes located shallower than 10 km. 
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Figure S2.7: Distributions (left panel) and time evolutions (right panel) for the 800 earthquakes recorded by the 

Ocean Bottom Seismometers between February 26 and May 5, 2019 and located onboard. Upper panel: 

hypocentral depths; second panel: depth uncertainties; third panel: azimuthal gaps; bottom panel: the number of 

P- and S-wave phases used. 
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Figure S2.8: Distribution of the hypocentral depths of the OBS+land catalogue, for each tested velocity model. 
 

We performed three tests to verify the unusual depth of the hypocenters. For these tests, we 

selected a high quality sub-set of the catalog, consisting of events, with at least 5 P-wave and 

5 S-wave arrivals picks on the OBS data (149 events). In the first test, we relocated the 

earthquakes using half-space velocity models with Vp between 2 and 9 km/s and a Vp/Vs 

ratio of 1.65. In the second test, we added a 200m-thick very low velocity (0.2 km/s, 
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consistent with soft unconsolidated sediments (Grevemeyer, Hayman et al. 2019) Figure S2.9 

to the ADofal model.  In the third test we calculated hypocenters using only P-arrivals 

 All of the half-space tests returned depths greater then 15km and, for a reasonable 

half-space P-wave velocity (5-7 km/s), the depths range between 20 and 60 km (except for a 

few locations with convergence problems, Table S2.2). The second test returned depths 

concentrated between 22 and 47 km (compared to 25 and 50 km using our hybrid model 

(Figure S2.9), indicating that a superficial unconsolidated sediment layer would only have a 

small effect on the depth distribution. The mean RMS with this model is higher than that for 

our original model.  Finally, using only P arrivals does not significantly change the depths. 

 

Table S2.2: Effect of different half-space velocity models (VP/VS = 1.65) on the earthquake depth distribution.  

Hypocenters calculated using Hypo71.  The last column shows the percentage and depth range of events with 

convergence problems (RMS generally greater than 1s). 
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Figure S2.9: Effect on Depth and Rms distributions of adding an unconsolidated sediment layer below the 

OBSs.  Hypocentres calculated using NLL. Depth and Rms distributions for relocations using a) our chosen 

hybrid model. b) the same model topped by a 200m-thick sediment layer with low S-wave velocity (0.2 km/s) 

below the OBSs. 

 

S2.2.3 Relocation of a subset of events before the OBS deployment 

We used NLL and the above-described hybrid velocity model to relocate a small subset of the 

events that occurred before the OBS deployment, including data from the Karthala stations 
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(network KA, Table S2.1) that had not previously been taken into account (data not available 

in 2018). We relocated 139 of the strongest events, 56 of which were between May and June 

2018 (the beginning of the seismic crises). The location accuracy, which depends strongly on 

the network geometry, changes over time (Figure S2.10). 

 
Figure S2.10: Evolution of location statistics from May 2018 to May 2019 for the 800-event OBS+land 

catalogue plus the 139-event relocated pre-OBS catalogue.  Left panels: Zoomed-in view on the first month. 

Upper panel: hypocentral depths and errors bars; second panel: epicentral location errors; third panel: azimuthal 

gap of station coverage; lower panel: number of P-and S phases used. 

 

S2.2.4 Magnitude estimation 
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We used the embedded ML (all channels) and MLv (vertical channel) magnitude formulae in 

SeisComP3 to compute the earthquake local magnitudes. SeisComP3 converts the signal to a 

Wood-Anderson seismometer response. There is no systematic difference between ML and 

MLv magnitudes.   

Because no moment tensors were computed by global agencies during the deployment period, 

we couldn’t calibrate the attenuation values used in the magnitude computation. However, 38 

of the events were also located by the United States Geological Survey (USGS), and we 

compared our magnitudes to theirs (Figure S2.11). All USGS values are mb body wave 

magnitudes at teleseismic distances, except one which is a W-phase tensor magnitude. The 

scatter is large for this limited sub-set of events, but the global fit between USGS magnitudes 

and our local magnitudes has a regression close to one.  

 

 

Figure S2.11: Comparison of this study’s local magnitudes and USGS magnitudes. The relations between the 

magnitudes are scattered on either side of the 1:1 line.  
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S2.3. Very low frequency (VLF) event detection and location 

We detected 84 VLF events between February 25 and April 24, 2019, using the recordings of 

the OBSs’ wideband hydrophones. Events were detected using an STA/LTA trigger (Withers, 

Aster et al. 1998) on traces filtered in the 10-20 s period band. We use an STA window of 100 

s, an LTA window of 600 s and a trigger threshold of STA/LTA ≥ 3. An event was declared 

when at least one station triggered. A post-processing step was performed to remove events 

without a clear ~15 s peak in their amplitude Fourier spectrum (e.g., large earthquakes with 

sufficient energy below 10 s of period), by computing the ratio between the peak amplitude of 

the Fourier spectrum and the average amplitude in the period band 13-18 s and only keeping 

events with ratio larger than 3. The resulting 135 events were visually inspected to remove 

remaining false detections, leaving us with 84 VLFs (Figure S2.12) 

 

Figure S2.12: Daily and cumulative number of detected VLFs as a function of time, between February 25 and 

April 24, 2019.  

 
 
 

We compared one of the highest amplitude events (February 26, 2019) with the large 

November 11, 2018 VLF signal recorded worldwide. Even though the November 11 event 

has twice the amplitude of the February 26 event on local land stations, their overall 

waveform shapes are similar, with three main wave packets and a duration of ~2000 s 

(Figures S2.13 and S2.14). The vertical and horizontal particle motions of the two events at 

land stations YTMZ and MCHI show a similar elliptical polarization (typical of Rayleigh 
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waves) with similar vertical incidence and horizontal azimuth (Figures S2.15 and S2.16). 

These observations indicate that the large November 11, 2018 VLF shares a similar location 

and source mechanism to the OBS-observed VLF activity. 

 

 

 

Figure S2.13: Comparison between the large November 11, 2018 VLF signal (blue), and one of the largest 

VLFs (February 26, 2019, orange) detected in this study. The three panels show –from top to bottom– E, N and 

Z components at accelerometric station YTMZ (on land), corrected by instrument response and integrated to 

ground velocity.  
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Figure S2.14: Same as Figure S2.13, but for velocimetric station MCHI (on land), corrected by instrument 

response. Signal for the November LF event presents data gaps due to transmission problems.
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Figure S2.15: Particle motions of the large November 11, 2018 VLF signal (top panels) and one of the largest VLFs 

(February 26, 2019) detected in this study (bottom panels), at station YTMZ. Left panels show particle motion in the 

E-Z plane (vertical plane); right panels show particle motion in the E-N plane (horizontal plane). The curves are 

colour-coded according to time from the beginning of the trace (see Figure S2.14). 
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Figure S2.16: Same as Figure S2.15, but for station MCHI. 
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The VLF sources were located using data from the 6 OBS hydrophones plus the land stations 

RA.YTMZ, ED.MCHI, AM.RAE55, 1T.MTSB and 1T.PMZI (see figures S2.1 and S2.2 for 

station locations and availability).  We first estimated the relative time delay for each station pair 

using vertical components of land stations, transformed to acceleration, and pressure recordings 

from the OBH, which correspond to accelerations at these frequencies (An, Cai et al. 2017). The 

local cross-correlation (LCC) between the two signals (Figure S2.17) was computed on a 20 s 

sliding Gaussian window (Hale 2006) for 1-bit normalized signals (Larose, Derode et al. 2004).  

The one-bit LCC shows that the two signals remain coherent for more than 1500 s. The 

monochromatic nature of the signal implies that cross-correlation values are periodic, with a 

period of ~15 s. We then averaged the LCC function in the time window where the signal 

envelope is greater than 20% of the maximum value (vertical bars in figure S2.17) to obtain a 

station-pair cross correlation (CC) curve as a function of lag. 
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Figure S2.17: Local cross-correlation between ground station MCHI and ocean bottom hydrophone MONN for the 

February 26, 2019 VLF. (top) Signals filtered between 10 and 20 s (0.05-0.10 Hz) and aligned to the same reference 

time. The vertical bars indicate the window where the signal envelopes are larger than 20% of their maximum. 

(middle) Cross-correlation. (bottom) Cross-correlation after 1-bit normalization. 

 
 

We then back-projected the average 1-bit cross-correlations (CC) over time-delay 3D maps 

(Poiata, Satriano et al. 2016), assuming a constant wave velocity of 3.5 km/s.  Figure S2.18a 

shows an example of CC maps (2D projection shown) for three station pairs. The final 3D 

location map was obtained by stacking the 3D maps for all the possible station pairs (Figure 

S2.18b), and by taking the stack to the power of N (number of stations), while retaining the CC 

sign (Figure S2.18c), similar to the “equal differential time” location methods (Lomax 2005) . 
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Figure S2.18: Location of the February 26, 2019 VLF. (a) Examples of 2D station delay maps for three station 

pairs. Station locations are indicated by the white dots. Positive values of cross-correlation (CC) indicate regions for 

which the signals are in phase; negative values indicate regions for which the signals are in antiphase. (b) and (c) 3D 

final VLF location maps. For each plot, the horizontal and the two vertical cross sections are taken through the 

cross-correlation (CC) stack maximum. (b) a stack of all the 3D maps (c) the stack taken to the power of the number 

of stations.  

 

To the test the effect of different wave speed values on VLF location, we located the VLFs using 

three different wave velocities in the range of possible S-wave speeds for the region (Dofal, 

Fontaine et al. 2018): 2.5, 3.5 and 4.5 km/s. The three 3D maps (Figure S2.19) share a well-

constrained epicentral location (positive CC stack), with a horizontal 1-sigma error of about 5 

km, but the hypocentral depths are significantly different for each velocity. The depth obtained 

using a velocity of 2.5 km/s is between 29 and 60 km, at which depth S-wave velocity should be 

faster than 4 km/s (Dofal, Fontaine et al. 2018); The depth obtained using a velocity of 4.5 km/s 

is between 0 and 23 km, where the S-wave velocity should be slower than 3.5 km/s (Dofal, 

Fontaine et al. 2018). The most reasonable solution is therefore the one obtained using a wave 

velocity of 3.5 km/s, which provides a depth between 7 and 40 km. 
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Figure S2.19: Stacked location 3D maps for all the 83 located VLFs, using different wave velocities (2.5, 3.5 and 

4.5 km/s). The contour line is at half the maximum stacked CC value, i.e., one sigma. For each plot, the horizontal 

and the two vertical cross sections are taken through the cross-correlation (CC) stack maximum. Station locations 

are indicated by the white dots. 
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S3. Geodesy 
See also Extended Data Fig.7. 

S3.1 GNSS data and modelling 
 
S3.1.2 Tables 
Tables S3.1 presents GNSS displacements and velocities for the study period (January 1, 2018-

January 1, 2020) and Tables S3.2 and S3.3 present characteristics of the modelled isotropic and 

non-isotropic point sources.  
 

Name Lat N Lon E Alt 

(m) 

E 

 (mm) 

N 

(mm) 
Up (mm) dE 

(mm) 

dN 

(mm) 

dU 

(mm) 

BDRL -12.91 45.193 -4 286.4 103 -202.9 5 5 5 

DSUA -12.30 49.28 22 -8.2 -2.1 29.8 5 5 5 

GAMO -12.76 45.08 -4 265.1 -25.8 -121.7 5 5 5 

GLOR -11.58 47.21 -16 -2.6 0.8 16.6 5 5 7.6 

KAWE -12.76 45.22 12. 299 -36.9 -213.4 5 5 5 

KNKL -12.96 45.10 6 132.4 50.3 -58.9 5.2 5 11.1 

MAYG -12.78 45.25 -16. 265.9 -18.2 -215.4 5 5 5 

MTSA -12.76 45.08 72 269.9 -23.8 -120.9 5 5 5 

MTSB -12.68 45.08 33 152.3 -46.7 -116.3 5 5 10.1 

PMZI -12.80 45.27 -12 146.8 -9.5 -162.9 5 5 8.9 

PORO -12.90 45.14 -6 285.8 71.6 -169.7 5 5 5 
 
Table S3.1: GNSS displacements for the January 1, 2018-January 1, 2020 period  
 
 

 lon lat Z (km) ∆Vtot Mean error 

Source 45.66 E ± 6 km 12.81 S ± 9 km -39 ± 1 
km 

-5.5 to 5.2 (km)3 44 mm 

 
Table S3.2: Characteristics of the isotropic point source (location with 1s uncertainties) 
 

 lon lat Z 
(km) 

∆Vtot ∆VZ/∆Vtot ∆VX/∆VX+Y ΩX ΩY ΩZ Mean error 

Sourc
e 

45.47 
E ± 10 

km 

-12.79 
S ± 1 
km 

-27 ± 
1 km 

-5.5 
(km)3 

0.05 0.48 3 

11 -3 

37 mm 

 
Table S3.3: Characteristics of the pCDM source (location with 1s uncertainties) 
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S3.1.2 Modelling 

Ground deformation modelling in volcanic areas provides useful quantitative information on the 

location and shape of magma reservoirs and on the volume of magma circulation at depth 

(Dvorak and Dzurisin 1997) (Dzurisin 2003) (Segall 2010). Source characteristics driving 

surface displacements can be retrieved to a first order by modelling a point source in an elastic 

half-space. This strategy is relevant and robust when the amount of observations is limited. 

We use two distinct analytical formalisms: 1) an isotropic point source (Anderson 1936) that is 

often used as an approximation of hydrostatic pressure variation in a deep spherical source 

(Kiyoo 1958), and 2) a point compound dislocation model (pCDM), a 

point source approximation of a 3D volumetric source that can model, in the far field, surface 

displacements due to any triaxial ellipsoidal shapes and degenerate cases like a sill, dyke or 

sphere (Nikkhoo, Walter et al. 2016). These two types of modelling are operationally used  for 

real-time volcano monitoring in the WebObs system (Beauducel, Lafon et al. 2020), (Beauducel, 

Peltier et al. 2020), an integrated web-based system for data monitoring and network 

management implemented in 15 observatories worldwide, including the REVOSIMA 

(REVOSIMA 2020). 

Both models assume a homogeneous elastic half-space, an isotropic material with Poisson's ratio 

of 0.25, and are only relevant at far-field observation points because of the point source 

approximation. In our case study, this last assumption is valid because the seismicity, and thus 

the probable associated source of the surface deformation, is located at depths greater than 20 

km. These simple models give a first order estimation of the magnitude and characteristics of the 

source(s) at the origin of the surface displacements observed on land. The lack of precise surface 

displacement rates above the source of deformation prevents the use of more elaborate models. 
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The isotropic point source model provides analytical expressions for surface displacements due 

to a simple isotropic volume variation and depends on four parameters. The relationship between 

surface displacements and volume change is given by:  

 

 Uz = (3 ∆V d) / (4 π (d2 + r2))1.5  (1) 

 Ur = (3 ∆V r) / (4 π (d2 + r2))1.5  (2) 

Where Ur and Uz are the radial and vertical displacements (in m), respectively, at the surface for 

an observation point located a radial distance r from the point source (in m), d is the depth of the 

source centre (in m) and ∆V is the volume change (in m3). 

The pCDM model provides analytical expressions for surface displacements due to a source 

composed of three mutually orthogonal tensile dislocations, one horizontal and two vertical, 

freely oriented in space (3 rotational degrees of freedom) in an elastic half-space.  The pCDM 

model depends on 9 parameters: 3 for the hypocentre location (horizontal coordinates and 

depth), 3 for the volume variations (of the same sign, for each plane) and 3 for the angles of 

rotation (around each 3-D axis). The ratio between the 3 volume variations on each discontinuity 

translates the source geometry. 

We used data from the stations on Mayotte island, Diego Suarez (DSUA) and Grande Glorieuse 

(GLOR) (main text Figure 1a and Extended data Fig7, Table S3.1): the KNKL, MTSB, PMZI 

stations on Mayotte and the distant DSUA, (Madagascar) and GLOR (Grande Glorieuse) stations 

were installed after the beginning of the crisis (Extended data Figure 7) but give better 

constraints on the source, notably in far-field for the DSUA and GLOR stations. Surface 

displacements are estimated using weighted linear trends on the period of observation for each 

station. This method improves the integration of sparse data from all stations installed in 2019, 

by extrapolating the velocity trend for 2018 period. In our calculations using surface 
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displacements (corrected from the pre-eruptive global trend that includes a plate tectonic 

translation) we invert for the source location, volume variation and, in the case of the pCDM 

source, the six additional geometry parameters. We perform inversion calculations in a Bayesian 

framework (Tarantola 1984), exploring all model parameter values and computing a probability 

function for each possible model based on the misfit. This method describes the “model space” 

associated with a set of data, an efficient way to properly estimate the confidence in the best-fit 

model (Beauducel and Carbone 2015). This approach also gives a natural estimation of a 

posteriori uncertainties for each parameter. For the isotropic source, a 4-dimension matrix of 

parameters is computed with a hundred million forward problems. For the pCDM source, 

systematic exploration of the model space is not possible. Therefore, we use a Monte Carlo 

algorithm with ten million forward problems randomly chosen in the 9-parameter model space. A 

posteriori uncertainties of the best model solution are given by the interval of variation over each 

parameter that keeps 68% (one standard deviation) of the highest model probabilities. 

S3.1.3 Inversion results 

Test 1, Isotropic point source: We inverted the four parameters of an isotropic point source 

search for best fit without any a priori on the source location or volume variation. We computed 

trends on time series for all available stations on Mayotte and the two distant stations in Grande 

Glorieuse and Diego Suarez from January 1, 2018 to January 1, 2020. We found a best-fit source 

(mean error on displacements of only 44 mm), a deflating point located 40 ± 6 km east of 

Mayotte, at 39 ± 1 km depth with a volume variation of -5.5 to 5.2 km3 (see Extended data 

Figure 7b –GNSS and Supplementary table S3.2). 

Test 2, triple volumetric discontinuities -pCDM source: We inverted the nine parameters of a 

pCDM source to look for the best fit without any a priori on the source location or shape. The 

best-fit solution is a well-constrained sub-vertical pipe 30 ± 3 km east of Mayotte, at 27 ± 1 km 
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depth and with a volume variation of -5.5 km3 (see Extended data Figure 7c –GNSS and 

Supplementary Table S3.3). The particular shape of the source is expressed by a quasi-null 

volume variation on the horizontal discontinuity, and near equal volume variations on the two 

vertical discontinuities. This mimics an elongated prolate axisymmetric ellipsoid or a pipe. The 

vertical orientation is given by the low value of rotation angles around horizontal axis. While the 

volume variation is similar, the location of this second source differs from the isotropic one. This 

can be a side effect of the poorly constrained geometry of the GNSS network, or this might 

evidence the complexity of the real source of deformation, with multiple reservoirs, spatially 

extended and active simultaneously. 

 
 

S3.2 Sea floor pressure data: 

In addition to on-land GNSS data, sea floor pressure data sensors were deployed on each OBS 

frame, collecting data from March to May 2019 (see location on Figure S2.1). The pressure 

records are dominated by a tidal signal with up to 4m amplitude (Extended Data Figure 7d). 

After removing most of the tides by harmonic analysis using the “UTide” code (Codiga 2011) 

and low-pass filtering at 36h, the residual signal includes possible seafloor deformation, 

oceanographic “noise” and instrumental drift. We observed a continuing increase in all the 

pressure records after the sensors adjusted to the seafloor depth and temperature. We believe that 

the observed increase corresponds to a seafloor subsidence signal at all the stations. This 

subsidence is within the expected range of subsidence modelled from on-shore GNSS data.  

Residual signal after subtracting the model-predicted trend from the seafloor pressure variations 

probably contains instrumental drift (especially in the first 2 weeks of the deployment) but may 

also include some mis-modelled seafloor deformation. The residuals at stations MOSE and 

MONE (see location Figure S2.1) exhibit slight negative and positive trends, respectively which 

could indicate that the volcanic source is located a bit further south than that modelled using the 
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GNSS data, assuming that instrumental drift is not the dominant factor. The sea floor pressure 

data sensors also confirm that there is no significant sudden deformation beneath any of the OBS 

sites, which is coherent with the lack of shallow earthquakes. 
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